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Foreword

Teachers of advanced undergraduate and graduate courses in VLSI design
have for several years lamented the non-existence of a book like this one.
There exist books on VLSI algorithms for the student whose primary inter-
est 1s algorithms and not VLSI. These books reduce the scope of problems
below what must be implemented in CAD tools while, at the same time,
pushing mathematics prerequisites beyond those usually possessed by stu-
dents in Computer Engineering. Those books which have treated the issues
of placement and routing at the engineering level are now out of date and
with passing years have come to appear superficial. This book treats cur-
rent issues at the appropriate depth.

Sadiq M. Sait and Habib Youssef have limited the scope of this volume
to chip layout. Treatment begins at a point after synthesis and net-list
manipulation are complete. Simulation can be accomplished before and
after, but is not one of the 1ssues addressed herein. Thus, the authors are
able to provide a comprehensive analysis of every classic chip layout level
topic from partitioning and floorplanning to routing and compaction. In
every chapter there is space for treatment of all competing approaches.

This book will be must reading for the next generation of CAD tool
developers and will strengthen the hand of the more casual student who
must choose intelligently among available vendor supplied tools. The book
contains more than enough material for a one semester graduate course.
It will serve as the primary text for a course limited to layout. It should
become a resource for any course on VLSI design. As soon as the book
becomes available, my colleague and I will integrate it into our Computer
Engineering course on CAD algorithms at the University of Arizona.
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viii Foreword

I have known Sadiq M. Sait since the time of his Ph.D. dissertation. 1
endorsed at its inception the project that led to this volume and predicted
solid results. My initial confidence has been more than justified.

Dr. Fredrick J. Hill, Professor,
University of Arizona,

Tucson 85721 AZ,

USA.



Preface

Motivation

This book is intended as a text for senior undergraduates and first-year
graduate students in Computer Engineering, Computer Science and Elec-
trical Engineering. It is also a good reference book for CAD practitioners.
VLSI design is now recognized as an important area of Com-
puter/Electrical Engineering and Computer Science. VLSI design is a very
complex process. The design of a VLSI system in unthinkable without the
use of numerous computer aided design (CAD) tools, which automate most
of the design tasks. Except for the initial specification of the system, every
other step of the design process has been either automated or made easy
through user-friendly CAD tools/programs. The first paper on CAD ap-
peared in 1955. CAD started being recognized as indispensable as early as
1960. Now for nearly two decades, CAD of digital systems has become a
mature area. Almost every engineering school offers at least one graduate-
level course in VLSI design and VLSI design automation. Computer Science
departments offer courses in VLSI computation and design automation.
There are three general aspects of CAD: (1) synthesis, (2) verification,
(3) design management. This book deals with the first aspect, that is, the
synthesis aspect. Synthesis is known as the problem of obtaining a lower
level representation of a digital system from a higher level representation
of the same system. When the higher level representation is a behavioral
description and the lower level is a structural description, the synthesis pro-
cess from the higher level to the lower level is known as high-level synthesis.
When both the higher and lower levels are structural representations, the
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X Preface

process is called physical synthesis. In this book, we are mostly concerned
with physical synthesis, i.e., partitioning, floorplanning, placement, and
routing. However, high-level synthesis aspects are also addressed in the
context of silicon compilation.

This book is suitable for senior undergraduate students and first year
graduate students who may not have been exposed to many of the math-
ematical ideas from graph theory and algorithms. The book makes up for
this lack of exposure through the use of a large number of illustrative exam-
ples and solved exercises. The only pre-requisite assumed is the knowledge
of basic logic design and computer architecture.

Organization of the Book

The book is organized into 9 chapters. The chapters are organized in a
sequence similar to the physical design process itself.

Chapter 1, the introductory chapter, motivates the student towards
a study of physical design automation of integrated circuits. Layout is
examined in the backdrop of the entire design automation process. Basic
terminology is introduced, and the important subproblems of layout are
identified. The fact that many layout subproblems are “hard” is brought
out with illustrative examples.

Chapters 2 through 7 examine the different subproblems in IC layout.
Chapter 2 covers the problem of circuit partitioning. Chapter 3 discusses
floorplanning. In chapter 4 we present the problem of module placement.
Chapter b through 7 are on wiring. We discuss grid/maze routing, global
routing, and channel routing in chapters 5, 6, and 7 respectively.

In Chapter 8, we consider the problem of silicon compilation and auto-
matic generation of cells. Three different cell styles are examined, namely,
Standard cell, Gate Matrix and PLA. Algorithms for automatic generation
of layout in the above cell styles are covered.

In Chapter 9, layout editors are considered and techniques for hand-
drawing of layouts are examined. The importance of compaction in hand
layouts is explained, and the two main compaction approaches together
with their related algorithms are described.

In order to achieve uniformity in treatment, each of these topics is ex-
amined in the following light. Problem Definition introduces the reader
to the essence of the layout subproblem, its graph theoretic formulation,
and the notation associated with the treatment of the problem. Under
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Cost Functions and Constraints, we examine the problem as a constrained
optimization problem and explain the possible cost functions which must
be minimized subject to practical constraints. Next, we examine the var-
ious approaches that researchers and engineers in CAD have adopted to
solve the concerned optimization problem. Such optimization algorithms
include graph theoretic, numerical, and stochastic techniques. The algo-
rithms are illustrated with examples and exercises. Finally, a section on
latest developments in the problem area guides the reader/student to open
research problems. An annotated bibliographyis provided at the end of each
chapter, followed by exercises. The exercises are classified into routine exer-
ctses which typically include applying an algorithm to a problem instance.
Challenging exercises include programming projects and research-oriented
problems (indicated by (*)).

The book contains an appendix which covers an overview of combi-
natorial optimization, and some basic definitions in algorithms and graph
theory, as they apply to the book.

A Solutions Manual is available and can be obtained from the publisher
or authors.

How to use this book?

The book can serve as a text for one semester first year graduate course
on CAD of digital systems. It will be difficult to cover all material in detail
in the fifteen weeks of the semester. Our experience using early manuscript
of the text was that the first seven chapters can be well covered. One week
is required to introduce the topic of CAD in general and physical design in
particular (Chapter 1). Approximately two weeks are spent on Chapters
2 to 7. In each chapter, several heuristics are described. Instructors may
choose to cover all topics of the book by discussing only selected sections
from each chapter.

As an undergraduate text, the depth and pace of coverage will be dif-
ferent. Only portions from each chapter could be covered. The instructors
may decide as to which portions to cover. Material covered may preferably
be from early portions of each chapter.
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Chapter 1

Introduction

1.1 VLSI Design

VLSI, or Very Large Scale Integration refers to a technology through which
it 1s possible to implement large circuits in silicon — circuits with up to a
million transistors. The VLSI technology has been successfully used to build
microprocessors, signal processors, systolic arrays, large capacity memories,
memory controllers, /O controllers; and interconnection networks.
Present-day VLSI technology permits us to build entire systems with
hundreds of thousands of transistors on a single chip. For example, the Intel
80286 microprocessor has over 100,000 transistors, the 80386 has 275,000
transistors, the 80486 has approximately 1000,000 transistors. The RISC
processor from National Semiconductor NS32SF641 has over a million tran-
sistors. The Pentium processor of Intel has over three million transistors [1].
Integrated circuits of the above complexity would not have been possi-
ble without the assistance of computer programs during all phases of the
design process. These computer programs automate most of the design
tasks. Designing a VLSI chip with the help of computer programs is known
as CAD, or Computer Aided Design. Design Automation (DA), on the
other hand, refers to entirely computerized design process with no or very
little human intervention. CAD and DA research has a long history of over
three decades. Some of the earliest CAD software dealt with placement of
logic modules on printed circuit boards (PCBs) and finding short electrical
paths to wire the interconnections. Logic minimization was also an im-
portant facet of electronic design, since eliminating even a handful of logic
gates resulted in significant cost savings. As technology has changed from
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Small Scale Integration (SSI) to Very Large Scale Integration (VLSI), the
demand for design automation has escalated; the types of design automa-
tion tools have also multiplied due to changing needs. For example, in the
LST and VLSI domains, it is important to simulate the behavior of a circuit
before the circuit has been manufactured; this is because 1t is impractical to
breadboard a circuit of LSI complexity in order to verify its behavior. The
rapidly changing technology has also radically transformed design issues.
For instance, in the LST/VLSI technologies, it is not very important to save
on transistors; the cost reduction through logic minimization is unlikely to
be significant when the total number of transistors is in the order of a mil-
lion. On the other hand, it is important to save on interconnection costs,
since wires are far more expensive in VLSI than transistors.

As a result of sustained research and development efforts by a number of
groups all over the world for over three decades, a number of sophisticated
design tools are available today for designing integrated circuits, and we
are briskly moving towards complete design automation. In this book,
we are concerned with algorithms for VLSI design automation, with an
emphasis on physical design automation. Physical design of an integrated
circuit refers to the process of generating the final layout for the circuit.
Needless to say, physical design is of vital importance, and a lion’s share
of design automation research has gone into developing efficient algorithms
for automating the layout process.

1.2 The VLSI Design Process

Since the complexity of VLSI circuits is in the order of millions of transis-
tors, designing a VLSI circuit is understandably a complex task. In order
to reduce the complexity of design process, several intermediate levels of
abstractions are introduced. More and more details about the new design
are introduced as the design progresses from highest to lowest levels of ab-
stractions. Typical levels of abstractions together with their corresponding
design steps are illustrated in Figure 1.1. As indicated in Figure 1.1 the
design is taken from specification to fabrication step by step with the help
of various CAD tools. Clearly it is not possible to sit down with paper and
pencil to design a million-transistor circuit (or chip). A human engineer can
reason about a handful of objects at best. It is easy for a human engineer
to think in terms of larger circuit modules such as arithmetic units, memory
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CAD subproblem level Generic CAD tools

Behavioral/Architectural | Architectural design I BQhaquraI modeling and
Simulation tool
[
Register transfer/logic | Logical design I F“’.‘C"F”Fa' and qulc minimization,
logic fitting and simulation tools

Cell/mask | Physical design

Tools for partitioning,
placement, routing, etc.

[
| Fabrication I

Fig. 1.1 Levels of abstraction and corresponding design step.

units, interconnection networks, and controllers. Designing a circuit at this

level of abstraction is known as architectural design.

1.2.1  Architectural Design

Architectural design of a chip is carried out by expert human engineers.

Decisions made at this stage affect the cost and performance of the design

significantly. Several examples of decisions made during the architectural

design of a microprocessor are given below.

(a)

What should be the instruction set of the processor? What memory
addressing modes should be supported? Should the instruction set
be compatible with that of another microprocessor available in the
market?

Should instruction pipelining be employed? If so, what should be
the depth of the pipeline?

Should the processor be provided with an on-chip cache? How big
should the cache memory be? What should be the organization of
the cache? Should instruction cache be separated from data cache?
Should the arithmetic unit be designed as a bit-serial unit or as
a bit-parallel unit? If bit-serial arithmetic is used, one saves on
hardware cost but loses on performance.

How will the processor interface to the external world? Are there
any international standards to be met?
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Architectural design cannot be done entirely by a computer program. How-
ever, computer programs can aid the system architect in making important
decisions. For instance, an architect can tune a parameter (such as the size
of the cache) through simulation. Simulators and performance prediction
tools are very useful to a computer architect who is experimenting with an
innovative idea.

Once the system architecture is defined, it is necessary to carry out two
things:

(a) Detailed logic design of individual circuit modules.
(b) Derive the control signals necessary to activate and deactivate the
circuit modules.

The first step is known as data path design. The second step 1s called control
path design. The data path of a circuit includes the various functional
blocks, storage elements, and hardware components to allow transfer of
data among functional blocks and storage elements. Examples of functional
blocks are adders, multipliers, and other arithmetic/logic units. Examples
of storage elements are shift registers, random access memories, buffers,
stacks, and queues. Data transfer 1s achieved using tristate busses or a
combination of multiplexers and demultiplexers.

The control path of a circuit generates the various control signals nec-
essary to operate the circuit. Control signals are necessary to initialize
the storage elements in the circuit, to initiate data transfers among func-
tional blocks and storage elements, and so on. The control path may be
implemented using hardwired control (random logic) or through micropro-
grammed control.

Example 1.1 It is required to design an 8-bit adder. The two operands
are stored in two 8-bit shift registers A and B. At the end of the addition
operation, the sum must be stored in the A register. The contents of the
B register must not be destroyed. The design must be as economical as
possible in terms of hardware.

SOLUTION There are numerous ways to design the above circuit, some
of which are listed below.

(1) Use an 8-bit carry look-ahead adder.
(2) Use an 8-bit ripple-carry adder.
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Fig. 1.2 Organization of a serial adder. FA is a full-adder. (a) Data path. (b) Control
path block diagram.

(3) Use two 4-bit carry look-ahead adders and ripple the carry be-
tween stages.

(4) Use a 1-bit adder and perform the addition serially in 8 clock
cycles.

Since it is specified that the hardware cost must be minimum, it is
perhaps best to select the last option, namely the serial adder. The
organization of such an adder is shown in Figure 1.2. Let Az and
By indicate the kth significant bit of register A, and B respectively,
k=0,1,---,7. The basic idea in the serial adder is to use a full-adder
to add Ag and By and the carry Cy_1 during the kth clock cycle. The
carry generated during the kth clock cycle is saved in a D flip-flop for
use in the next iteration. The output of the D flip-flop is initially set
to 0 with a RESET operation, hence C_; = 0.

Each shift register has a serial-input pin, and a serial-output pin. The
bits Ai and By are available on the serial-output pins of the registers
A and B at the beginning of the kth clock cycle. The serial-input pin
of A is fed from the output of a multiplexer which selects either the
sum bit or the input signal.

The data path of the serial adder consists of two 8-bit shift registers,
a full-adder, a D flip-flop, and two multiplexers. In addition, a 3-bit
counter is required to count the number of times bit-wise addition 1is
being performed. The relevant control signals are tabulated below.
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Sa Shift the register A right by one bit
Sp Shift the register B right by one bit
My Control multiplexer A

Mp Control multiplexer B

Rp Reset the D flip-flop

R¢ Reset the counter

START A control input, which

commences the addition

The control algorithm for adding A and B is given below.

forever do

while (START = 0) skip;

Reset the D flip-flop and the counter;

Set M4 and Mg to 0;

repeat
Shift registers A and B right by one;
counter = counter + 1;

until counter = §;

The control path of the serial adder consists of hardware required to
implement the above control algorithm, i.e., to generate the control
signals tabulated above. We leave it as an exercise to the reader to
design the control path for the serial adder (see Exercise 1.1).

Several observations can be made by studying the example of the serial-
adder. First, note that designing a circuit involves a trade-off between
cost, performance, and testability. The serial adder is cheap in terms of
hardware, but slow in performance. It is also more difficult to test the
serial adder, since it is a sequential circuit. The parallel 8-bit carry look-
ahead adder 1s likely to be fastest in terms of performance, but also the
costliest in hardware.

All the different ways that we can think of to build an 8-bit adder
constitute what is known as the design space (at that particular level of
abstraction). Each method of implementation is called a point in the de-
sign space. There are advantages and disadvantages associated with each
design point. When we try optimizing the hardware cost, we usually lose
out on performance, and vice versa. We have mentioned hardware cost,
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performance, and testability as three important design aspects; there are
many more, such as power dissipation, fault tolerance, ease of design, and
ease of making changes to the design. A circuit specification may pose
constraints on one or more aspects of the final design. For example, when
the specification says that the circuit must be capable of operating at a
minimum of 15 MHz, we have a constraint on the timing performance of
the circuit.

Given a specification, the objective is to arrive at a design which meets
all the constraints posed by the specification, and optimizes on one or more
of the design aspects. This problem is also known as hardware synthests.
Computer programs have been developed for data path synthesis as well as
control path synthesis. The automatic generation of data path and control
path is known as high-level synthesis [4].

1.2.2  Logic Design

The data path and control path (derived automatically or manually) will
have components such as arithmetic/logic units, shift registers, multiplex-
ers, buffers, and so on. Further design steps depend on the following factors.

(1) How is the circuit to be implemented, on a PCB or as a VLSI chip?
(2) Are all the components readily available as off-the-shelf integrated
circuits or as predesigned modules?

If the circuit must be implemented on a printed-circuit board using off-the-
shelf components, then the next stage in design is to select the components
so as to minimize the total cost and at the same time maximize the perfor-
mance. Following the selection procedure, the IC chips are placed on one or
more circuit boards and the necessary interconnections are established us-
ing one or more layers of metal deposits. A similar procedure may be used
in case the circuit must be implemented on a VLSI chip using predesigned
circuit components from a module library. The predesigned modules are
also known as macro-cells. The cells must be placed on the layout surface
and wired together using metal and polysilicon (poly) interconnections.

1.2.3  Physical Design

Physical design of a circuit is the phase that precedes the fabrication of
a circuit. In most general terms, physical design refers to all synthesis



8 Introduction

steps succeeding logic design and preceding fabrication. These include all
or some of the following steps: logic partitioning, floorplanning, placement,
and routing. The performance of the circuit, its area, its yield, and its
reliability depend critically on the way the circuit is physically laid out. To
begin with, consider the effect of layout (placement and routing) on the
timing performance of a circuit. In an integrated circuit layout, metal and
polysilicon are used to connect two points that are electrically equivalent.
Both metal and poly lines introduce wiring impedances. Thus a wire can
impede a signal from traveling at a fast speed. The longer the wire, the
larger the wiring impedance, and longer the delays introduced by the wiring
impedance. When more than one metal layer is used for layout, there is
another source of impedance. If a connection is implemented partly in
metal layer 1 and partly in metal layer 2, a via is used at the point of
layer change. Similarly, if a connection is implemented partly in poly and
partly in metal, a contact becomes necessary to perform the layer change.
Contacts and vias introduce a significant amount of impedance, once again
contributing to the slowing down of signals.

Layout affects critically the area of a circuit. There are two components
to the area of an integrated circuit — the functional area, and the wiring
area. The area taken up by the active elements in the circuit is known as
the functional area. For instance, in the example of the serial adder of the
previous section, the functional modules are the full-adder, the registers,
the multiplexers, the D flip-flop, the counter, and the logic circuits neces-
sary to implement the control path. The area occupied by these modules
constitutes the functional area of the circuit. The wires used to intercon-
nect these functional modules contribute to the wiring area*. Just as they
affect the performance of the circuit, long wires and wias also affect the
area of the circuit. A good layout should have strongly connected modules
placed close together, so that long wires are avoided as much as possible.
Similarly, a good layout will have as few vias as possible.

The area of a circuit has a direct influence on the yield of the man-
ufacturing process. We define yield to be the number of chips that are
defect-free in a batch of manufactured chips. The larger the chip area, the
lower the yield. A low yield would mean a high production cost, which in

*Some authors treat data routing hardware such as multiplexers, demultiplexers, and
busses as interconnects and add their areas to the wiring area as well. Some authors
treat transistors alone as functional elements in the circuit and consider only the con-
tribution of transistors towards functional area.



Layout Styles 9

turn would increase the selling cost of the chip.

The reliability of the chip is also influenced by the layout. For instance,
vias are sources of unreliability, and a layout which has a large number of
vias 1s more likely to have defects. Further, the width of a metal wire must
be chosen appropriately by the layout program to avoid metal migration.
If a thin metal wire carries a large current, the excessive current density
may cause wearing away of metal, tapering the wire slowly, resulting in an
open circuit.

1.3 Layout Styles

In this section, we describe the layout approaches used to generate physical
representations of circuits. These approaches differ mainly in the structural
constraints they impose on the layout elements as well as the layout sur-
face. The various layout approaches belong to two general classes described
below.

(a) The full-custom layout approach where layout elements are hand-
crafted and can be placed anywhere on the layout surface (no con-
straints imposed).

(b) The semi-custom approaches which impose some structure on the
layout elements and surface in order to reduce the complexity of
the layout tasks.

Current layout styles are:

(1) Full-custom;

(2) Gate-array design style;

(3) Standard-cell design style;

(4) Macro-cell (Building block layout);

(5) PLA (Programmable Logic Array); and

(6) FPGA (Field Programmable Gate-Array) layout.

Next, we discuss each of these layout styles in detail.

1.3.1  Full-custom Layout

Full-custom layout refers to manual layout design, where an expert artwork
designer uses a layout editor to generate a physical layout description of the
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circuit. Layout editors are discussed in Chapter 9 of this book. Full-custom
design is a time-consuming and difficult task. However, it gives full control
to the artwork designer in placing the circuit blocks and interconnecting
them. As a result, an expert can often achieve a high degree of optimization
in both the area and performance of the circuit. For instance, the layout
designer can control the width-to-length ratio of individual transistors to
tune the performance of the circuit. Similarly, the shape of the layout can
be controlled more easily in a full-custom approach. Using this approach,
it may take several man-months to lay out a VLSI chip manually. As a
result, the full-custom approach is used only for circuits that are to be mass
produced, e.g., a microprocessor. For a circuit which will be reproduced
in millions, it is important to optimize on the area as well as performance.
Full-custom design pays off in this situation, since the high design cost is
amortized over the large number of copies manufactured.

For the full-custom layout style the designer productivity can be greatly
improved with the availability of a good layout editor. A layout editor is
more than a drawing tool. It can aid the artwork designer in several ways.
For example, a layout editor can perform on-line design rule check (DRC).
Design rules are a set of precautions that must be taken while drawing a
layout. There are two types of design rules, width rules and spacing rules.
A width rule specifies the minimum width of a feature. For example, in
a particular CMOS technology, it may be required that a metal wire be
at least 4 pm thick. If a metal line is thinner than 4 pm, the metal line
may not be continuous when the chip is actually manufactured, due to
the tolerances in mask alignment and other manufacturing processes. A
spacing rule specifies the minimum distance that must be allowed between
two features. Again, in a particular CMOS technology, it may be specified
that the minimum spacing between two metal wires is 6 pm. If two metal
wires are indeed placed closer than recommended, it is possible that they
are short-circuited due to tolerances of manufacturing processes.

The width rules and spacing rules differ for different manufacturing
technologies. Mead and Conway simplified these design rules and created
what are popularly known as A-based design rules [7]. The key idea is to
characterize a manufacturing technology with a single parameter A. All
the width and spacing rules are then specified in terms of the parameter .
Thus, consider four design rules which call for a minimum spacing of 4, 5,
6.5, and 8 pm. If we select A = 2um, these spacings can be specified as 2,
2.5, 3.25A, and 4 respectively. Mead and Conway recommended the use
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of integral multiples of A for spacings; if we permit real coefficients for A, it
beats our purpose of achieving simplicity in stating the design rules. Thus,
it is meaningless to state that the spacing between metal lines should be
1.0125; we might as well state the actual spacing. Keeping this in mind,
we can round off the coefficients of A in the above example of four design
rules and restate the spacings as 2, 3\, 4\, and 4A. The price to be paid
for achieving this simplicity is, of course, that the design rules are somewhat
“overcautious” — a minimum spacing of 8 um is specified even though 6.5um
i1s adequate. Thus, a layout which follows Mead-Conway design rules can
be expected to be somewhat larger than necessary.

Layout editors such as Magic (see Chapter 9) employ Mead-Conway
design rules to perform DRC on-line [9]. Mead-Conway rules simplify the
process of design rule verification. The layout editor can treat the layout
surface as a grid, where the separation between two vertical (or horizontal)
lines is A. Further, the design rules (stated in terms of A) can be read
from a “technology file”; this allows the same editor to be used for creating
layouts for different manufacturing technologies such as 2pm CMOS, 1.5pum
CMOS, 3um nMOS, and so on.

Skilled full-custom designers are not likely to use layout editors based on
Mead-Conway rules, since optimizing the chip area is of utmost importance
in a full-custom design. A specialized layout editor which uses the distance
rules specific to technologies will be more suitable for full-custom design.

Full-custom design is prohibitively expensive for circuits which are un-
likely to be manufactured in large numbers. A class of circuits, known
as Application-Specific Integrated Circuits (ASICs) falls into this category.
An ASIC is a circuit which performs a specific function in a particular
application. Unlike a microprocessor, an ASIC is not programmable for
different applications. As a result, an ASIC has a limited market. A digital
filter is an example of an ASIC. Similarly, a chip which performs a specific
image processing function is an example of an ASIC. Optimizing the area
and performance of the chip are not the important issues in designing an
ASIC. It is more important to reduce the time to market, 1.e., the sum total
of design time, manufacturing time, and testing time. Since manufacturing
time is out of the purview of a designer, it is only possible for the designer
to reduce the other two, namely, the time to design and test the chip.

A high degree of automation is required in order to reduce design and
test times. In turn, automation can only be achieved by standardizing the
design and testing process. Standard test techniques such as scan based
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design are commonly employed in ASICs; such techniques reduce the time
for test generation. Standard layout architectures are used to reduce design
time. Gate-arrays, sea-of-gates, standard-cells, and programmable logic
arrays are examples of standard layout architectures.

1.3.2  Gate-Array Layout

A gate-array’ consists of a large number of transistors which have been
prefabricated on a wafer in the form of a regular two-dimensional array.
A single wafer can consist of many arrays. Initially the transistors in an
array are not connected to one another. In order to realize a circuit on
a gate-array, metal connections must be placed using the usual process
of masking. This process of adding metal wires to a gate array is called
personalizing the array. After personalization, the wafer can be diced and
individual gate-arrays can be separated, packaged, and tested.

Since all the processing other than personalization is identical to all
gate-arrays, irrespective of the circuit to be implemented, a foundry can
stock up a large number of wafers which have been prefabricated up to
metalization. Therefore, it takes a very short time to get a gate-array chip
fabricated. Gate-arrays are also called Mask Programmable Gate Arrays
(MPGASs). The cost of producing a gate-array chip is low due to the high
yield. This is because there are only a small number of processing steps
involved in a personalization — only four masking steps are necessary, one
each for the two metal layers and two contact layers.

Personalization involves two types of interconnections — intra-cell wiring
and inter-cell wiring. A cell is a small circuit module, such as a two-input
NAND gate, which can be implemented by connecting a group of transistors
in a local neighborhood of the gate-array. Implementing a cell on a gate-
array is straightforward. A cell library can be maintained, in which an
interconnection pattern is stored for each cell. Thus intra-cell wiring is
also independent of the circuit being implemented on the gate-array. Inter-
cell wiring, however, is specific to the circuit and is handled by the layout
software. A typical gate-array cell personalized as a two-input NAND gate
is shown in Figure 1.3.

In order to carry out inter-cell wiring in a systematic fashion, the gate-
array is structured as a regular array of basic cells (see Figure 1.4). Fach

tSometimes gate-arrays are also referred to as master slice circuits.
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Fig. 1.4 A gate-array floor plan.

square in the figure represents a cell and encloses a group of transistors
in the gate-array. The inter-cell wiring is carried out in the regions called
channels shown in Figure 1.4. The floorplan of the gate-array chip can
be likened to that of a township which has a number of buildings (cells)
and streets (channels) to carry traffic (wires) from one building to another.
A cross-street, the area where a horizontal channel intersects a vertical
channel, is called a switchboxr. A fixed number of horizontally (vertically)
running wires can be placed in any horizontal (vertical) channel. This
number is called the horizontal (vertical) track density of the channel.
Due to the limited amount of wiring space, gate-arrays present difficul-
ties to an automatic layout generator. If the layout program attempts to
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avoid long inter-cell wires by placing strongly connected cells close together
in the array, the local congestion may make the layout unroutable. In other
words, the number of wires to be routed across a channel exceeds its capac-
ity. The floorplan of a gate-array chip also presents limitations. Since the
cells are of the same size (width and height) the cells in the library must
be specially designed to meet this requirement.

Sea of Gates (Channel-less Gate-Arrays)

A special case of the gate-array architecture is when routing channels are
very narrow, or virtually absent. Thus, the chip consists of a closely packed
array of transistors. Since the channels are too narrow, they cannot be used
to route wires. Wires must therefore be routed over the transistors. This
i1s sometimes called over the cell routing. The architecture 1s called sea of
gates to suggest the absence of routing streets.

1.3.3 Standard-cell Layout

A standard-cell, known also as a polycell, is a logic block that performs a
standard function. Examples of standard-cells are two-input NAND gate,
two-input XOR gate, D flip-flop, two-input multiplexer, and so on. A cell
library is a collection of information pertaining to standard-cells. The rele-
vant information about a cell consists of the name of the cell, its function-
ality, its pin structure, and a layout for the cell in a particular technology
such as 2um CMOS. Cells in the same library have standardized layouts,
that is, all cells are constrained to have the same height.

Example 1.2 Consider the description of a cell named ils shown in
Figure 1.5. The description has been taken from a standard-cell library
associated with the OASIS design automation system [8]. The cell descrip-
tion is that of an inverter whose input is a and output is q. We are only
interested in the profile, termlist, and siglist statements; the other
details of the circuit, most of which are self explanatory, are unimportant
here. The cell is rectangular in shape (all standard-cells in OASIS are) and
has dimensions 16um x 58 pum in 2.0 pm CMOS technology. The area of the
cell is 928.0pm?. The unplaced cell has its lower left corner at (=1, —1) and
the top right corner at (15,57). The input a is available both on top and
bottom; the pin position is from 1-4 in both the top and bottom. Similarly,
the signal q is available both on top and bottom at coordinates 9-12. The
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cell begin ils generic=il primitive=INV area=928.0 transistors=2
function="q = INV((a))"
logfunction=invert
profile top (-1,57) (15,57);
profile bot (-1,-1) (15,-1);
termlist
a (1-4,-1) (1-4,57)
pintype=input
rise_delay=0.35 rise fan=5.18
fall_ delay=0.28 fall fan=3.85
loads=0.051 unateness=INV;
q (9-12,-1) (9-12,57)
pintype=output;
siglist
GND Vdd a q
translist
mO a GND g length=2000 width=7000 type=n
ml a Vdd g length=2000 width=13000 type=p
caplist
c0 Vdd GND 2.000f
cl q GND 5.000f
c2 Vdd a 2.000f
c3 a GND 11.000f

cell end ils

Fig. 1.5 Description of an inverter logic module named i1s. Focus only on the profile,
termlist, and siglist statements.

siglist statement lists the signals associated with the cell; these are the
power signal Vdd, the ground signal GND, the input signal a, and the output
signal g. The CMOS layout of this cell is given in Figure 1.6.
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Cell-Based Design

The reader is likely to be familiar with the process of designing a circuit
using SSI and MSI level components. Cell-based design is identical to this
process, except for the implementation details; instead of off-the-shelf SSI
or MSI components, we have to select components from a cell library. And,
instead of placing the components on a PCB, we place the cells in silicon.
The advantage of designing with a cell library 1s, of course, that designs

Fig. 1.6 Layout of standard-cell ils.

can be completed rapidly. Since cell layouts are readily available, a layout
program will only be concerned with:

(1) the location of each cell; and
(2) interconnection of the cells.

Placement and routing is again simplified using a standard floorplan (see
Figure 1.7). The layout is divided into several rows. A row consists of cells
placed next to each other. Note that the height of a row is the same as
the height of any cell in the row, since all the cells are predesigned to have
the same height. Rows are separated by horizontal routing channels. Cells
within the same row, or cells from two facing rows can be interconnected
by running wires through the adjacent channel. If two cells in non-adjacent
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Fig. 1.7 Floorplan of a standard-cell layout.

rows have to be connected, a more elaborate technique is called for. Fig-
ure 1.7 illustrates the point. Here, cell A in row 1 has a connection to cell
B in row 3. A special type of cell, called a feedthrough cell is placed in
row 2. A feedthrough cell has nothing else but one or more vertical wires
running straight. The cell A is first connected to one of the wires in the
feedthrough from the top side; the bottom connection of the same wire is
then connected to cell B.

Compared to gate-array layout, standard-cell layout offers more flexi-
bility. In a standard-cell chip, the wiring space is not fixed before hand.
Moreover, the cells can have varying widths. The disadvantage of standard-
cells in relation to gate-arrays is, of course, that all the fabrication steps
are necessary to manufacture the chip.

1.3.4  Macro-cell Layout

Both gate-array design and standard-cell design impose restrictions on the
cells that are used to design the circuit. For example, the cells in a standard-
cell layout must have the same height. If this restriction is removed, the
cells can no longer be placed in a row-based floorplan as explained in Sec-
tion 1.3.3 earlier. Even if we force a row-based floorplan, it would be very
inefficient in terms of layout area. Figure 1.8(a) illustrates the point. In
Figure 1.8(b), the same set of cells are arranged in a better more compact
floorplan. The design style which permits cells to vary in both dimensions



18 Introduction

_
: |
s e

w
N
o N

IN
-
I

@ (b

Fig. 1.8 (a) Cells of varying heights and widths placed in a row-based floorplan. (b) A
more compact floorplan for the same circuit.

is called macro-cell design style, or building-block design style. The main
advantage of macro-cell design is that cells of significant complexity are per-
mitted in the library. Thus, registers, register files, arithmetic-logic units,
memories, and other architectural building blocks can be accommodated
in the library.

There is an advantage in storing blocks such as arithmetic-logic units
in a cell library. Such blocks can often be designed to have efficient layout
characteristics. Consider, for example, an 8-bit array multiplier. Due to its
regular structure, 1t permits an efficient layout. If the same multiplier has
to be designed using simple cells such as logic gates, there is no guarantee
of how the cells will be finally arranged by the layout program. If we wish
to maintain the array topology of the multiplier, the only way is to store
its layout as a building-block.

Building-block layout (BBL) comes closest to full-custom layout. Like
standard-cell layout style, all the processing steps are required to manufac-
ture a BBL chip. As you can guess, it is much more difficult to design an
automatic layout program for the BBL design style. This is because there
is no standard floorplan to adhere to. As a result, the routing channels are
not predefined either. Floorplanning and channel definition are additional
steps required in a BBL layout system.

Module Generation

The concept of storing cell layouts in a library is an attractive one, since it
can save plenty of design effort. The library-based approach is applicable
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to gate-array, standard-cell, and building-block design styles. There is,
however, a disadvantage with this approach. A cell library is strongly
dependent on a manufacturing technology. Thus, separate libraries are
required for 1.5pum CMOS and 2.0pm CMOS technologies. If a site is using
2.0pm CMOS libraries today, and wants to upgrade to 1.5um technology,
a considerable amount of effort 1s needed to redesign the cells for the new
technology. Libraries can also be bought from design houses, but tend to
be very expensive.

An alternate approach is to use a module generator that can compile
the layout of a cell starting from a specification of the cell. This specifi-
cation may be a functional description, such as truth table, or a structural
description, such as a netlist. The required characteristics of the layout,
such as the height of the cell, can be specified to the module generator.
Cell compilation is gaining rapid acceptance in the industry. Chapter 8
considers layout generation in more detail.

1.3.5  Programmable Logic Arrays

Recall that any combinational logic function Z can be written in the sum-
of-products (SOP) form. For instance, suppose 7 is defined as a function
of three inputs Ag, A1, As, such that 7 is true if and only if two or more
inputs are true. The reader may verify that

Z=Ag A+ Ag- Ag+ Ay - Ay (1.1)

i1s a minimal SOP representation for Z. A SOP expression can be realized
using a two-level logic. The products (AND terms) are formed in the first
level and their sum (the OR term) is computed in the second level. Tt is
assumed that the inputs are available in both normal and inverted forms.
A Programmable Logic Array (PLA) is a convenient way to implement
two-level sum-of-products expressions. A PLA consists of an AND plane
to implement the product terms and an OR plane to implement the sums.
For instance, consider the function Z above and the function Y below.

Y = Ag- AL+ Ay - Ay (1.2)

These two functions can be implemented using the PLA shown in Fig-
ure 1.9. The AND plane of the PLA has two vertical lines corresponding
to each input — one connected directly to the input, and the other to the
inverted form of the input. There are as many horizontal lines in the PLA
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AND-Plane OR-Plane

Product term

Fig. 1.9 A PLA to implement functions Y and Z. There are 4 rows corresponding to
four product terms. There are 6 columns in the AND plane, two for each of the inputs.
There are two columns in the OR plane, one for each output.

as there are product terms. Looking at the equations for Y and Z, there
are four unique product terms. A circle is placed in the AND plane at the
intersection of a row ¢ and a column j if the product term ¢ contains the
input j. For instance, in the row Ag- Ay, there are two circles where the row
intersects the columns Ay and A;. The OR plane contains as many vertical
lines as there are outputs, (two in this case). A cross is placed in the OR
plane at the intersection of row ¢ and column j if the output corresponding
to column j contains the product ¢. For example, a cross is placed where
the Y column intersects the row Ap - A;. A circle in row ¢ and column j of
the AND plane represents a switch which will be turned ON if the input j
is true. A product line ¢ is ON if all the switches in row ¢ of the AND plane
are turned ON. Similarly, a cross in row ¢ and column j of the OR plane
represents a switch that will be turned ON if the product term ¢ 18 ON. An
output line j i1s turned ON if any one of the switches on line 5 is ON.

Merits and Limitations

Due to its fixed architecture, 1t is easy to automate the generation of PLA
layouts. Mead and Conway popularized the use of PLAs in VLSI layouts [7].
The use of PLAs is not restricted to combinational circuits alone. Recall
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that a finite state machine (FSM) has a combinational part and memory
elements; some of the outputs of the combinational circuit are fed back as
inputs to the combinational circuit through memory elements. If memory
elements (such as D flip-flops) are separately available, PLAs can be used
to implement the combinational part of an FSM.

PLAs are commonly used to implement the control path of a digital
circuit, since control signals are often written as SOP expressions. For
instance, suppose that the LOAD control of a register R0 must be ON
during the first clock cycle if the signal N EG is true, during the seventh
clock cycle if the signal N EG is false, and unconditionally during the eighth
clock cycle. Then

LOAD =NEG - 91+ NEG - ¢7 + ¢5 (1.3)

where ¢; signal indicates that the i** clock cycle is in progress.

PLAs are not well suited for implementing the data path of a circuit.
Since PLAs can only implement two-level logic, it may become necessary
to write data path expressions in an (unnatural) SOP format. (Try to im-
plement a 4-bit adder as a PLA to appreciate the point.) Such expressions
tend to contain:

(1) product terms with a large number of inputs, and
(2) sum terms with a large number of products.

The rise and fall delays of the output lines are severely affected by either
of the above conditions.

1.3.6 FPGA layout

Similar to an MPGA, an FPGA (Field Programmable Gate Array) also
consists of a two-dimensional array of logic blocks. Each logic block can
be programmed to implement any logic function of its inputs. Thus they
are usually referred to with the name configurable logic blocks (CLBs).
In addition to this, as shown in Figure 1.10, the channels or switchboxes
between logic blocks contain interconnection resources. The interconnec-
tion resources, (or simply interconnect) consist of wire segments of various
lengths. These interconnects contain programmable switches that serve to
connect the logic blocks to the wire segments, or one wire segment to an-
other. Furthermore, I/O pads are confined to the array periphery and are
programmable to be either input or output pads. The main design steps
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when using FPGAs to implement digital circuits are (1) mapping of the
initial logic description of the circuit into a netlist of CLBs, (technology
mapping), (2) assigning to each CLB in the netlist, a corresponding CLB
in the array (placement), (3) interconnecting the CLBs of the array (rout-
ing), and finally, (4) generating the bit patterns to ensure that the CLBs
perform the assigned function and are interconnected as decided by the
routing step. In MPGAs the interconnection is done at the foundry by
customizing the metalization mask to a specified digital system implemen-
tation. However in FPGAs, both the logic blocks, and the interconnects
are field programmable.

Logic blocks Interconnect

HHHHHH
.-

ﬁﬁﬁﬂ?ﬁﬁ

Pads

U B
D000 oD

Fig. 1.10 Diagram of a typical FPGA.

FPGAs were first introduced in 1985 by Xilinx Company. Since then,
many different FPGAs have been developed by a number of other companies
such as Actel, Altera, etc [3]. The judicious design of logic blocks coupled
with that of the interconnection resources, facilitates the implementation
of a large number of digital logic circuits. There are many ways to design
FPGAs. Design issues include tradeoffs in the granularity and flexibility of
both logic blocks and the interconnection resources.

Logic blocks can be fine grain modules such as two-input NAND gates or



Difficulties in Physical Design 23

coarse grain modules consisting of complex structures such as multiplexers,
look-up tables, PAL (Programmable Array Logic) etc. Most FPGA logic
blocks contain one or two flip-flops to aid the implementation of sequential
circuits.

The structure and content of the interconnect in an FPGA is called
the routing architecture. The routing architecture consists of wire seg-
ments and programmable switches. The programmable switches are con-
structed using pass-transistors (controlled by static RAM cells), anti-fuses,
or EPROM/EEPROM transistors. Similar to the logic block, the complex-
ity of routing architecture can vary from simple connections between blocks
to more complex interconnection structures.

The advantages of FPGAs over MPGAs are lower prototyping cost and
shorter production times. The main disadvantages are their lower speed of
operations and lower gate density. The programmable switches and associ-
ated programming circuitry require a large amount of chip area compared
to the metal connections in gate-arrays. These programmable switches also
have significant resistance and capacitance which account for the low speed
of operation.

FPGAs are most ideally suited for prototyping applications, and im-
plementation of random logic using PALs. They have also been success-
fully used in the implementation of ASICs. Reported examples of ASICs
include controllers for FIFO, printers, graphics engine, network transmit-
ter/receiver etc [3].

1.4 Difficulties in Physical Design

From the preceding section, it must be clear that physical design is a com-
plex optimization problem, involving several objective functions. A good
layout is one which occupies minimum area, uses short wires for intercon-
nection, and uses as few vias as possible. As importantly, a layout must
meet all the constraints posed by the specification. For instance, if the
target technology is a gate-array, then there is a constraint on the amount
of wiring space available. The number of routing layers available 1s another
constraint. Similarly, there may be constraints on the routing model, e.g.,
only horizontal and vertical wiring is permitted, layer changes are permit-
ted only between two adjacent layers, power and ground wires must be in
metal, power and ground wires must be wide enough to permit maximum
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current density, and so on. In addition to all this, we would like to be able
to generate a correct and good layout as quickly as possible.

There are practical difficulties in trying to meet all the requirements
stated above. First of all, it is difficult to model the physical design prob-
lem if we place so many constraints and wish to optimize so many objective
functions. What makes the problem harder is the fact that some of these
objective functions conflict with one another. To illustrate this point, con-
sider the gate-array layout problem. If we attempt to minimize the total
length of interconnection wiring by trying to place strongly connected com-
ponents close together, we are likely to increase wiring congestion in some
regions of the layout. It may then not be possible to route the circuit at
all, because there are only a fixed number of tracks available in each wiring
channel of the gate-array.

It is clear that we cannot write a single computer program to deal with
the physical design problem. The fact that there are several layout styles
makes the problem more difficult. Thus, different approaches are required
for macro-cell placement, standard-cell placement, and gate-array place-
ment. In a gate-array placement, there are constraints on wiring area, the
number of channels, and the number of tracks per channel. Therefore,
routability is of major concern in gate-array layout. In standard-cell lay-
out, there is more flexibility in terms of wiring area, and hence the stress
is on optimizing the wiring area. In addition, one attempts to minimize
feedthrough cells so as to reduce the total area of the chip. Macro-cell
placement must deal with cells of different sizes and shapes. Therefore, it
is first necessary to design a floorplan for the chip and define the channels.
The order in which these channels must be routed is also an important
consideration.

1.4.1 Problem Subdivision

Even if we restrict ourselves to a single layout style, physical design still
remains a complex task. It is therefore customary to adopt a stepwise
approach and subdivide the problem into more manageable subproblems.
A possible subdivision is as follows.

(1) Circuit Partitioning.
(2) Floorplanning and Channel Definition.
(3) Circuit Placement.
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(4) Global Routing.

(5) Channel Ordering.

(6) Detailed routing of power and ground nets.
(7) Channel and switchbox Routing.

Partitioning a circuit is necessary if it is too large to be accommodated
on a single chip. Floorplanning and channel definition are required for a
macro-cell layout. Floorplanning includes finding the alignment and rela-
tive orientation of modules so that the total area of the chip is minimized.
After a floorplan has been found, the routing region must be divided into
channels and switchboxes. During placement, the exact positions of cir-
cuit components are determined, so as to reduce the estimated wiring area.
Routing follows the placement phase, and is carried out in two stages —
global routing and detailed routing. Global routing decides, for each net, a
rough routing plan in terms of the channels through which the net will be
routed. It is then necessary to select an order for routing the channels and
switchboxes. This 1s because the description of one channel may depend
on the routing of other channels. By a channel description, we mean, the
exact ordering of pins on the top and bottom sides of the channel. When
the complete description of a channel is available, the detailed routing of
the nets within the channel can begin. Detailed routing involves actual as-
signment of wires to tracks. Power and ground nets are generally handled
separately, due to the special constraints on their routing style, as explained
earlier. It is a common practice to perform power and ground routing first
and then deal with the remaining signal nets.

1.4.2  Computational Complexity of Layout Subproblems

All of the aforementioned subproblems are constrained optimization prob-
lems. A constrained optimization problem consists of finding a feasible
solution which satisfies a specified set of design constraints and optimizes
a stated objective function. Examples of design constraints for the layout
problems are, restricted number of wiring layers, cell sizes and/or shapes,
available routing resources, geometric constraints, etc. Examples of ob-
jective functions could be, overall wiring length, wiring channel densities,
circuit performance (wiring delays), or a combination of these.
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Unfortunately these layout subproblems are NP-Hard!. Even simplified
versions of these problems remain NP-Hard. Therefore, there are no known
efficient algorithm that will find optimum solutions for these problems and
it is very unlikely that such efficient algorithms will be found. For instance,
a subproblem arising during the layout of a circuit with n cells is the ar-
rangement of these cells into a linear sequence so as to minimize the overall
connection length. The search space contains n! possible arrangements. A
brute force approach is necessary to examine all n! arrangements in order
to select the one with minimum connection length. However, this is an
impractical solution approach. For example, if 1 pSec is required per solu-
tion, then for n = 20, the brute force approach will identify the optimum in
about 80,000 years! Of course, the existence of a large solution space does
not imply that all of it should be searched in order to find the best solu-
tion. There might be, one could argue, a clever way to eliminate searching
through large portions of the search space and curtail the actual search to
f(n) arrangements, where f(n) is a polynomial of n. A polynomial function
of n, such as n? + 2n, does not increase too fast for large n. Unfortunately,
no such clever search technique is known thus far for this problem.

How do we solve layout problems then? There is little doubt that VLSI
layout involves large problem sizes. There are hundreds to thousands of
logic blocks to be placed, and hundreds to thousands of nets to be routed.
Therefore, instead of optimal enumerative techniques, we must resort to
heuristic techniques. A heuristic is a clever algorithm which will only search
inside a subspace of the total search space for a “good” (rather than the
best) solution which satisfies all design constraints. Therefore, the time
requirement of a heuristic algorithm is small. A number of heuristic algo-
rithms have been developed over the past three decades for various layout
problems. Many of these algorithms will be discussed in later chapters of
this book.

It 1s natural to ask how good the solution generated by a heuristic
really is. Assume that a heuristic algorithm A has been developed for a
minimization problem. If S4 is the solution generated by the heuristic, and
S* is the optimum solution, a measure of the error (¢) made by the heuristic
is the relative deviation of the heuristic solution from the optimal solution,

tAppendix A gives a brief summary of NP-hardness and NP-completeness.
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that is,
Sa—5"
€= — o (1.4)
Unfortunately, it is not easy to measure the error, since S* i1s not known.
Therefore, we have to resort to other techniques for judging the quality of

solutions generated by heuristic algorithms.

1.4.3  Solution Quality

One method to tackle the above problem is to artificially generate test in-
puts for which the optimum solution is known apriori. For instance, in
order to test a heuristic algorithm for floorplanning, we may generate the
test input as follows. We start with a rectangle R and cut it into smaller
rectangles. If these smaller rectangles are given as input to the floorplan-
ner, we already know the best solution — a floorplan which resembles the
rectangle R. This method of testing, however, is not always feasible. It is
difficult to generate such test inputs for channel routers, global routers, etc.
Furthermore, a heuristic algorithm may perform well on artificial inputs,
but poorly on real inputs and vice versa.

Test inputs comprising of real circuits, called benchmarks, are used to
compare the performance of heuristics. Generally, such benchmarks are uni-
versally recognized. Benchmarks are created by experts working in the field.
For layout problems, there are two widely used sets of benchmarks: the
Microelectronics Center of North Carolina (MCNC) benchmarks and the
International Symposium on Circuits and Systems (ISCAS) benchmarks.
Then alternative layout procedures are compared against the same bench-
mark tests [2].

1.5 Definitions and Notation

In this section, we shall introduce the terminology and notation used
throughout the book.

A cell refers to a logic block which is useful in building larger circuits.
Two or three-input gates (AND, OR, NAND, NOR, and XOR), and flip-
flops (D flip-flops, Set-Reset flip-flops, and JK flip-flops) are typical ex-
amples of a cell. The name standard-cell is used if the design of the cells
has been standardized in some way. For instance, all the cells may have
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been specially laid out to have the same height and similar pin structure.
Standard-cell layouts are usually stored in a database for ready access; such
a database 1s known as the cell library. A macro-cell, or simply a macro, is
a logic circuit composed of basic gates and possibly flip-flops. A macro is
useful in building larger circuits. An example of a macro is a circuit which
receives four inputs A, B,C, D and computes AB + C'D. This particular
macro is known as an AND-OR-INVERT gate for obvious reasons. Macro-
cells are also known as butlding blocks, or simply, blocks. Macro-cell layouts
can also be maintained in a library. But the layouts in a macro library
may not adhere to any standard; their shapes and sizes may differ widely.
Two particular shapes are popular in designing layouts for macro-cells —
rectangular shapes and L-shapes. In this book, we will be predominantly
concerned with rectangular shaped cells.

A rectangular cell i1s characterized by its height A and width w. Al-
ternately, one may specify the coordinates of the lower left corner and the
upper right corner. The aspect ratio of a rectangular cell is defined as the
ratio % For standard-cells; the aspect ratio is generally less than 1. No
such restriction holds for macro-cells.

The word logic module, or simply module, is used when one wants to
refer to either macro-cells or standard-cells. A module interfaces to other
modules through pins. A pinissimply a wire (in either metal or polysilicon)
to which another external wire can be connected. Pins may be provided on
some or all sides of the module. In a standard-cell, pins are generally pro-
vided only on the top and bottom sides. In a macro-cell, pins are provided
on all sides.

1.5.1 Nets and Netlists

A signal net, or simply net, is a collection of pins which must be electrically
connected. For example, in a sequential circuit, the clock pins of all the
flip-flops must be connected. Suppose that there are 3 flip-flops in a circuit
and their clock pins are named CK1, CK2, and CK3. The clock net consists
of these three pins. A layout program must be told that the three pins must
be connected; this is done by specifying the net CK = {CK1, CK2, CK3}
to the program. The names of the pins are sometimes specified differently.
In the above example, suppose that the flip-flop is called FF and the clock
pin of the flip-flop 1s called CLK; the three instances of the flip-flop are
termed FF[0], FF[1] and FF[2]. The pin names will then be FF[0].CLK,
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FF[1].CLK and FF[2].CLK. A list of all nets constitutes a netlist.

1.5.2  Connectivity Information

The input to a layout program is a circuit description. Basically, one must
specify the modules used in the circuit and how they are interconnected.
The module information consists of the name of the module (such as FF[1]
in the example above), its shape and size information, and the pin structure
of the module. In particular layout styles, some of this information may be
omitted. For example, in gate-array layout, all the modules are identical
and there 1s no need to specify the size, shape and pin structure for each
module separately.

The connectivity of modules may be described in more than one way.
A netlist description is, as the name suggests, a list of all the nets in the
circuit. For instance, consider how a netlist for the circuit of Figure 1.11
can be formed. This circuit generates the carry signal in a full-adder. There

AND[Y]
(4] D—

AND OR3[Y]
o

AND[3
D

Fig. 1.11 Logic diagram of ‘full-adder carry’ circuit.

are three two-input AND gates in the circuit, which we shall name ANDJ[1],
ANDJ2], and ANDJ[3] respectively. There is a three-input OR gate, which we
shall denote as OR3[1]. The two-input AND gate has two input pins, IN1
and IN2, an output pin OUT, the power pin Vdd, and the ground pin GND.
Similarly, the OR gate has three inputs IN1, IN2, IN3, the output and the
power and ground pins. Figure 1.12 shows an example of a complete netlist
description for the carry circuit. Ground and power signals are omitted in
Figures 1.11 and 1.12.
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(A, AND[1].IN1)

(B, AND[1].IN2)

(C, AND[2].IN1)

(B, AND[2].IN2)

(A, AND[3].IN1)

(C, AND[3].IN2)

(AND[1].0UT, OR3[1].IN1)

(AND[2].0UT, OR3[1].IN2)

(AND[3].0UT, OR3[1].IN3)

(OrR3[1].0UT, Z)

(AND[1].vdd, AND[2].vdd, AND[3].vdd, OR3[1].vdd)
(AND[1].GND, AND[2].GND, AND[3].GND, OR3[1].GND)

Fig. 1.12 Netlist for the full-adder carry circuit.

For some layout problems, such as placement, it is customary to com-
pose from the circuit netlist a connectivity graph model enclosing the in-
formation needed for the task. A graph is an abstract representation that
is more convenient to work with than the original netlist. The connectivity
graph of a circuit has one node corresponding to each module, input pad,
and output pad. (For simplicity, we shall treat pads also as modules.) An
edge is introduced between a node ¢ and a node j if some pin of module 2
is connected to a pin in module j. The connectivity graph for the previous
example has eight nodes (three input pads, four gates, and one output pad).
An edge is added from the node AND[1] to node OR3[1], to take care of
the net (AND[1].0UT, OR3[1].IN1).

Thus the procedure to form a connectivity graph from the netlist de-
scription is straightforward; we look at each net of the form (7, j) and draw
an edge between the modules m; and m; to which the pins 7 and j belong.
But how do we deal with multipin nets, i.e., nets with more than two pins?
To illustrate, consider a three-pin net (a,b,c). Let the pins a,b, ¢ belong
to modules mg, mp, and m. respectively. We add three edges (mgq, ms),
(mp, m), and (mc, mg) to capture the information in the net (a,b,¢). In
general, to handle a k-pin net, we add (g) nets — a complete subgraph on

the £ modules connected by that net.
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The above procedure may give us multiple edges between two nodes ¢
and j in the connectivity graph. We combine all these edges into a single
edge which has an integral weight ¢;;, where ¢;; is the number of multiple
edges between nodes ¢ and j. We refer to ¢;; as the connectivity between
modules ¢ and j. We also define the connectivity of a module ¢ as the
sum of all terms of the form ¢;,. If there are n modules in the circuit, the
connectivity ¢; of module 7 is defined as follows,

C; = Zcij (15)
j=1

The connectivity information can be conveniently represented in the
form of an n x n matrix C', where element c;; is the connectivity between
modules ¢ and j. The matrix representation is especially convenient for
computer programming. It may be worth noting that the connectivity
matrix is symmetric, i.e.,

¢ij =¢ji,  Lj=12,--m (1.6)

Also, since 1t is never required to externally connect two pins of the same
module,

CiiZOa i:1a2a"'an (17)

The connectivity graph and the connectivity matrix for the “full-adder
carry” circuit of Figure 1.11 is shown in Figures 1.13. and 1.14 respectively.
Exercises 1.7 — 1.10 deal with computer programs to derive the connectivity
matrix for a given circuit and verify a given connectivity matrix.

A AND[1]

AND[3]

Fig. 1.13 The connectivity graph for the full-adder carry circuit.
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12 3 4 5 6 7 8
1 0001 0100
2 0001 1000
3 00001100
4 110 0 1 1 10
5 01110110
6 101 1 10 10
7 0001 1101
8 000 0 O0O0 10

Fig. 1.14 The connectivity matrix for the full-adder carry circuit.

1.5.3 Weighted Nets

Consider the netlist for the carry circuit, shown in Figure 1.12. As ex-
plained earlier, each net of the form (41,42, - -, %) represents an electrical
connection between the pins i1, s, -+, #x. Sometimes, it may be necessary
to associate more information with a net. For example, it may be impor-
tant to realize the connection specified by a certain net using as short wires
as possible. In such a case, a positive weight is associated with the net to
indicate how critical the net is.

The procedure to form the connectivity matrix from a weighted netlist
is similar to what was discussed earlier. When forming the connectivity
graph from the netlist, we draw an edge of weight w;; between modules ¢
and j when we come across a net of weight w;; involving the two modules.
Finally, to compute ¢;;, we combine the weights on all the edges between
nodes 7 and j.

1.5.4  Grids, Trees, and Distances

For the purpose of routing the signal nets, it is convenient to superimpose an
imaginary grid on the layout surface. Wires are routed either horizontally
or vertically along the lines of the grid. This style of routing, where wires
can only make 90° turns is known as Manhattan routing. More recently,
wires with 45° turns are also permitted.

The length of the wiring required to implement a two-pin net is mea-
sured by taking the Manhattan distance between the two pins. If the two



Definitions and Notation 33

pins are located at coordinates (z1, y1) and (22, y2), the Manhattan distance
between them is given by

dio = |21 — 22|+ |y1 — ¥2 (1.8)

Note that dis is the shortest possible length of wire required to connect
the two pins using the Manhattan style of routing. It may or may not be
possible to route the net along the shortest path.

When a multipin net i1s under consideration, there are several ways to
interconnect the pins. For instance, consider a three-pin net (A4, B, C'). One
possible realization is to split the three-pin net into two two-pin nets and re-
alize them separately, e.g., (A, B) and (B, (). Alternately, one can connect
pins A and B and then connect C' to any point on the wire segment AB.
The former way to realize the three-pin net is an example of a rectilinear
spanning tree. The latter technique is an example of a Steiner tree.

Given a k-pin net, we can treat each pin as a node in a graph G. We
then draw weighted edges from each node in the graph to every other node.
The weight of the edge from node i to node j is the length of wire required
to connect pin ¢ and pin j. A spanning tree of the graph G is a set of £ — 1
edges which form a tree; such a tree connects (or spans) all the k& nodes.
The routing of a net can follow the construction of a spanning tree; we
look at each edge (7,7) in the spanning tree and connect the pins ¢ and j
using a Manhattan path. The resulting wiring pattern is called a rectilinear
spanning tree.

The cost of a spanning tree is the sum of the weights on all the
k — 1 edges of the tree. A spanning tree of minimum cost i1s known as
the minimum spanning tree (MST). The rectilinear minimum-cost spanning
tree, also abbreviated as RMST, is a good way of implementing a multipin
net. However, an RMST does not give the shortest wirelength; a minimum-
cost Steiner tree is required for that purpose.

To construct a Steiner tree which connects the k pins of a net, we are
permitted to add additional points called Steiner points. Suppose that we
add r Steiner points; a Steiner tree implementation of the k-pin net is a
rectilinear spanning tree on the k& +r points. For example, consider a three-
pinnet (A, B, C'). Let the coordinates of the three pins be (5, 2), (5,12), and
(10,7). All spanning trees of this net have the same cost, namely, 20 units.
Thus, one possible RMST results by joining A to B and B to ' as shown
in Figure 1.15(a). However, a Steiner tree can be constructed by joining A
and B (10 units of wire) and then dropping a vertical wire segment from C'



34 Introduction

to the line AB. The point (5,7) is a Steiner point. The cost of the Steiner
tree is 15 units (see Figure 1.15(b)). Constructing a minimum-cost Steiner

B (5,12) B
C (10,7) 57 ¢
A
A (5,2)

@ (b)

Fig. 1.15 (a) A minimum spanning tree. (b) Steiner tree.

tree on k points is a hard problem. On the other hand, constructing a
minimum spanning tree on k points is solvable in polynomial-time. It has
been shown that the length of an RMST is no more than 1.5 times the
length of a minimum-cost Steiner tree [5]; so it is reasonable to route a
multipin net in the form of an RMST.

1.6 Summary

This chapter has introduced the reader to basic concepts of VLSI design
and Design Automation. VLSI design is a complex process and is best
dealt with in a hierarchical fashion; the use of automatic design tools is also
crucial in rendering VLSI design feasible. In this book, we are concerned
with physical design and the automation of physical design.

Physical design is the final step in the VLSI design process, and involves
mainly the placement of circuit modules and routing of the nets. From the
circuit layout, masks can be extracted for manufacturing the chip. VLSI
layouts can be handcrafted with little CAD support, where an artwork de-
signer uses a layout editor to draw the layout. This approach 1s tedious and
error-prone. Automatic layout methodologies rely on the extensive use of
computer programs during all design phases, from functional/logic/timing
verification to artwork generation. In order to automate the layout proce-
dure, it is common to impose restrictions on the layout architecture. Several
layout architectures are popular. The gate-array design style uses a regular
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two-dimensional array architecture. A gate-array consists of a large number
of uncommitted transistors that have been fabricated on a wafer. A cell,
such as a logic gate, can be created by grouping the transistors in a local
neighborhood of the gate-array and connecting the transistors appropri-
ately. The interconnection patterns for different cells are stored in a library.
Inter-cell routing is specific for the circuit being designed. The standard-
cell design style is also based on a cell library approach, but requires all
the fabrication steps to manufacture the chip. However, the standard-cell
architecture is different, consisting of rows of cells, all of which have the
same height; the rows are separated by horizontal routing channels. Short
vertical wires are permitted within a routing channel to connect cells in
opposite rows. A net that connects two cells in non-consecutive rows must
use feedthrough cells. A Programmable Logic Array (PLA) is useful in
implementing two-level sum-of-products expressions. A PLA has a regular
architecture consisting of an AND plane to generate the product terms and
an OR plane to generate the sums. PLAs are useful in constructing the
control path of a digital circuit. They are also useful in implementing ran-
dom logic. Table 1.1. assesses and compares several aspects of the various
layout styles.

Table 1.1 Comparison of Layout styles. The number in parentheses indicates a rank to
grade the layout style in comparison to others in the same category.

Design Application Design Fab Cost Performance
Style time Effort

Chips for
high-volume
Full-custom production e.g., High(4) High(2) High(4) High(4)

MiCroprocessors
Gate-array ASICs Low(2) Low(1l) Low(2) Low(4)
Standard-cell ~ ASICs Low(3) High(2) Low(3) High(1)
Macro-cell General High(1) High(2) Low(3) High(2)
FPGA ASICs Low(1)  Nil Low(1)  Low(1)

In order to reduce the complexity of a VLSI layout a step-wise solution
approach is adopted where the layout process is broken into a sequence
of physical design phases. The important design phases are Partitioning,
Floorplanning, Placement, Global Routing, and Detailed Routing. Each
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of these phases amounts to solving a combinatorial optimization problem.
Unfortunately, these optimization problems are hard problems and no ef-
ficient algorithms are known to solve them exactly. As a result, heuristic
techniques are employed and near-optimal solutions are obtained.

1.7 Organization of the book

This book is dedicated to problems and algorithms related to physical de-
sign. It is organized around the main physical design phases. For each
design phase, relevant concepts and important algorithms are described in
detail and illustrated with examples. The body of available literature on
the subject is enormous. Therefore, i1t is impossible to describe and discuss
every single reported work. Rather, we concentrate on describing those
techniques that are most widely used (with satisfaction). Also, these tech-
niques illustrate the complexity and the numerous difficult decisions that
must be made to solve the particular design problem.

Each chapter is augmented with a section “Other Approaches and Re-
cent Work” where several other relevant techniques (recent or otherwise)
are described and discussed. The book has a total of 9 chapters.

The purpose of this introduction chapter is to motivate the student to-
wards a study of Physical Design Automation of Integrated Circuits. It also
introduces most of the basic terminology needed in the remaining chapters.

Chapter 2 concisely describes the circuit partitioning problem. Three
of the most popular partitioning techniques are described. These are,
Kernighan-Lin algorithm, Fiduccia-Mattheyses algorithm, and simulated
annealing approach. Chapter 3 formally defines the floorplanning prob-
lem and describes the following techniques: cluster growth method, simu-
lated annealing approach, mathematical programming approach, and graph
dualization approach. Chapter 4 addresses the problem of module place-
ment. The three most widely used placement techniques, that is, min-cut
placement, simulated annealing approach, and force-directed approach, are
described in detail. Also, genetic placement is fairly well described. Chap-
ters b, 6, and 7 are dedicated to the topic of routing. All aspects of routing
are addressed (grid routing, global routing, channel routing, and switchbox
routing). For each routing sub-problem, popular algorithms are described
and illustrated with examples. Chapter 8 considers the problem of silicon
compilation and automatic generation of cells. Three different cell styles
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are examined, namely, standard-cell, gate matrix and PLA. Algorithms for
automatic generation of layout in the above cell styles are covered. Finally,
in Chapter 9, layout editors and compaction are considered. Techniques for
hand-drawing of layouts are examined. The importance of compaction in
hand layouts is explained, and the two main compaction approaches, that
1s, grid based and graph based, together with their related algorithms are
described.

Exercises

Exercise 1.1  Design a control path for the serial adder discussed in Sec-
tion 1.2.1. Use hard-wired control. There are three methods for designing
a hard-wired control path — the state table method, the delay element
method, and the sequence counter method. These methods are discussed
in the text Computer Organization and Architecture by J.P. Hayes [6].

Exercise 1.2 Which of the following steps is (are) not part of physical
design? Elaborate and explain.

(1) Design rule verification.

(2) Circuit extraction.

(3) Transistor sizing for performance enhancement.
(4) Maintenance of a standard-cell library.

Exercise 1.3 What layout style is best suited for a high performance mi-
croprocessor? Justify your answer.

Exercise 1.4 A chip is being designed for implementing a new speech
processing algorithm. The chip must be released into the market at a short
deadline. What layout method will you use? Why?

Exercise 1.5 Visit the Computer Lab in your institution and familiarize
yourself with the working of a computer workstation. How is a workstation
different from other computers? Find out about the architecture of worksta-
tion. In particular, find out about the disk capacity, the memory capacity,
the graphics support, and networking capabilities of the workstation. Why
1s networking important in a design environment?

Exercise 1.6 A number of computer vendors offer workstations for
computer-aided design — Sun, Hewlett Packard, DEC, Apollo, and IBM
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to mention a few. Collect information about these machines and make a
comparative evaluation. Keep in mind the cost, the hardware features, the
operating system, and the software support offered by the vendor. What
features would you look for if your main application is VLSI design?

Exercise 1.7 Programming Exercise: You have received a connectivity
matrix C' of size 100 x 100 in a file of integers named cmat. The matrix
describes the connectivity amongst 100 circuit elements. The element Cj;
of the matrix represents the number of connections between elements 7 and
j of the circuit.

Write a program to verify the correctness of the matrix C'. Your program
must print out the row and column positions of any errors detected.

Exercise 1.8 Programming Exercise: An alternate way to describe the
connectivity amongst circuit elements is the netlist description. A two-point
net is a tuple of the form (¢, j) and describes a connection between elements
¢ and j.

An ASCII file named netlist.2 contains a list of two-point nets, one
net per line. Write a program to read the file netlist.2 and generate
the connectivity matrix of the circuit. The connectivity matrix must be
written into a file of integers named cmat. Use the following netlist as a
sample input to your program. The circuit elements are given names such
as “A”, “B”, and so on. You may have to map these names to integers for
convenience.

A, a2si.inl

Q
[N
Cn
v
~.
3
—

Q
Do
)
w
3
—

SIS
)
[N}
2
3
NERER=

(
(
(
(
(
(B, a2s3.in2

(a2s1.0ut, 03s1.inl)

(a2s5.0ut, 03s1.in2)

(a2s3.0ut, 03s1.in3)

(03s1.0ut, 7)

Exercise 1.9 Programming Exercise: An alternate form of a netlist is

shown below.

Al = AND2(A, B);
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A2 = AND2(C, B);
A3 = AND2(C, A);
7 = OR3 (Al, A2, A3);

Al = AND2(A, B); means the signal Al is the output of a two-input AND
gate whose inputs are A and B. The other statements are similarly inter-
preted. You are given such a netlist description in an ASCII file named
netlist. Write a program to generate the connectivity matrix of the cir-
cuit.

Exercise 1.10  (*) Find out about the lex and yacc utilities provided by
the UNIX operating system. Use these to carry out the conversions stated
in Exercises 1.8, and 1.9.

Exercise 1.11  List and briefly describe the steps of designing a new inte-
grated circuit and the CAD programs that may be used to carry out these
steps.
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Chapter 2

Circuit Partitioning

2.1 Introduction

With rapid advances in integration technology, it is possible to place a large
number of logic gates on a single chip. Despite this fact, it may become
necessary to partition a circuit into several subcircuits and implement the
subcircuits as ICs. This is either because the circuit is too large to be
placed on a single chip, or because of I/O pin limitations. The larger the
gate count of the circuit, the larger the number of 1/O pins associated with
the circuit. The relationship between the number of gates and the number
of I/O pins is estimated by Rent‘s rule,

10 =tG" (2.1)

where 1O is the number of I/O pins, ¢ is the number of terminals per gate,
(G the number of gates in the circuit, and r is Rent’s exponent which is a
positive constant less than one. Unfortunately, a large pin count increases
dramatically the cost of packaging the circuit. Further, the number of /0
pins must correspond to one of the standard packaging technologies — 12,
40, 128, 256 and so on.

When it becomes necessary to split a circuit across packages, care must
be exercised as to how this partition is carried out. Invariably some in-
terconnections will get “cut” when a circuit is partitioned into subcircuits,
while the interconnections within subcircuits can be implemented as “on-
chip” wiring. Off-chip wires are undesirable due to several reasons. Elec-
trical signals travel slower along wires external to the chip; thus off-chip
wires cause performance degradation. Off-chip wires take up area on a

41
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printed circuit board. Off-chip wiring reduces the reliability of the sys-
tem; printed wiring and plated-through holes are both likely sources of
trouble in defective PCBs. Finally, since off-chip wires must originate and
terminate into I/O pins, more off-chip wires essentially mean more 1/0
pins. These concepts are illustrated in Figure 2.1. In this chapter we shall
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Fig. 2.1 (a) A circuit to be partitioned. (b) Partition using cutline Ci. There are 4
off-chip wires. (c) Partition using cutline C3. There are only 2 off-chip wire.

discuss algorithms for the circuit partitioning problem. The general defini-
tion of the problem is given in Section 2.2. In Section 2.3, the problem is
defined as a constrained optimization problem. Unfortunately, the parti-
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tioning problem is an NP-complete* problem; this means it is unlikely that
a polynomial-time algorithm exists for solving the problem. Therefore, one
must use heuristic techniques for generating approximate solutions. One
such heuristic is the widely used Kernighan-Lin (KL) algorithm discussed
in Section 2.4.1 [5]. As will be seen in Section 2.4.1 the Kernighan-Lin al-
gorithm is applicable to a restricted version of the partitioning problem.
Variations of the Kernighan-Lin algorithm are discussed in Section 2.4.2.
Another algorithm that is a variation of the Kernighan-Lin heuristic but
uses a different strategy and a different objective function is the Fiduccia-
Mattheyses heuristic [3]. Details of Fiduccia-Mattheyses heuristic are dis-
cussed in Section 2.4.3. A more general purpose heuristic algorithm, known
as simulated annealing, is discussed in Section 2.4.4. Simulated annealing is
applicable to a variety of combinatorial optimization problems that arise in
VLSI/CAD. In Section 2.5, we discuss other approaches and recent work
in the area of circuit partitioning.

2.2 Problem Definition

The general case of the circuit partitioning problem is the k-way partition-
ing problem, which can be formulated as a graph partitioning problem.
The idea is to model the circuit as a graph, whose vertices represent circuit
elements, and edges represent the interconnects. For example, consider the
circuit shown in Figure 2.2(a). The graph model of this circuit is shown

Fig. 2.2 (a) A circuit to be partitioned. (b) Its corresponding graph.

in Figure 2.2(b). Observe that all the interconnects are “two-pin” connec-
tions. For instance, the wire which connects the input pins of gates 5 and

*See Appendix A for an explanation of NP-completeness.
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6 is modeled as an edge between nodes 5 and 6 in Figure 2.2(b). A graph
theoretic definition of the partitioning problem is as follows.

Definition

Given a graph G(V, E), where each vertex v € V has a size s(v), and each
edge e € F has a weight w(e), the problem is to divide the set V into k
subsets V1, Vo, -+ Vg, such that an objective function is optimized, subject
to certain constraints. The cost function and constraints are examined in
the next section.

2.3 Cost Function and Constraints

Before we formulate a cost function, let us reflect on the graph model
described in the previous section. The size s(v) of a node v represents
the area of the corresponding circuit element. Suppose that the circuit
is partitioned into k subcircuits. The partition divides the graph G(V, E)
into k subgraphs G;(Vi, Fy), i = 1,2,--- k. In Figure 2.2(a), if we partition
the circuit into two subcircuits, with gates 2,34 in one and gates 1,5,6
into another, the two subgraphs induced by the partition are shown in
Figure 2.2(b); the subgraph G consists of nodes 2,3,4 and edges (2,4) and
(2,3). The subgraph G2 consists of nodes 1,5,6 and edge (5,6). What about
the edges (5,4), (1,2), and (4,6)7 We say these edges are “cut” by the
partition. The name cutset is used to describe the set of these edges. The
cutset of a partition is indicated by ¢ and is equal to the set of edges cut
by the partition.

2.3.1 Bounded Size Partitions

As we mentioned in the beginning of the chapter, circuit partition arises
due to size restriction on circuit packages. Again referring to the circuit
of Figure 2.2(a), suppose that the six gates occupy too much area to be
included on a single chip. (Of course this is just a supposition! VLSI
technology allows tens of thousands of logic gates to be included on a single
chip.) In order to package this circuit, it must be split into two or more
subcircuits. In the general k-way partitioning problem, the size constraint
is expressed by placing an upper bound on the size of each subcircuit. The
size of the i'" subcircuit is given by > _vev, S(v). If the upper bound on the
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size of this subcircuit is A;, we have
> s(v) < A (2.2)
vEV;

It is desirable to divide the circuit into roughly equal sizes. This can be
reflected by modifying Equation 2.2 as follows.

Vil= 3 ste) < Tp S0 s(0)] = 71V (23)

where |Vj| and |V| are the sizes of sets V; and V respectively. If all the
circuit elements have the same size, then Equation 2.3 reduces to:

x> 3

where n; and n are the number of elements in V; and in V respectively.

2.3.2  Minimize External Wiring

If the subcircuits are implemented on separate packages, there is a need to
connect these packages through external wires. In particular, the nets that
belong to the cutset are to be implemented as external wiring. External
wires are undesirable as explained earlier (see Section 2.1). Tt is highly
desirable to minimize the external wiring. The weight w(e) on an edge e of
the circuit graph represents the cost of wiring the corresponding connection
as an external wire. Therefore, the cost function that must be minimized
during partitioning is,

Cost = Zw(e) (2.5)
ecy

Suppose that the partitions are numbered 1,2, ---, k. Let p(u) indicate the
partition number of node u. The condition e € ¥ can then be written as
e = (u,v), and p(u) # p(v). Thus Equation 2.5 can also be rewritten as

Cost = Z w(e) (2.6)
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2.4 Approaches to Partitioning Problem

The partitioning problem, as formulated in the previous section, is an in-
tractable problem. Even the simplest case of the problem, namely two-
way partitioning with identical node sizes and unit edge weights, is NP-
complete. It is instructional to study this special case of the partitioning
problem, which also finds wide use in practice. Suppose we have a circuit
with 2n elements and we wish to generate a balanced two-way partition of
the circuit into two subcircuits of n elements each. The cost function is
the size of the cutset. Convince yourself that this is indeed a special case
of the k-way partitioning problem. If we do not place the constraint that
the partitioning be balanced, the two-way partitioning problem (TWPP)
is easy. One applies the celebrated max-flow mincut algorithm to get a
minimum size cut. However, the balance criterion 1s extremely important
in practice and cannot be overlooked.

To appreciate the complexity of TWPP, consider how many balanced
partitions of a 2n-node circuit exist (see Exercise 2.1). This is a number
which grows exponentially with n. Even for moderate values of n, it is
impractical to enumerate all the partitions and pick the best. The only
way to deal with NP-complete problems such as TWPP is to “satisfice”,
that is, be satisfied with an approximate solution to the problem. Such an
approximate solution must satisfy the constraints, but may not necessarily
possess the best cost. For instance, an approximate solution to the TWPP
is a balanced partition which may not have a minimum-size cutset.

There are a number of “heuristic” techniques to generate approximate
solutions to the partitioning problem. These can be broadly classified into
determinustic and stochastic algorithms. A deterministic algorithm pro-
gresses toward the solution by making deterministic decisions. On the other
hand stochastic algorithms make random (coin tossing) decisions in their
search for a solution. Therefore deterministic algorithms produce the same
solution for a given input instance while this 1s not the case for stochastic
algorithms.

Heuristic algorithms can also be classified as constructive and iterative
algorithms. A constructive partitioning heuristic starts from a seed compo-
nent (or several seeds). Then other components are selected and added to
the partial solution until a complete solution is obtained. Once a component
is selected to belong to a partition, it is never moved during future steps
of the partitioning procedure. An iterative heuristic receives two things as
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inputs, one, the description of the problem instance, and two, an initial
solution to the problem. The iterative heuristic attempts to modify the
given solution so as to improve the cost function; if improvement cannot be
attained by the algorithm, it returns a “NO”, otherwise it returns an im-
proved solution. It is customary to apply the iterative procedure repeatedly
until no cost improvement is possible. Frequently, one applies an iterative
improvement algorithm to refine a solution generated by the constructive
heuristic. Usually constructive algorithms are deterministic while iterative
algorithms may be deterministic or stochastic.

Problem instance

Constructive heuristic

Iterative heuristic

Stopping
criteria
met ?

Stop; Output
best solution
encountered so far,

Fig. 2.3 General structure combining constructive and iterative heuristics.

Alternately, one could generate an initial solution randomly and pass
it as input to the iterative heuristic. Random solutions are, of course,
generated quickly; but the iterative algorithm may take a large number of
iterations to converge to either a local or global optimum solution. On the
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other hand, a constructive heuristic takes up time; nevertheless the itera-
tive improvement phase converges rapidly if started off with a constructive
solution.

Figure 2.3 gives the flow chart of applying a constructive heuristic fol-
lowed by an iterative heuristic. The ‘stopping criteria met’ varies depend-
ing on the type of heuristic applied. In case of deterministic heuristics,
the stopping criterion could be the first failure in improving the present
solution. Examples of these heuristics are the Kernighan-Lin and Fiduccia-
Mattheyses heuristics discussed in Sections 2.4.1 and 2.4.3 respectively.
While in the case of non-deterministic heuristics the stopping criterion could
be the run time available or k consecutive failures in improving the present
solution. An example of this is the simulated annealing heuristic discussed
in Section 2.4.4.

2.4.1 Kernighan-Lin Algorithm

An iterative improvement algorithm due to Kernighan and Lin is one of
the most popular algorithms for the two-way partitioning problem [5]. The
algorithm can also be extended to solve more general partitioning problems.

Two-way Uniform Partition Problem

We have introduced the two-way partitioning problem in the previous sec-
tion. The problem is characterized by a connectivity matriz C'. This is a
square matrix with as many rows as there are nodes in the circuit graph.
The element c¢;; represents the sum of weights of the edges which connect
elements ¢ and j. In the TWPP, since the edges have unit weights, c;;
simply counts the number of edges which connect ¢ and j. The output of
the partitioning algorithm is a pair of sets (or blocks) A and B such that
|A| = n = |B|, and AN B = §§, and such that the size of the cutset is as
small as possible. The size of the cutset is measured by T

T= Z Cab (2.7)

a€AbER

The Kernighan-Lin heuristic is an iterative improvement algorithm. It
starts from an initial partition (A, B) such that |A] = n = |B|, and
ANB=40.

How can a given partition be improved? Let P* = {A* B*} be the
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optimum partition, that is, the partition with a cutset of minimum cardi-
nality. Further, let P = {A, B} be the current partition. Then, in order to
attain P* from P, one has to swap a subset X C A with a subset Y C B
such that,

(1) [XI =Y
(2) X =ANB*
(3) Y = A*NB

Using basic set theory, the reader should be able to show that A* = (4 —
X)+4+Y and B* = (B—Y) + X, where ‘+” and ‘=’ are the union and
difference operations on sets. This swap is illustrated in Figure 2.4.

However, the problem of identifying X and Y is as hard as that of
finding P* = {4*, B*}. Kernighan and Lin proposed a heuristic algorithm
to approximate X and Y.

A B A* B*

Initial Optimal

Fig. 2.4 Initial and optimal partitions.

Before we present the algorithm, it 1s necessary to develop two results
which throw light on the effect of swapping a single node in block A with
another in block B.

Consider any node @ in block A. The contribution of node a to the cutset
is called the external cost of a, or E,, and is simply the number of edges
that emerge from ¢ € A and terminate in B:

B, = Z Cay (28)
vEB
Similarly, we can define the internal cost I, of node a € A as

I, = anv (29)

vEA
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What is the effect of moving node a from block A to block B?7 A moment’s
reflection shows that the size of the cutset would increase by a value I, and
decrease by a value E,. The benefit of moving a from A to B is therefore
E, — I,. This is known as the D—value of node a, or D,:

D,=E,—1, (2.10)

Fig. 2.5 Internal cost versus external cost.

Example 2.1 Referring to Figure 2.5, [,=2, [,=3, E, =3, Epy=1, D, =
1, and Dy = —2.

Since we want balanced partitions, we must move a node from B to A each
time we move a node from A to B. The following result characterizes the
effect of swapping two modules among blocks A and B.

Lemma 2.1 If two elements a € A and b € B are interchanged, the
reduction in the cost is given by

gab = Dy + Dp — ¢4

Proof.  From Equation 2.8, the external cost can be re-written as

Bi=cat+ Y, ca (2.11)
vEB u#b
Therefore,
Do=FEo—Ia=ca+ Y caw—1a (2.12)

vEB u#b
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Similarly
Dy=FEy—Iy=ca+ Y  cu—1I (2.13)
uEA uFa
Moving a from A to B reduces the cost by
> o —1Ia=Dy—cap (2.14)
vEB u#b
Moving b from B to A reduces the cost by
> ebu—1I =Dy —car (2.15)
uEA uFa

When both moves are carried out, the total cost reduction 1s given by the
sum of Equation 2.14 and 2.15 and is equal to

gab = Do 4+ Dy — 2¢4p (21@

The swapping of two nodes affects the D—values of all other nodes that
are connected to either of the nodes swapped. The following lemma tells
us how to update the D—values of the remaining nodes after two nodes a
and b have been swapped.

Lemma 2.2 [f two elements a € A and b € B are interchanged, then the
new D—values, indicated by D', are given by
D, = Dy + 2¢pq — 2¢0p, Ve € A—{a} (2.17)
D, = Dy + 2¢yp — 2¢ya, Yy € B—{b} (2.18)

@ T~ gy~

Proof. Refer to Figure 2.6. Consider a node # € A — {a}. Since b has
entered block A, the internal cost of = increases by c¢gp. Similarly, since a
has entered the opposite block B, the internal cost of x must be decreased
by ¢zq. The new internal cost of # therefore is

=1, = Cou+ cap
One can similarly show that the new external cost of = is
Ey = By + oo — cop
Thus the new D—value of # € A — {a} is
D, = E, — I, = Dy + 2¢0a — 2¢ay
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A B
Q
O
Oy
O
Cxb
A B
Q
O
e
O
Cxa

Fig. 2.6 Updating D —values after an exchange.

Similarly, the new D—value of y € B — {b} is

Dy = E, — I, = Dy + 2cy, — 2¢ya o

Notice that if a module ‘z’ 1s neither connected to ‘a’ nor to ‘b’ then ¢, =
eev =0, and, D), = D,.

Improving a Partition

Assume we have an initial partition {A, B} of n elements each. Kernighan-
Lin used Lemmas 1 and 2 and devised a greedy procedure to identify two
subsets X C A, and Y C B, of equal cardinality, such that when inter-
changed, the partition cost is improved. X and Y may be empty, indicating
in that case that the current partition can no longer be improved.

The procedure works as follows. The gains of interchanging any two
modules ¢ € A and b € B are computed. The pair (a1,b;) leading to
maximum gain ¢; is selected and the elements a; and b; are locked so as
not to be considered for future interchanges. The D—values of remaining
free cells are updated as in Lemma 2 and gains recomputed as indicated in
Lemma 1. Then a second pair (ag,b2) with maximum gain g2 is selected
and locked. Notice that gs is the gain of swapping as € A with b, € B given
that a; € A has already been interchanged with b, € B. Hence, the gain
of swapping the pair (ay, b1) followed by the (as, b2) swap is G2 = g1 + g2.
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The process continues selecting (a1, 1), (ag,b2), -, (a5, b;) - - - (an, by) with
corresponding gains g1, ¢z, , i, *,gn. Obviously G:Z?:l g; = 0 since
this amounts to swapping all the elements of A with those of B, which
generates a partition identical to the initial one. In general, the gain of
making the swap of the first £ pairs (a1,61), (a2,b2),- -+, (ag, bx), 1 <k <n
18 G = Zle g;. If there is no k such that Gy > 0 then the current
partition cannot be improved and remains as is; otherwise we choose the
k that maximizes Gy, and make the interchange of {a1,as, -, ar} with
{b1,bs, -+, by} permanent.

Iterative Improvement

As pointed out earlier, the Kernighan-Lin algorithm is an iterative algo-
rithm. The above improvement procedure constitutes a single pass of the
Kernighan-Lin procedure. The partition obtained after the i'* pass con-
stitutes the initial partition of the ¢ + 1% pass. Iterations are terminated
when G, < 0, that is, no further improvements can be obtained by pairwise
swapping. The entire algorithm is shown in Figure 2.7.

Example 2.2 The circuit given in Figure 2.2(a) is to be partitioned into
two subcircuits. Apply Kernighan-Lin heuristic to break the circuit into
two equal size partitions, so as to minimize the number of interconnections
between partitions. Assume that all gates are of the same size.

SoLUTION The graph corresponding to the circuit is given in Fig-
ure 2.2(b).

Step 1: Initialization.

Let the initial partition be a random division of vertices into the par-

tition A={2,3,4} and B={1,5,6}.
A'=A={234}, and B =B ={1,56}.
Step 2: Compute D—values.

Di=FE1 -1 =1—-0=+1
Dy=Fy—I,=1—-2=-1
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Algorithm {KL_TWPP}

Begin
Step 1.

Step 2.

Step 3.

Step 4.

Step b.

End.

V' = set of 2n elements;
{A, B} is initial partition such that
|[A|=|Bl; AnB=0;and AUB = V;
Compute D, for all v € V;
queue < ¢ ; and 7 + 1;
A" = A; B' = B;
Choose a; € A’, b; € B’, which maximizes
9i = Do, + Db, — 2¢a,p,;
add the pair (a;, b;) to queue;
A=A —{a;};B' =B - {b;};
If A’ and B’ are both empty then Goto Step 5
Else
recalculate D—values for A’ U B’;
t 1+ 1; Goto Step 3;

Find k to maximize the partial sum G:Zle 9i;
If G > 0 then

Move X ={ay, - -,a5} to B, and Y = {by,- -+, bx} to A;

Goto Step 2
Else STOP
EndIf

Fig. 2.7 Kernighan-Lin Algorithm for TWPP.

D3=FE;3—I3=0—-1=-1
Dy=F4—1I4,=2—-1=+1

Ds
Dg

:E5—I5:1—1:+0
:E6—I6:1—1:+0

Step 3: Compute gains.

go1 = Da+ Dy —2¢o; = (1) + (+1) = 2(1) = =2

925 = D2 + D5 — 2co5 = (—1) + (+0) — 2(0)

-1
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g26 = Do+ Dg — 2¢96 = (—1) + (+0) — 2(0) = -1
g31 = D3+ D1 —2¢31 = (—1) + (+1) — 2(0) = +0
g35 = D3+ D5 — 2¢35 = (—1) + (+0) — 2(0) = -1
g36 = D3+ Dg — 2¢36 = (—1) + (+0) — 2(0) = -1
ga1 = Da+ D1 —2cq1 = (+1) + (+1) — 2(0) = +2
945 = Do+ D5 — 2¢45 = (+1) + (+0) = 2(1) = —1
ga6 = Da+ Do — 2c46 = (+1) + (+0) — 2(1) = —1

In the above list, the largest ¢ value is g4; and corresponds to a max-
imum gain which results in the interchange of 4 and 1. Thus the
pair (ai,by) is (4, 1), the gain gs1 = 1= 2, and A" = A’—{4}={2,3},
B'=B — {1} = {5,6}.

Since A’ and B’ are both not empty, we update the D—values in the
next step and repeat the procedure from Step 3.

Step 4: Update D—values.

Since D—values of only those nodes that are connected to vertices (4,1)
are changed, only these are updated. The vertices connected to (4,1)
are vertex (2) in set A’ and vertices (5,6) in set B’. The new D—values
for vertices of A’ and B’ are given by

Dy =Dy + 2004 —2c01 = —142(1—-1) = —1
Dy = Ds + 2¢51 — 2c54 = +0+ 2(0 — 1) = —2
Dy = D + 2ce1 — 2c64 = 404+ 2(0 — 1) = =2

To repeat Step 3, we assign D; = D; and then recompute the gains:

g25 = Do+ Ds — 2¢95 = (—1) + (—2) — 2(0) = -3
g26 = Do+ Dg — 2¢96 = (—1) + (—2) — 2(0) = -3
935 = D3+ Ds — 2¢35 = (—1) + (—2) — 2(0) = -3
g36 = D3+ Dg — 2¢36 = (—1) + (—2) — 2(0) = -3

In the above list, all the ¢ values are equal, so we arbitrarily choose
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g3s, and hence the pair (az,bs) is (3,6), gain gzs = g2 = —3, and
A =A"— {3} ={2}, B =B —{6} = {5}. The new D—values are:

Dy = Dy 4253 — 2c06 = =1+ 2(1 = 0) = 1
Dy = Ds + 2¢56 — 2c55 = =2+ 2(1—0) = 0

The corresponding new gain is:

925 = Da+ D5 — 2¢c50 = (+1) 4+ (0) — 2(0) = +1

Therefore the last pair (as, b3) is (2,5) and the corresponding gain is
925 = g3 = +1.

Step 5: Determine k.

We see that g1 = 42, g1 + g2 = —1, and g1 + g2 + g3 = 0. The
value of k that results in maximum G is 1. Therefore elements of set
X ={a1} = {4} and set Y = {b;} = {1}. The new partition that re-
sults from moving X to Band Y to Ais, A = {1,2,3}and B = {4,5,6}.
The entire procedure is repeated again with this new partition as the
initial partition.

We leave it to the reader to work through the rest of the example
(see Exercise 2.5). The reader may verify that the second iteration of
the algorithm is also the last, and that the best solution obtained is
A={1,2,3} and B = {4,5,6}.

Time Complexity Analysis

Computing the D—values of any single node requires O(n) time. Since Step
2 computes D—values for all the nodes, the step takes O(n?) time. It takes

constant time to update any D—value. We update as many as (2n — 2i)

D—values after swapping the pair (a;,b;). Therefore the total time spent

in updating the D—values can be

n

> (20— 2i) = O(n?) (2.19)

i=1
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The pair selection procedure is the most expensive step in the Kernighan-
Lin algorithm. If we want to pick (a;, b;), there are as many as (n —i+1)?
pairs to choose from leading to an overall complexity of O(n?). Kernighan
and Lin proposed a clever technique to avoid looking at all the pairs. Recall
that, while selecting (a;, b;), we want to maximize g; = Dy, + Db, — 2¢q,p,.
Suppose that we sort the D—values in a non-increasing order of their mag-
nitudes. Thus, in Block A,

Dal Z Da2 jall

\Y%
N
o

A(n—i41)

Similarly, in Block B,

Dbl Z Db2 Z Z Db(n—z+1)

The sorting can be completed in O(n logn) time since only a linear number
of items are to be sorted. Now suppose that we begin examining D,, and
Dy, pairwise. If we come across a pair (Dy, , Dy, ) such that (Dg, + Dy,) is
less than the gain seen so far in this improvement phase, then we do not
have to examine any more pairs. In other words, if Dy, + Dy, < g;; for
some ¢, j then gr; < g;;. The proof is straightforward.

Since it is almost never required to examine all the pairs (Dq;, Dy, ),
the overall complexity of selecting a pair (a;,b;) is O(nlogn). Since n
exchange pairs are selected in one pass of the Kernighan-Lin algorithm, the
complexity of Step 3 is O(n?logn). Step 5 takes only linear time. The
complexity of the Kernighan-Lin algorithm is O(pn?logn), where p is the
number of iterations of the improvement procedure. Experiments on large
practical circuits have indicated that p does not increase with n. Therefore,
the Kernighan-Lin algorithm has a time complexity of O(n?logn).

The time complexity of the pair selection step can be improved by scan-
ning the unsorted list of D—values and selecting a and b which maximize
D, and Dy. Since this can be done in linear time, the algorithm’s time com-
plexity reduces to O(n?). This scheme is suited for sparse matrices where
the probability of ¢4, > 0 is small. Of course, this is an approximation
of the greedy selection procedure, and may generate a different solution as
compared to greedy selection.
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2.4.2  Variations of Kernighan-Lin Algorithm

The Kernighan-Lin algorithm may be extended to solve several other cases
of the partitioning problem. These are discussed below.

Unequal sized blocks. To partition a graph G = (V, E) with 2n vertices
into two subgraphs of unequal sizes n; and ns, ny + ns = 2n, the
procedure shown below may be employed:

(1) Divide the set V into two subsets A and B, one containing
MIN(n1,nz) vertices and the other containing M AX (ny, ns) ver-
tices. This division may be done arbitrarily.

(2) Apply the algorithm of Figure 2.7 starting from Step 2, but restrict
the maximum number of vertices that can be interchanged in one
pass to MIN(ny,na).

Another possible solution to the unequal sized blocks problem instance is
the following. Without loss of generality, assume that n; < ns. To
divide V such that there are at least ny vertices in block A and at most
ng vertices in block B, the procedure shown below may be used:

(1) Divide the set V into blocks A and B; A containing ny vertices
and B containing ns vertices.

(2) Add nz —n; dummy vertices to block A. Dummy vertices have no
connections to the original graph.

(3) Apply the algorithm of Figure 2.7 starting from Step 2.

(4) Remove all dummy vertices.

Unequal sized elements. To generate a two-way partition of a graph
whose vertices have unequal sizes, we may proceed as follows:

(1) Without loss of generality assume that the smallest element has
unit size.

(2) Replace each element of size s with s vertices which are fully
connected with edges of infinite weight. (In practice, the weight
is set to a very large number M)

(3) Apply the algorithm of Figure 2.7.

k—way partition. Assume that the graph has k - n vertices, k > 2, and
it 1s required to generate a k—way partition, each with n elements.

(1) Begin with a random partition of k sets of n vertices each.
(2) Apply the two-way partitioning procedure on each pair of parti-
tions.
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Pairwise optimality is only a necessary condition for optimality in the
k—way partitioning problem. Sometimes a complex interchange of 3
or more items from 3 or more subsets will be required to reduce the
pairwise optimal to the global optimal solution. Since there are (g)
pairs to consider, the time complexity for one pass through all pairs
for the O(n?)-procedure is (l;)nz = O(k*n?).

In general, more passes than this will be actually required, because
when a particular pair of partitions is optimized, the optimality of
these partitions with respect to others may change.

The above heuristic works very well for partitioning graphs, but does
not take into account a special property of electrical circuits, that is, a
group of vertices connected by a single net' do not have to be pairwise
interconnected but can be connected by a spanning or Steiner tree. Since
pins belonging to the same net in each partition are interconnected, then,
a single wire is sufficient to connect each net across two partitions. Such a
situation arises in circuits which have gates with fan-outs greater than one.
This did not arise in Example 2.2.

A simple way to overcome this problem is to define the cost in terms of
nets rather than edges. The cost then is the number of nets that have at
least one pin in each partition.

2.4.3  Fiduccia Mattheyses Heuristic

In the previous section we presented the Kernighan-Lin algorithm which
partitions a circuit modeled as a graph into two blocks (A and B) such
that the cost of the edges cut by the partition is minimized. In case of
two point nets, the number of edges cut by a partition i1s equal to the
number of nets cut. In case of multipoint nets, however, this is not the case.
Figure 2.8 illustrates a circuit and its equivalent graph representation. If
we partition the graph corresponding to the circuit in Figure 2.8 into two
blocks A={1,2,3} and B={4,5,6}, then the number of edges cut is equal to
four while only three wires are required to connect cells of block A to cells
in block B. Therefore reducing the number of nets cut is more realistic
than reducing the number of edges cut.

Fiduccia-Mattheyses presented an iterative heuristic that takes into
consideration multipin nets as well as sizes of circuit elements. Fiduccia-

tA net is a set of points in a circuit that are always at the same electrical potential.
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Fig. 2.8 Illustration of (a) Cut of nets. (b) Cut of edges.

Mattheyses heuristic is a technique used to find a solution to the following

bipartitioning problem: Given a circuit consisting of C' cells connected by a

set of N nets (where each net connects at least two cells), the problem is to
partition circuit €' into two blocks A and B such that the number of nets
which have cells in both the blocks is minimized and the balance factor r is
satisfied [3]. Below we enumerate the principal differences and similarities

between Kernighan-Lin and Fiduccia-Mattheyses heuristics.

(1)

Unlike Kernighan-Lin heuristic in which during each pass a pair of
cells; one from each block, is selected for swapping, in the Fiduccia-
Mattheyses heuristic a single cell at a time, from either block is selected
and considered for movement to its complementary block.

Kernighan-Lin heuristic partitions a graph into two blocks such that
the cost of edges cut is minimum, whereas Fiduccia-Mattheyses heuris-
tic aims at reducing the cost of nets cut by the partition.

The Fiduccia-Mattheyses heuristic is similar to the Kernighan-Lin in
the selection of cells. But the gain due to the movement of a single
cell from one block to another is computed instead of the gain due to
swap of two cells. Once a cell is selected for movement, it is locked for
the remainder of that pass. The total number of cells that can change
blocks 1s then given by the best sequence of moves ¢q,¢9,--+,¢ck. In
contrast, in Kernighan-Lin the first best £ pairs in a pass are swapped.
The above modification can cause an imbalance arising from all
cells wanting to migrate to a single partition. Therefore, Fiduccia-
Mattheyses heuristic is designed to handle imbalance, and it produces
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partitions balanced with respect to size. The balance factor r (called
ratio) is user specified and is defined as follows: r = %, where
|A| and |B| are the sizes of partitioned blocks A and B.

(5) Some of the cells can be initially locked to one of the partitions.

(6) The time complexity of Fiduccia-Mattheyses heuristic is linear. In
practice only a very small number of passes are required leading to a
fast approximate algorithm for min-cut partitioning.

Before we explain this heuristic we present some definitions and terms used
in the explanation of the procedure.

Definitions

Let p(j) be the number of pins of cell ‘j°, and s(j) be the size of cell ‘57,
for j=1,2,---,C. If V is the set of the C' cells, then |V| = Ziczl s(i).
“Cutstate of a net” : A net is said to be cut if it has cells in both blocks,
and 1s uncut otherwise. A variable cutstate is used to denote the state

of a net. That is, cutstate of a net 1s either cut or uncut.

“Cutset of partition” : The cutset of a partition is the cardinality of
the set of all nets with cutstate equal to cut.

“Gain of cell” : The gain g(¢) of a cell ‘¢’ is the number of nets by which
the cutset would decrease if cell ‘i” were to be moved. A cell 1s moved
from its current block (the From_block) to its complementary block
(the To_block).

“Balance criterion” : To avoid having all cells migrate to one block a
balancing criterion is maintained. A partition (A, B) is balanced iff

7 XAV = s$maz < |A| <7 x [V]|+ $maz (2.20)

where |A| 4 |B| = |V|; and spmapz= Max[s(i)], i€ AUB=V.

“Base cell” : The cell selected for movement from one block to another
is called “base cell”. Tt is the cell with maximum gain and the one
whose movement will not violate the balance criterion.

“Distribution of a net” : Distribution of a net n is a pair (A(n), B(n))
where (A, B) is an arbitrary partition, and, A(n) is the number of cells
of net n that are in A and B(n) is the number of cells of net n that
are in B.

“Critical net” : A net is critical if it has a cell which if moved will change
its cutstate. That is, if and only if A(n) is either 0 or 1, or B(n) is
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either 0 or 1, as illustrated in Figure 2.9.

]
]

]
1

(© (d)

Fig. 2.9 Illustration of critical nets. Block to the left of partition is designated as ‘A’
and to the right as ‘B’. (a) A(n) = 1. (b) A(n) =0. (c) B(rn) =1. (d) B(n) =0.

General Idea

A general description of the heuristic is given in Figure 2.10. Next we give
a step by step explanation of the algorithm [3].

Step 1. The first step consists of computing the gains of all free cells. Cells
are considered to be free if they are not locked either initially by the user,
or after they have been moved during this pass. Similar to the Kernighan-
Lin algorithm, the effect of the movement of a cell on the cutset is quantified
with a gain function. Let F'(¢) and T'(¢) be the From_block (current block)
and To_block (destination block) of cell ¢ respectively, 1 < i < C'. The gain
g(?) resulting from the movement of cell ¢ from block F'(¢) to block T'(¢) is:

g(i) = FS(i) — TE(i) (2.21)

FS(i) = the number of nets connected to cell ¢ and not

connected to any other cell in the From Block F (i) of cell i.
TE(i) = the number of nets that are connected to

cell ¢ and not crossing the cut.
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Algorithm {FM_TWPP}

Begin

Step 1.
Step 2.

Step 3.

Step 4.

Step b.

Step 6.

End.

Compute gains of all cells.
1 =1.
Select ‘base cell” and call it ¢;;
If no base cell Then Exit;
A base cell is the one which
(1) has maximum gain;
(ii) satisfies balance criterion;
If tie Then use  Size criterion or
Internal connections;
Lock cell ¢;;
Update gains of cells of those affected critical nets;
If free cells #£ ¢
Then i =7+ 1;
select next base cell;
If ¢; # ¢ then Goto Step 3;
Select best sequence of moves ¢y, ea, -+, 5 (1 <k <)
such that G:X:‘/l;:1 ¢; 1s maximum;
If tie then choose subset that achieves a superior balance;*
If G <0 Then Exit;
Make all 7 moves permanent;
Free all cells;
Goto Step 1

Fig. 2.10 Fiduccia-Mattheyses bipartitioning algorithm.
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It is easy to verify that —p(¢) < g(i) < p(i), where p(i) is the number

of pins on cell 1.

Let us apply the above definitions to some cells of the circuit given in
Figure 2.8(a). Consider cell 2, its From Block is A and its To Block is B.
Nets k, m, p, and ¢ are connected to cell 2 of block A, of these only two

nets k and p are not connected to any other cell in block A. Therefore,
by definition, F'S(2)=2. And T'E(2)=1 since the only net connected and
not crossing the cut is net m. Hence ¢(2)=2-1=1. Which means that the
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number of nets cut will be reduced by 1 (from 3 to 2) if cell 2 were to be
moved from A to B.

Consider cell 4. In Block B, cell 4 has only one net (net j) which is
connected to it and also not crossing the cut, therefore TE(4)=1. FS(4)=1
and g(4)=1-1=0, that is, no gain.

Finally consider cell 5. Two nets j and k& are connected to cell 5 in
block B, but one of them, that is, net % is crossing the cut, while net j is
not. Therefore, TE(5) is also 1. The values of F', T, F'S, TE and g for all
cells are tabulated in Table 2.1. The above observation can be translated

Table 2.1 Gains of cells.

Cell i FS(G) TE®) g¢()
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into an efficient procedure to compute the gains of all free cells. One such
procedure is given in Figure 2.11.

Example 2.3 Apply the procedure given in Figure 2.11 to the circuit of
Figure 2.8(a) and compute the gains of all the free cells of the circuit.

SoLuTION We first compute the values of A(n) and B(n) (where A(n)
and B(n) are the numbers of cells of net n that are in block A and block
B respectively). For the given circuit we have,

For cells in block A we have, the From_block A (F = A) and To_block
is B (T = B). For this configuration we get,

F(J)
7(j)

0, F(m) =3, F(q) =2, F(k) =
2, 0,7 1, T
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Algorithm Compute_cell_gains.
Begin
For each free cell ‘2’ Do
g(i) « 0;
F « Fromblock of cell ¢
T « Toblock of cell i;
For each net ‘n’ on cell ‘4’ Do
If F(n) =1 Then g(i) < g(i) + 1;
(*Cell 7 is the only cell in the From Block connected to net n.*)
If T(n) =0 Then ¢(i) « ¢g(i) — 1
(* All of the cells connected to net n are in the From Block. *)
EndFor
EndFor
End.

Fig. 2.11 Procedure to compute gains of free cells.

where F'(4) is the number of cells of net ¢ in From_block.

Since only critical nets affect the gains, we are interested only in those
values which have, for cells of block A, A(n) = 1 and B(n) = 0, and for
cells of block B, B(n) = 1 and A(n) = 0. Therefore, values of interest
for Block A are F(k) =1, F(p) =1, and T(m) = 0. Now applying the
procedure of Figure 2.11 we get:

t =1, F = A; T = B; net on cell 1 is m. Values of interest are
T(m) = 0; therefore, (1) =0—1=—1.

t=2; F =A; T = B; nets on cell 2 are m, q, k, and p. Values of inter-
est are Fi(k) = 1; F(p) = 1; and T(m) = 0; therefore, g(2) =2 —-1=1.

i=3; F = A; T = B; nets on cell 3 are m and ¢, but only T'(m) = 0;
therefore, ¢(3) =0—-1=—1.
We leave it to the reader to complete the above example (see Exercise

2.14).
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Step 2. Selection of ‘base cell’: Having computed the gains of each cell,
we now choose the ‘base cell’. The base cell is one that has a maximum
gain and does not violate the balance criterion. If no base cell is found then
the procedure stops. The procedure given in Figure 2.12 summarizes the
selection step for each candidate cell.

Begin
For each cell with maximum gain
If moving will create imbalance
Then discard it
EndIf
EndFor;
If neither block has a qualifying cell
Then Exit
End.

Fig. 2.12 Procedure summarizing selection step for each candidate cell.

When the balance criterion is satisfied then the cell with maximum gain
is selected as the base cell. In some cases, the gain of the cell is non-positive.
However, we still move the cell with the expectation that the move will allow
the algorithm to “escape out of a local minimum”. As mentioned before,
to avoid migration of all cells to one block, during each move, the balance
criterion is maintained. The notion of a tolerance factor is used in order to
speed up convergence from an unbalanced situation to a balanced one. The
balance criterion is therefore relaxed from Equation 2.20 to the inequality
below:

X V] =k X $mar < |A| <7 X |V]|+k X S$mas (2.22)

where k is an increasing function of the number of free cells. Initially & is
large and is slowly decreased with each pass until it reduces to unity. If
more than one cell of maximum gain exists, and all such cells satisfy the
balance criterion, then ties may be broken depending on the size, internal
connectivity, or any other criterion.

Step 3. Lock cell and update gains: After each move the selected cell
is locked 1n its new block for the remainder of the pass. Then the gains
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of cells of affected critical net are updated using the procedure given in

Figure 2.13.

Algorithm {Update_Gains}
Begin
(* move base cell and update neighbors’ gains *)
F + the From_block of base cell;
T + the To_block of base cell;
Lock the base cell and complement its blocks;
For each net n on base cell Do
(* check critical nets before the move *)
If T(n) = 0 Then increment gains of all free cells on that net n
Else If T(n) = 1 Then decrement gain of the only T cell on net n, if it is free
EndIf;
(* change the net distribution F(n) and T'(n) to reflect the move *)
F(n)y« F(n)—1;T(n) < T(n)+1;
(* check for critical nets after the move *)
If F(n) = 0 Then decrement gains of all free cells on net n
Else If F(n) = 1 Then increment the gain of the only F' cell on net n, if it is free
EndIf
EndFor
End.

Fig. 2.13 Algorithm to update gains after movement.

Step 4. Select next base cell: In this step, if more free cells exist then
we search for the next base cell. If found then we go back to Step 3, lock
the cell, and repeat the update. If no free cells are found then we move on
to Step 5.

Step 5. Select best sequence of moves: After all the cells have been
considered for movement, as in the case of Kernighan-Lin, the best partition
encountered during the pass is taken as the output of the pass. The number
of cells to move is given by the value of £ which yields maximum positive

gain Gy, where Gy = Zle gi.
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Step 6. Make moves permanent: Only the cells given by the best
sequence, that 1s, ¢1,c¢s, -+, cp are permanently moved to their comple-
mentary blocks. Then all cells are freed and the procedure is repeated from
the beginning. We will now illustrate the above procedure with an example.

Example 2.4 The procedure to compute gains due to the movement
of cells was explained above. Apply the remaining steps of the Fiduccia-
Mattheyses heuristic to the circuit of Figure 2.8(a) to complete one pass.
Let the desired balance factor be 0.4 and the sizes of cells be as follows:

s(e1)=3, s(c2)=2, s(ca)=4, s(ca)=1, s(c5)=3, and s(cs)=b.

SoruTioN Earlier in this section we found that cell ¢5 1s the candi-
date with maximum gain. Verify that this candidate also satisfies the
balance criterion (Equation 2.20).

Now, for each net n on cell ¢o we find its distribution F'(n) and T'(n)
(that is, the number of cells on net n in the From_block and in the
To_block respectively before the move). Similarly we find F’(n) and
T’(n), the number of cells after the move. These values for cell ¢o are
tabulated in Table 2.2. Observe in Figure 2.13 that the change in net

Table 2.2 Change in net distribution (T'(n),F(n)) to reflect the move.

Before Move After Move

Net F T T
k1 1 0 2
m 3 0 2 1
g 2 1 1 2
p 1 1 0 2

distribution to reflect the move is a decrease in F(n) and an increase
in T'(n).

We now apply the procedure of Step 3 to update the gains of cells and
determine the new gains. For each net n on the base cell we check for
the critical nets before the move. If T'(n) is zero then the gains of all
free cells on the net n are incremented. If T'(n) is one then the gains
of the only T cell on net n is decremented (if the cell is free).

In our case, the selected base cell ¢5 is connected to nets k, m, p, and ¢,
and all of them are critical, with T'(m) =0, and T'(k) = T(q) = T(p) =
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1. Therefore, the gains of the free cells connected to net m (¢; and c¢3)

are incremented, while the gains of the free T_cells connected to nets

k, p and ¢ (es, s, and ¢4) are decremented.

These values are tabulated in the first four columns (Gain due to T'(n))
of Table 2.3. We continue with the procedure of Figure 2.13 and check

Table 2.3 Incremental values of gains of cells on critical nets before and after the move.

Gain due to T'(n) | Gain due to F'(n) Gains
Cells |k m ¢ p k. m ¢ p Old New
c1 +1 -1 1
c3 +1 +1 -1 0
Cq -1 0 -1
cs -1 -1 0 -2
Cg -1 -1 1 -1

for the critical nets after the move. If F'(n) is zero then the gains of
all free cells on net n are decremented and if F(n) is one then the gain

of the only F' cell on net n is incremented, if it is free. Since we are

looking for the net distribution after the move, we look at the values of
F’in Table 2.2. Here we have F’(k) = F’(p) = 0 and F’(¢) = 1. The
contribution to gain due to cell 5 on net & and cell 6 on net p s —1,
and since cell 3 is the only F' cell (cell on From_block), the gain due
to it is +1. These values are tabulated in the next four columns (Gain
due to F(n)) of Table 2.3.
From Table 2.3, the updated gains are obtained. The second candidate
with maximum gain (say gz) is cell e3. This cell also satisfies the balance

criterion and therefore is selected and locked.

We continue the above procedure of selecting the base cell (Step 2) for
different values of ¢ (Figure 2.10). Initially Ap={1,2,3}, Bo={4,5,6}.

The results are summarized below.

i = 1: The cell with maximum gain is ¢3. |A| = 7. This move satisfies

the balance criterion.

A1:{1’3}a 31:{2a4a5a6}'

Maximum gain ¢; = 1.

Lock cell {es}.

i =2 : Cell with maximum gain is c¢3. |A| = 3. The move satisfies the

balance criterion. Maximum gain g» = 1. Locked cells are {es, ¢3}.

AZZ{I}a 32:{2a3a4a5’6}'
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i =3 : Cell with maximum gain (+1) is ¢1. If ¢; is moved then A ={},
B ={1,2,3,4,5,6}. |A| = 0. This does not satisfy the balance cri-

terion. Cell with next maximum gain is ¢g. |A| = 8. This cell
satisfies the balance criterion. Maximum gain g3 = —1. Locked
cells are {ca, c3, c6}. As={1,6}, Bs={2,3,4,5}.

i=4: Cell with maximum gain is ¢;. |A| = 5. This satisfies the

balance criterion. Maximum gain g4 = 1. Locked cells are {cy, ¢,

C3, C6}~ A4:{6}a B4:{1a2a3a4’5}'

i =5: Cell with maximum gain is ¢5. |A| = 8. This satisfies the
balance criterion. Maximum gain g5 = —2. Locked cells are {¢q,
Ca, C3, 65,66}. A5:{5,6}, B5:{1,2,3,4}.

i =06: Cell with maximum gain is ¢4. |A| = 9. This satisfies the
balance criterion. Maximum gain g = 0. All cells are locked.

A6:{4a5a6}’ B6:{1a2a3}

Observe in the summary above that when ¢ = 3, cell ¢; is the cell
with maximum gain, but since it violates the balance criterion, it is
discarded and the next cell (¢s) is selected. When ¢ = 4 cell ¢; again is
the cell with maximum gain, but this time, since the balance criterion
1s satisfied, it is selected for movement.

We now look for k that will maximize G :2:‘/?:1 g;; 1 <k <1i Wehave
a tie with two candidates for k, k = 2 and k& = 4, giving a gain of +2.
Since the value of & = 4 results in a better balance between partitions,
we choose k=4. Therefore we move across partitions the first four cells
selected, which are cells ¢a, e3, ¢s, and ¢1. The final partition is A ={6},
and B ={1,2,3,45}. The cost of nets cut is reduced from 3 to 1.

We leave it to the reader to work through the rest of the example (see
Exercise 2.15).

2.4.4  Simulated Annealing

Simulated annealing is perhaps the most well developed and widely used

iterative technique for solving several combinatorial optimization prob-

lems [6]. It has been applied to almost all known CAD problems, includ-

ing partitioning. It is an adaptive! heuristic and belongs to the class of

$In adaptive heuristics some (or all) parameters of the algorithm are changed during the

execution.
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non-deterministic algorithms. This heuristic was first introduced by Kirk-
patrick, Gelatt and Vecchi in 1983 [6].

The simulated annealing heuristic, as the name suggests, derives inspi-
ration from the process of carefully cooling molten metals in order to obtain
a good crystal structure. During annealing, a metal is heated to a very high
temperature (whereby the atoms gain enough energy to break the chemical
bonds and become free to move), and then slowly cooled. By cooling the
metal at a proper rate, atoms will have an increased chance to regain proper
crystal structure. If we compare optimization to the annealing process, the
attainment of global optimum is analogous to the attainment of a good
crystal structure.

Background

Every combinatorial optimization problem may be discussed in terms of a
state space. A state is simply a configuration of the combinatorial objects
involved. For example, in the two-way partitioning problem, any division
of 2n nodes into two equal sized blocks is a configuration. There are a large
number of such configurations in any combinatorial optimization. Only
some of these correspond to global optima, i.e., states with optimum cost.

An iterative improvement scheme starts with some given state, and
examines a local neighborhood of the state for better solutions. A local
neighborhood of a state S is the set of all states which can be reached from
S by making a small change to S. For instance, if S represents a two-
way partition of a graph, the set of all partitions which are generated by
swapping two nodes across the partition represents a local neighborhood.
The iterative improvement algorithm moves from the current state to a
state in the local neighborhood, if the latter has a better cost. If all the
local neighbors have inferior costs, the algorithm is said to have converged
to a local optimum. This is illustrated in Figure 2.14. Here, the states are
shown along the z-axis, and it is assumed that two consecutive states are
local neighbors. It is further assumed that we are discussing a minimeization
problem. The cost curve i1s non-conver, i.e., it has multiple minima. A
greedy iterative improvement algorithm started off with an initial solution
such as S in Figure 2.14 can slide along the curve and find a local minimum
such as L. There is no way such an algorithm can find the global minimum
G of Figure 2.14, unless it “climbs the hill” at the local minimum L. In
other words, an algorithm which occasionally accepts an inferior solution
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Fig. 2.14 Local versus global optima.

can escape from getting stuck at a local optimum solution. Simulated
annealing is such a hill-climbing algorithm.

During annealing, a metal is maintained at a certain temperature T’
for a precomputed amount of time, before reducing the temperature by a
precomputed amount. The molecules have a greater degree of freedom to
move at higher temperatures than at lower temperatures. The movement of
molecules is analogous to the generation of new (neighborhood) states in an
optimization process. In order to simulate the annealing process, much flex-
ibility is allowed in neighborhood generation at higher “temperatures”, i.e.,
many uphill moves are permitted at higher temperatures. The temperature
parameter is lowered gradually as the algorithm proceeds. At temperatures
close to absolute zero, very few uphill moves are permitted. In fact, at the
absolute zero temperature, the simulated annealing algorithm turns greedy,
allowing only downhill moves.

Example 2.5 We can understand simulated annealing by considering
the analogy of a ball placed in a hilly terrain, as shown in Figure 2.15.
The hilly terrain is nothing but the variation of the cost function over the
configuration space, as shown by Figure 2.14. If a ball is placed at point
S, 1t will roll down into a pit such as L, which represents a local minimum.
In order to get the ball out of the local minimum (our intention is to get
the ball into GG, the global minimum), we do the following. We enclose the
hilly terrain in a box and place the box in a water bath. When the water
bath is heated, the box begins to shake, and the ball has a chance to climb
out of the local minimum L [6; 9].

If we are to apply simulated annealing to this problem, we would initially
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heat the water bath to a high temperature, making the box wobble violently.
At such high temperatures, the ball moves rapidly into and out of local
minima. As time proceeds, we cool the water bath gradually. The lower the
temperature, the gentler the movement of the box, and lesser the likelihood
of the ball jumping out of a minimum. The search for a local minimum is
more or less random at high temperatures; the search becomes more greedy
as temperature falls. At absolute zero, the box is perfectly still, and the
ball rolls down into a minimum, which, hopefully, is the global minimum

G.

Fig. 2.15 Design space analogous to a hilly terrain.

The Algorithm

The simulated annealing algorithm is shown in Figure 2.16. The core of
the algorithm is the Metropolis procedure, which simulates the annealing
process at a given temperature T' (Figure 2.17) [8]. The procedure is named
after a scientist who devised a similar scheme to simulate a collection of
atoms in equilibrium at a given temperature. Metropolis also receives as in-
put the current solution S which it improves through local search. Finally,
Metropolis must also be provided with the value M, which is the amount of
time for which annealing must be applied at temperature 7. The procedure
Simulated_annealing simply invokes Metropolis at various (decreasing) tem-
peratures. Temperature is initialized to a value Ty at the beginning of the
procedure, and is slowly reduced in a geometric progression; the parameter
a 18 used to achieve this cooling. The amount of time spent in annealing at a
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temperature is gradually increased as temperature i1s lowered. This is done
using the parameter 5 > 1. The variable Time keeps track of the time
being expended in each call to the Metropolis. The annealing procedure
halts when Time exceeds the allowed time.

The Metropolis procedure is shown in Figure 2.17. It uses the procedure
neighbor to generate a local neighbor NewsS of any given solution S. The
function Cost returns the cost of a given solution S. If the cost of the new
solution NewS' is better than the cost of the current solution S, then cer-
tainly the new solution is acceptable, and we do so by setting S = NewS.
If the new solution has an inferior cost in comparison to the original solu-
tion S, Metropolis will accept the new solution on a probabilistic basis. A
random number is generated in the range 0 to 1. If this random number is

—AWT where Ah is the difference in costs, and 7' is the tem-

smaller than e
perature, the inferior solution is accepted. This criterion for accepting the
new solution is known as the Metropolis criterion named after its inventor.
The Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis is

_Ah/T). The random number generation is assumed

given by P(random < e
to follow a uniform distribution, i.e., all numbers in the range 0 to 1 are
equally likely to be generated by random(). In that case, the probability

—88/T  Remember that Ak > 0 since we have assumed that

reduces to e
NewS is inferior compared to S. At very high temperatures, say T — oo,
the above probability approaches 1. On the contrary, when T — 0, the

probability e~ 2*/T falls to 0.

Partitioning Using Simulated Annealing

Consider the two-way partitioning problem, and assume that nodes as well
as nets have weights. It 1s required to generate an almost balanced partition
with a minimum weighted cutset.

In order to use simulated annealing to solve the problem, the first step
i1s to formulate a cost function which reflects both the balance criterion
as well as the weight of the cutset. For any given partition (A, B) of the
circuit, we define

Imbalance(A, B) = Size of A— Size of B (2.23)

=2 veas(V) = 2yen s(v) (2.24)
Cutset Weight (A, B) =3, wn (2.25)
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Algorithm Simulated_annealing(Sy, Ty, o, 8, M, M axtime);
(*Sp is the initial solution *)
*Tpo is the initial temperature *)
*alpha is the cooling rate *)

*Maxtime is the total allowed time for the annealing process*)

(

(

(*beta a constant *)

(

(*M represents the time until the next parameter update *)

begin
T = To;
S = SQ;
Time = 0;

repeat
Call Metropolis(S, T, M);
Time = Time + M,
T=axT,;
M=3xM
until (Time > MaxTime);
Output Best solution found
End. (*of Simulated_annealing®)

Fig. 2.16 Procedure for simulated annealing algorithm.

Algorithm Metropolis(S,T, M);
begin
repeat
NewS=neighbor(S);
Ah=(Cost(NewS) — Cost(S5));
if ((Ah< 0) or (random < e=2"/T)) then S = NewS;
{accept the solution}
M=M-1
until (M =0)
End. (*of Metropolis*).

Fig. 2.17 The Metropolis procedure.
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As before, s(v) is the size of vertex v, and wy, is the weight of net n, and ¢
is the set of nets with terminals in both A and B.

Cost(A, B) = W, « Cutset Weight(A, B) + W, x Imbalance(A, B) (2.26)

W and W, are constants in the range of [0,1] which indicate the relative
importance of balance and minimization of cutset, respectively. These are
usually selected by the user. Notice that, unlike the Kernighan-Lin al-
gorithm, the balance constraint i1s part of the cost function. Thus if the
simulated annealing algorithm halts at a local minimum, it may yield an
unbalanced partition. If balance is of significant importance, the user must
specify a W close to 1. On the other hand, if the imbalance 1s tolerable
and minimizing the cutset is of paramount importance, the user has the
option to lower W, and specify a large value of W..

Neighbor Function

The simplest neighbor function is the pairwise exchange. Here, two ele-
ments, one from each partition are swapped to disturb the current solution.
A subset of elements may also be randomly selected from each partition and
exchanged. Another possibility is to select those elements whose contribu-
tion to the external cost is high, or those that are internally connected to
the least number of vertices. Neighbor functions used by simulated anneal-
ing to solve other physical design problems are further discussed in later
chapters. The actions of simulated annealing can be best explained using
an example.

Example 2.6 The circuit in Figure 2.18 contains 10 cells and 10 nets.
Assume that all cells are of the same size. The nets of the circuit are
indicated along with their weights in Table 2.4.

Initial Solution: Randomly assign nodes C', - -+, C5 to block A;

Neighbor Function: Pairwise exchange, i.e., exchange a node a € A with
a node b € B;

Initial Temperature: Ty=10;

Constants: M=10; a =0.9; g =1.0;

Termination Criterion: T reduces to 30% of its initial value.

SOLUTION Pairwise exchange will not disturb the balance of partition,
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Fig. 2.18 Circuit for Example 2.6.

Table 2.4 Netlist for Example 2.6.

Net Weight
N1 :{01762704705} w1 :1
N2 :{02703765} w2 :1

Na :{037067010704} ws =

N4 :{04768703707} wyg = 1
N5 :{05767701706} Ws :3
Ne :{06764707702} We :3

N7 :{07709765} wy =
Ng ={Cs,Cs} wg =
Ng ={Cy,C10,Cs} wo =2
Nig = {C10,Cs} wio = 4

since all elements are of equal size. Therefore we may set W, = 0 and
W. = 1. The objective function reduces to:

Cost(A, B) = Z Wy,

ney

Table 2.5 shows results for some iterations, where (¢;, ¢;) represents the
two cells selected for swapping, one from each partition. Only the ac-
cepted moves are listed. For example, when count = 9, the temperature
is equal to 10, the cells selected for pairwise interchange are (3,8), the
cost of current solution S is C'ost(S) = 13, and the cost of the new so-
lution is C'ost(NewS) = 10. Therefore the interchange is automatically
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accepted. For the next iteration at the same temperature, count = 10,
the cells selected are (1,4), the cost of new solution Cost(NewS) = 13,
which is larger than the cost of the current solution (Cost(S) = 10). In
this case a random number is generated. Since the value of this num-
ber is 0.11618 which is less than e~ 2"/T= ¢=3/10=(0 74082, the move
1s accepted.

Figure 2.19 plots the cost for both a greedy algorithm and for simulated
annealing. Note that in simulated annealing, the cost reduces to 10 in
the 9" iteration. This is due to the acceptance of some previous bad
moves. The plot of greedy pairwise exchange shows plateaus or a de-
crease and converges to 10 after 50 iterations. For this example, the fi-
nal partition obtained by both deterministic pairwise exchange and sim-
ulated annealing procedures is the same, with A={C5, C4, Cs, C7, Cs}
and B={C1,C5,C5,Cq,C10}. The cost of this partition is 10.

251

Simulated annealing

Cost

Deterministic pairwise
interchange

Iterations

Fig. 2.19 Variation of cost in Example 2.6.
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Table 2.5 Table of execution run of Example 2.6.

count axT (ci,cj)  random  Cost(S) Cost(NewS) e~ ARIT
1 10.000 (176) 0.73222 20 21 0.90484
2 (1,2) 21 19
3 (2,3) 0.13798 19 21 0.81873
1 (2,7) 21 16
5 (1,3) 0.64633 16 19 0.74082
6 (2,3) 0.46965 19 19 1.00000
8 (3,5) 19 13
9 (3,8) 13
10 (1,4) 0.11618 10 13 0.74082
11 9.000 (2,4) 0.47759 13 15 0.80074
12 (3,4) 0.19017 15 16 0.89484
13 (4,6) 16 15
14 (479) 0.26558 15 18 0.71653
15 (1,5) 0.19988 18 20 0.80074
16 (2,5) 20 15
17 (3,5) 0.28000 15 15 1.00000
18 (4,5) 0.90985 15 15 1.00000
19 (5,7) 0.06332 15 19 0.64118
20 (5,10) 19 16
21 8.100 (276) 0.15599 16 21 0.53941
22 (3,6) 21 19
23 (476) 0.36448 19 21 0.78121
24 (5.,6) 21 13
25 (678) 0.53256 13 13 1.00000
26 (3,7) 13 11
27 (4,7) 0.18104 11 13 0.78121
28 (5,7) 0.51371 13 18 0.53941
29 (778) 0.37249 18 21 0.69048
30 (779) 0.57933 21 21 1.00000
31 7290 (1.8) 21 13
32 (478) 0.10814 18 21 0.66264
33 (5,8) 21 12
37 (1,9) 12 11
39 (379) 0.14080 11 15 0.57770
i1 6561 (6,9) 15 11
44 (2,10) 0.21728 11 19 0.29543
45 (3,10) 19 14
49 (1,2) 14 11
50 (1,3) 0.84921 11 11 1.00000
52 5.905  (L,7) 11 10
53 (178) 0.54613 10 13 0.60167
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2.5 Other Approaches and Recent Work

In this chapter, we studied two deterministic algorithms, one developed
by Kernighan and Lin, and the other by Fiduccia and Mattheyses. A
nondeterministic algorithm that uses simulated annealing to solve the two-
way partition problem was also discussed. The exercises at the end of this
chapter shed more light on some of the finer details of these algorithms.
We now discuss some of the recent developments in the area of circuit
partitioning. We look at some of the significant reported work to improve
the quality of solution obtained by the Kernighan-Lin heuristic, and use of
other objective functions and optimization tools to solve the bipartitioning
problem.

The classical two-way partitioning technique that was proposed by
Kernighan-Lin is used to partition graphs. This heuristic was modified
by Schwiekert and Kernighan who proposed a net-cut model to handle
multi-pin nets [10]. Fiduccia and Mattheyses (Section 2.4.3) improved their
algorithm by reducing the time complexity. Another multipin net model
proposed by Sechen and Chen also produced excellent results [11].

The Kernighan-Lin algorithm has been found to be highly sensitive to
the choice of initial partition. The initial partition chosen is generally ran-
dom, and the final results vary significantly as a consequence of different
starting points [7]. Therefore many runsT on randomly generated initial
partitions are needed to avoid being trapped at local minima. This process
is very time consuming. Furthermore, the probability of finding the opti-
mal solution in a single trial drops exponentially as the size of the circuit
increases. This problem of unpredictable performance or ‘instability’ of the
quality of solution was addressed by Cheng and Wei [1]. Cheng and Wei
use a recursive top-down partitioning technique to divide the circuit into
small highly connected groups. The groups generated by each partition run
get progressively smaller and the size of the problem is reduced at every
single run. The final step is to rearrange the small groups into two subsets
that meet the size constraint. Because the number of groups are relatively
small in comparison with the number of modules in the circuit, many trials
of rearrangements can be attempted. Using this method, the probability of
getting a near optimum solution is high since the number of groups gener-
ated is small. A ratio-cut approach is used that removes the constraint on

TA run is one trial of Kernighan-Lin algorithm on a given initial partition.
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pre-defined subset size, and tends to identify natural clusters in the circuit.
The ratio-cut objective function that is minimized is as follows:

Cost(A, B)

-~ 7 2.27
AT 1B (2.27)

where A and B are two disjoint blocks. This ratio-cut metric of Wei and
Cheng has been proved to be a highly successful objective function for
many applications ranging from layout to hardware simulation [13]. The
technique intuitively allows freedom to find natural partitions. The numer-
ator captures the minimum cut criterion while the denominator favors an
even partition since |A| x |B| is largest when |A| = |B|.

The minimum ratio-cut metric can be used not only to assign modules
to the two sides of the partition but, equivalently, to assign nets to the
two sides of the partitions. This metric is used by Cong et al., to find
partitioning of nets rather than partition of modules with the objective of
maximizing the number of nets that are not cut by the partition [2].

A novel technique that dramatically reduces the size of cut by repli-
cating hardware was presented by Hwang and El-Gamal [4]. They defined
vertex replication as a transformation on graphs and presented an algo-
rithm for determining optimal min-cut replication sets in a k-partitioned
directed graph. Vertex replication transforms a circuit into a larger equiv-
alent one. Vertex replication is illustrated in Figure 2.20. If the cost of the
cut 1s more than the cost of hardware, the technique becomes extremely
useful. Furthermore, in design methodologies that use FPGAs, the redun-
dant or unused logic on the chip can be used to help in reducing the size
of cut. During the mapping of large logic networks into multiple FPGAs,
replication can be used to reduce the number of FPGAs, the number of
wires interconnecting FPGAs, and the number of inter-chips wires. The
technique is also helpful in improving the performance of digital systems.

Cost of cut and imbalance are not the only objective functions to be
minimized in partitioning for physical design. Completion of designs to
achieve predictable performance such as avoidance of timing problems etc.,
fall into a category known as performance directed physical design. The
problem of assigning functional blocks into slots on multichip modules dur-
ing high level design was addressed by Shih and others [12]. Their method
minimizes nets cut while satisfying timing and capacity constraints.

Finally, we refer to the work of Yih and Mazumder who used neural
networks for circuit bipartitioning [14]. They represent bipartitioning in
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Fig. 2.20 (a) Graph of an n to 2™ decoder. (b) Replication of decoder reduces the size
of cut from 2™ to n.

the form of states of the neural network. They describe the criterion for
selecting components for changing locations in terms of neuron connections
and the corresponding weights between neurons. The problem of balancing
partitions while minimizing the cut was also addressed. Their work exploits
the massive parallelism of neural networks to obtain results comparable to
those obtained by Fiduccia-Mattheyses heuristic. In later chapters we will
touch upon attempts to apply neural networks to solve other physical design
problems such as VLSI cell placement.

2.6 Conclusion

In this chapter, we have examined an important subproblem that arises
in electronic circuit layout, namely, circuit partitioning. The two-way bal-
anced partitioning problem was examined in greater detail, due to its prac-
tical importance. The two-way partitioning problem is used in a circuit
placement procedure known as Min-cut placement, which is discussed in
Chapter 4. Furthermore, a two-way partitioning algorithm can form the
basis for a k-way partitioning procedure. One recursively applies the two-
way partitioning algorithm log, k& times. However, this scheme has some
drawbacks; first, it assumes that &k is a power of 2, and second, there is
no reason to believe that it will generate a better partition than another
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k-way partitioning algorithm. In general, the k-way partitioning problem
is more challenging than the two-way partitioning problem; researchers are
developing heuristic algorithms for generating good k-way partitions.

2.7 Bibliographic Notes

The most popular algorithm for two-way graph partition was given by Ker-
nighan and Lin in 1970 [5]. The algorithm has been widely used in CAD
programs and has been extended by numerous authors. Particularly no-
table among such extensions is the work of Fiduccia-Mattheyses, who gave
an efficient implementation of Kernighan-Lin algorithm for sparse circuits.
If it can be asserted that each circuit element is connected to no more
than p other elements, where p is a positive integer constant, the Fiduccia-
Mattheyses algorithm generates a two-way partition in O(n) time. Simu-
lated annealing, a general technique for solving combinatorial optimization
problems, was first proposed in 1983 [6]. It is inspired by the physical pro-
cess of annealing metals and uses randomization as a powerful tool. Simu-
lated annealing has been applied to numerous problems such as Traveling
Salesman, Circuit Partitioning, Floorplanning, Circuit Placement, Routing
and so on. Some of these applications are treated in later chapters.

Exercises

Exercise 2.1 Programming Exercise:

(1) Given a set of 2-n elements, show that the number of balanced two-way
partition of the set is P(2n) = #ﬁ“ﬂ,

(2) Use Stirling’s approximation for n! and simplify the expression for
P(2n) in 2.1.1 above. Express P(2n) using the Big-Oh notation.

(3) A brute force algorithm for the two-way partition problem enumer-
ates all the P(2n) solutions and selects the best. Write a computer
program which implements such a brute force algorithm. What is
the time complexity of your program? (Programming Hint: You may
represent a set of 2n elements using an array of 2n integers. In this
representation, the first n elements of the array belong to partition A,
and the remaining belong to partition B.)

(4) Plot the running time of the brute force partition program for n =



84 Clircuit Partitioning

1,---,10. If the maximum permitted execution time for the program
i1s 24 hours, what is the maximum value of n for which your program
can run to completion?

Exercise 2.2 Programming Exercise:

(1) Given a set of k - n elements, write an expression for P(k - n), the
number of balanced, k-part partitions of the set.
(2) Plot P(k-n) as a function of k for k-n = 24. Use k = 1,2,---,24.

What is your conclusion?

Exercise 2.3 Programming Exercise: Suppose we are given a circuit
with 2n identical elements. All the nets in the circuit are two-pin nets,
and a matrix C' specifies the connectivity information between elements;
for example, ¢;; gives the number of connections between elements ¢ and j.
Let A and B represent the two blocks of a balanced partition of the circuit.

Define a variable x; for each element i as follows. x; is set to 0 if the
element ¢ belongs to block A, and z; is set to 1 if ¢ belongs to B.

(1) Define p;; = #; + x; —2- 2; - ;. Show that p;; takes on the value 1 if
and only if z; # x;.

(2) Formulate an expression for the external cost of the partition (size of
the cutset) in terms of x;. (Hint : Use the result 1 above.)

(3) Express the balance constraint as a linear equation in z;. (Hint :
What should the sum of #; be, if the partition is balanced?)

(4) (*) Using 2.3.2 and 2.3.3 above, formulate the partitioning problem
as an optimization problem in terms of x;. For the moment, pretend
that x; are conlinuous variables in the range 0 to 1. In that case, the
partition problem may be solved using numerical optimization. Con-
struct a heuristic algorithm which applies such a numerical technique
to solve for x;; if #; < 0.5, the element 7 is assigned to A. If x; > 0.5,
it is assigned to B. Write a program and test your heuristic against
the examples in Chapter 1.7. Does the algorithm retain balance?

(5) (*) The cost function in 2.3.2 is quadratic because of the product
term involving z; and z;. Is it possible to derive a cost function that
is linear in the optimization variables? If yes, you have a 0-1 wnteger
program formulation of the partitioning problem.

Exercise 2.4 Give an example of a circuit with 4 nodes, and an initial
partition, such that on the application of Kernighan-Lin algorithm, the g
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value corresponding to the first selected pair is
(1) Zero;
(2) Negative.

Exercise 2.5 Complete Example 2.2.

Exercise 2.6 Suppose that the circuit given in Figure 2.2(a) is modified as
shown in Figure 2.21; Nets marked X and Y are both 3-pin nets. Net X can
be modeled by including 3 edges in the graph of Figure 2.2(b)—between 6
and 4, between 4 and 2, and between 6 and 2. How will you modify the

Fig. 2.21 Circuit for Exercise 2.6.

graph to model net Y7 In general, how many edges are required to model
a k-pin net?

Exercise 2.7 Draw the graph to represent the circuit given in Figure 2.22.
Using the method of Kernighan-Lin divide the graph into two subgraphs
so that the number of edges crossing the partitions is minimized. Assume
that all gates of the circuits are of the same size.

Exercise 2.8

(1) In the circuit given in Figure 2.23, the number adjacent to the gate is
its size. Divide the circuit into two partitions of equal sizes such that
the number of edges crossing the partitions is minimum.

(2) Repeat the above problem, such that the number of nets crossing the
partitions is reduced.

Exercise 2.9  Refer to Section 2.4.2 for a two-way partitioning algorithm
that generates unequal sized blocks A and B. Show that the algorithm
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Fig. 2.22 Circuit for Exercise 2.7.

] >

Fig. 2.23 Circuit for Exercise 2.8.

works, i.e., prove that the algorithm terminates with | A |= ny and | B |=
Noy.

Exercise 2.10  If g1,92, - -, gn are the gains of swapping node pairs in the
improvement procedure of the Kernighan-Lin algorithm, show that

gr+g2++ga=0

Exercise 2.11  For the circuit shown in Figure 2.24, apply the Kernighan-
Lin algorithm to generate a two-way balanced partition. The initial parti-
tionis A={1, 2, 3, 4} and B = {5, 6, 7, 8}. You can guess the optimum
partition for this example; does the Kernighan-Lin algorithm generate the
optimum? What is the balanced partition of the circuit that has the maz-
tmum value of cutset?
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Fig. 2.24 Circuit for Exercise 2.11.

Exercise 2.12  Apply the Kernighan-Lin algorithm to the following circuit.
Use the improvement suggested by Kernighan-Lin concerning the sorting
of the D—values before computing/updating the cell gains.

Nets:

N1 ={C4,C5,Ce} Ne ={C4,Cr,Cs} Ny ={Cs,Cs, Cr}
Ny ={C4,C5,Ch2} N; ={C5,Cs,Cho} Niz = {C10,C12}
Ny ={C2,Cy} Ng ={C1,Cr} N1z ={Cy,C7,Co}
Ny ={Cs,C7,Cs} No ={Cs,C5,Cy} Ny ={Cs,C5,Ch1 }
N5:{C2703706} NIOZ{C67CS7011}

Exercise 2.13  Apply the Fiduccia-Mattheyses heuristic on the circuit of
Exercise 2.12 and compare both the solutions.

Exercise 2.14 Complete Example 2.3.
Exercise 2.15  Complete Example 2.4.

Exercise 2.16  (*) Programming Exercise: In a graph G = (V, E), the
degree d; of an node ¢ € V is defined as the number of (other) nodes i is
connected to. Construct an example of a graph with 10 nodes, such that
the nodes have a large degree, say 5 to 10. You may assume that all the
nodes have unit sizes. Apply the Kernighan-Lin algorithm to generate a
two-way balanced partition of the graph. Also apply the simulated an-
nealing algorithm on the same example. Which algorithm gives you better
results?

Exercise 2.17  (*) Programming Exercise:
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(b)
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Construct a graph with 10 nodes and 50 nets. Starting from a random
partition apply both the Kernighan-Lin and simulated annealing algo-
rithms to this graph and generate balanced two-way partitions. Which
algorithm gave you a better cutset?

Starting from the solution obtained from the first pass of Kernighan-
Lin heuristic, apply simulated annealing. Comment on any noticeable
improvement in quality of solution and runtime?

Exercise 2.18  Modify the terminating condition of the simulated anneal-

ing algorithm so that the final annealing temperature is 7. Estimate the

time complexity of the simulated annealing procedure in terms of M, Ty,

a, f and Ty. (Hint : First estimate the number of temperatures during the

annealing process).
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Chapter 3

Floorplanning

3.1 Introduction

As discussed in Chapter 1, the increasing complexity of VLSI circuits led
to the breaking of the design process into steps, as well as the introduc-
tion of several semi-custom ASIC design methodologies such as general
cell, standard-cell, and gate-array. As opposed to the full-custom design
approaches, semi-custom approaches impose some structure on the lay-
out of circuit elements, thus restricting the design space and, by the same
token, reducing the complexity of solving the problem. Since the dawn of
mankind, men (and engineers in particular) have also been using the divide-
and-conquer technique to solve large problems. For the divide-and-conquer
solution technique, the input problem is recursively subdivided into sub-
problems yielding problems of manageable size and complexity [18]. It is
usually the case that the subproblems are of the same kind as the original
problem. The solution of the individual subproblems when combined yield
a solution to the original problem. Partitioning, which has been explained
in the previous chapter, is used to divide the original circuit into subcircuits
which somehow, can be dealt with separately.

Each design step of the design process represents (and usually requires)
a different level of abstraction. At the floorplanning as well as placement
steps, the VLSI circuit is seen as a set of rectangular blocks interconnected
by signal nets. Placement consists of placing these blocks on a two dimen-
sional surface such that no two blocks overlap, while optimizing certain
objectives (area of the surface, interconnection length, performance).

Floorplanning is an essential design step when a hierarchical /building
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block design methodology is used. For such methodologies, the following
sequence of tasks must be executed in order to carry a design from specifi-
cation to layout:

(1) Define the layout hierarchy.

(2) Estimate the overall required area.

(3) Determine the aspect ratios for each module.
(4) Assign the pin and pad locations.

(5) Perform placement.

(6) Route the design.

Floorplanning helps solve some of the above problems. It is closely
related to placement. It can be seen as a feasibility study of the layout
(placement). Sometimes it is referred to as topological layout. Where for
placement shape and pin positions on the periphery of circuit components
are fixed, in floorplanning these have some specified flexibility. The flexi-
bility in the shape of the component represents the designer’s freedom to
select one among several implementations of the element.

3.2 Problem Definition

As we said, floorplanning i1s a generalization of the placement problem.
During floorplanning, designers have additional flexibility and freedom in
terms of chip and component geometries (block orientations, shapes, and
may be sizes). This added flexibility must be captured by the floorplan
model. Obviously, the aspects that need to be modeled should consist of
the components, the interconnections, the flexible interfaces (blocks and
chip), the chip carrier (layout surface), any designer stated constraints,
and the objective to optimize.

3.2.1 Floorplanning Model

A formal representation of the floorplanning problem is as follows [45;

40].

Given the following:

(1) aset S of n rectangular modules S = {1,2,---,4,---,n};
(2) Sy and Ss, a partition of S, where S; and Sy are the set of the modules
with fixed and free orientation respectively;
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(3) an interconnection matrix Cpxpn = [¢i;], 1 < 4,j < n, where ¢;; indi-
cates the connectivity between modules 7 and j;

(4) a list of n triplets (A1, 71,s1), - (A, 75, 8i), -+ (An, 7, Sn), Where A;
is the area of block ¢ (i.e. A; = w; X h;, with w; and h; the width and
height of block i), r; and s; are lower and upper bound constraints on
the shape of block i (r; # s; if the block is flexible, and r; = s; if the
block is rigid);

(5) two additional positive numbers p and ¢ (p < ¢), which are lower and
upper bound constraints on the shape of the rectangle enveloping the

n blocks.
The required output is:

A feasible floorplan solution, i.e., an enveloping rectangle R subdivided
by horizontal and vertical line segments into n nonoverlapping rectangles
labeled 1,2,---,4,- -+, n, such that the following constraints are satisfied:

(1) wixhi:Ai,lgign;

(2) ;i < Z—’l < s; for all modules ¢ with fixed orientation (7 is an element of
51);

3) < Z—’l <'s; or ;—l < Z—’l < % for all modules i with free orientation (i
is an element of S );

(4) ®; > w; and y; > hy, 1 < ¢ < n, where z; and y; are the dimensions
of basic rectangle ¢, (every rectangle i is large enough to accommodate
module ©);

(5) p< % < ¢, where H and W are the height and width of the enveloping

rectangle R.

A feasible floorplan optimizing the desired cost function is an optimum
floorplan. For example, if the cost function is the area of R, then an
optimum feasible floorplan i1s one with minimum area.

Example 3.1 Assume we have five rigid blocks with dimensions as indi-
cated in Table 3.1. Assume further that all blocks have free orientations.
Figure 3.1 gives several feasible floorplans. Notice that all of these floor-
plans have the same area. If area is the cost function used to measure the
quality of distinct floorplans, then all of the floorplans of Figure 3.1 will
be equally good. In the following section, we will discuss many of the cost
measures that are used to evaluate and compare floorplan solutions.
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Table 3.1 Dimensions of modules for floorplans of Figure 3.1.

Module Width Height
1

U o W N
— = N =
LW N = = =

Fig. 3.1 Some of the feasible floorplans for modules of Table 3.1.

3.2.2 Cost Functions

The number of feasible solutions for a given instance of a floorplanning
problem is very large (if R is unbounded the number is infinity). Besides
tremendously reducing the search of a floorplanning solution, the intro-
duction of an objective function allows us to select superior floorplan(s).
However, this will change the problem into an optimization problem that
i1s much harder.

The floorplanning problem is an NP-hard problem. This is an obvious
statement since floorplanning is a generalization of the placement prob-
lem, a generalization of the quadratic assignment problem, which is NP-
hard [15]. There are no universally accepted criteria for measuring the
quality of floorplans. Possible criteria can be

1) minimize area,
2) minimize wirelength,

(
(
(3) maximize routability,
(4) minimize delays, or
(5

) a combination of two or more of the above criteria.

Next we discuss some of these objective functions when used as floorplan
cost functions.
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Area of the Enveloping Rectangle

Here the objective is to find a feasible floorplan with the smallest over-
all area. In this case, floorplanning can be seen as a generalized two-
dimensional bin-packing problem. In most general terms, bin-packing is the
problem of determining an optimal packing of an arbitrary list of rectangles.
Even this simplified version of floorplanning problem has been shown to be
NP-Hard [4]. However, this problem had been extensively studied and sev-
eral polynomial-time approximation algorithms have been reported [2; 1;
3]. For these algorithms, the rectangles are kept in a sorted queue (usually
sorted on height or width). Then the rectangles are packed in the specified
order. The order in the queue is dynamic, and new rectangles may join the
queue as packing progresses.

Two-dimensional bin-packing will not be described in this chapter as
this 1s an oversimplified model of the floorplanning problem. However,
a generalization of this approach which will take into consideration other
objectives and constraints is worth further study.

Querall Interconnection Length

In this case, the objective is to find a feasible floorplan with minimum
overall interconnection length. For floorplanning, only a coarse measure of
wirelength is used, which is based on a rough global routing step where all
I/0O pins of the block are merged and assumed to reside at its center. In this
case, a possible estimate of the overall wiring length is L = Zi,j Cci5 - dsj,
where ¢;; is the connectivity between modules ¢ and j, and d;; is the Man-
hattan distance between the centers of rectangles to which modules ¢ and
j have been assigned. Another possible estimate is to determine for each
net the length of the minimum spanning tree which covers all the modules
of the net. Then, a measure of L will be the sum of the length of all these
minimum spanning trees.

Area and Interconnection Length

Here, the cost function is a weighted sum of the area A of the bounding
rectangle of the floorplan and the overall interconnection length L i.e.,

Cost=ax A+ xL (3.1)
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where a and f are usually user specified parameters. The objective is to
find a feasible floorplan which minimizes the above cost function.

Performance (Speed)

Since the early 807s, circuit speed has become a major issue [9; 14; 25; 39;
48; 49]. Usually, a feasible solution which satisfies the timing requirements
of the circuit is sought. This is achieved by identifying the critical paths and
nets of the circuit such that modules belonging to such paths are assigned
locations in topological proximity.

3.2.3  Terminology

Before we go any further, let us first clarify some of the terminology that
will be used throughout this chapter.

Rectangular Dissection:

It is a subdivision of a given rectangle by a finite number of horizontal and
vertical line segments into a finite number of non-overlapping rectangles.
These rectangles are named basic rectangles. The floorplans of Figure 3.1
are rectangular dissections.

Slicing Structure:

A rectangular dissection that can be obtained by repetitively subdividing
rectangles horizontally or vertically into smaller rectangles is called a slicing
structure. The floorplans of Figure 3.1 are also slicing structures.

Slicing Tree:

A slicing structure can be modeled by a binary tree with n leaves and
n — 1 nodes, where each node represents a vertical cut line or horizontal cut
line, and each leaf a basic rectangle. A slicing tree is also known as slicing
floorplan tree. Figure 3.2 gives a slicing structure and two possible slicing
trees corresponding to that structure. We shall be using the letters H and
V' to refer to horizontal and vertical cut operators respectively.

A skewed slicing tree is one in which no node and its right son are the
same [45]. For example, the slicing tree of Figure 3.2(b) is skewed, while
the tree of Figure 3.2(c) is not skewed.
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N I\<
<\I/

I/

@ (b) (c)

Fig. 3.2 (a) Slicing floorplan. (b) Slicing tree. (c) Another possible slicing tree.

Slicing and Nonslicing Floorplans

A floorplan that corresponds to a slicing structure is called a slicing floor-
plan, otherwise, it is called a nonslicing floorplan. For example, the floor-
plans of Figure 3.1 and Figure 3.2(a) are slicing floorplans. The floorplans of
Figure 3.3 are nonslicing floorplans. These are known as wheels. A wheel
is the smallest nonslicing floorplan. There are only two possible wheels
and these are given in Figure 3.3. A generalization of slicing floorplans is

(@) (b)

Fig. 3.3 Nonslicing floorplans. The two possible wheels.

hierarchical floorplans of order 5. A floorplan is said to be hierarchical of
order 5 if it can be obtained by recursively subdividing each rectangle into,
either two parts by a horizontal or a vertical line segment, or into five parts
by a wheel [42]. Therefore, for trees of such floorplans, each internal node
represents a vertical cut operator, a horizontal cut operator, or a wheel.
Figure 3.4 gives an example of a hierarchical floorplan of order 5.
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Fig. 3.4 (a) A hierarchical floorplan of order five. (b) Corresponding floorplan tree.

Floorplan Tree:

A tree representing the hierarchy of partitioning is called a floorplan tree.
Each leaf represents a basic rectangle and each node a composite rectangle.
If each node has two sons (each composite rectangle is cut either horizon-
tally or vertically in two rectangles that are basic or composite) then the
floorplan is a slicing floorplan. Otherwise, it is a nonslicing floorplan. For
example, the floorplan of Figure 3.4 is a nonslicing floorplan.

Graph Representations of Floorplans

There have been several graph models suggested for the representation of
floorplans. These graphs have different names and are slightly different.
Like floorplan trees, they constitute a concise abstract representation of
the floorplan topology. As we will see, they serve other purposes such as
global routing. In this section, we will briefly describe the four main graph
models:

(1) Polar graphs.

(2) Adjacency graphs.
(3) Channel intersection graphs.
(4) Channel position graphs.

Polar Graphs

Any floorplan (or topological placement in general), slicing or nonslicing,
can be modeled by a pair of directed acyclic graphs: a horizontal polar
graph, and a vertical polar graph [29]. For the horizontal (vertical) polar
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graph, each vertical (horizontal) channel is represented by a vertex. A
directed edge (u,v) indicates that u is the left (top) side of a block, and v is
the right (bottom) side of the same block (refer to Figure 3.5). Each arc has
a positive weight representing the width (height) of the block. Polar graphs
can be used to determine the area of the smallest enveloping rectangle
of the corresponding floorplan. The longest path in the horizontal polar
graph is equal to the minimum required chip width. Similarly, the length
of the longest path in the vertical polar graph is the minimum required chip
height. Therefore, the area of the smallest enveloping rectangle is equal to
the product of these two quantities.

€) Source

Sink
(b)

Fig. 3.5 Polar graphs. (a) A rectangular structure. (b) Vertical polar graph. (c) Hori-
zontal polar graph.

Adjacency Graphs

Adjacency graphs constitute another graph representation of topological
placements. Any floorplan (or topological placement in general), slicing or
nonslicing, can be modeled by a pair of directed acyclic graphs: a horizontal
adjacency graph, and a vertical adjacency graph. For both the horizontal
and vertical adjacency graphs, each block is modeled by a vertex. However,
for the horizontal adjacency graph, arcs model vertical channels, while for
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the vertical adjacency graph, arcs model horizontal channels. Figure 3.6
illustrates these graphs. As the reader can see, this representation is equiv-

Sink
O

B e AN X
G Source Oﬁe O Sink (®)
© 0

O
Source

@) (b) ©

Fig. 3.6 Adjacency graphs. (a) A rectangular structure. (b) Horizontal adjacency
graph. (c) Vertical adjacency graph.

alent to polar graphs. Similar to polar graphs the adjacency graphs can
be used to determine the minimum required width, height, and area of the
corresponding rectangular floorplan.

o A A A vertex

of the channel
intersection
graph

An edge

of the channel
intersection
graph

r———

Fig. 3.7 Channel intersection graph (also called floorplan graph).

Channel Intersection Graphs

A rectangular floorplan consists of basic rectangles that can be represented
as a rectangular dissection. This dissection can be modeled by an undi-
rected planar graph (graph that can be drawn with no arc crossings). This
graph is called the channel intersection graph or floorplan graph [33]. In
this graph each channel intersection is represented by a vertex. Arcs model
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(b)

Fig. 3.8 Position graphs corresponding to the rectangular structure of Figure 3.7.
(a) Horizontal channel position graph. (b) Vertical channel position graph.

intersections adjacencies (refer to Figure 3.7).

Channel Position Graphs

Channel position graphs constitute another topological abstract represen-
tation of floorplans. A floorplan can be represented by a pair of directed
acyclic bipartite graphs, one horizontal and one vertical. For the horizontal
graph, blocks and vertical channels are represented by vertices. Arcs extend
from a block vertex to a channel vertex or vice versa. An arc (b, ¢) extend-
ing from block b to channel ¢ indicates that vertical channel ¢ is bordering
the right side of block b. The vertical channel position graph is similarly
constructed. Figure 3.8 illustrates these graphs. The reader can see that
channel position graphs and polar graphs are equivalent representations.

3.3 Approaches to Floorplanning

Several approaches have been reported to tackle the floorplanning problem.
The reported approaches belong to three general classes: (1) constructive,
(2) iterative, and (3) knowledge-based. As explained in Chapter 2, con-
structive algorithms attempt to build a feasible solution (feasible floorplan)
by starting from a seed module; then other modules are selected one (or
a group) at a time and added to the partial floorplan. This process con-
tinues until all modules have been selected. Among the approaches that
fall into this class are cluster growth, partitioning and slicing, connectivity
clustering, mathematical programming, and rectangular dualization.
Iterative techniques start from an initial floorplan. Then this floorplan
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undergoes a series of perturbations until a feasible floorplan is obtained or
no more improvements can be achieved. Typical iterative techniques which
have been successfully applied to floorplanning are simulated annealing,
force directed interchange/relaxation, and genetic algorithm.

The knowledge-based approach has been applied to several design au-
tomation problems including cell generation and layout, circuit extraction,
routing, and floorplanning. In this approach, a knowledge expert system is
implemented which consists of three basic elements: (a) a knowledge base
that contains data describing the floorplan problem and its current state,
(b) rules stating how to manipulate the data in the knowledge base in order
to progress toward a solution, and (c) an inference engine controlling the
application of the rules to the knowledge base.

It is extremely difficult to describe all these techniques in a single chap-
ter. However, we will limit ourselves to those techniques that attracted the
most interest among designers and researchers.

3.3.1 Cluster Growth

In this approach, the floorplan is constructed in a greedy fashion one mod-
ule at a time until each module is assigned to a location of the floorplan.
A seed module is selected and placed into a corner of the floorplan (lower
left corner). Then, the remaining modules are selected one at a time and
added to the partial floorplan, while trying to grow evenly on upper, diag-
onal, and right sides simultaneously (see Figure 3.9), and maintaining any
stated aspect ratio constraint on the chip. To determine the order in which

Floor plan
growth

Fig. 3.9 Cluster growth floorplanning.

modules should be selected, the modules are initially organized into a lin-
ear order. Linear ordering algorithms order the given module netlist into
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a linear list so as to minimize the number of nets that will be cut by any
vertical line drawn between any consecutive modules in the linear order [16;
20]. Linear ordering is one of the most widely used techniques for construc-
tively building an initial placement configuration. A general description of a
linear ordering algorithm is given in Figure 3.10. The algorithm is based on
the linear ordering heuristic reported in [20]. First a seed module is selected.
The seed selection could be random or based on the module connectivity
with the I/O pads and/or the remaining modules. Then the algorithm
enters a Repeat loop. At each iteration of this loop, a gain function is
computed for each module in the set of the remaining unordered modules.
The module with the maximum gain is selected, removed from the set of
unordered modules, and added to the sequence of ordered modules. In case
of a tie between several modules, the module which terminates the largest
number of started nets is selected. In case of another tie, the module that is
connected to the largest number of continuing nets is preferred. If we have
one more tie, the most lightly connected module is selected. Remaining
ties are broken as desired. The concepts of net termination, starting of new
nets, and continuing nets are illustrated in Figure 3.11.

In the description of Figure 3.10, the notation !I. is used to mean the
elements of sequence L. Curly braces ( { } ) are used with sets and square
brackets ( []) are employed with sequences. A general description of the
cluster growth algorithm is given in Figure 3.12.

Example 3.2 Given the following netlist with 6 cells [C}, Cs, C5, C4,
05, 06] and 6 nets N1 = {01,03,04,06}, N2 = {01,03,05}, N3 =
Assume that all the cells are rigid but have free orientations. In case we
start from cell C as a seed, then the linear ordering heuristic of Figure 3.10
will produce the following sequence: [Cy, C4, Cs, Cy, Cs, Cg]. A step-by-step
execution of the algorithm showing how cells are selected one at a time is
given in Table 3.2. At the first step, cell €4 has maximum gain and is
selected to hold second position. At the second step, we have a tie between
cells Cy, (s, and Cy which all have a gain equal to —1. All three cells do
not terminate any net. However cell C5 has the largest number of contin-
uing nets and is therefore selected to occupy third position in the order.
At the third step, cell C5 has the maximum gain equal to +1. Therefore
C'5 is given position 4. Finally, at the fourth step, we have a tie between
the remaining cells C'5 and Cs. Both cells terminate one net each, have the
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Algorithm Linear_Ordering
S 1 Set of all modules;
Order: Sequence of ordered modules; (*initially empty*)
Begin
Seed:= Select Seed module;
Order:=[Seed];
S:= S—{Seed};

Repeat
ForEach module m € S Do
Compute the gain for selecting module m;
gain,,:= number of nets terminated by
m—number of new nets started by m;
End ForEach ;
Select the module m* with maximum gain;
If there is a tie Then
Select the module that terminates the largest number of nets;
If there is a tie Then
Select the module that has the largest number of continuing nets;
If there is a tie Then
Select the module with the least number of connections;
Else break remaining ties as desired;
Order:= [1Order,m«]; (*append m# to the ordered sequence*)
S:i= S — {mx}
Until S =10
End.

Fig. 3.10 Linear ordering algorithm.

same number of continuing nets, and are connected to the same number
of nets. Therefore, we arbitrarily choose to select the cell with the smaller

index, i.e., cell C5. Hence the final linear order is [C, C4, Cs5, Ca, Cs, Cs].

Once the modules are ordered, topological layout can proceed. Here,
several approaches can be adopted. As mentioned earlier, one approach is
to start from one corner of the floorplan. Then modules are selected in
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Terminated nets New nets

Continuing net

Fig. 3.11 Classification of nets during linear ordering.

Algorithm Cluster_Growth
S 1 Set of all modules;
Begin
Order:= Linear_Ordering(S);
Repeat
nextmodule:= b where Order=[b, Irest]
Order:= rest;
Select a location for b that will result in
minimum increase in cost function;
(*cost may be function of the contour of the partial
floorplan, size and shape of b, and wiring length*).
Until Order = 0§
End.

Fig. 3.12 Cluster growth algorithm.

the order suggested by linear ordering. For each selected module a location
is chosen so as to make the floorplan grow evenly on the upper and right
sides, while satisfying shape constraints on the modules as well as the chip
itself, and optimizing other criteria. Criteria might include: minimization
of wiring length, minimization of dead space, or both. This approach is
illustrated in Figure 3.13.

Another approach may consist of folding the linear order in a row struc-
ture while satisfying also shape constraints on the chip as well as on all the
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Table 3.2 Linear ordering example. Selected cells are marked with asterisk (*).

Step  Cell New Terminated Gain Continuing
# Nets Nets Nets
0 C7 Ny, Na, N3, Ny - -4 -
1 Cs Ns - -1 N3, Ny
Cs Ng - -1 Ny, N
cy o - - 0 Ni, Ny
Cs Ns - -1 Na, N3z, Ny
Cs Ns, Ng - -2 N
2 Cs Ns - -1 N3, Ny
Cs Ng - -1 Ny, N
Cct Nj - -1 Na, N3z, Ny
Cs Ns, Ng - -2 N
3 s - N3, Ny +2 Ns
03 N6 Nz 0 Nl
Cs Ng - -1 Ny, Ns
4 5 Ne No 0 M
Cs Ng Ns 0 M

modules (Figure 3.13).

Notice that routability issue has been ignored so far. The quality of
a floorplan solution cannot be properly assessed without performing some
routability analysis (however crude it might be). Therefore, the next natu-
ral step is to predict the required routing space and estimate the pins and
pads locations. It is extremely difficult to approximate the best pin and
pad locations or predict routability without actually performing routing.
Therefore, it is usually the case that floorplanning is followed by a global
routing step. Global routing is executed in order to appraise the net routes,
therefore leading to a fairly accurate measure of the required routing space.
A common approach to global routing for building block design style (which
is closely related to floorplanning), is to build a global routing graph which
models the regions of the floorplan, as well as relationships (the routing
regions also called routing channels) between these regions. This graph is
also called the channel connectivity graph. This graph is the dual of the
channel intersection graph illustrated in Figure 3.7. Let C'IG be a channel
intersection graph, and C'C'G be the corresponding channel connectivity
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A
Direction of Floorplan grows
cluster growth row by row
|6 6
2 > 3 5| 3
14 5 1l4's

() (b)

Fig. 3.13 Cluster growth example. (a) Growth along the diagonal. (b) Row-based
growth.

graph. Each vertex in V(C'CG) corresponds to an edge in E(CIG). There
is an edge e = (u,v) € E(CCG) if and only if the edges corresponding
to u and v in E(CIG) are incident to a same vertex in V(CIG) (i.e., the
channels touch at a common intersection point). Figure 3.14 gives a chan-
nel intersection graph and its corresponding channel connectivity graph.
The vertices in the channel connectivity graph are usually assigned weights
specifying the cost of assigning a net to the channels.

(@ (b)

Fig. 3.14 (a) Channel intersection graph. (b) Corresponding channel connectivity graph.

Global routing consists of performing a routing plan for each net, thus,
determining for each net the set of channels through which the net will be
routed. This amounts to performing the following tasks for each net:
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(1) marking of the channel vertices in which the particular net has pins;
and
(2) finding a minimum cost Steiner tree connecting the marked vertices.

Because the Steiner tree problem is computationally intensive, usually it
is approximated by a minimum spanning tree. Global routing will be de-
scribed in detail in Chapter 6.

3.3.2  Swimulated Annealing

The first application of simulated annealing to placement was reported
by Jepsen and Gelatt [19]. Since then, there have been several successful
applications of simulated annealing to the floorplanning problem [30; 45; 36;
46]. Recall that in simulated annealing, first an initial solution is selected.
Then a controlled walk through the search space is performed until no
sizeable improvement can be made or we run out of time. In this section,
we shall explain the application of this general combinatorial optimization
technique to the floorplanning problem.

As pointed out by Rutenbar [34], two approaches can be used to perform
floorplanning by simulated annealing: the direct approach and the indirect
approach. In the direct approach the annealing algorithm is applied directly
to the physical layout, manipulating actual physical coordinates, sizes, and
shapes of modules. Because 1t is very difficult to guarantee that every solu-
tion perturbation leads to a feasible solution with no module overlaps, such
overlaps are allowed to exist in intermediate solutions. However, a penalty
measure is included in the cost function to penalize any module overlap.
Obviously, the final solution must be free from any overlaps. In the second
approach, the annealing algorithm will be working on an abstract represen-
tation of the floorplan describing topological proximity between modules.
The abstract representation usually consists of a graph representation simi-
lar to one of those graph models introduced at the beginning of this chapter,
or a floorplan tree. Then a subsequent mapping process is required to gen-
erate a real floorplan from its corresponding abstract representation. The
advantage of this approach is that all intermediate floorplan solutions are
feasible.

The work reported by Sechen [36] belongs to the first approach. The
work reported by Wong et.al. [45; 46], adopted the second approach. We
believe that the second approach is a more elegant formulation. Therefore,
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in this section, we will focus on this approach only. The description is
based on the work reported by Wong [45] in which a concise representation
of floorplans called normalized Polish expressions, was introduced.

Recall that to apply the simulated annealing technique we need to be
able to: (1) generate an initial solution, (2) disturb a feasible solution to
create another feasible solution, and (3) to evaluate the objective function
for these solutions.

Terminology and Solution Representation

In the following discussion, for the purpose of illustrating this technique, we
will restrict ourselves to slicing floorplans. Slicing floorplans present some
disadvantages, most important of which is the generation of extra dead
space. However, on the positive side, slicing floorplans are computationally
much easier to manipulate [31; 32].

Definition An expression E = eje5---€9,_1, where each e €
{1,2,---,n,H, V}, 1 <i<2n—1,is a Polish expression of length 2n — 1
if and only if:

(1) every operand j, 1 < j < n, appears exactly once in the expression;
and

(2) the expression E has the balloting property, i.e., for every sub-
expression F; = e1---e;, 1 < ¢ < 2n — 1, the number of operands
is greater than the number of operators [45].

As illustrated in Figure 3.2 the hierarchical structure of a slicing struc-
ture can be represented by a binary tree with n leaves representing the
n basic rectangles, and n — 1 nodes representing the dissection operators
(H for horizontal and V for vertical dissection). A postorder traversal of
a slicing tree will produce a Polish expression with operators H and V,
and with operands the basic rectangles 1,2, .-, n. Figure 3.15 gives a rect-
angular dissection, 1ts corresponding slicing tree; and its Polish expression
representation. In a postorder traversal of a binary tree, the tree is tra-
versed by visiting at each node the left subtree, the right subtree, and then
the node itself. The general algorithm for performing a postorder traversal
of a binary tree is given in Figure 3.16. In that description, the functions
Root, LeftSubtree, and RightSubtree return respectively the root, the left
subtree, and the right subtree of the given binary tree. Since there is only
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Fig. 3.15 (a) A rectangular dissection. (b) Its corresponding slicing tree.

one way of performing a postorder traversal of a binary tree, then there is
one to one correspondence between floorplan trees and their corresponding
Polish expressions.

Algorithm PostorderTraversal(T: Binary Tree)
Begin
If Root(T) # nil Then
Begin
PostorderTraversal (LeftSubtree(7T'));
PostorderTraversal (RightSubtree(7'));
Visit(root(T));
End,;
End.

Fig. 3.16 Postorder traversal of a binary tree.

The operators H and V carry the following meanings:

tjH means rectangle j on-top-of rectangle i;
17V means rectangle ¢ to-the-left-of rectangle j.

Definition A Polish expression F = ejes...ea,_1 is called normalized if
and only if E has no consecutive H’s or Vs [45].
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For example, £1= 12H43V H is a normalized Polish expression, while
FEy= 12V43H H is not normalized.

The classification of Polish expressions into normalized versus non-
normalized Polish expressions is for the purpose of removing redundant
solutions from the solution space. As we have stated earlier, there is a one-
to-one correspondence between the set of Polish expressions of length 2n—1
and the set of slicing trees with n leaves. However, in general, there may
be several Polish expressions that correspond to the same slicing floorplan.
This is an undesirable property because of the following:

(1) the search space will be enlarged with several duplicate solutions, since
several Polish expressions may represent the same slicing floorplan; and

(2) the number of Polish expressions corresponding to a given slicing floor-
plan can vary from structure to structure; this will bias the search for
floorplans with a larger number of corresponding slicing trees.

Figure 3.17 shows a floorplan example which has several slicing tree
representations. Notice the one-to-one correspondence between the slicing
trees and Polish expressions. Also, notice that all the slicing trees are not

skewed.
v \% v
PN PN PN
3 5 H v H v i H
: A5 O A
6 ? 1/H\ /N NN LN N
2 4 43 /H\ 5 43 0N 2143 6 5
7 76 6 5
21H43H76HSHVY  21HA3HT765HHVV 21H43HV765HHY

Fig. 3.17 A rectangular dissection with several slicing tree representations.

A clever observation, embodied in the following lemmas, has been made
by Wong and Liu which avoids these problems [45]:

Lemma 3.1 There ts a one-to-one correspondence between the set of
skewed slicing trees with n leaves and the set of normalized polish expres-
stons of length 2n — 1.

Lemma 3.2  There s a one-to-one correspondence between the set of nor-
malized Polish expressions of length 2n — 1 and the set of slicing structures
with n basic rectangles.



112 Floorplanning

Lemma 2 says, that given a normalized Polish expression, we can con-
struct a unique rectangular slicing structure (i.e., a floorplan). Figure 3.15
gives a slicing floorplan, its corresponding skewed slicing tree, and its nor-
malized Polish expression representation.

Definition A sequence C' = opjops...opg of k operators is called a chain of
length % if and only if op; £ opiq1, 1 <t <k —1.

Let E = ejes...69,_1 be a normalized Polish expression that can be
expressed as F = PyCy P2C5...P,C,y,, where the C;’s are chains (possibly of
zero length), and Py Py - - - P, is a permutation of the operands 1,2, -, n.

Definition Two operands in E are called adjacent if and only if they are
consecutive elements in Pi, P, ..., P;. An operand and an operator are
adjacent if and only if they are consecutive elements in ey, es...e0,_1 [45].

Example 3.3
E=123VHHAHV = PP, PsC3P4P5C5

Cy = Cy = C4 are empty chains
C3=VH, Cs=HV

Pl=1,P,=2 P3=3 P,=5 Ps=4

1 and 2 are adjacent operands;
3 and 5 are also adjacent operands;
3 and V' are adjacent operand and operator.

Solution Perturbation - The Move Set

Floorplan solutions are represented by normalized Polish expressions. The
perturbation of a given floorplan solution amounts to incurring some change
to its corresponding normalized Polish expression. Three types of moves
are suggested to perturb a given normalized Polish expression:

M;: swap two adjacent operands;
Ms: complement some chain of nonzero length; (where V=Hand H = V)i
Ms: swap two adjacent operand and operator.
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Two normalized Polish expressions are called neighbors if one can be
obtained from the other using one of the above three moves. Care must
be taken to make sure that neighbors of normalized expressions are also
normalized. It is obvious that the first two moves always produce a nor-
malized Polish expression from a normalized expression. However, the third
move may at times result in a non-normalized Polish expression. Therefore,
whenever an M3 move is made, we must check that the resulting expression
is a normalized Polish expression, i.e., (a) it does not contain two identical
consecutive operators, and (b) it does not violate the balloting property.
In case an M3 move violates either (a) or (b), the move is rejected.

Checking that the new expression F does not contain two identical
consecutive operators is straightforward and achievable in O(1) time. Fur-
thermore, the following quick test 1s sufficient to know whether an M3 move
will violate the balloting property or not.

Lemma 3.3 Let Ni be the number of operators in the Polish expression
E =e1,ea,..,e5,1 <k <2n—1. Assume that the Ms move swaps the
operand e; with the operator e;41, 1 <1 <k —1. Then, the swap will not
violate the balloting property if and only if 2N;11 <1 [45].

Note that “¢” is the number of operands in e, es,...,e9;_1, and that
eo;_1 1s an operator. Note also that the aforementioned three moves are
complete in the sense that it is possible to generate from a given normal-
ized Polish expression any other normalized Polish expression through a
sequence of moves. Figure 3.18 is an example which illustrates the com-
pleteness of the three moves [45]. It gives a walk through the floorplan
solution space of a floorplanning problem with five modules, using the M-
to-Ms moves.

Solution Evaluation

To measure how good a given floorplan solution is, a cost function is eval-
uated for each solution generated. Usually the principal goal 1s to achieve
the floorplan with minimum area and overall interconnection length. A
possible cost function is a linear combination of these two measures [45],
that is,

Cost(F) = aA+ AW (3.2)
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Fig. 3.18 An example of a walk through a floorplan solution space with 5 modules.

where A is the area of the smallest rectangle enveloping the n basic rect-
angles, and W is a measure of the overall wiring length. The parameters «
and A control the relative importance of area versus wirelength. A possible
estimate of W may be defined as follows,

W = Z Cij . dij (33)
iJ

where ¢;; is equal to the number of connections between blocks ¢ and j,
and d;; is the center-to-center distance between basic rectangles ¢ and j.

Area Evaluation

Definition Let I' be a continuous curve on the plane. I'is called a bounding
curve if it satisfies the following conditions:

(1) it is decreasing, i.e., for any two points (z1,31) and (z3,y2) on T, if
x1 <xg then yo <y

(2) T lies completely in the first quadrant, i.e., ¥(z,y) € T, « > 0 and
y > 0; and

(3) it partitions the first quadrant into two connected regions. The con-
nected region containing all the points (x, z) for very large  is called
the bounded area with respect to the bounding curve T' (Figure 3.19).
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Bounding area

Corner points Bounding curve

Fig. 3.19 A piecewise linear bounding curve.

Definition Let I" and A be two bounding curves. Two arithmetic opera-
tions on bounding curves are defined as follows:

(1) the bounding curve corresponding to THA is obtained by summing the
two curves along the y-axis, i.e., THA = {(u,v + w)|(u,v) € T and
(u,w) € A}

(2) the bounding curve corresponding to I'VA is obtained by summing the
two curves along the z-axis, i.e., TVA = {(u 4+ v,w)|(u,w) € T and
(v,w) € A}.

Note that, a piecewise linear bounding curve is completely characterized
by an ordered list of its corner points. Moreover, to add two piecewise linear
curves along either direction, it is sufficient to sum up the two curves at
their corner points.

Coming back to our floorplan problem, recall that each module ¢, 1 <
¢ < n is constrained as follows,

(1) height = h;, width = w;, and area A; = w;hy;

(2) < ¢ h’ < s;, if module i has fixed orientation;

(3) r g v < s; or s— < h’ < —l if module ¢ has free orientation; and

= s;, if module 7 is rlgld and r; # s; if module ¢ is flexible.

Each basic rectangle ¢, 1 < ¢ < n must be large enough to accommodate
module z. Hence, x; > w; and y; > h;, where z; and y; are the width and
height of basic rectangle <.

The bounding curves corresponding to the various kinds of shape and
area constraints for a given module ¢ are illustrated in Figure 3.20.

Let Tg be the floorplan tree corresponding to the normalized Polish
expression E. Let Rp be the rectangular slicing structure corresponding
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(d)

Fig. 3.20 Bounding curves for various classes of modules. Module i: (a) is rigid and
has fixed orientation. (b) is rigid and has free orientation. (c) is flexible and has fixed
orientation. (d) is flexible and has free orientation.

to Tg, and Dg be the set of all possible dimensions of Rg. The set of
points in Dg constitute a bounding curve I'g corresponding to the rectan-
gular dissection Rp. Next, we give a general description as to how I'g is
computed.

Every leaf node 7, 1 < ¢ < n of Ty has associated with it a bounding
curve I'; consistent with the shape, size, flexibility, and orientation of the
corresponding module i. Then the slicing tree is traversed from the leaves
upwards, towards the root, computing on the way the bounding curves [,
corresponding to each internal node v. Note that each internal node v is
labeled either with a horizontal cut operator H or a vertical cut operator
V. Hence, I'y, = I''HT, or I'y, = I1VI,, where [ and r are the left and
right sons of v. This process continues until we get to the root of the tree.
For efficiency reasons, all bounding curves are approximated by piecewise
staircase linear curves. The accuracy of area estimation is a function of this
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staircase approximation.

Once all I'’s are computed, the bounding curve I'g of Rg is as follows:

(1) let (ay,b1) and (ak41,bk4+1) be the points of intersection between T'g
and the lines y = px and y = gx respectively (consequence of the shape
constraint on Rp, which states that p < % < q);

(2) let (a1,b1), (az,b2), ..., (ak, bg) be all the corner points of the bounding
curve I'g which lie between the lines y = pz and y = qz.

Then, the dimensions of a minimum area realization of the floorplan tree Tg

are given by the corner point (a;, b;) such that a;b; = min;(a;b;). Hence,

the minimum area enveloping rectangle has width a;, height b;, and area

A= albl

Finally, once the area and dimensions of the minimum enveloping rect-
angle have been found, we traverse the tree from the root down to the
leaves, tracing back the shapes and orientations of the rectangles (compos-
ite or basic) that were selected in the upward traversal of the tree.

We should point out that, when dealing with rigid blocks, we might have
width or height mismatch. In that case, the summation of the correspond-
ing two bounding curves along the = or y directions should be changed to
the following:

Definition Let T' and A be two bounding curves.

(1) The bounding curve corresponding to 'HA is obtained by summing
the two curves along the y-axis, i.e., THA ={(u,v + w)|(uy,v)} € T
and (uz, w) € A and {u = max(uy, ua2)};

(2) the bounding curve corresponding to I'VA is obtained by summing the
two curves along the z-axis, i.e., TVA ={(u + v, w)|(u,w1)} € T and
(v, wa) € A and {w = max(wy, wa) };

Definition Let (#1,y1) and (22,y2) be two possible implementations of a

given rectangle. (z2,y2) is a redundant implementation of (z1,¥;) if and

only if x5 > x1 and ya > y1, or 2 > 1 and ya > y1.

Redundant implementations should be identified during the summation
of the bounding curves and eliminated, since a minimum area enveloping
rectangle cannot possibly include such redundant rectangles. Only corner
points are non-redundant implementations, therefore we should only con-
sider corner point implementations.

Example 3.4 The purpose of this example is to illustrate how a mini-
mum area enveloping rectangle i1s found for a particular slicing tree. For
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Table 3.3 Dimensions of modules for Example 3.4.

Module Width Height

1 2 3
2 2 2
3 1 3
4 2 3
5 1 2
6 2 2

simplicity reason, we will assume that all modules are rigid and can be
rotated 90° with respect to their original orientation.

For the normalized Polish expression £ = 21H34V56V HV | the floorplan
tree 1s given in Figure 3.21. Assume that the sizes of the modules are as
indicated in Table 3.3. We would like to determine a minimum area en-
veloping rectangle Rp corresponding to the normalized Polish expression

E.

/

{(34)) H /
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64) } 2 5 6
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Fig. 3.21 Example of floorplan area computation.

SOLUTION In the slicing tree of Figure 3.21, the set of points enclosed
between curly braces and appearing next to each node (leaf or internal)
is the bounding curve of that node. For example, the leaf node labeled
“1” corresponds to module 1 whose width and height are wy = 2 and
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h1 = 3. Since the module can be rotated, then for basic rectangle 1
to enclose module 1, its height and width must satisfy the following
inequalities (refer to Figure 3.21(b)):

21 > 2 and y; > 3 (normal orientation of module 1) or
21 > 3 and y; > 2 (module 1 rotated 90°).

The bounding curves for the remaining leaf nodes are obtained in a
similar fashion. Let I'sg be the bounding curve corresponding to the
subtree “66V”. Then, I'ss is computed as follows: I'sg = I'sVI'g, where
the operation V' is the summation of the two curves along the z-axis;
I's = {(1,2);(2,1)} and T = {(2,2)}, therefore Tss = {(3,2);(4,2)}.
Since the point (4,2) is not a corner point, it is eliminated. Hence I'sg =
{(3,2)}. The points (1,2) and (2,2) that were used in the computation
of the unique corner point (3,2) of I'sg are marked (encircled in the
figure). This marking is needed during the downward traversal of the
tree to identify the module sizes, orientations, and shapes that are
consistent with the computed minimum enveloping rectangle Rg.

The bounding curves of the remaining nodes are determined in a sim-
ilar manner, until we reach the root. The bounding curve associated
with the root gives the set of points whose coordinates are the sizes
of possible enveloping rectangles of the rectangular slicing structure.
For this example the bounding curve of the root is T'g = {(5,5);(9,4)}.
Since 5 x 5 = 25 is less than 9 x 4 = 36, then a minimum area en-
veloping rectangle corresponding to the given Polish expression is a
5 x b rectangle. Now, tracing back from the root to the leaves the
size/orientation choices that led to the minimum area, we find that the
modules must have the sizes and orientations indicated in Table 3.4.
The rectangular slicing structure corresponding to this solution is given

in Figure 3.21(b).

The Algorithm

When using the simulated annealing technique, there are several important

decisions that must be made, which consist of the following:

(1) a choice of the initial solution;

(2) a choice of a cooling schedule, that is, (a) choice of the initial tem-

perature, (b) how long before we reduce the temperature, and, (c) the
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Table 3.4 Module sizes and orientation for the floorplan solution.

Module (w,h) Orientation

1 (2,3) Original
2 (2,2) Original
3 (1,3) Original
4 (2,3) Original
5 (1,2) Original
6 (2,2) Original

temperature reduction rate;
(3) a perturbation function;
(4) a termination condition of the algorithm.

The general floorplanning algorithm using the simulated annealing tech-
nique is given in Figure 3.22. The algorithm starts from the initial Polish
expression Fg = 12V3V4V .. .nV, which corresponds to the slicing of the
initial chip into n vertical slices.

To determine a value for the initial temperature T, a sequence of ran-
dom moves are performed and the average cost change for all uphill moves

Agvg is computed. Then Tj is chosen such that eATa"—gg = P, where P 1s the
initial probability of accepting uphill moves. P is initially set very close to
1.

The perturbation function used consists of the following. A neighbor of
a given normalized Polish expression is selected as follows. First, the type
of move 1s randomly selected. Then a pair of adjacent elements are chosen.
In case the move is of type M3z, we should make sure that the perturbation
does not lead to a non-normalized Polish expression. In case it does, another
pair of elements is selected. This is repeated until the swapping of the two
elements does not violate the normality property of the Polish expression.
Each generated normalized Polish expression is evaluated with respect to
its cost (i.e., area of enveloping rectangle and overall wiring length). If this
expression has an improved cost, then it is accepted. Otherwise, if it has
a higher cost (worse solution) then it is accepted with a probability that is
decreasing with decreasing values of the temperature. At each temperature,
a number of trials are attempted until either we make N uphill moves (bad
moves), or the total number of moves exceeds 2N, where N is an increasing
function of n, the number of basic rectangles. When we exit from the
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Algorithm Simulated_Annealing_Floorplanning

Ey = 12V3V4V...nV; (*Initial solution*)
E = Ey; (*Assume that E =e1,e2, -, €i,--+,e,%)
Best = Ey
To = ﬁ‘(l—f,j (*Initial temperature*)
uphill = 0; (*Number of uphill moves made at a given temperature*)
MT = 0 (*Total number of moves at a given temperature*)
T= To;
Repeat
MT = uphill = Reject = 0;
Repeat
Select_Move(M);
Case M of

M : Select two adjacent operands e; and ej;
NewE = Swap(FE, €, €;);
M> : Select a nonzero length chain C' of operators;
NewE = Complement(E, C);
M3 : Done = False
While NOT(Done) Do
Begin
Select two adjacent operand e; and operator €;41;
If (ei—1 # €i41) and (2N;41 < ¢ ) Then Done = TRUE;
End;
NewE = Swap(FE, €;, €i41);
EndCase
MT = MT + 1;
ACost = Cost(NewE) — Cost(E);
If (ACost < 0) OR (RANDOM< e~2°*t/T) Then
Begin
If (ACost > 0) Then uphill = uphill+1;
E = NewEFE; (*Accept NewE*);
If Cost(E) < Cost(Best) Then Best = E;

End
Else Reject = Reject + 1; (*reject the move*)
EndIf
Until (uphill > N) OR (MT > 2N)
T =T
Until (Reject/MT > .95) OR (T < e ) OR Out_of_Time;

End.

Fig. 3.22 General description of the floorplanning algorithm using simulated annealing.
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inner Repeat loop, the temperature is reduced by a fixed ratio A. A
recommended value for A is A = 0.85.

The algorithm terminates when the number of accepted moves becomes
too small (< 5% of all moves made), or when the temperature becomes too
low.

Recently, the simulated annealing formulation described in this section
has been extended to include L-shaped blocks [42].

3.3.3  Analytical Technique

This technique adopts an equation solving approach. The constraints spec-
ifying a feasible floorplan are described by a set of mathematical equations,
and solved using mathematical programming techniques. This approach
has two major problems:

(1) The floorplanning problem is a nonlinear problem. Therefore, the
mathematical formulation leads to a nonlinear program. To overcome
this obstacle, linear approximation is adopted. However, this affects
the optimality of the global solution.

(2) The number of equations describing a feasible floorplan is very large
leading to a very large mathematical program. To overcome this ob-
stacle, a divide and conquer strategy is adopted.

In this section, rather than attempting to give a survey of different
reported formulations, we will illustrate this analytical approach using a
recently reported mixed integer linear program formulation [38]. Other
mathematical formulations of the floorplanning problem have also been
reported in literature [28; 47). A very good overview of the application of
analytical techniques to the placement problem is given in a survey paper
by Shahookar and Mazumder [37].

For the mixed integer linear program formulation, the objective func-
tion minimized is the overall area of the rectangle enveloping all the basic
rectangles [38]. Areas of the basic rectangles are inflated by an estimate of
the routing space of the corresponding module. This is with the intention
of including routability issues of the produced floorplan. However, for the
purpose of our description, we will ignore this issue for the sake of simplicity.
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Notation and Problem Definition

We are given a set of n modules S = {1,2,---,n}. A subset S; of these
modules have fixed orientation and the remaining subset S» consists of
modules with free orientation. FEach module ¢ has width w; and height
hi. Let (x;,y;) be the x-y coordinates of the lower left corner of module ¢,
1 < ¢ < n. Then, for two modules 7 and j not to overlap, 1 <i < j <mn, at
least one of the following linear constraints must be satisfied [38]:

if ¢ is to the left of j:  z; +w; < x5 (3.4)
if 7 is below j: yi + hi <y; (3.5)
if ¢ is to the right of j: =z —w; > z; (3.6)
if 7 is above j: yi —h; > y; (3.7)

Notice that for two modules ¢ and j not to overlap in either the a-
direction or the y-direction, it is sufficient that one and only one of con-
straints given by Equations 3.4 to 3.7 1s satisfied. Therefore, to avoid that
modules ¢ and j overlap we must enforce either Equation 3.4, or 3.5, or 3.6,
or 3.7, not all. In order to state that in equations form, two additional 0-1
integer variables, z;; and y;;, are introduced for each (7, j) pair. These 0-1
variables have the interpretation indicated in Table 3.5.

Table 3.5 Interpretation of the 0-1 integer variables.

Meaning

Constraint in Equation 3.4 is enforced
Constraint in Equation 3.5 is enforced
Constraint in Equation 3.6 is enforced

x;;
0
0
1
1

<
HO)—‘O::

Constraint in Equation 3.7 is enforced

Let W and H be upper bounds on the floorplan width and height.
Hence, |2; — z;| < W and |y; — y;| < H. If W and H are not given, then
possible estimates of these quantities could be W = 3" w; and H =", h;.

Therefore, to enforce that no two modules overlap, Equations 3.4 to 3.7
are rewritten as follows:

i +w < xj+ Wilei +yij) (3.8)
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yi +hi <yp+ H(L+ 255 — vij) (3.9)
zi —wj > xj— W(l -z + vij) (3.10)
yi —hj > y; — H(2— x5 — yij) (3.11)

These are four mixed linear constraints with four unknown real vari-
ables, x;, x;,y;, y;, and two unknown 0-1 integer variables x;; and ;;. The
reader can easily verify that there is always one and only one constraint
enforced, consistent with the interpretation given on Table 3.3. Notice that
in the above equations, whenever the multiplicative factor of either W or
H is non-zero, the corresponding constraints are obviated.

Linear Programming Formulation

In this formulation, we shall assume that one dimension of the chip, say
W, is fixed. We will start by addressing the simplest case when all modules
are rigid and have fixed orientation. Then the case when module rotation
is allowed is solved. Finally, the general case when some of the modules
have flexible shapes is addressed.

Case 1: All modules are rigid and have fized orientation

A feasible floorplan is one which satisfies the following conditions:

(1) no two modules overlap (Equations 3.8 to 3.11 ¥V ¢,j: 1 <i < j < n);
(2) each module is enclosed within the floorplan enveloping rectangle of

width W and height Y, ie, 2, +w; < W and y; + h; <Y, 1 <17 <n;
(3) all module coordinates are positive, ; > 0 and y; > 0,1 < i <n.

Since the width W is fixed, a possible objective to minimize would be
Y, the height of the floorplan. To summarize, we end up with the following
0-1 integer linear program:
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Y +— minimize

Subject to :

i +w; < W, 1<i<n

¥i + hi <Y 1<i<n

zi +w; < zj+ Wizij + yij), I<i<j<n
i —wj > x; — WL — xi; + vij), 1<i<j<n
yi +hi <y + H(L+ zij — yij), 1<i<j<n
yi —hj > y; — H(2 — zij — yij), 1<i<j<n
x; >0,y >0, 1<i<n

For an instance of the floorplan problem with n modules, the above
mixed integer linear program formulation requires overall 2 X n continuous
variables, n(n — 1) integer variables, and 2n? linear constraints. For large
n, this will lead to unacceptably large programs. Later on, we will see how
can a divide-and-conquer strategy be used to reduce the size complexity of

the problem.

Case 2: All modules are rigid and rotation is allowed

When a module is rotated by 90°, its width becomes its height and vice
versa. In order to include in the model this extra freedom for those blocks
that are allowed to rotate, one 0-1 integer variable is introduced for each
module belonging to such class. Therefore, for each module ¢ with free
orientation, we associate a 0-1 variable z; with the following meaning;:
zi = 0 if module ¢ is placed in its original orientation (0° rotation); and
z; = 1 if module 7 is rotated 90° with respect to its original orientation.
Hence the previous 0-1 mixed integer linear programming formulation

has to be rewritten as follows:

Y < nmunimize

Subject to :

yi—i—Ziwi—i-(l—Zi)hiSY, 1<:<n
xi—i—zihi—i—(l—zi)wing—i—M(xij—l—yij), 1<i<j<n
w; = zjhy — (1= zj)w; > w5 — M(1 = xij + yij), 1<i<j<n
yi + ziwi + (1 = zi)hi <yj + M(1+ 25 — yij), I<i<j<n
yi — zjwi — (L= zj)hj > y; — M(2 — @i — yij), 1<i<j<n
x; >0,y >0, 1<:<n
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In the above mixed integer linear program, M could be set equal to
max(W, H) or W + H. The number of equations did not change from
the first formulation. However, the number of 0-1 integer variables have
increased by n, which is equal to the number of modules.

Case 3: Some of the modules are flexible

Now, some of the modules are allowed to vary in shape as long as they keep
a fixed area A; = w;h;. This complicates the matter a bit as the equality
A; = w;h; 1s a nonlinear relationship. To maintain a linear program, we
must linearize this relationship. Let w; max and A; max be the maximum
width and height of module 7, 1 < ¢ < n. Then, a possible linearization
approach is to make a Taylor’s series expansion of A; about the point
W; max, and use the first two terms of the series as an approximation of
A; [38]. Recall that the Taylor’s series expansion of a function f(z) about
the point zq is defined as follows:

o~ (z — xo)k
Fla) =D S x % (o) (3.12)
k=0
By evaluating the above Taylor’s series expansion for h; = % = f(w)

and zg = w; max, and taking the first two terms, we get the folloxliving:

Ai i,max — Wq
f(wl) = hl = + Az (w . d ) + O(wz - wi,max) (313)

. 2,
Wi max W3 max

Let h; o = wA’ yAf = Wi max — w5, and Ay = wQA’ —. If we drop the

i,max

i max
error term, then the above equation can be rewritten as follows:

h; = hi,o A (3.14)

This linear approximation of the area of a module 1s illustrated in Fig-
ure 3.23. In Equation 3.14, h; o and A; are known constant parameters.
Hence, this approximation will require the addition of only one continuous
variable A; for each module 7,1 < ¢ < n.

Equations 3.4 to 3.7, which state the conditions of no overlapping be-
tween modules ¢ and j, must be rewritten to take into account the flexibility
of some of the modules. Three cases can be distinguished:
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X h.—
' |

A
Wi
imax [~~~

Fig. 3.23 Linear approximation of the relationship A; = w; x h;.

Both modules are rigid:

In this case, Equations 3.8 to 3.11 remain as they are. Here, we recall them
for convenience.

3.15
3.16
3.7
3.18

zi +w; <@y 4+ Wiz + yij)

v —wj > wj— W(l —2ij + yij)
yi +hi <yj+ H(L+zij — yij)
yi —hy > y; — H(2 = zij — yij)

(3.15)
(3.16)
(3.17)
(3.18)

Module i s flexible and module j s rigid:

In this case, the height of module ¢ should be replaced with its linear ap-
proximation in terms of w;, i.e., h; = h; , + A;A;. Hence, the constraints
for no overlapping between flexible module ¢ and rigid module j become,

3.19
3.20
3.21
3.22

i+ Wimax — A; < 25 + Wi +yij)
Yi +hio + NA; <y + H(L+ 245 — yij)
v —wj > wj— W(l —2ij + yij)

yi —hj >y — H(2 = 2ij — i)

(3.19)
(320)
(3.21)
(3.22)

Note that in the above Equations 3.19, w; is replaced by w; max — A;. This
is for the purpose of reducing the number of variables in the overall mixed
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integer program.

Both modules i and j are flexible:

In this case, both h; as well as h; must be replaced with their linear approx-
imations. Here again we express w; = W; max — A;. Also, w; is expressed
the same way.

3.23
3.24
3.25
3.26

Ti + Wimax — A <y + Wiz + yij)

Yi + hio+ XA <y + H(L+ 2ij — vij)
Ti = Wjmax + A > xj = W(l — zij + yij)
i = hjo = NA; > y; — H(2 — zij — i)

(3.23)
(3.24)
(3.25)
(3.26)

We leave it as an exercise to completely formulate the mixed integer
program corresponding to the last two cases, as well as to determine the
sizes of the programs.

Successive Augmentation

The major problem with analytical approaches to floorplan design is the
size of the resulting problem. For example, for the mixed integer formu-
lation described in this section, the smallest program (when all modules
are rigid and have fixed orientation) will have 2 x n continuous variables,
n(n—1) integer variables, and 2n? linear constraints. For a value of n = 100
modules (medium size problem), the linear program will have 200 continu-
ous variables, 990 integer variables, and 20000 linear constraints. Moreover,
the time complexity of a mixed integer linear programming problem grows
exponentially with the size of the program. Therefore, for this approach
to be realistic, the number of modules must be kept very small (around
10). Here, the classic cluster-growth greedy approach comes to the res-
cue. Instead of solving the original problem with the n modules, a linear
program is formulated using a subset S; of ny modules. Then a second
subset Sa of na modules is selected and the corresponding linear program
is formulated, with the additional constraints that the previously selected
ny modules have fixed locations, shapes, and orientations. The floorplan-
ning problem is solved when we solve problems corresponding to remaining
subsets 59, ..., Sk such that, Zle n; = n. This greedy approach is called
successive augmentation [38]. At each step, the partial problem is solved
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optimally. However, the final solution will most likely not be globally op-
timal. This approach is graphically illustrated in Figure 3.24. As can be
seen, the width of the floorplan is assumed fixed and the floorplan grows in
height until all modules have been assigned. This greedy approach raises

Next group of modules

Ii— Partial floorplan

- w >

Fig. 3.24 Successive augmentation approach.

two new problems:

(1) How to select the next subgroup of modules; and
(2) how to formulate the successive mixed integer programs while mini-
mizing the number of required integer variables.

As for problem (1), a possible strategy is to use the linear ordering al-
gorithm given in Figure 3.10 to order the modules into a linear list based
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on their connectivity. The second problem is the subject of the next sub-
section.

Formulation of the Successive Problems

The size of each successive mixed integer program depends on the cardi-
nality of the next group of modules as well as the partially constructed
floorplan. Therefore, in order to keep the size of these mixed integer pro-
grams small, we must describe the partial floorplan using the smallest pos-
sible number of constraints and variables. One way of achieving this is as
follows [38]. The main idea consists of replacing the already placed mod-
ules by a set of covering rectangles. The number of covering rectangles is
guaranteed to be always less than the number of original modules (usually
much less). The proof is left as an exercise. The idea of this covering al-
gorithm is illustrated in Figure 3.25. As illustrated in that figure, first the
covering polygon of the partial floorplan is identified. Internal holes are
ignored, since new modules are always added to the top side of the partial
floorplan. Then starting from the bottom of the floorplan, horizontal edges
of the polygon are identified one at a time. At each such horizontal edge, a
horizontal cut edge is drawn, thus delimiting a new rectangular slice. This
process is repeated until we reach the top of the partial floorplan. Notice
that only at the top row we could have collinear horizontal cut edges.

One final comment about this approach is routability. Although, as
we have said earlier, that module sizes are inflated proportionally to their
interconnection requirements, a final global routing step is necessary to en-
sure routability of the produced floorplan. Global routing will be addressed
in detail in Chapter 6.

A general description of the floorplanning algorithm is outlined in Fig-
ure 3.26 [40]. The mixed integer linear programs formulated at each step
can be solved using standard mathematical programming software such as

the LINDO package [35].

3.3.4  Dual Graph Technique

The graph dualization technique seeks to find a topological layout (relative
placement) of the modules which is consistent with the overall topological
relations of the blocks, as well as the sizes and shapes of these blocks. This
approach requires a sound graph theoretical background.
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Fig. 3.25 Steps for determining a set of covering rectangles of the partial floorplan.

In most general terms, this approach consists of modeling the original
circuit by a graph GG = (V, E). The set of vertices V model the modules
and the set of edges £ model module interconnections. This graph is then
planarized. Next, a rectangular dual of this planar graph is found, where
faces of the dual correspond to modules, and edges correspond to interfaces
between the modules (module adjacencies). The edges of the dual model
the routing channels through which signal nets will be routed. Finally a
drawing of the dual graph is sought such that the rectangular area assigned
to each module is large enough to accommodate the module. A final ad-
Jjustment step is usually necessary to provide sufficient routing space for the
interconnections. Figure 3.27 illustrates the steps of this approach.

Before we proceed any further, let us introduce the necessary terminol-
ogy required for the description of this approach.
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Algorithm Greedy_Floorplanning;
Begin
Order the n modules;
Select a first subset S; of n; modules;
Formulate a mixed integer linear program for this first subset;
Call the linear programming procedure to solve this first problem:;

k=mny;

1 =1;

While £ < n Do
Begin

Select the next subset S;y1 of n;41 modules;
Find a set of d; covering rectangles of the partial floorplan;
Formulate a mixed integer program with n; free modules and
d; fixed basic rectangles;
Call the linear programming procedure to solve this " problem:;
k=k+n41;

End,;

Perform Global routing and adjust floorplan accordingly;

End.

Fig. 3.26 General greedy analytical floorplanning algorithm.

Terminology

A plane graph is a graph that can be embedded in the plane with no two
edges crossing each other. As we have seen earlier, a rectangular floorplan R
can be represented by a channel intersection graph G = (V, E). The graph
(i is a planar graph. Each vertex in V() represents a line intersection
point of R. There is an edge (u,v) € E(G) if and only if the intersection
points modeled by « and v are adjacent (see Figure 3.28). V(@) and E(G)
are the vertex set and edge set of graph G. The inner faces of G are called
rooms.

Definition Let G and H be two graphs. Let f be a one-to-one mapping of
V(@) onto V(H), and g a one-to-one mapping of F(G) onto F(H). Let ©
be the ordered pair (f, g). © is an isomorphism of G onto H if the following
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(A =% A—0® T
5] [e] @g@ o

G =
(@) (b) (c)

Fig. 3.27 Steps of floorplan design by rectangular dualization. (a) A circuit. (b) Graph
model for (a). (c) Rectangular dual for (b).

Inner faces (rooms)

(@ (b) (c)

Fig. 3.28 (a) Rectangular floorplan. (b) Its channel intersection planar graph. (c) Its
inner dual graph.

condition holds:
“The vertexr v s incident with the edge e € G if and only if the vertex
f(v) is incident with the edge g(e) in H. When such an isomorphism
exists, we say that graphs G and H are isomorphic.”

Clearly, for any two isomorphic graphs GG and H, we have |V(G)| =
[V(H)[ and |E(G)| = |[E(H)] .

Definition The inner dual graph of a graph G is a graph G* = (V*, E¥)
modeling the adjacencies of the rooms of G (see Figure 3.28). That is,

V* ={v*|v* corresponds to an inner face of G}

E* ={(u*,v*)|u* and v* have a common wall in G'}
Definition A rectangular dual of a graph G is any rectangular dissection
D where the inner dual graph of D, G*  and G are isomorphic.

The inner dual graph of a floorplan is a plane triangular graph, that
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is, a graph that can be embedded in a plane with no edge crossings, and
each one of its faces is delimited by exactly three edges (also three vertices).
Kozminski and Kinnen [21], and Bhasker and Sahni [7] have given a formal
definition of a properly triangulated graph.

A plane triangular graph has a rectangular dual if it is the inner dual
of a rectangular dissection floorplan. Furthermore, the inner dual graph of
a rectangular dissection is a properly triangulated graph, that is, a graph
with no faces enclosing vertices. Hence, a plane triangulated graph has a
rectangular dual if and only if it is properly triangulated.

The rectangular dualization approach to floorplan design is based on this
last observation. Therefore, to apply this technique to floorplan design, the
following steps must be carried out:

(1) model the original circuit netlist by a graph;
(2) convert the graph of Step 1 into a planar graph;

(3) transform the planar graph of Step 2 into a planar triangulated graph;
(4) check that the graph of Step 3 is a properly triangulated graph, i.e., it
does not contain faces enclosing vertices;

(5) find a rectangular dual floorplan graph (this graph is not unique).

Kozminski and Kinnen have given necessary and sufficient conditions for
the existence of a properly triangulated graph [21]. Leiwand and Lai have
stated that a plane triangulated graph admits a rectangular dual if and only
if it contains no complex triangular faces (a triangle enclosing vertices) [23].
Also they gave a quadratic algorithm to check a graph for that condition.
Figure 3.29(a) gives a planar graph that is not properly triangulated. The
reader can see that the graph is a K4 (complete graph on 4 vertices) and
cannot possibly have a rectangular dual (no way of drawing a rectangular
dissection of four rectangles where every rectangle is adjacent to every other
rectangle). Figure 3.29(b) gives a properly triangulated planar graph of the
graph in Figure 3.29(a). An extra dummy vertex F is added together with
some extra edges. Now the graph of Figure 3.29(b) has a rectangular dual
as illustrated in Figure 3.29(c).

In the remainder of this section, we shall assume that the graph is a
properly triangulated graph. Suffice to say, that to planarize a graph, we
can proceed in two ways:

(1) identify the minimum number of edge crossings and add artificial ver-
tices at these points of intersection, or
(2) Identify a minimum number of edges which, if removed, the resulting
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Fig. 3.29 (a) A triangular planar graph. (b) Properly triangulated graph. (c) Rectan-
gular dual of (b).

graph becomes planar.

Similar techniques are applied to transform a planar graph into a prop-
erly triangulated graph. Efficient algorithms for graph planarization and
triangulation have recently been reported [26].

Next, we focus on the problems of Steps 4 and 5, that is, (a) the problem
of checking that the triangular planar graph is properly triangulated, and
(b) the problem of obtaining a rectangular dual of a properly triangulated
graph.

The remainder of this section i1s based on the work of Kozminski and
Kinnen, and Bhasker and Sahni [21; 5; 6; 7).

Properly Triangulated Planar (PTP) Graph

The outermost cycle of a planar graph is the cycle with the property that
all edges of the graph lie either on this cycle or on its interior.

The vertices of the outermost cycle are called outer; all other ver-
tices are internal vertices. Referring to Figure 3.29(b), the outermost cy-
cleis A - C — E — B. The outer vertices are also A,C, E, B. The
only internal vertex is D. Next we formally characterize PTP graphs [21;
7).

Definition A graph is said to be a properly triangulated graph if it is
a connected planar graph with the following properties.

P1 Every face except the exterior is a triangle.
P2 All internal vertices have degree greater than or equal to four.
P3 All cycles that are not faces have length greater than or equal to four.
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The graph of Figure 3.29(a) violates properties P2 and P3 since the degree
of the internal vertex D is less than four. Also the cycle A — B — (' is
not a face and has length less than four. On the other hand the graph of
Figure 3.29(b) is a PTP graph.

Lemma 3.4 Let G be a planar graph satisfying properties P1 and P3.
Then G must also satisfy property P2.

Proof. If GG violates property P2, then it must have an internal vertex v
of degree 1, 2 or 3. If v 1s of degree 1 or 2, then obviously G cannot be
a triangulated graph. If v is of degree 3, then if G is triangulated, then it
must contain the subgraph K4 (a complete graph on 4 vertices, such as the
graph of Figure 3.29(a)). However, this cannot be drawn without violating
P3. O

Definition A graph in which each vertex has the same degree (number of
incident vertices) is called a regular graph (see Figure 3.30(a) and (b)).

() (b)

Fig. 3.30 Regular graphs. (a) A 2-connected graph. (b) A 6-connected graph.

Definition A sub-graph G; = (V4, 1) of a graph G(V, F) is a connected
component of G iff (1 is a connected graph and G contains no connected
sub-graph which properly contains G .

The connectivity of a graph is equal to the size of its disconnecting vertex
set. If the size of this set 1s n then the graph is called an n-connected graph.
For example the graphs of Figure 3.30(a) is a biconnected graph while that
of Figure 3.30(b) is 6-connected. The graph of Figure 3.31 is 1-connected;
each of the nodes k and 1, when removed disconnects the graph into two
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components. Disconnecting vertices such as k and [ are called articulation
points.

Fig.3.31 A l-connected graph with all articulation points (k and /) on the outer bound-
ary.

Lemma 3.5 A planar graph G satisfies P1 and P3 iff it has a planar
drawing that wn addition to satisfying P1 and P3 also has all the articulation
points of G' on the outer boundary.

Proof. If an articulation point a is not on the outer boundary, then at
least one of the internal faces is not triangular. d

The above lemma and definitions suggest that only biconnected components
should be of concern to us. Hence an algorithm that seeks to construct a
PTP drawing of a graph may be outlined as in Figure 3.32. Linear time
algorithms for Steps 1 and 4 can be found in text books on computer
algorithms [18].

We shall now briefly describe a linear time algorithm for Step 3 due to
Bhasker and Sahni [5]. This algorithm to construct a PTP graph proceeds
in a greedy fashion starting from any triangle of the given biconnected
graphs (or component). Then remaining vertices are added one at a time
while maintaining properties P1 and P3 satisfied. Before proceeding with
the desired drawing, initial checks are performed on each component so
that components for which no such drawing exits are eliminated right from
the outset (Step 2 of Figure 3.32). Two checks performed are:

Check-1: For each edge (4, j), determine the number of common vertices of (4, j),
cvij. A vertex k is common to (4, j) iff it is connected to both 7 and j.
In that case ¢, j and k form a triangle. If cv;; > 2 | then every drawing
of the component will have at least one cycle of length 3 that is not a
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AlgorithmDraw PTP_Graph (G).
1. Identify all biconnected components of G.
2. Perform initial checks on each components of G and
discard those which fail the checks.
3. For each component Do
3.1 Determine a drawing satisfying P1 and P3 and such that
articulation points are on the outer boundary;
3.2 If such drawing does not exit Then report failure;
4. Place all drawings obtained such that common
vertices of the biconnected components abut

Fig. 3.32 Algorithm to draw a PTP graph.

face, which is a violation of property P3 (see Figure 3.33). If on the
other hand cv;; = 0 then every drawing will contain a face that is not
a triangle.

Check-2: The number of interior faces must equal the number of triangles of
the biconnected component. Let f and t be respectively the number of

interior faces and number of triangles of a given biconnected component
H. Then,

t =

X Z CV5 (328)

Y(i,j)EE(H)

f =B = |V (H)] +1 (3.27)
1
3

If f £t then H cannot have a drawing that satisfies P1 and P3.

For example the graph of Figure 3.34(a) will fail Check-1 as well as
Check-2 because cvgq = 0 and f £t (f = 4 and ¢ = 3). However the graph
of Figure 3.34(b) will pass both checks. A semi-formal description of the
PTP construction algorithm is given in Figure 3.35 [5].

Example 3.5 Assume that we are given the following biconnected graph
G = (V,E) where V(G) = {1,2,3,4,5} and E(G) = {(1,2),(1,3),
(1,4),(1,5),(2,3),(2,4),(3,4), (4,5)}. We would like to obtain a PTP draw-

ing of G if one exists.

SOLUTION We can see right away that G has no such drawing. The
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Fig. 3.33 A graph which fails Check-1; (¢,7) has more than two common vertices
(k,1,m). Therefore it has a cycle ¥ — j — k” that is not a face and is a triangle
(length=3<4).

(b)

Fig. 3.34 Example of biconnected graphs. (a) Graph which fails both checks. f =

9—6+1=4andt= % = 3. (b) A graph which passes both checks. f =10—-6+1=5

and t = % =5.
number of interior faces f = |E(G)|—|V(G)|+1=8—=5+1 =4, while
the number of triangles ¢t = 13—5 = 5. Therefore we conclude that G has
no PTP drawing (t # f). However, to illustrate the working of the
algorithm of Figure 3.35, we apply it on . The stepwise expansion
resulting from the application of this algorithm on G is summarized in
Figure 3.37.

Initially all vertices are new and all edges are not covered. Suppose that
the triangle 2 — 1 — 3 is arbitrarily chosen as the first triangle. The
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Algorithm Construct_ PTP(H).
Begin
0. Initialization.
Mark all vertices as new and all edges as not covered;
Choose arbitrarily an edge (¢, j) and one of its common vertices k;
(1 — j — k) is the starting triangle;
Mark the vertices (1, j, k) as old and the edges
(,4), (¢,k) and (j,k) as covered,
Set, the outer-boundary outer to comprise vertices t, 7, k;
Arbitrarily choose a vertex among ¢, 3, k to be “start_vertes”;
Triangles_drawn < 1.
1. Repeat(*Successive greedy expansion.*)
next_vertex < vertex that is anti-clockwise from start_vertex on outer;
If (start_vertez, next_verter) has a common vertex ¢ AND
(one or both edges connecting ¢ to this edge are not covered).
Then common + 1
Else common « 0
EndIf
(*Attempt expansion®).
Case common OF
common=0: (*no common vertex*)
If next_vertex has already been a start_vertex
Then Goto 2
Else (*advance start_vertez anticlockwise*)
start_verter + next_verter;
EndIf;
common is a new vertex:
Draw the triangle (common, next_vertex, start_ vertex);
Add common to outer boundary between start_vertex and next_vertex;
Mark common as old;
Mark (common,start_vertez) and (common, next_vertez) as covered;
Triangles_drawn < Triangles_drawn +1;
(*Continued, See Figure 3.36*).

Fig. 3.35 Algorithm to construct PTP graph.

outer boundary is then 2 — 1 — 3. Vertices {1,2,3} are made old, edges
{(1,2),(1,3),(2,3)} are marked covered, and triangles_drawn is set to 1.
Assume that we arbitrarily chose vertex 3 as the start_vertex. Since
vertex 2 is one position anticlockwise from 3 on outer then next_vertex
is equal to 2. We then attempt to expand the current drawing at
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the edge (start_vertexr, next_vertex), that is, edge (3,2). Next, find a
common vertex ¢ such that either edge (3,¢) or (2,i) is not covered. In
our case ¢ = 4 is a new vertex, and both (2,4) and (3,4) are not covered.
Therefore, the outer boundary outer becomes 2 — 1 — 3 — 4, vertices
{1,2,3,4} are old, and edges {(1,2),(1,3),(2,3),(2,4),(3,4)} are covered,
and triangles drawn equal to 2. The start_verter remains 3, but the
new next_verter becomes 4 (see Figure 3.37(b)). The two remaining
expansion steps of the algorithm are as illustrated in Figure 3.37(c)
and (d). At this point all vertices are old, and all edges are covered,
hence the final check is made to see whether triangles drawn is equal to
t. In our case triangles drawn is equal to 4 while ¢ equals 5. Therefore,
we conclude that the graph has no PTP drawing.

In the following paragraphs we describe how to construct a rectangular
dual of a given properly triangulated planar graph.

Construction of a Rectangular Dual

Recall that a rectangular dual of an n-vertex graph G(V, E) consists of
n non-overlapping rectangles such that to each vertex ¢ € V corresponds
a distinct rectangle 7. Furthermore, rectangles ¢ and j are adjacent iff
(i,7) € FE(G). Not all graphs have a rectangular dual. But for a PTP
graph the existence of a rectangular dual 1s guaranteed. However, such a
dual 1s not unique.

We will now present a linear time greedy algorithm which takes a PTP
graph and constructs a rectangular dual [5].

Algorithm Overview

To obtain a rectangular dual from a PTP graph, the algorithm proceeds in
two steps. First the PTP graph is transformed into, what is referred to as
a path digraph (PDG). The PDG is similar to a vertical adjacency graph,
where we have a node ¢ for each rectangle i and edges model the on-top
relationship between corresponding rectangles. In the second step the PDG
is used to construct a rectangular dual.
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Construction of a PDG

To understand the motivation of constructing the PDG and better illustrate
the strategy adopted by the construction algorithm, we first examine the
easier process of constructing the PDG of a given rectangular floorplan.

Any rectangular floorplan can be partitioned into columns along the
vertical edges of its basic rectangles (see Figure 3.38). Now from this par-
titioning a directed graph is constructed where each basic rectangle i is
represented by a node i. There is a directed edge (4, ;) in the PDG iff a
rectangle ¢ is on top of rectangle j in the rectangular floorplan (see Fig-
ure 3.38(a) and (b)).

The headnode in Figure 3.38(b) is by definition on top of all rectangles.
To each column in the partitioned floorplan corresponds a directed path
from the headnode to a leafnode. For example, the path headnode— 4
— 5 —3 corresponds to column B. The immediate ancestors of a node
are its parents. Similarly the immediate successors of a node constitute its
children. For example, the parents of node 5 in Figure 3.38(b) are 4 and
6. Node 5 has 3 as its only child. The children of any node are ordered
left to right, corresponding to the order in which the corresponding basic
rectangles appear left-to-right in the rectangular floorplan. This leads to a
similar ordering of the paths. Therefore, the first path corresponds to the
leftmost column in the rectangular floorplan, the second path to the second
column, and so on.

A node 7 is a distant ancestor of a node j in the PDG iff there 1s a
directed path of length two or more from ¢ to j. For example, node 6 is a
distant ancestor of nodes 3 and 9 in Figure 3.38(b).

Lemma 3.6 Let G be a PDG of some rectangular floorplan and ¢, j be
two vertices in V(G). If i is a distant ancestor of j, then i is not a parent

of j [7].

Proof.  Since the floorplan is composed of rectangles only, then rectangle ¢
cannot possibly be directly on top of j in one column and a distant ancestor
of j in another column. a

Now let us examine the relationship between a given PTP graph and a
corresponding PDG. A PTP graph usually has several PDGs. This is no
cause of concern since any way a PTP graph has several rectangular duals.

Suppose that the rectangular floorplan of Figure 3.38(a) is a rectangular
dual of the PTP graph of Figure 3.38(c). Broken edges in this PTP graph
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represent edges not present in the PDG. An important relationship between
the PTP graph and a PDG is captured by the following lemma.

Lemma 3.7 If (i,j) is an edge in a PTP graph, then neither i nor j are
distant ancestors of each other in the PDG [7].

Proof.  Similar to that of previous lemma. a

We now proceed to informally describe the basic steps of building a
PDG from a given PTP graph [6]. The main steps of the algorithm are
summarized in Figure 3.39. We illustrate the basic mechanics of this al-
gorithm with the example of Figure 3.38 and 3.40. To construct a PDG,
a northwest (NW), a northeast (NE), a southwest (SW) and a southeast
(SE) vertices are identified. These four vertices are not necessarily distinct.
In our example NW=1, NE=7, SW=3 and SE=9 (see Figure 3.40). In
Figure 3.40, vertices 1,4, 6, 7, 8, 9, 3, and 2 make-up the outer boundary.
The NW to NE vertices define the top boundary (vertices 1,4, 6, 7). And
the SW to SE vertices define the bottom boundary (vertices 3,9). Similarly
the NW to SW (1,2,3) and NE to SE (7,8,9) vertices define respectively the
left and right boundary of the PTP graphs of Figure 3.40. The boundary
orientations used by the algorithm are indicated by the arrowheads on the
edges of the outer boundary of Figure 3.40.

To obtain a PDG, we start with a Headnode that has no descendants.
Then the leftmost boundary (1 — 2 — 3) of the PTP graph is traversed
and becomes the leftmost “Headnode to leaf” path in the PDG. Then, the
PTP graph is updated by removing those vertices and edges that have
been added to the PDG. The edges connecting the remaining vertices in
the PTP graph to the vertices removed are also deleted (edges (2,4) and
(2,5) of Figure 3.40). The new left boundary becomes (4 = 5 — 8 — 9)
as shown in Figure 3.41(b). The stepwise execution of this greedy PDG
construction algorithm on the PTP graph of Figure 3.39 are illustrated in
Figures 3.41(a), (b), (c), and (d). Notice that the southwest (SW) vertex
has not changed when we went from Figure 3.41 (a) to (b). This is because
SW=SE and that all “Headnode to leaf” paths must always end at a bottom
vertex.
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Construction of a Rectangular Dual from PDG

Now that we have constructed a PDG from the PTP graph, obtaining a
rectangular dual is fairly straightforward. The algorithm proceeds in a
greedy fashion, processing the paths of the PDG one at a time from the
leftmost to rightmost. We shall illustrate the working of the algorithm on
the PDG of Figure 3.41(d).

The algorithm traverses the leftmost “Headnode to leaf” path and
places rectangles of unit length in column A (Figure 3.42 (a)). The next
“Headnode to leaf” path is traversed (4 = 5 — 8 — 9 of Figure 3.41(d)).
Since nodes 1, 2, and 3 do not appear in the new leftmost path, rectangles
1, 2, and 3 are closed off. The PTP graph of Figure 3.40 indicates that
rectangle 4 is adjacent to both 1 and 2, 5 is adjacent to 2 and 3, while 8
and 9 are adjacent to 3 only. Therefore, the resulting placement is that
of Figure 3.42(b). This process continues, taking one path at a time, and
obtaining the partial placements of Figures 3.42 (a), (b), (¢), (d), and (e).
The algorithm stops when all paths are traversed. The rectangular dual
obtained by the algorithm for the PTP graph of Figure 3.40 is that of
Figure 3.42(e). The reader should be able to notice that the floorplan of
Figure 3.42(e) is different from that of Figure 3.38(a). However, both are
possible rectangular duals of the PTP graph of Figure 3.40. The reader can
also easily check that all adjacency and on-top relationships are respected.

3.4 Other Approaches and Recent Work

In this chapter, we examined traditional approaches to floorplan design.
In these approaches, floorplanning is solved in two consecutive steps. In
the first step, a topological placement is generated. In the second step,
sizing 1s performed, where the actual sizes of cells, estimates of routing
resources (from global routing), and overall area of the floorplan are deter-
mined. However, the following routing phase or performance adjustment
phase may invalidate (at least in part) the outcome of the first step because
of lack of routing space in the initial floorplan solution. This problem is
even more severe for dense VLSI designs, which are demanding in terms
of routability and performance. A number of papers have reported floor-
plan solutions which combine floorplanning with global routing. In one
approach, during the floorplanning process, solutions which minimize both
global routing area and total wirelength are preferred [17]. The floorplan
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1s assembled from bottom to top. During this process routing resources are
estimated around each cell (or cluster of cells) and the cell/cluster shape
and size are updated accordingly. In addition, pin positions are assigned
so as to improve routability. In the TimberWolfMC package [36], simu-
lated annealing is used for floorplan design. Interconnect area around the
cells are estimated and dynamically adjusted whenever cells are moved.
A performance-driven approach to floorplan design has recently been re-
ported [8]. The approach used is multi-start simulated annealing with
force-directed cost functions. The forces exerted on a given cell depend on
the positions assigned to other cells and on user supplied timing informa-
tion. The timing data supplied consists of critical net weights, maximum
wirelengths, and maximum path lengths. In the BEAR package [12; 11;
22], a connectivity clustering approach to floorplan design is adopted. The
clustering algorithm proceeds bottom-up using a combined criterion of con-
nectivity and geometry. Each node in the cluster tree represents a cluster of
at most five cells. This limit is for the dual purpose of reducing the search
space and allowing general nonslicing structures. Wiring is estimated in a
top-down fashion. The cost of assigning clusters to rooms is a combination
of connectivity and geometry criteria. The approach described by Luk per-
forms floorplanning using a technique of multi-way partitioning, combined
with global routing [27]. Timing analysis is also incorporated during the
floorplanning process so that nets that are timing critical are given high
weights.

All approaches which integrated floorplanning with global routing re-
ported superior results than traditional approaches.

There are several other approaches that have not been described in this
chapter. Among these are force-directed, partitioning-based, and genetic
algorithm approach. We shall examine these techniques in the context of
the placement problem in the next chapter. For examples of applications
of these techniques to floorplan design, the reader can consult Wipfler et
al., for the force-directed approach [44], Luk for a partitioning based ap-
proach [27], and Cohoon et al. for the genetic technique [10].

Another iterative approach to floorplan design which makes use of the
vertical and horizontal constraint graphs to determine the dimensions and
positions of all blocks have recently been reported [13]. Base on experi-
ments, the authors claim that their approach is much faster than simulated
annealing. The algorithm reported by Vijayan and Tsay also relies on the
usage of the vertical and horizontal constraints to construct a floorplan solu-
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tion [41]. Both these approaches require the existence of an initial floorplan
from which the constraint graphs are derived.

The branch-and-bound technique [18] has also been used to search an
enumeration tree for an optimal floorplan [43]. In this technique, each block
is assigned to a level of the tree. For a problem with n blocks, the tree will
have n levels. Therefore, if each block has b implementations, then the tree
will have n® leaf nodes. Each node in the enumeration tree corresponds to
a partial floorplan and each root-to-leaf path represents a complete layout.
The enumeration tree is used, together with the vertical and horizontal
constraint graphs to find a correct and optimal floorplan.

The difficulty and multi-objective nature of the floorplanning problem
led some people to apply artificial intelligence techniques to the problem.
We refer the reader to Chapter 9 of the book edited by Preas and Loren-
zetti for a description of knowledge-based approaches to physical design
automation in general [33].

3.5 Conclusion

Floorplanning is an important design step executed for the purpose of sim-
plifying the physical design steps that follow (placement and routing). Tt is
a preliminary step to placement, i.e., floorplanning is performed first, then
followed by placement. Floorplanning helps designers make important de-
cisions on some or all of the following:

Block sizing: decide the size and shape of each circuit component;
Pin assignment: decide the pin positions on the sides of each component;
Chip sizing: estimate the required size and best shape of the chip;
Pad assignment: decide the positions of the I/O pads;
Interconnect resources: estimate the routing resources needed to success-
fully connect the components as required by the circuit logic,
Circuit performance: floorplanning can also be used to provide early eval-
uation of whether the stated performance constraints can be met or not.
In this chapter, we described the four major techniques for floorplan de-
sign. These techniques are: cluster growth, simulated annealing, analytical
approach, and the dual graph method.
Floorplanning is a generalization of the placement problem which will be
covered in Chapter 4. Therefore, solution techniques that will be examined
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for the placement problem are also suitable for floorplan design.

All versions of the floorplanning problem are NP-Hard. Hence, all solu-
tion techniques proposed for this problem are heuristics, whether construc-
tive (such as cluster growth and dual graph) or iterative (such as simulated
annealing). Furthermore, floorplanning is characterized by multiple ob-
jective functions such as, minimize area, minimize interconnection length,
maximize routability, minimize delays, etc. Because of this multi-objective
nature of the problem, there is no consensus as to what constitutes an opti-
mal solution. In addition, the several possible formulations of the floorplan-
ning problem make comparison between the reported solution techniques
very difficult if not impossible. Only qualitative comparison is possible.
One can say that most of the reported techniques lead to equally good so-
lutions with respect to their target objective(s). However, they may vary
widely in the amount of computation time expanded to produce the desired
solutions. Another important aspect of the solution approaches is how diffi-
cult they are to program and how easily they can include the various design
constraints and objectives.

3.6 Bibliographic Notes

Among the most difficult and least understood techniques is the dual graph
technique. Moreover, it is not clear how this technique can be made to
include circuit performance or routability constraints.

Probably the most widely used and investigated technique for floorplan
design is simulated annealing. The technique is very general and easy to
program. Various objective functions and user constraints can easily be
accommodated. However, besides its run time, the major problem with
this technique is the choice of the appropriate cooling schedule, which may
require several trials to tune the schedule parameters to the problem at
hand. A good summary on the convergence of simulated annealing and the
choice of suitable cooling schedules is given by Lengauer [24].

The analytical approach is elegant and can accommodate various ob-
jectives and constraints. The major drawback of this approach is that it
leads to very large optimization problems; thus requiring extensive com-
puter run time. For large designs, hierarchical decomposition, such as the
one reported by Suthanthavibul et al., is essential [38]. However, this will
affect the overall quality of the solution.
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The easiest approach to floorplan design is the cluster growth approach.
The price paid however, is usually a poor quality solution. This approach,
though, can be used to generate an initial solution, that will be refined by
an iterative improvement technique such as simulated annealing.

Exercises

Exercise 3.1 What are the main differences between floorplanning and
placement?

Exercise 3.2 List and briefly describe the various floorplanning solution
approaches. Classify each approach as to whether it is constructive or
iterative.

Exercise 3.3 List and briefly explain the objective function(s) that are
used to rate floorplan solutions.
Exercise 3.4 For the rectangular floorplan of Figure 3.43 assume the cells

have the sizes as given in Table 3.6.

Table 3.6 Table for Exercise 3.4.

Module No. Width Height

1 2 1
2 2 2
3 4 3
4 3 1
5 1 3
6 1 1
7 3 2
8 3 1
9 2 4

(a) Draw the vertical and horizontal adjacency graphs corresponding to
the above floorplan.

(b) Use the adjacency graphs to determine the minimum required width
and height of the floorplan.
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(c) Draw the skewed slicing tree corresponding to the above slicing floor-
plan.

(d) Determine the normalized Polish expression corresponding to the
skewed slicing tree of (c).

(e) Assume that all cells are rigid and have fixed orientations. Use the slic-
ing tree of (c) and the given cells sizes to find the area and dimensions
of the smallest bounding rectangle of the given slicing floorplan.

Exercise 3.5  Determine the number of floorplan patterns (slicing or non-
slicing) for n = 3, 4, and 5. Ignore rotation and mirroring.

Exercise 3.6 How many cutlines are needed to generate a slicing floorplan
with n basic rectangles?

Exercise 3.7 Given the following Polish expression, £ = 12H34V56VHV
(a) Does the above expression have the balloting property? Justify your

answer.

(b) Is the above expression a normalized Polish expression? Justify your
answer.

(c) Why is it a desirable property to restrict ourselves to only normalized
Polish expressions?

(d) Give the slicing tree corresponding to the Polish expression E.

(e) Assume that the modules 1, 2, 3, 4, 5, and 6 have the sizes and shapes
indicated in Table 3.7. If all modules are rigid and have free orien-

Table 3.7 Table for Exercise 3.7.
Module No. Width Height

1 2 3
2 2 2
3 3 1
4 2 3
5 1 2
6 2 2

tations, what will be the size of the smallest bounding rectangle cor-
responding to the normalized Polish expression E? Show all the steps
(with explanation) that led to your answer.

Exercise 3.8 Show that there is a one-to-one correspondence between the
set of skewed slicing trees with n leaves and the set of normalized Polish
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expressions of length 2n — 1.

Exercise 3.9 Show that there is a one-to-one correspondence between the
set of normalized Polish expressions of length 2n — 1 and the set of slicing
floorplans with n basic rectangles.

Exercise 3.10 Let N be the number of operators in the Polish expression
E =ej,ea,...,e5,1 <k <2n—1. Assume that the M3 move swaps the
operand e; with the operator e;41, 1 <7 <k — 1. Show that the swap will
not violate the balloting property if and only if 2/V; 11 < ¢ and e;_1 # e;41.

Exercise 3.11 Programming Exercise: Implement a program which
checks whether a given expression is a normalized Polish expression, and if
so, builds and outputs a skewed slicing tree.

Exercise 3.12 (*) Programming Exercise: Implement a program
which checks whether a given expression is a normalized Polish expression,
and if so, builds and outputs the corresponding slicing structure.

Exercise 3.13 (*) Programming Exercise: Implement a program
which finds a minimum area covering rectangle, together with sizes of its
constituent basic rectangles. The input to the program should consist of
the following:

(1) an expression with n operands;
(2) the possible sizes of each of the n cells.

Exercise 3.14  Given the following netlist with 10 cells [C, Cs, C3, C4, Cs,
06, 07, Cg, 09, 010] and 10 nets N1 = {01, 03, 04, 06}, N2 = {01, 03, 05},
N3 = {C1,C5,C5}, Ny = {C1,05,Cs,C7}, N5 = {Cs,C4,Cs}, Ng =
{C2,C5,Cs,Cro}. Ny = {C5,C4,Cs,Cs}, Ng = {C4,Cs,C5,Cro}, Ng =
{Cy4, C7,Cy, Co}, Nip = {C5, Co, C1o}, Assume that all the cells are rigid

but have free orientations.

(a) Apply the linear ordering heuristic given in Figure 3.10. Use cell C; as
a seed.

(b) Assume that all modules are rigid and have fixed orientations. Use the
cluster growth approach to grow a floorplan, starting from the lower
left corner of the floorplan, and growing along the diagonal. The cell
sizes are given in Table 3.8.

Use as a selection criterion for cell location the area of the rectangle
covering the resulting partial floorplan. In case of a tie, select the
location that will result in the minimum absolute difference | W —
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Table 3.8 Table for Exercise 3.14.
Module No. Width Height

1 2 3
2 2 2
3 3 1
4 2 3
5 2 4
6 3 6
7 2 2
8 2 5
9 1 2
10 3 5

H |, where W and H are the width and height of the resulting partial
floorplan. Break remaining ties as desired.

Exercise 3.15 (*) Programming Exercise: Implement the cluster
growth approach using a programming language of your choice. Test your
implementation using the netlist of the previous exercise.

Exercise 3.16 (*) Programming Exercise: Implement the simulated
annealing approach described in this chapter. Test your implementation
with the netlist of the previous exercise. Compare the simulated annealing
solution with that of the cluster growth approach.

Exercise 3.17 Formulate the corresponding mixed-integer linear pro-
grams, and determine the sizes of these programs for the following cases.

(a) All modules are rigid and have fixed orientations.
(b) All modules are rigid but have free orientations.

(c) All modules are flexible.

Exercise 3.18  (*) Modify the mixed integer formulation given in the text
to include length bounds (upper bounds) on interconnections.

Exercise 3.19  Given the graph G = (V, E), where

V(G)=1{1,2,3,4,5,6}, and
E(G) ={(1,2),(1,3),(14),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6) }.

(a) Determine the number of interior faces f and number of triangles ¢ of
(. What do you conclude?
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(b) Seek a PTP graph drawing of GG using the algorithm of Bhasker and
Sahni given in the text.
(c) Obtain a rectangular dual of the drawing obtained in (b).

Exercise 3.20 (*) Programming Exercise:

(a) Give a Pascal-like description of a heuristic algorithm, which takes as
input a graph and seeks a drawing of the graph, while attempting to
minimize the number of edge crossings. The algorithm should be of
low polynomial time-complexity.

(b) Implement the heuristic described in (a).

Exercise 3.21  (*) Programming Exercise:

(a) Give a Pascal-like description of planarization heuristic algorithm. The
algorithm should be of low polynomial time-complexity.
(b) Implement the heuristic described in (a).

Exercise 3.22 (*) Programming Exercise:

(a) Give a Pascal-like description of a heuristic algorithm which checks
whether a given planar graph is properly triangulated, and if not con-
structs a PTP drawing of the graph. The algorithm should be of low
polynomial time-complexity.

(b) Implement the heuristic described in (a).
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(*Algorithm Construct_PTP(H) continued.*)
common is old: (*there are three sub-cases™*)
Case common of:
common 18 one position anticlockwise from next_vertex on outer;
If (next_vertexis on outer) OR
(next_vertex has additional not covered incident edges)
Then Exit(*drawing is not possible*)
Else Draw the triangle (common, nezt_vertes, start_vertex);
Remove next_vertex from outer;
Mark (common, start_vertex) as covered;
Triangles_drawn < Triangles_drawn +1
EndIf;
common 18 one position clockwise from start_vertex on outer;
If start_vertexis on outer OR
start_vertes has additional not covered incident edges
Then Exit(*drawing is not possible*)
Else Draw the triangle (common, start_vertez, next_vertex);
Remove start_vertex from outer;
Mark (common, nest_vertez) as covered,
Triangles_drawn < Triangles_drawn +1
EndIf;
otherwise : (*continue, triangles involving common may be drawn later*)
If next_vertex has already been a start_vertex once
Then Goto 2
Else start_vertex < next_vertex
EndIf;
EndCase
EndCase
Until doomsday;
2. (*no further expansion is possible; test for success*)
If (new vertices or not covered edges remain) OR (Triangles_drawn < t)
Then no drawing is possible
Else the desired drawing has been obtained
End. (*end of Construct_PTP*)

Fig. 3.36 Algorithm to construct PTP graph (continued).



Bibliographic Notes 157

Next e e Next
Start o e Start

Triangles drawn = 1. Triangles drawn = 2.
Expand at edge (3,2) Expand at edge (3,4)
(a) (b)

e Start( 1 4
Start a e Next

Triangles drawn = 3.
Expand at edge (1,4)

Next

Triangles drawn = 4.

All vertices are old and all
edges are covered => Stop

(© (d)

Fig. 3.37 Example of execution of algorithm of Figure 3.35 on the graph of Example 3.5.
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(b) ©

Fig. 3.38 PDG construction from rectangular dual. (a) A rectangular dual. (b) Its
PDG. (c) A corresponding PTP graph.
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Algorithm Construct_PDG.
Begin
Identify the outer boundary of the PTP graph;
Identify four vertices called NW, NE, SW, SE, (not necessarily distinct);
Identify the top, left, right, and bottom segments of the outer boundary;
1+ 1;
Repeat
Traverse the leftmost outer boundary of the PTP graph;
If this boundary does not violate lemma 3.7
Then this becomes the i leftmost headnode
to leaf path of the PDG
Else make appropriate alternative choices
EndIf
Properly update the PDG and PTP graphs
Until PDG contains all vertices
End.

Fig. 3.39 Algorithm to construct a PDG from a PTP graph.

Fig. 3.40 Boundary orientation in the PTP graph.
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Fig. 3.41 Execution steps for the PDG construction.
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Fig. 3.42 Execution steps of the construction of a rectangular dual.

Fig. 3.43 Floorplan for Exercise 3.4.
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Chapter 4

Placement

4.1 Introduction

Placement is the process of arranging the circuit components on a layout
surface. As an example, consider the circuit of Figure 4.1(a); suppose that
we need to place the gates on a two-dimensional surface. Figure 4.1(b)
shows one such placement. (The same placement is shown in a symbolic
format in Figure 4.1(c)). The symbolic placement shows gates as black
boxes and nets as lines. Note that the actual details of routing are omitted
from the symbolic placement. However, from a symbolic placement, it is
possible to get an estimate of the routing requirements. Considering Figure
4.1(c) again, suppose that routing a net from one box to another takes up
as much wire as the Manhattan distance between the boxes. For instance,
net (1,5) must take up some horizontal and some vertical wiring, and the
total sum of this must be at least 2 units of wire. The reader may verify
that the placement of Figure 4.1(b) takes 10 units of wire. In Figure 4.1(d),
we show another symbolic placement for which the total wirelength w is 12.
Finally, Figure 4.1(e) shows a one-dimensional placement of the circuit.
The 1-D placement also requires 10 units of wiring. The total wirelength w
is a widely used measure of the quality of the placement. To illustrate the
point, consider the symbolic placement of Figure 4.2(a). The same circuit
may also be placed as shown in Figure 4.2(b). As you can see, the latter
placement takes up more area. The area of a layout consists of two parts
— the functional area, and the wiring area. The sum of the areas of the
functional cells is known as the functional area. There are 9 functional cells
in the circuit of Figure 4.2. The functional area remains unchanged for all

163
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Fig.4.1 (a) A tree circuit. (b) A 2-D placement of gates. (c) A 2-D symbolic placement.
(d) A 2-D placement requiring 12 units of wiring. (e) A 1-D placement requiring 10 units
of wiring.

placements. It is the wiring area which changes with the placement. This
1s because of minimum separation that must be maintained between two
wires and between a wire and a functional cell. For instance, consider the
nets (2,5) and (8,9) in Figure 4.2(b). These nets must be placed on two
separate vertical tracks. These tracks must be separated by a minimum

distance to prevent any cross talk.
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Fig. 4.2 (a) Optimal placement with w=12. (b) Alternate solution with w=22.

A placement which requires a large amount of wiring space must neces-
sarily involve long wires and hence a large value of total wirelength. Thus
total wirelength w is a good measure of the area of the layout. The ad-
vantage of using w as a measure is that it is easy to compute (see Exercise

4.1).

4.1.1  Complexity of Placement

The placement of cells in order to minimize the total wirelength w is an
NP-complete* problem. Even the simplest case of the problem, namely
one-dimensional placement, is hard to solve; there are as many as "7' linear
arrangements of n cells (see Exercise 4.2). In practice, the number of cells
to be placed can be very large, in thousands. Therefore, it is impractical
to take the brute force approach of enumerating all the placements and
selecting the best one. Over the past three decades, a number of good
heuristic techniques have been developed for solving the placement problem.
Such heuristic algorithms give a good solution to the placement problem,
not necessarily the best solution; however, the time requirements of the
heuristic algorithms are modest, a polynomial function of n.

*Decision version of the problem is NP-complete.
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4.1.2 Organization of the Chapter

In this chapter, we discuss several heuristic algorithms for the placement
problem. Before we introduce the heuristics, it is necessary to define the
placement problem more formally. This will be done in Section 4.2, where
we will introduce methods to estimate various cost functions such as the to-
tal wirelength. We will also describe some of the constraints that may have
to be handled by a placement algorithm. In Section 4.4, we look at some of
the popularly used heuristic algorithms for circuit placement. We shall be-
gin by describing the min-cut algorithm which has been used for gate-array
placement as well as standard-cell placement. This will be followed by a
discussion of a placement algorithm based on simulated annealing. Subse-
quently, we look at the force-directed placement technique, which attempts
to solve the problem using numerical techniques. In the concluding section
of the chapter, we present some current trends and recent algorithms for
placement.

4.2 Problem Definition

Given a collection of cells or modules with ports (inputs, outputs, power
and ground pins) on the boundaries, the dimensions of these cells (height,
width, etc), and a collection of nets (which are sets of ports that are to
be wired together), the process of placement consists of finding suitable
physical locations for each cell on the entire layout. By suitable we mean
those locations that minimize given objective functions, subject to certain
constraints imposed by the designer, the implementation process, or layout
strategy and the design style. Examples of constraints include avoidance
of overlap of layout cells and the requirement that the cells must fit in a
certain rectangular surface. The cells may be standard-cells, macro blocks,
etc.

Semi-formally the placement problem can be defined as follows. Given
a set of modules M = {my,ms, - -,m,} and a set of signals S =
{51, 82, -, 85}, we associate with each module m; € M a set of signals
Sm,, Where Sp,, C 5. Similarly, with each signal s; € S we associate a set
of modules M, where M,, = {m; | s; € Sy, }. M,, is said to be a signal
net. We are also given a set of slots or locations L = {Li, Ly, -, Ly},

2

where p > n. The placement problem is to assign each m; € M to a
unique location L; such that some objective is optimized. Normally each
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module is considered to be a point and if m; is assigned to location L;
then its position is defined by the coordinate values (z;,y;). Sometimes a
subset of the modules in M are fired, i.e., pre-assigned to locations, and
only the remaining modules can be assigned to the remaining unassigned
locations [4].

4.3 Cost Functions and Constraints

Layout design consists of placement followed by routing. Routing! is the
process of assigning actual tracks to wires that connect ports. A placement
is acceptable if 100% routing can be achieved within a given area. The
objective function to be minimized can be written as a sum of +; and 7.
In most cases, ¥, is the total estimated wirelength. v, is generally penalties
on non-feasible solutions and represents the cost for constraint violations
such as overlap of cells to be placed. Performing actual routing to compare
various placement solutions is impractical. Therefore, estimates are used.
In the following paragraphs we present some commonly used techniques for
estimation of wire-length required by a given placement.

4.3.1 Estimation of Wirelength

The speed of estimation has a drastic effect on the performance of the
placement algorithm. Thus a good estimation technique is central to any
placement program. The estimation procedure must be as quick as possible.
In addition the estimation error must be the same for all nets, that 1s, it
must not be skewed.

One realistic assumption made in estimating the total wirelength is that
routing uses Manhattan geometry, i.e., routing tracks are either horizontal
or vertical (after Manhattan, NY, where the streets run either North-South
or East-West).

For a two pin net connecting module ¢ to module j, the Manhattan
length of this net is r;; 4+ ¢;;, where r;; and ¢;; are the number of rows
and columns separating the locations of the two modules. However, not
all nets are two-pin nets. In this section, we explain how the assumption
regarding two-point connectivity can be relaxed. What we need is a method
to estimate the length of a multi-point net. There are various techniques

tDiscussed in detail in Chapters 5-7.
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available, and each one of these has its own advantages and disadvantages.

Semi-perimeter Method: This is an efficient and the most widely used
approximation to estimate the wirelength of a net. The method con-
sists of finding the smallest bounding rectangle that encloses all the
pins of the net to be connected. The estimated wirelength of the inter-
connects 18 half the perimeter of this bounding rectangle. Assuming no
winding of paths in actual routing, for 2 and 3 pin nets this is an exact
approximation?. This method provides the best estimate for the most
efficient wiring scheme, which is the Steiner tree. For heavily congested
chips this method always under-estimates the wiring length.

Complete Graph: For an n pin net, the complete graph consists of ﬂnz—_ll
edges. Since a tree has (n — 1) edges which is % times the number
of edges in the complete graph, the estimated tree length using this
method is,

2

L=— ) ) .
~ X Z (pair separation) (4.1)
Vpair€net

Minimum Chain: Here the nodes are assumed to be on a chain and each
pin has at most two neighbors®. The method is to start from one
vertex and connect to the closest one, and then to the next closest and
so on, until all the vertices are included. This estimation technique 1s
simpler than the minimum spanning tree but results in slightly longer
interconnects.

Source to Sink Connection: Here the output of a cell is assumed to be
connected to all other points of the net (inputs of other cells) by separate
wires (star configuration). This method is the simplest to implement
but results in excessive interconnect length. For heavily congested chips
this might be a good approximation, but not for lightly congested ones.
Hence this type of connection for estimation is seldom used.

Steiner Tree Approximation: A Steiner tree is the shortest route for
connecting a set of pins. In this method, a wire can branch from any
point along its length to connect to other pins of the net. The problem
of finding the minimum Steiner tree is proven to be NP-complete. Lee
algorithm (see Chapter 5) may be used to find an approximate Steiner
tree by propagating a wave for the entire net [24].

tmost practical circuits have either 2 or 3 terminal nets.

$the maximum degree of any vertex is 2.
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Minimum Spanning Tree: Unlike the Steiner tree, in a minimum span-
ning tree branching is allowed only at the pin locations. For an n-pin
net, the tree can be constructed by determining the distances between
all possible pairs of pins, and connecting the smallest (n — 1) edges that
do not form cycles. A polynomial time complexity algorithm to find
the minimum spanning tree is given by Kruskal [1].

(b)

(d)

Steiner tree length= 11 Spanning tree length=1

(e) ®

Fig. 4.3 Application of different methods to estimate of wirelength.

Figure 4.3 shows examples of the above wiring schemes and the respective
wirelengths.



170 Placement

4.3.2 Minimize Total Wirelength

The main objective of placement 1s to provide a solution that is completely

routable. Also the area taken by the routing wires must be minimum. One

way to accomplish this is to place strongly connected cells close to each

other. A commonly used objective function that is minimized is L(P), the

total weighted wirelength over all signal nets, and is expressed as:
L(P)=> w, -dy (4.2)

neEN
where,

d,=estimated length of net n;
wyp=weight of net n;
N=set of nets.

In this estimate, the length of each net is computed independently of other
nets. Therefore, the estimated area is only a rough approximation of the
actual one.

Example 4.1 Consider a chip of size 3 rows by 3 columns. Given below
are b signal nets and their corresponding weights (A; corresponds to pin ¢ of
cell A). For the placement P shown in Figure 4.4 where each cell occupies
one grid unit, compute L(P).

F H o

E A B
i

¢ De—t-o C

Fig. 4.4 Placement P for Example 4.1.

Nets Weights
N1: Al,Bl,H) w1:2
Ny = Bz, Cl) wy =4
N.

(
(
3:(02,D) w3:3
N4:(E1,F) w4:1
N5:(A2,E2,G) w5:3
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SoLuTION Ignoring the dimensions of cells (considering them as
points), and defining the distance between adjacent slots as one unit
length, L(P) is computed using Equation 4.2 as follows:

LP)=> wy dy=2-244-143-14+1-1+3-2=18.
neEN

4.3.3  Minimize Mazimum Cut

Consider the rectangular layout space shown in Figure 4.5. Assume that a
circuit has been placed in this layout space. Consider the vertical line at
z=x; which ‘cuts’ the layout area into a left region L; and a right region

;. With respect to the cutline, we can classify nets as follows:

Nets which lie entirely to the left of the cutline. All pins of such nets
will reside in L;.
Nets which lie entirely to the right of the cutline. All pins of such nets
will reside 1n R;.
Nets which are cut by the line. Each net in this class will necessarily

have at least one pin in L; and at least one pin in R;.

Fig. 4.5 A vertical cutline, and a horizontal net cut by the line.

Let ®p(z;) denote the number of nets of type (c) for placement P cut by
line #;. Tt is clear that ®p(x;) is a function of placement P. For a given
placement P, let X(P) indicate the maximum value of ®p(x;) over all i,
that is,

X(P)= miax[q)p(xi)] (4.3)
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We can similarly define horizontal cutlines y; and the maximum vertical
cut Y(P) as
Y (P) = max{®p(y)] (4.4

Let us now reflect on the significance of X(P) and Y (P). Assume that the
layout style under consideration is gate-array. Suppose that, for a given
placement P, X(P)=10 and Y (P)=15. This means that at some vertical
cutline v, 10 nets must cross the cutline v. Similarly, at some horizontal
cutline £, 15 nets will cross the cutline 4. The number of horizontal tracks
along the cutline v must therefore be at least 10, or else it will be impossible
to route the circuit using the placement P. Similarly, there must be at least
15 vertical tracks along the cutline h in order to be able to complete the
routing. (Of course, making room for 10 horizontal and 15 vertical tracks
does not guarantee that the routing will be completed. It is necessary, but
not sufficient, to provide 10 horizontal and 15 vertical tracks.) From the
previous discussion, it should be clear that X(P) and Y (P) are closely
related to the routability of a gate-array. If we are given a gate array with
Hyax horizontal tracks and Viya.x vertical tracks per grid line, then it is
necessary to find a placement which has X(P) < Hpax and Y (P) < Vipax.

The cuts ®p(x;) and ®p(y;) are also closely related to the total wire
length L(P). In fact, assuming that the grid spacing is 1 unit, it may be
shown that

L(P) = Z@P(%)JFZ@P(ZJJ) (4.5)

where the summation is taken over all possible cutlines (see Exercise 4.10.)
From the above discussion, it 1s clear that reducing the horizontal cut
X (P) and the vertical cut Y (P) by selecting a good placement P can
increase the probability of routing a gate array. In addition, minimizing
X (P) and Y (P) can also have a beneficial influence on the total wirelength
L(P).
In macro-cell layout and standard-cell layout, minimization of X (P) and
Y (P) is again important in order to reduce the total wirelength. In partic-
ular, a standard-cell placement which minimizes Y (P) can be expected to
have a smaller number of feed-throughs.
Example 4.2 The placement P shown in Figure 4.6 corresponds to the

circuit whose signal nets are given below. Weights w; refer to the number
of wires required for each net. Compute X (P), Y(P) and L(P).
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Nets Weights
N1 :(A,B,C)Z wlzl,
N2 = (C,D,E); W2 = 3,
N3 = (D,F‘7 G)7 ws = 4.
X1 X2
A ® p
0,2 y2
D |3 E|3
4 1
0,1 | Yq
Fo[4 4| ¢
0,0

1,0 2,0

Fig. 4.6 Placement P for Example 4.2.

SOLUTION Referring to Figure 4.6, we compute the number of nets
crossing each horizontal and vertical line. The values are:

Sp(r1) =4+ 1=05;
<I>p(x2) :4+3+1:8,
Qp(yn) =4
Pp(y2) = 3.

By definition,

X(P)= Max[®p(x1),®p(2x2)] = 8;
Y(P) = Maz[®p(y1), Pp(y2)] = 4.

The total wirelength can thus be computed as

L(P)=3_@p(z:) + - Pr(ui)
L(P)=®p(z1) + Pp(z2) + Pp(y1) + Pr(y2) =5+ 8+ 4+ 3 =20.

Note that moving cell G from location (2,0) to location (0,1) will reduce
X (P) from 8 to 5. This also causes reduction in wirelength estimate
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from 20 to 16 units.

4.3.4  Minimize Mazimum Density

In the preceding section we introduced the idea of routability of a placement
P. An alternate measure for routability is the density D(P) defined as
follows. Assume that the layout surface is divided into a grid. Figure
4.7(a) shows a gate-array with 3 rows by 3 columns. The wiring surface
is shown in white, whereas the functional blocks are shaded. In Figure
4.7(b) a portion A of the wiring surface (switchbox) is shown separately.
A fixed number of horizontal wires can pass through this region. We call
it the horizontal capacity of the region. Similarly, a vertical capacity is
also defined for the switchbox. Figure 4.7(b) also shows a channel B which
permits vertical wiring. A vertical capacity is defined for this channel.

B A =
e e e
H E =-E

@ (b)

Fig. 4.7 Gate-array showing functional blocks and wiring surface. Region ‘A’ is a
switchbox

Given a placement P, it is possible to estimate the number of nets that
must pass through each edge e; of a channel (or switchbox). If np(e;)
indicates this estimate, and if ¢ p(e;) indicates the capacity of the edge e;,
then we define the density of edge e; as

dp(e;) = Zi((‘;)) (4.6)

Clearly, dp(e;) must be smaller than 1 (or at most equal to one) for routabil-

ity. The routability measure of the placement is given by

D(P) = miax[dp(ei)] (4.7
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where the maximum is taken over all edges e; of the routing regions (switch-
boxes).

Example 4.3 Assuming that the capacity of each edge is 3 tracks, find
D(P) the maximum ratio of nets assigned to each edge to the channel
capacity. The signal nets for the circuit whose placement P is given in
Figure 4.8 are listed below. Assume the weight of each net to be unity.
Comment on routability of P.

A D F
? 1
l . !
B G E
c

Fig. 4.8 Placement P for Example 4.3.

Nu(C, D)

SOLUTION  Since np(e;), the maximum number of nets crossing any
edge in Figure 4.8 is 2, and given that ¢¥p(e;) is 3, then by definition,
D(P) is % Since D(P) < 1, the placement may be routable.

4.3.5  Mazimize Performance

With the advances in integration technology, sizes of transistors have been
decreasing and their switching speeds increasing. This trend has been so
marked in recent years that wiring delays are becoming more noticeable
when compared to switching delays. In technologies such as ECL (Emitter
Coupled Logic), this effect is pronounced.
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Since the switching time of gates has been lowered to the order of pi-
coseconds, the clocking speed of VLSI chips has become more and more
dependent on signal propagations through the interconnects. For many
existing large computer circuits, the interconnect delays already account
for more than a half of the clock cycle, and the portion of propagation
time in the cycle continues to grow. This fact has made a great impact
on the success of the design process. It has become impossible to verify
the clock rate of a design in the early stages of the design process using
only the logic characteristics and switching delays of circuits. Large prop-
agation delays, which are due to electrical characteristics of interconnects
can make it impossible to obtain the expected clock rate. To verify and
improve the temporal properties of designs, designers use timing analysis
tools. These tools commonly known as Delay Analyzers, or Timing Verifiers
help in checking for long and short path problems [39]. A path represents
a sequence of circuit elements that the signal travels through to go from
a start-point to an end-point. A start-point is an input pad or storage
element’s output pin. An end-point is an output pad or storage element’s
input pin. A design is free from long path timing problems if every path
is shorter than the latest required arrival time (LRAT) of the signal at the
path sink. Referring to Figure 4.9, there is no long-path problem on path
mff:

T, < LRAT, (4.8)

where T,™%" is the maximum delay observed on path .

Clock |—| ,_l

Time I: LRAT > | 5
A
0 Tperiod
Data has to be
read on or before Tperiod * Tes - Tsetup
this point

Fig. 4.9 Long path problems. T, is the maximum clock skew. Tectuyp is the setup time.

During the design process, the propagation delays on the interconnects
are not known prior to layout. Long path timing problems registered after
layout are very difficult to correct because they may require, not only new
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iterations of the physical design step, but possibly, many iterations of the
logic design step.

Three general approaches have been suggested to correct long path tim-
ing problems. The first approach proceeds by making changes to the logic.
For example, the delay of a path can be substantially decreased by reduc-
ing the loading on some of its circuits elements. Also collapsing some of
the logic on the long paths can reduce some of the paths delays [9; 27; 19;
38].

The second approach relies on transistor sizing to speed up some of the
circuit elements on the slow paths. By increasing the sizes of some of the
driving transistors, the switching delays of the driving elements as well as
the propagation delays along the nets driven by the resized transistors can
be substantially lowered [34; 3; 18; 27].

One way to make a circuit faster without making any changes in its
logic design is to reduce the propagation time to a minimum. This goal can
be achieved by imposing timing constraints on the interconnects and paths
of the design. The third approach adopts this strategy. Several attempts
have been reported which tried to make the physical design sensitive to the
timing requirements [10; 6; 30; 43; 46]. Optimized for timing, a VLSI design
can permit a 25-3b percent increase in the clock rate without any changes
in the logic or cell design (larger speed-ups have also been observed).

The speed performance of a circuit may be characterized by the longest
combinational delay from an output pin to an input pin. If the path delays
are to be kept below a maximum value then the wiring delays must be
kept in check. Since placement affects the wiring requirements of a layout,
the objective of the placement problem can be altered to satisfy the path
timing requirements as stated in Equation 4.8.

4.3.6  Other Constraints

Packaging considerations require that I/O pads must be placed on the pe-
riphery of a chip. Thus, if a placement program handles both 1/O pads and
functional cells, it must ensure that the pads are placed on the periphery
and the functional cells are placed as internal cells. In a PCB placement,
the power dissipation of individual chips is also a consideration. Chips
which dissipate large amounts of power must not be placed close together
so as to achieve thermal balance.
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4.4 Approaches to Placement

We have noted in the introduction that even the simplest version of the
placement problem, namely arranging n logic blocks in a row so as to min-
imize the total wire length, is NP-complete. The alternate cost functions
and constraints discussed in the preceding section do not improve the sit-
uation. If the number of modules involved is small, say less than 10, it is
possible to enumerate all the feasible solutions to the placement problem
and pick an optimum one. For large problems, the solution space is too
large to permit enumerative techniques. It 1s therefore natural to turn to
heuristic techniques which require short execution times and find “good”
solutions, if not the best solutions.

Heuristic algorithms for placement can be classified into two broad cat-
egories, constructive and iterative.

As the name suggests, a constructive placement algorithm constructs a
solution by placing one cell at a time. Consider, for instance, the following
algorithm to place n cells in a row. The layout surface is imagined to be
divided into n slots. To begin with, all these slots are empty. During
each iteration of the algorithm, one cell will be placed into one of the
empty slots. At the end of each iteration, we have a partial placement
of a subset of modules. There are two decisions to be made during each
iteration; (a) which unplaced cell must be selected and added to the partial
placement? and (b) where should the selected cell be placed?

Heuristics can be used to guide the above two decisions. For exam-
ple, a possible selection heuristic would be to pick that cell which is “most
strongly connected” to the existing partial placement. Suppose the par-
tial placement consists of cells my, mo,---,m;. We examine each of the
unplaced cells m; and compute the quantity

i
Amj = Cmim, (4.9)
k=1

Cm;m, denotes the connectivity between the unplaced cell m; and a
placed cell my. Therefore Ay,; denotes the number of connections from
m; to the already placed cells {mi, mo,---,m;}. We select the cell for
which A, ; is maximum. This strategy is known as mazimum-connectivity
(maxcon) strategy.

The selected cell may be placed in any of the (n — ¢) empty slots. We
can estimate the change in the cost function for each of the (n — ) choices,
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and pick that choice which proves most beneficial. For example, if the cost
function is total wirelength, the slot which results in minimum increase
in wirelength is selected. We leave it to the reader to implement such an
estimation procedure for the increase in wirelength (see Exercise 4.11).

To get the constructive placement algorithm rolling, we need an initial
partial placement. For this, we can pick a single cell, called the “seed”
cell, and place it, say, in the center slot. The seed cell may be selected
randomly, or based on a heuristic criterion. It seems logical to pick the
cell with largest connectivity as the seed cell. The complete algorithm

constructive-placement is shown in Figure 4.10.

Algorithm Constructive_Linear_Placement(n,C, P)

Begin .
(* n is the number of cells.*)
(* C[1---n,1---n] is the connectivity matrix.*)
(* P[1---n]is the placement vector.*)
(

*P[7] indicates the slot in which module i is placed.*)
Fori:=1ton
Pli] = —o0; (*P[i] = —oo means slot i is empty.*)
EndFor
S « Seed(n, C); (*Determine the Seed cell . *)
P[S] + %; (*Place the Seed cell in the center.*)
Mark S as placed;
For:=1ton—1Do
sc + Select_Cell(n, P,C);
ss « Select_Slot(n, sc, P,C);
Plsc] « ss;
Mark sc as placed,;
End,;
End.

Fig. 4.10 Constructive one-dimensional placement procedure.

The constructive placement algorithm has modest requirements on ex-
ecution time. The “Select_Cell” procedure computes Ay, ; for (n — ) cells
during the ith iteration, and it requires O(é(n —¢)) time. The “Select_Slot”
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procedure can be implemented in O((n — )i) time. Since each of these
procedures is called n — 1 times inside the For loop, the algorithm would
take Y ¢, i(n — i) = O(n?) time.

The constructive placement procedure described above is greedy. At
each step, it makes the best possible move. Does the procedure yield an
optimum solution? Not necessarily. The reason is that, at any iteration
the procedure makes a decision in the absence of complete information. For
instance, when the cell is selected during ith iteration, the selection 1s made
with respect to the modules in the partial placement; the unplaced modules
are ignored. Once a slot has been chosen, the algorithm will not go back on
this decision. Indeed, this slot may not be the best choice for the module
after the (i + 1)** iteration. Thus the final solution is not necessarily a
global optimum.

Example 4.4 Consider the circuit shown in Figure 4.11. The connec-
tivity of module 1 is 1, since it is connected only to module 5. Similarly,
we can compute the remaining connectivities as follows. Cy =1, Cs = 1,
Cs=1,Cy=1,0C5 =3, Cs =3, C7 = 2. Thus either module 5 or 6 may
be selected as the seed cell. Let us break the tie by tossing a coin, and
suppose that module 5 wins. We place the selected module in the center
slot, namely, slot 4.

We now decide which cell must be placed next. The modules 1, 2, and
7 are connected to the placed module 5. Further, ¢15 = ¢o5 = c75 = 1. We
must therefore pick any one of these randomly and place it in an appropriate
slot. Suppose that module 1 wins the race. To minimize the increase in
wirelength, module 1 must be placed as close to b as possible. Let us pick
slot 3 for module 1. (We would have also picked slot 5).

We continue in the manner described above and generate the placement
shown in Figure 4.12. The wirelength requirement of the final placement is
16 units. (Connection e15 takes 1 unit, cse takes 5 units, and so on).

In the following sub-sections we discuss some of the approaches used to
solve the placement problem. We begin with the partition-based method
which is based on the min-cut heuristic. Next, we present the iterative
technique that uses simulated annealing. As an example of the applica-
tion of the annealing heuristic we discuss implementation details of the
TimberWolf3.2 package. The section concludes with the discussion of the
force-directed heuristic which is based on the analogy of attraction of masses
connected by springs.
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Fig. 4.11 Circuit for Example 4.4.

3 4 5 6 7

Al nREEE

Fig. 4.12 Final placement for circuit of Example 4.4.

4.4.1 Partition-Based Methods

In Chapter 2 we discussed the circuit partitioning problem. A partitioning
algorithm tries to group together closely connected modules. Such a group-
ing will also reduce the interconnection length and wiring congestion. We
now discuss an algorithm which uses a partitioning procedure repeatedly
to generate a placement.

Main-cut Placement

In Section 4.3 we introduced three objective functions, namely X (P), Y (P)
and L(P). Tt was pointed out that minimizing X (P), the maximum hor-
izontal cut, and minimizing Y (P), the maximum vertical cut, would im-
prove the routability of a gate-array placement. We also indicated that the
number of feed-through cells in a standard-cell layout will be reduced by
reducing Y (P).

Reflecting on the function X (P), it is apparent that minimizing X (P)
is closely related to the two-way partitioning problem which we studied in
Chapter 2. Thus, we apply a partitioning algorithm to the given circuit to
generate two blocks A and B, place the modules in block A on the left of
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an imaginary vertical cutline ¢, and the modules in block B to the right
of ¢;. The cutset achieved by the partitioning algorithm is the number of
horizontal nets cut by ¢; and is denoted by ®p(c1) (see Section 4.3.3).

Suppose that we now repeat the process on blocks A and B, i.e., we
consider block A as a circuit and partition 1t into two blocks A; and A,
using a vertical cutline ¢s. Similarly, block B is partitioned into two blocks
By and Bs using a vertical line ¢z (see Figure 4.13).

Fig. 4.13 Using partitioning to reduce X (P).

This process can be repeated by introducing more cutlines. Let us focus
our attention on Figure 4.13. What can be said about ®p(cs) or ®p(c3) in
relation to ®p(c1)? For the purpose of our discussion, let us assume that
our partitioning procedure generates an optimum partition. With respect
to the total circuit, ®p(e1) is the minimum cut possible. Similarly, ®p(c2)
is the minimum possible cut with respect to the subcircuit A. It is not
possible to claim that ®p(cit1) < ®p(e;), 1 < i < r—1, although that
would be desirable, leading to a minimization of X (P) (see Exercise 4.7).

The procedure described above does not minimize X (P), but minimizes
®p(ca) subject to the constraint that ®p(eq) is minimum. We write this
function as ®p(c2)|Pp(c1). The procedure also minimizes ®p(c3)|Pp(cy).

Minimization of X (P), Y(P), or L(P) are computationally very diffi-
cult. To simplify the problem, a sequential objective function denoted by
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F(P) whose near minimal value is easier to achieve is used.
F(P) = min[®p(c,)]| min[®p(cr—1)]| .. .| min[@p(c1)] (4.10)

where ¢q,c¢a,...,¢q, 18 an ordered sequence of vertical or horizontal cut-
lines [4].

The Algorithm

The min-cut placement algorithm assumes the availability of an ordered
sequence of r cutlines. These r cutlines divide the layout into slots. Two
key requirements of the algorithm are:

(1) an efficient procedure to partition the circuit, and
(2) the selection of cutlines.

F(P) (Equation 4.10) is minimized by first partitioning the circuit into
two, such that the number of nets that cross ¢; is minimized. If ¢; is a
vertical cutline then the cells on the left of ¢; are fixed and cannot move to
the right. The cells on the right of ¢; are also constrained and cannot move
to the left. Then, the next cutline ¢5 1s used and the nets that cut ¢; are
minimized subject to the constraint already imposed by ¢;. The procedure
is continued until all ¢, lines are used. Because of the greedy nature of
the above procedure, the solution obtained is not guaranteed to be globally
optimal.

Partitioning the circuit about the cutline ¢;, so as to minimize ®p(c;),
can be accomplished by any one of the algorithms discussed in Chapter 2.

\ . R S N TR T S A P
4a 2 4b 6a 5a 6b 4 6¢c 5b 6d 10a9a 10b 8 10c 9b 10d

(@) (b) (c)

Fig. 4.14 Tllustration of sequences of cutlines.
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Three schemes for the selection of cutlines and the sequence in which
they are processed are recommended by Breuer [4; 5]. In the first method,
called the Quadrature Placement Procedure, the layout is divided into 4
units with two cutlines, one vertical and the other horizontal, both passing
through the center. The above division procedure is then recursively applied
to each quarter of the layout cut until the entire layout is divided into slots.
This sequence is illustrated in Figure 4.14(a) and is very suitable for circuits
with high routing density in the center.

In the second scheme called Bisection Placement Procedure, the layout
is repeatedly divided into equal halves by horizontal cutlines yielding hori-
zontal segments. This division procedure is continued until each horizontal
segment is a row. The cells are assigned to rows. Next, each row is re-
peatedly bisected vertically until the resulting subregions contain one slot.
This method 1s good for standard-cell placement and is illustrated in Figure
4.14(b).

In the third scheme, called Slice/Bisection, the n cells of the circuit
are divided using cut line ¢; into two sets of k and (n — k) cells, such
that ®p(cy) is minimized. The first k cells obtained are assigned to the
top-most (or bottom-most) row (one slice of the layout). The procedure
is then applied on the remaining (n — k) cells dividing them into k& and
(n — 2k) cells. The process is continued until all the cells are assigned to
rows. The cells are then assigned to columns using vertical bisection. This
sequence is illustrated in Figure 4.14(c), and is recommended for cells with
high interconnection on the periphery.

The structure of a recursive min-cut algorithm is given in Figure 4.15.
The min-cut placement procedure is further illustrated with the help of an
example below.

Example 4.5 Given below is the netlist of the circuit shown in Figure
4.16. The gates of the circuit are to be assigned to slots on the layout with
one gate per slot. Using the method of repeated partitioning, divide the
circuit and the layout. Assign the subcircuits to vertical and horizontal
partitions of the layout such that the number of nets crossing the cutlines
is minimized. Use the method of Kernighan and Lin to partition and the
scheme of quadrature placement procedure to generate and sequence the
cutlines.

Nets
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Algorithm Min — cut(X,n, C)
(* N is the layout surface.
n is the number of cells to be placed.
ng 1s the number of cells in a slot.
C' is the connectivity matrix *).
Begin
If (n < ng) Then place-cells (8, n, )
Else Begin
(N1, Ng)  cut-sur face(R);
(n1,c1), (na, ca) < partition(n, C);
Call Min-cut (Ry,ny, e1);
Call Min-cut (Rq, na, c2);
EndIf;
End.

Fig. 4.15 Structure of a recursive min-cut algorithm.

Np ={P,C>} Ng ={Q,C:} Nr ={R,C5}

Ny ={C1,05,C5,C5,C} N2 ={C,Cs} Na = {Cs,Cs}

Ny ={C4,C7,Cs} Ny ={Cs,Cr} Ne = {Cs,Cho}

N7 ={C7,C5,Cy, Ci2} Ng ={Cs,C14} No ={Cs,Ch0,C11,Cr2}
Nio = {Cho,C15} Nip = {C11,C15,C16} Niz = {Ci2,C13,Cra}
Niz = {Cia,Cie} Nig = {C14,01} Nis = {C15, 03}

Nig ={C16,0:2}

SoLuTioN Partitioning the circuit using the method of Kernighan and
Lin to minimize the number of nets cut yields two sets of gates, namely
L and R, where L={1,2,345,6,7,9} and R={8,10,11,12,13,14,15,16}.
The cost of this cut is found to be 4. The cutline ¢; runs vertically
through the center of the layout. The gates of set I are assigned to
the left of ¢; and those of set R are assigned to the right of ¢1, and are
constrained to those sides. Next the layout is divided with a horizon-
tal cutline ¢y and the circuit is partitioned again but with the above
constraint. This results in two partitions for the gates of set L denoted
by LT and LB and two for the gates of set R denoted by RT and RB.
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Fig. 4.16 Circuit for Example 4.5.

The number of nets of L crossing the cutline ¢; is 2 and the number of
nets of R crossing the cutline ¢ is also 2. The elements of subsets are:

LT={245,7}; (* Top Left *)
LB={1,3,6,9}; (* Bottom Left *)
RT={8,12,13,14};  (* Top Right *)
RB={10,11,15,16}. (* Bottom Right *)

The elements of the above subsets are assigned to each quadrature of
the layout as shown in Figure 4.17. The procedure is repeated again
with two cutlines running vertically (csq and ¢gp) and two cutlines run-
ning horizontally (c4q and c4) as shown in Figure 4.17.  The final
division of layout into slots and the assignment of gates to these slots
of the layout is shown in Figure 4.18.

4.4.2  Limitation of the Min-cut Heuristic

Layouts obtained by merely partitioning cells and assigning them to regions
are not nearly as good as they can be. A major component that was not
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2,457 8,12,13,14

1,3,6,9 10,11,15,16

Fig. 4.17 Assignment of gates to four quadrants of Example 4.5.

i R 2
Bl B
g B
N R DY R

(@]

C3a Cl 3b

Fig. 4.18 Final placement P for circuit of Example 4.5.

taken into account is the location of external pin connections (which are
generally fixed) and the probable locations of cells in the final placement.

To understand the above point refer to Example 4.5. The circuit is
partitioned into two sets L and R. In the next step we partitioned L into
two sub-sets LT and LB. Cells {2,4,5,7} were assigned to LT and {1,3,6,9}
to LB. The other option is the reverse assignment, i.e., to assign {2,457}
to LB and {1,3,6,9} to LT. If this were done, then, since the positions
of input pins P, @ and R are fixed as shown in Figure 4.18, longer wires
would be required to connect input pins to gates.
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Simply speaking the earlier procedure did not take into account the
position of terminal pins and signals that enter a group of cells. These
signals affect where the cells ought to be placed just as much as the internal
connections within the group. The inclusion of these signals in partitioning-
based placement is called terminal propagation [11].

Terminal Propagation

Consider a group of cells containing a cell & connected to signal s from
outside the group (an I/O pad for instance) as shown in Figure 4.19. Clearly
cell  has to be nearest to the point where signal s enters.

X

=P

Fig. 4.19 Cell z of a group connected to an external signal s.

At the outermost level, signal positions are typically fixed by pad posi-
tions. Let us see what happens at an inner level of partitioning.

Referring again to Figure 4.18, line ¢g, divides LB into {1,3} and {6,9}.
Line cq divides {6,9} into {6} and {9}. The assignment shows gate 9
assigned to a slot which is above the slot of gate 6. Another valid solution
would have been to assign gate 6 above gate 9. It is clear from the figure that
the swap of gates 6 and 9 will result in longer wires. This is because gate 9
is receiving an input from above and the net is cut by the horizontal line ¢2,
therefore gate 9 must be placed close to ¢5. But the min-cut heuristic does
not favor one assignment over the other. To reiterate what was mentioned
above consider the situation in Figure 4.20(a).

The cells are partitioned into two groups L and R, then L into 1; and
Lo, and there is a signal net s that connects two cells in L; with three cells
in R. Now if we want to partition R into Ry and R», we would like to take
into account the fact that signal net s is in Z; but not in L, and thus bias
the partitioning process towards putting the cells into R; instead of Ra.
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L
1
Llc\j/

Lo

Lo

(a) (b)

Fig. 4.20 (a) Partitioning of R following partitioning of L. (b) Propagating s to the
axis of partitioning.

This is done as follows. Assume all the cells of signal net s in 1, are at its
geometrical center, and propagate that position to the closest point, say p,
on R as shown in 4.20(b). Tmagine that a dummy cell with the same signal
net s is placed at p.

During partitioning, signal net s is required to remain in set R;. This
biases the partitioning process as desired. The cost of partitioning R will
be one less if s appears only in Ry than if some or all cells containing s are
in Ry. Without this bias there would be nothing to favor Ry over Rs.

The above example conveys one situation of terminal propagation.
There are others. Assume that we are in the earlier stage of partition-
ing where neither L nor R has yet been partitioned as in Figure 4.21(a).
When L is partitioned the three elements of s in R are assumed to be con-

9
1p2

() (b)

Fig. 4.21 First stage non-bias partition.
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centrated at the center of R (geometrical center), which propagates to the
middle of L. External signals that propagate to a point near the axis about
which partitioning is to be done should not be used to bias the solution in
either direction. That is, elements of s in R should have no effect on how
L is partitioned. In the implementation presented by Dunlop et al.,[11] the
measure of “near” is arbitrarily set at “within the maiddle third of the side”.

In the general case, suppose a group G is to be partitioned into L and R,
and that some net has elements both inside and outside G. The elements
may be individual cells or sets of cells at the centers of other groups. A
low-cost Steiner tree is computed on the elements external to G, and the
points of intersection {p;} with the border of . This is illustrated in
Figure 4.21(b). These points are treated as cells on s, but are fixed during
partitioning, so they cannot move from whichever L or R they are in. As
before, the middle third of the sides perpendicular to the axis of partitioning
are excluded, so any p;s that fall in these regions are simply ignored. Thus,
in the situation illustrated in Figure 4.21(b), where a partition is created by
a vertical cut, signal ps would be ignored, since it is within the middle third
of the top side. But if partitioning were being carried about the other axis,
p3 would be ignored and signal net s would be biased to the top half [11].

To do terminal propagation, the partitioning has to be done breadth
first. There is no point in partitioning one group to finer and finer levels
without partitioning the other groups, since in that case no information
would be available about which group a module should preferably be as-
signed to.

The above algorithm has been tested on a chip with 412 cells and 453
nets. It yields areas within 10-20% and track densities within 3% of careful
hand layouts.

Example 4.6 The four gates of a circuit shown in Figure 4.22 are to be
assigned to slots of a 2 x 2 array. Using the method of min-cut partitioning
and terminal propagation find a suitable placement P.

SoLuTION The graph corresponding to the circuit of Figure 4.22(a)
is given in Figure 4.22(b). The result of the first step of partitioning
is shown in Figure 4.23(a). Half the gates are assigned to L and the
other half to R. The cost of the cut is 1. In the second step, the cells
in R are partitioned. This step must be an unbiased partition. Cells in
R are assigned to R; and Ry as shown in Figure 4.23(b). In the third
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(b)

Fig. 4.22 (a) Circuit for Example 4.6. (b) Corresponding graph.
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step the cells in L are partitioned. Before this is done, since the vertical

line cuts a net (say s) connecting cell a and b, it must be propagated

to the cutline. A dummy cell with the same net s is placed at point p;.

Now dividing the circuit in L with net s on the cutline will yield a in
Ly and ¢ in Ly. The cost of this division is 1 (Figure 4.23(c)). If net
s 18 not considered, then the reverse assignment, that is, ¢ in Ly and a

in Lo would have also resulted in one net cut. But the actual cost of
the latter assignment is 2 (Figure 4.23(d)).

C C C1
a pb
L ? ¥ R L ® @ ! I’l?’“i(P
© @ © é) L2 Q d(5

@ (b)

(©

(d)

Fig. 4.23 Solution for Example 4.6. (a) Dividing the circuit into L and R. (b) Unbiased
partition of R. (c) Biased partition of L producing P. (d) L partitioned without terminal

propagation.

4.4.3 Simulated Annealing

Simulated annealing is the most well developed method available for cell

placement. The general algorithm was discussed in detail in Chapter 2.

In this section the simulated annealing algorithm is adapted for placement

and explained with the help of an example. A place-and-route package
called TimberWolf developed by Carl Sechen [35], was the earliest package
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to apply simulated annealing to the placement problem. We discuss the
placement algorithm used in TimberWolf. This section makes use of the
terminology and discussion of Section 2.4.4 of Chapter 2.

The Algorithm

The simulated annealing algorithm can be modified for cell placement by
choosing a suitable perturb function to generate a new placement configu-
ration (cell assignment to slots), and by defining a suitable accept function.
For simplicity, let us use the checker board model of the layout, and assume
that each cell of the circuit can be accommodated in one slot (a square of
the checker board). A simple neighbor function is the pairwise interchange
where two slots are chosen and their contents swapped. Other schemes to
generate neighboring states include displacing a randomly selected cell to
a random location, the rotation and mirroring of cells if the layout strat-
egy allows, or any other move that may cause a change in wirelength. Let
Ah = (Cost(NewS) — Cost(S)) be the change in estimated wirelength
due to a swap, where Cost(S) is the old wirelength and Cost(NewS) is the
wirelength after perturbation. In simulated annealing, the swap is accepted
if Ah < 0 (that is, Cost(NewS) < Cost(S)) or if the acceptance function

—Ah/T)

(random < e is true, where random is a uniformly generated ran-

dom number between 0 and 1, and 7" is the current value of the temperature.
The procedure 1s further explained with the following example.

Example 4.7 Given the following netlist with 9 cells Cy,---,Cy, and
13 nets Ny, ---, Ni3. Assume that all cells are of the same size and that
the layout surface is a checker board with 3 rows and 3 columns (9 slots).
Write a placement program using the simulated annealing algorithm given
in Chapter 2 in order to assign each cell to one of the 9 slots, while minimiz-
ing the total Manhattan routing length. Use the semiperimeter method
to estimate the wirelength¥.

Nets

N1 = {C4,C5,Cs} Ny ={C4,Cs} N ={Cs,C4}
Ny = {C5,C7,Cs} Ny = {Cs,Cs,Cs} N ={C4,C7,Co}
N7 :{62708} NS :{01767} Ng :{03705769}
N102{06708} N112{027C67C7} N12={C4,C7,C9}
N13={03,C9}

TSince simulated annealing is a stochastic technique the solution is not unique.
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Use sequential pairwise exchange as the perturb function and use the
following annealing schedule:

Initial temperature: Top=10;

Constants: M=20; «=0.9; 5=1.0.

In sequential pairwise exchange, the cell in slot ¢ is trial-exchanged in se-
quence with the cells in slots ¢4+ 1,---,n—1,n, for 1 < i< n—1. The
termination condition is to halt the program if no cost improvement is
observed at two consecutive temperatures.

SoLuTION The initial placement is given in Figure 4.24(a). The out-
put of the program is given in Table 4.1. The only entries shown are
those where the new configuration was accepted. The pair (a, b) under
the “swap” column indicates that cells a and b are selected for inter-
change; in this case a and b have been selected sequentially. The se-
lection could also have been random. The new wirelength is computed
as Cost(NewS). If Cost(NewS) is better than Cost(S) then the swap
is made, and the random number is not generated. If Cost(NewS)
is greater than Cost(S) then a random number is generated and com-
pared with the value generated by the acceptance function.

Output of the program for only two temperaturesis shown in Table 4.1.
The final temperature (« x T')was 0.581 when the program terminated,
and this was at iteration count of 560. The corresponding wirelength
obtained by using the semiperimeter estimate is 24 units. The place-
ment P given by the simulated annealing algorithm is shown in Figure
4.24(b).

The same program is executed again by suppressing the condition that
probabilistically accepts bad moves. This transforms the simulated
annealing algorithm to the deterministic pairwise exchange algorithm.
The results of this execution are shown in Table 4.2 and the corre-
sponding placement obtained is shown in Figure 4.25. The algorithm
converges to a local oplimum after 60 iterations. Note that the wire-
length obtained by this solution using the same method for estimation
is 26 units (greater by 2 units than that obtained by simulated anneal-
ing for this example).
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Table 4.1 Output of simulated annealing run for Example 4.7.

count axT (swap) random Cost(S) Cost(NewS) e 2T
1 (1,2) 0.05538 34 36 0.81873
2 (1,3) 0.37642 36 36 1.00000
3 (1,4) 36 35
4 (1,5) 0.11982 35 38 0.74082
5 (1,6) 38 36
6 (1,7 36 32
7 (1,8) 0.62853 32 32 1.00000
8 (1,9) 32 31
10 10.000 (2,3) 0.75230 31 32 0.90484
11 (2,4) 0.36827 32 32 1.00000
12 (2,5) 32 30
13 (2,6) 0.86363 30 30 1.00000
14 (2,7) 0.76185 30 31 0.90484
15 (2,8) 0.33013 31 32 0.90484
16 (2,9) 0.65729 32 32 1.00000
17 (3,1) 0.47104 32 33 0.90484
18 (3,2) 33 32
19 (3,4) 0.42597 32 32 1.00000
20 (3,5) 0.86318 32 33 0.90484
21 (3,6) 33 27
22 (3,7) 27 26
24 (3,9) 0.20559 26 28 0.80074
25 (4,1) 0.58481 28 32 0.64118
26 (4,2) 0.30558 32 36 0.64118
27 (4,3) 36 33
28 (4,5) 0.31229 33 33 1.00000
29 (4,6) 0.00794 33 35 0.80074
30 9.000 (4,7) 35 34
31 (4,8) 34 33
32 (4,9) 33 31
33 (5,1) 31 30
34 (5,2) 0.28514 30 32 0.80074
35 (5,3) 0.35865 32 34 0.80074
36 (5,4) 0.87694 34 35 0.89484
37 (5,6) 35 34
38 (5,7) 34 33
39 (5,8) 0.03769 33 35 0.80074
40 (5,9) 35 34
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1 2 3 8 2 1
4 5 6 6 4 7
7 8 9 5 3 9

(@) (b)

Fig. 4.24 (a) Initial configuration for Example 4.7. (b) P obtained by simulated an-
nealing, wirelength using semi-perimeter estimate=24.

Table 4.2 Output generated by deterministic pairwise interchange algorithm.

iterations  (swap) Cost(S) Cost(NewS)
7 1,8 31 33
15 (2,8) 33 32
20 (3,5) 32 30
21 (3,6) 30 28
49 (7,1) 28 27
60 (8,4) 27 26
2 4 5
8 6 3
1 7 9

Fig. 4.25 P for Example 4.7 obtained by deterministic pairwise exchange.

An implementation that uses simulated annealing for placement and
routing is the TimberWolf3.2 package [35]. This package handles standard-
cell circuit configurations. In the following section, we explain some of the
features of the package and the algorithms employed by it.
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Tember Wolf Algorithm

Based on the input data and parameters supplied by the user, Timber-
Wolf3.2 constructs a standard-cell circuit topology. These parameters, in
conjunction with the total width of standard-cells to be placed, enable
TimberWolf3.2 to compute the initial position and the target lengths of
the rows. Macro blocks (up to 11 are allowed) are placed next, followed by
placement of pads. Pads and macro blocks retain their initial positions and
only the placement of standard-cells is optimized. Following initial place-
ment, the algorithm then performs placement and routing in three distinct
stages. In the first stage, cells are placed so as to minimize the estimated
wirelength. In the second stage, feed-through cells are inserted as required,
wirelength is minimized again, and preliminary global routing is done. In
the third stage, local changes are made in the placement to reduce the
number of wiring tracks required. In the following discussion, we will be
primarily concerned with the first stage that uses simulated annealing for
placement.

The objective function which TimberWolf3.2 attempts to minimize dur-
ing the placement is the estimated interconnect cost. The purpose of the
first stage is to find a placement of the standard-cells such that the total
estimated interconnect cost is minimized. A neighbor function called gen-
erate 1s used to produce new states by making a random selection from one
of three possible perturb functions.

Perturb functions:

(1) Move a single cell to a new location, say to a different row.
(2) Swap two cells.
(3) Mirror a cell about the z-axis.

TimberWolf3.2 uses cell mirroring less frequently when compared to cell
displacement and pairwise cell swapping. In particular, mirroring is at-
tempted in 10% of the cases only (where cell movement is rejected).
Perturbations are limited to a region within a window of height Hp and
width Wr. For example, if a cell must be displaced, the target location is
found within a limiting window centered around the cell (see Figure 4.26.)

Therefore, two cells a and b, centered at (24, y,) and (2p, yp) are selected
for interchange only if |2, — 25| < Wr and |y, — yp| < Hp. The dimensions
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Fig. 4.26 Limiter window centered around a cell.

of the window are decreasing functions of the temperature 7T'. If current
temperature is 77 and next temperature is T3, the window width and height

are decreased as follows:

W(T) = W(Tl)iigj; (4.11)
H(Ty) = H(Ty) 28 (4.12)

log(7)

Cost Function:

The cost function used by the TimberWolf3.2 algorithm is the sum of three
components

Y= +t7+7s (4.13)
~1 1s a measure of the total estimated wirelength. For any net ¢, if the
horizontal and vertical spans are given by X; and Y;, then the estimated
length of the net ¢ is (X; +Y;). This must be multiplied by the weight w; of
the net. Further sophistication may be achieved by associating two weights
with a net — a horizontal component w# and a vertical component w) .

Thus,

=Y [ Xi+w -V (4.14)
i€ENets
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where the summation is taken over all nets 2. The weight of a net is useful
in indicating how eritical the net is. If a net is part of a critical path, for
instance, we want 1t to be as short as possible so that it introduces as little
wiring delay as possible. We can increase the weights of critical nets to
achieve this goal. Independent horizontal and vertical weights give the user
the flexibility to favor connections in one direction over the other. Thus, in
double metal technology, where it is possible to stack feed-throughs over the
cell, vertical spans may be given preference over horizontal tracks. This can
be accomplished by lowering the weight w". In chips where feed-throughs
are costly in terms of area, horizontal wiring may be preferred by lowering
wh

When a cell is displaced or when two cells are swapped, it is possible
that there is an overlap between two or more cells. Let O;; indicate the
area of overlap between two cells ¢ and j. Clearly, overlaps are undesirable
and must be minimized. The second component of the cost function, 73, is
interpreted as the penalty of overlaps, and is defined as follows:

Y2 = sz[Oij]z (4.15)
i%]
In the above equation wy is the weight for penalty. The reason for squaring
the overlap is to provide much larger penalties for larger overlaps.
Due to cell displacements and pairwise exchanges of cells, the length of
a row may become larger or smaller (see Figure 4.27).

Fig. 4.27 Uneven row lengths in standard-cell design.

The third component of the cost function represents a penalty for the
length of a row R exceeding (or falling short of) the expected length L.

ys=wsY | Lrn—TLg| (4.16)

rows
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where ws 1s the weight of uneveness. Uneven distribution of row lengths
results in wastage of chip area. There is also experimental evidence indi-
cating a dependence of both the total wirelength and the routability of the
chip on the evenness of distribution.

Annealing Schedule:

The cooling schedule is represented by
Tiy1=a(Ty) x T; (4.17)

where a(T') is the cooling rate parameter which is determined experimen-
tally. The annealing process is started at a very high initial temperature
say 4 x 10°. Initially, the temperature is reduced rapidly [o(T") & 0.8]. In
the medium range, the temperature is reduced slowly [a(T) & 0.95]. Most
processing is done in this range. In the low temperature range, the temper-
ature is reduced rapidly again [«(T) & 0.8]. The algorithm is terminated
when 7" < 1.

Inner Loop Criterion:

At each temperature, a fixed number of moves are attempted. The optimal
number of moves depends on the size of the circuit. From experiments, for
a 200-cell circuit, 100 moves per cell are recommended, which calls for the
evaluation of 2.34 x 10% configurations in about 125 temperature steps. For
a 3000-cell circuit, 700 moves per cell are recommended, which translates
to a total of 247.5 x 10% attempts.

4.4.4  Numerical Techniques

The placement problem can often be transformed into a numerical opti-
mization problem. In this section, we describe a technique known as force-
directed placement [15]. The placement problem is reduced to the problem
of solving a set of simultaneous linear equations to determine equilibrium
locations (ideal #-y coordinates) for cells.

The basic idea behind the force-directed method is that cells connected
by a net exert forces on one another. The magnitude of the force F' exerted
by a cell 7 on another cell j is proportional to the distance separating them.
This is analogous to Hooke’s law in mechanics, (force exerted on each other
by two masses connected by a spring). If the spring constant is k& and the



200 Placement

masses are separated by a distance d, the force with which the masses pull
each other is k£ x d. Suppose that a cell a 1s connected to another cell b
by a net of weight wg,. Let dgp represent the distance between a and b.
Then the force of attraction between the cells is proportional to the product
Wap X dap. A cell ¢ connected to several cells j at distances d;; by wires of
weights w;;, experiences a total force F; given by

Fi = Zwij . dij (418)
J

Referring to Figure 4.28, the force F; on cell 7 connected to 4 other cells is

1

\/

Fig. 4.28 Force on a cell ¢ connected to four other cells.

given by
Iy = wi - dip + wis - dys + wis - dig + wia - dig (4.19)

If the cell ¢ in such a system is free to move, it would do so in the direction
of force F; until the resultant force on it is zero. In the mechanics analogy,
a free body which is connected by springs to other bodies will occupy a
position such that the total tension from all springs is minimum. The
location a cell would move to is called the zero-force target location. From
Equation 4.18 above, we note that Fj represents the total weighted length
of wires that originate from module i. Thus, when all the cells move to
their zero-force target locations, the total wirelength w 1s minimized. This
is the principal idea behind the force-directed placement method.

The method consists of computing the forces on any given cell, and
then moving it in the direction of the resulting force so as to put it in its
zero-force target location. This location (#;°,°) can be determined by
equating the z- and y- components of the forces on the cell to zero, i.e.,

Z wij - (2] —27) =0 (4.20)
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> wij (57— 97) =0 (4.21)

Solving for z;° and ¥;°,

o — i Wi

i ST (4.22)

g - 22 Wij Yj
' 2 Wij

Care should be taken to avoid assigning more than one cell to the same lo-

(4.23)

cation, or the trivial solution which assigns all the cells to the same (7, y?)
location. Let us now illustrate the above idea on a small example.

Example 4.8 A circuit with one gate and four I/O pads is given in
Figure 4.29(a). The four pads are to be placed on the four corners of a 3 by
3 grid. If the weights of the wires connected to the gate of the circuit are
Wydd=8; Wour=10; w;n=3; and wgy,4=3; find the zero-force target location
of the gate inside the grd.

vdd J_; §>o o
Vdd ouT
0,2
M
IN
|/>o ouT
0,1
GND| o o
IN GND
0,0 1,0 2,0
(@) (b)

Fig. 4.29 (a) Circuit for Example 4.8. (b) Placement obtained.

SOLUTION The zero-force location for the gate is given by

2° = Z] Wej - &j _ Wydd * Tudd + Wout * Tout + Win * Tin + Wgnd * Lgnd
;= =
Zj Wi Wydd + Wout + Win + Wynd
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_8><0—|—10><2—1—3><0—|—3><2_%_1083
o 8+10+3+3 24

o g Wi Yj v v out ' Yout in * Yin gnd - Ygn
y_Z'w Yi  Wydd * Yvdd T W Yout + Win * Yin + Wynd * Ygnd
ppe =

§]w23 Wydd + Wout + Win + Wgnd

_8><2+10><2+3><0+3><0_§_150
o 84+10+3+3 24

The zero-force location for the gate can be approximated to be at grid
location (1,2). The final placement of pads and the gate is shown in
Figure 4.29(b).

Force-directed Placement

An approach for determining the ideal locations of cells numerically was
given above. This approach can be generalized into a constructive place-
ment procedure as follows. Starting with some initial placement, a cell
at a time is selected, and its zero-force location computed. The process
can be iterated to improve on the solution obtained. The decisions to be
made by such an algorithm include the order in which cells are selected and
where the selected cell is to be put in case the zero-force target location is
occupied.

The cell to be moved may be selected randomly or by using a heuristic
technique. It seems logical to select the cell ¢ for which F; is maximum in
the present configuration. If timing requirements are included, then those
cells that lie on the critical path may be considered first.

If the zero-force location is occupied by another cell ¢, then several
options to place the cell p under consideration exist. They include the
following:

(1) Move p to a free location close to .
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(2) Evaluate the change in cost if p is swapped with ¢. If the result is a
decrease in cost, only then is the swap made. It is necessary to calculate
the change in cost because it may so happen that the cell ¢ was already
in its zero-force location.

(3) “Ripple move”: The cell pis placed in the occupied location, and a new
zero-force location is computed for the displaced cell ¢. The procedure
1s continued until all the cells are placed.

(4) “Chain move”: The cell p is placed in the computed location and the
cell ¢ is moved to an adjacent location. If the adjacent location 1s
occupied, by another cell r, then r is moved to its adjacent location,
and so on, until a free location is finally found.

(5) An alternate way to circumvent this problem is to compute the zero-
force locations for all the cells. Search for cell pairs of the form (p, ¢)
such that the zero-force location of p i1s the present position of ¢ and
vice versa. Swap the cells p and ¢; both the cells have found their
zero-force locations.

There are several versions of the force-directed placement technique. Other
variations for such algorithms are ‘force-directed relaxation’ and ‘force-
directed pairwise relaxation’ [31]. We now present one version of the algo-
rithm that uses ripple moves.

Force-directed Algorithm

The force-directed algorithm shown in Figure 4.30 uses ripple moves. It
i1s an iterative improvement algorithm. The formulation is based on the
force-directed algorithm given in a recent survey paper by Shahookar and
Mazumder [37]. The implementation uses two flags for each location of
the placement surface. An OCCUPIED flag indicates if a cell is presently
assigned to the location. A LOCKED flag indicates the status of the cell
presently assigned to the location. (The LOCKED flag is off if the OCCU-
PIED flag is off.) If the cell which occupies the location has been displaced
at least once, then the LOCKED flag for the location is ON to prevent
that cell from being displaced again.

In this algorithm a cell at a time is selected in order of connectivity and
its zero-force target location is computed. Selection of cells is based on total
connectivity and each selected cell is called seed cell. The implementation
uses ripple moves where the selected cell is moved to the target location. If
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Algorithm Forcedirected Placement
Compute total connectivity of each cell;
Order the cells in decreasing order of their connectivities and store them in a list L.
While (iteration_count < iteration_limit)
Seed = next module from L
Declare the position of the seed vacant;
While end_ripple = false
Compute target point of the seed and round off to nearest integer;
Case target point is
VACANT:
Move seed to target point and lock;
end_ripple < true;
abort_count + 0;
SAME AS PRESENT LOCATION:
end_ripple < true;
abort_count + 0;
LOCKED:
Move selected cell to nearest vacant location;
end_ripple < true;
abort_count < abort_count + 1;
If abort_count > abort_limit Then
Unlock all cell locations;
tteration_count < wteration_count + 1;
EndIf;
OCCUPIED: (*and not locked™*)
Select cell at target point for next move;
Move seed cell to target point and lock the target point;
end_ripple «— false;
abort_count + 0;
EndCase;
EndWhile;
EndWhile;
End.

Fig. 4.30 Force-directed placement algorithm with Ripple Moves.

the target point is already occupied then the cell that previously occupied
the computed location 1s selected to be moved next. To avoid infinite
loops, any cell that is moved to its target location is locked for the current
value of iteration_count. Infinite loops can occur if two cells C; and C}
are competing for the same target location. Once a seed cell is selected
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and its zero-force target location is computed, four cases are possible: the
computed target location could be (1) the same as the initial location of
the seed, (2) another vacant location, (3) a location that is occupied (but
not locked), or (4) a location that is occupied and locked.

The inner While loop of the algorithm in Figure 4.30 is executed while
end_ripple is false. If the computed location is the same as the present
location or if it i1s another vacant location, then the flag end_ripple is set
to true, abort_count is set to zero and the cell occupies the computed
location. The next seed cell in the order of connectivity is selected and the
inner loop continues.

If the computed location is occupted and not locked, then the cell is
moved to the computed location, and the cell that occupied the location
1s selected as the cell to be moved next; end_ripple is set to false and
abort_count is set to zero.

In case the target point is occupied and locked, then the flag end_ripple is
set to true, abort_count is incremented by one, and the cell is moved to the
nearest vacant location. In this case, if abort_count is less than abort_limit
then the next seed cell 1s selected and the locked locations remain as they
are and the same iteration continues. However, if abort_count is greater
than a certain preset value called abort_limit then all locked locations are
unlocked, another seed cell is selected, the iteration count is incremented
and a new iteration is started.

The procedure of selecting seeds based on connectivity and trying to
place them in their ideal locations is continued until ¢teration_limit 1s

reached [37].

Example 4.9 Consider a gate-array of size 3 rows and 3 columns. A
circuit with 9 cells and 3 signal nets is to be placed on the gate-array using
force-directed relaxation. The initial placement is shown in Figure 4.31(a).
The modules are numbered C4, ---,Cy and the nets Ny, Ny, N3 are shown
below. Show the final placement and calculate the improvement in total
wirelength achieved by the algorithm.

Nets

Nl = (03705706707708709)
Ny = (C2,C5,C4,Cs, Cs, Cy)
N3 = (C1,Cy)
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1 2 3 1 2 =9
02 ! 0.2

4 5 6 4 3 6
01 01 ]

7 8 9 7 8 5
00 00

1,0 2,0 1,0 2,0
(@) (b)

Fig. 4.31 Placement of Example 4.9. (a) Initial placement, wirelength estimate using
chain connection=16. (b) Final placement, wirelength estimate using chain connec-
tion=14.

SOLUTION The connectivity matrix for the given netlist and the total
connectivity of cells is shown in Table 4.3. We will use the algorithm
of Figure 4.30 to solve the problem. We select abort_count = 3 and
tteration_count = 2. Since Cy has the largest connectivity, we select
it as the seed cell in the first iteration. The target location for Cy is

Table 4.3 Connectivity matrix for Example 4.9.

Cels 1 2 3 4 5 6 7 8 9 >
1 00 0 0 0 0 0 0 1 1
2 0 0 1 1 0 1 0 1 1 5
3 o1 0 1 1 2 1 2 2 10
4 01 1 0 0 1 0 1 1 5
5 0 01 0 0 1 1 1 1 5
6 0o 1 2 1 1 0 1 2 2 10
7 0 01 0 1 1 0 1 1 5
8 01 2 1 1 2 1 0 2 10
9 11 2 1 1 2 1 2 0 11

calculated using the method illustrated in Example 4.8. The reader
may verify that this target location is (1.1,1.1), which we round off to
(1,1). Location (1,1) is locked.

Since (1,1) is occupied by cell Cs; Cs is chosen as the next seed cell.
Zero-force location for Cs is (1.2,0.8), or (1,1) after rounding. How-
ever, this location is occupied by cell Cy which is locked; (refer to
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CASE:LOCKED in Figure 4.30). Therefore, C5 must be moved to
nearest vacant location. Since we have 9 cells and 9 locations, the
nearest empty location is (2,0) vacated by moving cell Cy to its zero-
force location. Therefore it is moved to (2,0) and abort_count is incre-
mented. Since abort_count is less than abori_limit the same iteration
is continued by selecting the next cell in order of connectivity.

Cjs 1s chosen as the next cell and its zero-force location is computed.
The target point for Cs is (1.1,0.7) which is rounded off to (1,1). Since
location (1,1) is locked, C is placed in the nearest vacant location that
is (2,2) and abort_count is incremented to 2. The next cell selected in
order of connectivity is C's and its zero-force location is computed and
is found to be (1.1,0.9), rounded off to (1,1), which is a locked location.
The cell is not moved and abort_count 1s incremented to 3, which is the
abort dimat. This marks the end of the first iteration. All locations are
unlocked and the next iteration is begun.

In the second iteration, the same procedure is repeated with this new
placement as the initial placement. Cy has the highest connectivity
and is selected as the first seed cell. The computed target location for
this cell is (1.2,1.0) which corresponds to location (1,1). Since this is
the original location of the cell, it is not moved. The next cell chosen
is cell C5. Tts computed target location is (1,1). Cell C5 is moved to
location (1,1) and the location is locked. The next cell is the one that
occupied the location (1,1) before Cs was assigned to it, and that is
Cy. Therefore Cg is chosen for computation of its target location and
the computed location is (1,1), a locked location. The cell is moved
to the nearest vacant location (2,2), and abort_count is incremented to
1. The same situation results when cells Cs and Cg, the next in the
order of connectivity, are chosen. This increases the abort_count to 3
and marks the end of the second iteration.

The results of placement at the end of two iterations is shown in Figure
4.31(b). The wirelength computed before and after placement using the
chain connection to estimate is 16 units and 14 units respectively. The
results of the first two iterations are summarized in Table 4.4.

It should mentioned that there is no systematic way of setting the pa-
rameters abori_count and abort_limit. These generally assume values that
are increasing with the size of the problem.
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Table 4.4 First 2 iterations of force-directed placement of Example 4.9.
iteration  Selected Cell Target Point Case Placed at  Result
123
9 (Seed) (1.1,1.1)=(1,1) Occupied (1,1) 496
78-
123
5 (1.2,0.8)=(1,1) Locked (2,0) 196
abort_count = 1 785
1 123
3 (Seed) (1.1,0.7)=(1,1) Locked (2,2) 496
abort_count = 2 785
123
6 (Seed) (1.1,0.9)=(1,1) Locked (2,1) 496
abort_count = 3 785
123
9 (Seed) (1.2,1.0)=(1,1) Same (1,1) 496
785
12-
3 (Seed) (1.1,0.7)=(1,1) Occupied (1,1) 436
785
129
2 9 (1.0,0.8)=(1,1) Locked (2,2) 4136
abort_count = 1 785
129
6 (Seed) (1.1,0.9)=(1,1) Locked (2,1) 436
abort_count = 2 785
129
8 (Seed) (1.3,1.1)=(1,1) Locked (1,0) 436
abort_count = 3 785

4.5 Other Approaches and Recent Work

4.5.1 Artificial Neural Networks

In the recent past, a paradigm known as neural computing has become

popular for applications such as machine vision, robot control, and so on.

Traditional computing methods have not been very successful in attacking

these applications, despite the fact that today’s computers have achieved
speeds of hundreds of MIPS (Million Instructions Per Second). On the other
hand, the human nervous system routinely solves problems such as pattern
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recognition, and natural language understanding. Artificial Intelligence
(AI) techniques, which were predominantly the theme of fifth-generation
computers, have been only partially successful in solving problems such as
machine vision. Recently, there has been a revival of interest in neural
computing and natural intelligence techniques. These techniques revolve
around the concept of an artificial neural network, which is an ensemble
of a large number of artificial neurons. One can think of an artificial neu-
ral network as the analog of neural networks that are part of the human
brain. It is believed by a large number of computer professionals that neural
computing is the key to solving difficult problems like pattern recognition,
computer vision, and hard optimization problems [45]. Our interest in arti-
ficial neural networks in this chapter is in its application to the placement
problem. We will focus our attention on a particular class of artificial neural
networks introduced by Hopfield [17].

The main component of an artificial neural network (ANN) is an
artificial neuron. An artificial neuron receives several analog inputs
X1, Xs,--+, X, and generates a single analog output OUT. The output
i1s computed as follows. Each input is weighted down by the neuron; let W;
be the weight associated with input X;. The net input, denoted N ET, is
given by

NET =) W; - X; (4.24)

i=1

The output is a function F' of NET (Figure 4.32). The function F is also
known as the activation function of the neuron. A popularly used activation
function is the sigmoid function F(z) = 1/(1 +e~"). If x is a sufficiently
large positive number, the sigmoid function approximates to unity. For
sufficiently large negative values of z, the sigmoid function is close to 0.
Another popular activation function is F'(z) = tanh(x). Several artificial

X
Wy
- NET OUT=F(NET)
> S N
X2 .
. vl
. Wn £
X, Weighted Sum

Fig. 4.32 An artificial neuron.
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neurons can be connected to form an artificial neural network. For exam-
ple, a single layer feed-forward network consists of m neurons, each with n
inputs. The principal inputs to the network are denoted Xi, Xo, -+, X,,.
The weights associated with neuron ¢ are denoted Wiy, Wia, - -+, Wj,. The
m - n weights of the network can be compactly represented by the m x n
weight matrix W = [W;;]. Figure 4.33(a) shows a feed-forward network
with three neurons, each with three inputs. The output of neuron 7 is de-
noted by OUT;. A single layer recurrent network is similar to a feed-forward
network, except that the outputs are fed back as inputs to the network. Fig-
ure 4.33(b) shows a recurrent network with three neurons, each with three
forward inputs and one feedback input. Hopfield and Tank used recurrent
neural networks to solve optimization problems [17].

‘ ouTy

ouT,

ouT3

-

Fig. 4.33 (a) A single-layer, feed-forward artificial neural network with 3 neurons. (b)
A single-layer, recurrent artificial neural network with 3 neurons.

Energy Function and Stability

Just as temperature plays an important role in simulated annealing energy
plays an important role in Hopfield’s neural networks. The set of all outputs
OUT; 1s known as the state of the network. Suppose that the activation
function of each neuron in the network is a threshold function, 1.e.,
1 if NET; > 1T;
OoUT, =< 0 if NET; <T; (4.25)
unchanged if NET; =T;

where 7; is the threshold level of neuron ¢. Since we are dealing with a
recurrent network, N ET; is given by

NET; = (3 Wi; - OUT;) + IN; (4.26)
J#i
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It is clear that the network can be in 2" different states, since each of the n
neurons can output either 0 or 1. FEach state is associated with an energy
level. When the network changes state, there is a change in its energy level.
It 1s known that the network will settle down to a state with minimal energy
level if the weight matrix W is a symmetric matrix and all the diagonal
entries of the matrix are 0. The network is said to converge to the state of
minimal energy. By constructing a neural network whose energy function
1s the objective function of a minimization problem, one can hope to solve
the minimization problem.

Example 4.10 Consider how an artificial neural network can be set up to
solve the simplest case of the placement problem. Given n circuit modules
and a connectivity matrix C' = [C;], where Cj; denotes the connectivity
between module ¢ and module j; the objective is to put n interconnected
objects into n slots of a 2-D array, such that the total Manhattan inter-
connection length is minimized. We shall use the circuit shown in Figure
4.34(a) to illustrate this approach. The slots to which these modules are to
be assigned are shown in Figure 4.34(b).

Module
0
@ @ 0 1

(@) (b)

Fig. 4.34 (a) Circuit for Example 4.10. (b) Position definitions.

SOLUTION The solution to this problem presented below is due to
Yu [47], who used Hopfield’s neural nets to solve the placement problem.
To solve this problem a network with n? neurons is set up. This network
consists of an n X n matrix of neurons as seen in Figure 4.35 (a 2-D
array N). Neurons are numbered form 0 to n? — 1, left to right, and top
to bottom. The value of element ¥; ; represents the “chance” of module
‘2> being positioned at location ‘j’. Each row corresponds to a circuit
module. The n columns correspond to the n possible locations a circuit
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Fig. 4.35 An artificial neural network for placement.

module can take. Therefore, in order to obtain a feasible solution, only
one neuron in any row or any column can have its output 1. The output
of the neuron is normalized and thus is always between 0 and 1.

The next step is to define the synapse (connection point) parity and
strength. First the Manhattan distance between any two locations is

computed. The value T} , between neurons k and [ defined

as the connectivity betweelnjlci;cljfit modules ¢; and 45 times f(j1, ja),
where f is a function of the distance between locations j; and jo, k =
i1 X /n+ 71 and | =iy X \/n + jo. After some experimentation f was
chosen to be (of fset—Manhattan distance between j; and j2), where
the offset parameter is usually greater than /n.

As an example, the synapse strengths between neurons 2 and 3 (75 3)
can be found as follows. Neuron 2 has (i1, j1)=0,2; and neuron 3 has

(12, j2)=1,0 (see Figure 4.35). Therefore T5 3 by definition is equal to

Co1 % (of fset — Manhattan distance between 2 and 0)

The partial synapse strength matrix is shown in Table 4.5 and the
corresponding connections for neuron 3 are shown in Figure 4.35 (see
Exercise 4.22).

In formalizing the above problem Yu [47] modified the neural network

solution to the TSP (Traveling Salesperson Problem) problem by Hop-
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Table 4.5 Partial synapse strength matrix, offset=3, inhibit=-4.

13 0 1 2 3 4 5 6 7 8
0 0o -4 -4 -4 -4

1 -4 0 -4 -4 -4

2 -4 -4 0 1 -4 -4
3 -4 0o -4 -4 -4

4 -4 -4 0 -4 -4

5 -4 -4 -4 0 -4
6 -4 -4 0 -4 -4
7 -4 0 -4 -4 0 -4
8 -4 1 -4 -4 -4 0

field [17]. The energy function £ used by Hopfield has several minima,
some of which are local minima; the network can converge to any one of
them. As a result, there is no guarantee that the solution obtained will
correspond to a global minimum. Moreover, how does one determine the
parameters of the network (the weight matrix, thresholds, the constants
involved in the energy function and the activation function)? How sensi-
tive 1s the final solution to small variations in these parameters? How good
is the final solution when compared to other known techniques for solving
the same optimization problem? And finally, how fast does the network
converge to the final solution? Since neural computing is still an active
research area, the answers to these questions are still being investigated.
The impact of neural computing on VLSI CAD is still unclear. Yu’s re-
sults on applying Hopfield neural networks to the placement problem were
not promising. Some of the difficulties pointed out by him are long sim-
ulation times, poor solution quality and high sensitivity of the solution to
network parameters. At this stage, it can only be concluded that more
research is required in order to understand the applicability of neural net-

works to VLSI CAD problems.

4.5.2 Genetic Algorithm

The Genetic Algorithm (GA) is a search technique which emulates the nat-
ural process of evolution as a means of progressing toward the optimum [16].
It has been applied in solving various optimization problems including VLSI
cell placement [2; 8; 36].
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The algorithm starts with an initial set of random configurations called
a population. Each individual in the population is a string of symbols. The
symbols are known as genes and the string made up of genes is termed
chromosome. The chromosome represents a solution to the optimization
problem. A set of genes that make up a partial solution is called a schema.
During each iteration (generation), the individuals in the current popu-
lation are evaluated using some measure of fitness. Based on the fitness
value, two individuals at a time (called parents) are selected from the pop-
ulation. The fitter individuals have a higher probability of being selected.
Then, a number of genetic operators are applied on the selected parents to
generate new individual solutions called offsprings. These genetic operators
combine the features of both parents. Common operators are crossover,
mutation, and tnversion. They are derived by analogy from the biological
process of evolution. First we shall see how a solution can be mapped to a
string. Then we will discuss the basic operators and the general structure

of a GA.

6|7 |8 d e f

3|14 5 c|b|i

o 1] 2 alg]|h
(@ (b) ©

Fig. 4.36 (a) Graph of a circuit to be placed. (b) Position definition. (c) One possible
placement.

Example 4.11 Consider the graph of Figure 4.36(a). The 9 vertices
represent modules and the numbers on the edges represent their weighted
interconnection. Give a possible solution and express it as a string of sym-
bols. Generate a population of 4 chromosomes and compute their fitness
using the reciprocal of weighted Manhattan distance as a measure of fitness.

SOLUTION The nine modules can be placed in the nine slots as shown
in Figure 4.36(b). One possible solution is shown in Figure 4.36(c). Let
us use a string to represent the solution as follows. Let the left most
index of the string of the solution correspond to position ‘0’ of Figure
4.36(b) and the right most position to location 8. Then the solution
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of Figure 4.36(c) can be then represented by the string [aghcbidef]
(81—5) The number in parenthesis represents the fitness value which
is the reciprocal of the weighted wirelength based on the Manhattan
measure.

If the lower left corner of the grid in Figure 4.36(b) is treated as the
origin, then 1t is easy to compute the Cartesian locations of any module.
For example the index of module ¢ is 5. Its Cartesian coordinates are
given by x = (5 mod 3) =2, and y = [%] =1.

Any string (of length 9) containing characters [a, b, ¢, d, e, f, g, h,
i] represents a possible solution. There are 9! solutions equal to the
number of permutations of length 9. Other possible solutions (chromo-
somes) are [bdefigcha] (135), [ihagbfced] (g5), and [bidefaghc] (g5)-
For the above four solutions the fitness can be computed by calculat-
ing the Cartesian coordinates of the locations of the cells from their
positions in the string. Using the interconnection weight matrix, the
sum of the weighted Manhattan distances between pairs of connected

components is found.

Next, we look at the genetic operators and their significance.

Crossover

Crossover is the main genetic operator. It operates on two individuals and
generates an offspring. It is an inheritance mechanism where the offspring
inherits some of the characteristics of the parents. The operation consists
of choosing a random cut point and generating the offspring by combining
the segment of one parent to the left of the cut point with the segment of
the other parent to the right of the cut.

Example 4.12 From our previous example (Example 4.11) consider the
two parents [bideflaghc] (g), and [bdefi|gcha] (t15). If the cut point is
randomly chosen after position 4, then the offspring produced is [bidefgchal.
Verify that the weighted wirelength of the offspring is reduced to 63 and

therefore the fitness of the offspring is to 61—3.

In the example above the elements to the left of crossover point in one
parent did not appear on the right of the second parent. If they had, then
some of the symbols in the solution string would be repeated. In cell place-
ment this does not represent a feasible solution. Modifications to the above
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crossover operations to avoid repetition of symbols are (a) order crossover,
(b) partially mapped crossover (PMX), and (c) cycle crossover. [37]. Here
we will explain the operation of the PMX technique.

The PMX crossover is implemented as follows: Select two parents (say 1
and 2) and choose a random cut point. As before the entire right substring
of parent 2 is copied to the offspring. Next, the left substring of parent 1 is
scanned from the left, gene by gene, to the point of the cut. If a gene does
not exist in the offspring then it is copied to the offspring. However if it
already exists in the offspring, then its position in parent 2 is determined
and the gene from parent 1 in the determined position is copied.

Example 4.13 As an example of PMX crossover consider the two parents
[bidef|gcha] (g5), and [aghcblidef] (g5). Let the crossover position be after
4. Then the offspring due to PMX is [bgchalidef].

Observe that the right substring in parent 2, which is idef, is completely
copied into the offspring. Then scanning the first parent from the left, since
gene b (position 0) is not in the offspring it is copied to position zero. The
next gene, i (position 1) exists in the offspring at position 5. The gene in
position 5 in parent 1 is g, and this does not exist in the offspring, therefore
gene g is copied to offspring in position 1.

Finally we conclude with two crossover operations used in Genie, a
genetic placement system for placing modules on a rectangular grid [8].
The first crossover operator selects a random module e; and brings its
four neighbors in parent 1 to the location of the corresponding neighboring
slots in parent 2. Then the modules that earlier occupied the neighboring
locations in parent 2 are shifted outwards one location at a time in a chain
move in the direction of the old locations of the brought modules until a
vacant location is found. This is shown in Figure 4.37. The result obviously
is that a patch containing e, and its four neighbors is copied from parent
1 to parent 2 and that other modules are shifted by at most one position.
The second crossover operator selects a square consisting of & x & modules
from parent 1 and copies it to parent 2. The random number k used has a
mean 3 and variance 1. This method tends to duplicate some modules and
leave out others. For example, referring to Figure 4.38, if modules in the
square of parent 1 are copied to the square of parent 2, then those modules
in the square of parent 1 and not in the square of parent 2 are duplicated.
This problem is overcome as follows: let S Py —SP; be the set of modules in
square of parent 2 but not in square of parent 1 (SP,—SP, = {x,w,p, m}).
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Fig. 4.37 (a) A random module and its neighbors. (b) The neighbors in (a) of parent
1 replace neighboring modules in parent 2.
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Fig. 4.38 (a) A square is selected in parent 1. (b) Modules of square in parent 1 are
copied to parent 2 and duplicate modules are moved out.

Similarly SP; — SPs is the set of modules in square of parent 1 but not in
square of parent 2 (SP; — SP» = {¢,d, e, f}). Each module in SP, — SP;
is moved to a slot currently occupied by a module in SP; — SP;. That
is, in parent 2, modules {x, w, p, m} are moved to slots currently occupied
by modules {c¢,d, e, f}. Then all the modules in the square of parent 1 are
copied into the square of parent 2 to yield a new offspring.

Mutation and Inversion

Mutation produces incremental random changes in the offspring generated
by the crossover. In placement, the commonly used mutation mechanism is
pairwise interchange. In terms of placement, a gene consisting of an ordered
triple of a cell and its associated ideal coordinates may not be present
in any of the individuals in the population. In that case crossover alone
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will not help because it 1s only an inheritance mechanism. The mutation
operator generates new cell-coordinate triples. If the new triples perform
well, then the configurations containing them are retained and these triples
spread throughout the population. The mutation i1s controlled rate by a
parameter referred to as the mutation rate M,. A low M, means that the
infusion of new genes is very low. A high M, will cause the offsprings to
loose resemblance to their parents, which mean the algorithm behaves like
a memory-less process thus losing its ability to learn from the history of
the search [37].

In the inversion operation, two points are randomly chosen along the
length of the chromosome, the chromosome is cut, and the end points of the
cut section switch places. For example, the string [bid|efgchla] (cut after
positions 2 and 7) will become [bid|hcgfe|a] after inversion. This operation
1s performed in such a way that it does not modify the solution represented
by the chromosome, it modifies only the representation. Thus the symbols
of the string must have interpretation independent of their position [12;
37].

The general structure of a genetic algorithm is given in Figure 4.39.
The algorithm starts with an initial set of random configurations called a
population. The size of the population is always fixed (N, ). Following this,
a mating pool is established in which pairs of individuals from the popu-
lation are chosen. The probability of choosing a particular individual for
mating is proportional to its fitness value. Individuals with higher fitness
values have a greater chance of being selected for mating. N, new offsprings
are generated by applying crossover. Mutation and inversion are also ap-
plied with a low probability. Next the offsprings generated are evaluated
on the basis of fitness, and a new generation is formed by selecting some of
the parents and some of the offsprings. The above procedure is executed
Ny times, where N, is the number of generations.

After a fixed number of generations (Ny) the most fit individual, that
is, the one with highest fitness value is returned as the desired solution.

Thus far we have seen operations on possible complete solutions. A
schema is a set of genes that make up a partial solution. From our previous
example (Example 4.11) the string [*i*efh*g*] indicates a subplacement,
cells in positions 0, 2, 6 and 8 are ‘don’t cares’. Note that since cell f (see
Figure 4.36) is densely connected to cells 7, e, g and h, and that these
cells are adjacent to cell f in our solution, this schemata represents a good
subplacement. Similarly another good subplacement may consist of a cell
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Algorithm (Genetic_Algorithm)
(* Np= Population Size *)
(* Ny= Number of Generations *)
(* No= Number of Offsprings *)
(* Pi= Inversion Probability *)
(* P,= Mutation Probability *)
Begin
(* Randomly generate the Initial Population *)
Construct_Population(N, );
For y=1to N,
Evaluate Fitness(Population[N,])
EndFor;
For : =1 to Ny
For j =1to N,
(* Choose parents with probability proportional to fitness value *)
(z,y) « Choose_parents;
(* Perform crossover to generate offsprings *)
offspring[j] + Generate_of fspring(z,y);
For k=1to N,
With probability P, Apply M utation(Population[k])
EndFor;
For k=1to N,
With probability P; Apply Inversion(Population[k])
EndFor;
Evaluate Fitness(offspring[j])
EndFor;
Population + Select(Population, offspring, Np)
EndFor;
Return highest scoring configuration in Population

End.

Fig. 4.39 Possible structure of a genetic algorithm.

at the input end of the network and a cell at the output end that are
currently placed at opposite ends of the chip. Both these subplacements
will improve the fitness of the individual that inherits them. Thus a schema
is a topological placement of the corresponding cells, giving their relative
positions rather than their detailed locations.

The genetic operators create a new generation of configurations by com-
bining the schemata or subplacements of parents selected from the current
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generation. Due to the stochastic selection process, the fitter parents, which
are expected to contain some good subplacements are likely to produce more
offsprings, and the bad parents, which contains some bad subplacements,
are likely to produce less offsprings. Thus in the next generation, the num-
ber of good subplacements (or high fitness schemata) tend to increase, and
the bad subplacements (or low fitness schemata) tend to decrease. Thus
the fitness of the entire population improves. This i1s the basic mechanism
of optimization by the genetic algorithm [37].

Other Attempts

In GA, at any given instance a large number of possible solutions exists
(Np). This is known as the size of the population. The choice of N,
depends on the problem instance, size of the problem, and the available
memory. Another technique that is similar to GA but operates on a single
configuration at a time is known as ESP or ‘evolution based placement’. In
this technique the modules in the placement are treated as the population.
The evaluation function determines the goodness of placement of each mod-
ule. That is, the individual contribution of each module to the cost of the
solution. The technique was proposed by Kling and Banerjee [21].

A multi-processor based simulated annealing algorithm for standard-
cell placement was presented by Kravitz and Rutenbaur [22], and heuristics
for parallel standard-cell placement with quality equivalent to simulated
annealing were proposed by Rose et al [33]. A parallel implementation of
the simulated annealing algorithm for the placement of macro-cells was
reported by Casotto et al [7].

The general force-directed placement technique was presented in this
chapter.  Another unique force-directed placement algorithm not dis-
cussed in this chapter, but worth mentioning was proposed by Goto [13;
14]. The algorithm consists of an initial placement phase and an itera-
tive improvement phase. The initial placement phase selects modules for
placement based on connectivity. The iterative improvement phase uses
generalized force-directed relaxation technique in which interchange of two
or more modules in a certain neighborhood are explored.

The need for performance-driven placement arose as early as 1984 [10].
Since then a large number of approaches to timing-driven placement have
been reported. The reported approaches fall into three general classes.
The first class transforms the timing constraints on the critical paths (or



Conclusion 221

sometimes all the paths) into weights on nets. These weights are used to
categorize the nets and influence the placement procedure [6; 10]. The
second class transforms the path timing constraints into timing bounds on
the nets. The net timing bounds are converted into length bounds and
supplied to the placement program which tries to satisfy them [30; 46].
The third approach consists of supplying to the placement procedure a set
of the critical paths, together with their timing requirements. These paths
are monitored during the placement process [44; 40; 26].

Placement is a multiobjective problem where many of the decisions that
are made during the quest for a solution are qualitative and do not have
clear yes/no answers. A suitable approach to such class of problems is
to adopt a fuzzy logic formulation [48]. A description of the placement
problem that relies on fuzzy logic has recently been reported [25].

A very good overview of placement techniques and a detailed bib-
liography is available in an excellent survey paper by Shahookar and
Mazumder [37], and in Chapter 4 of the book edited by Preas and Loren-
zetti [31].

4.6 Conclusion

In this chapter, we discussed a major VLSI design automation subproblem,
namely placement. Wirelength is one of the most commonly optimized ob-
jective function in placement. The actual wirelength is not known until the
circuit modules are placed and routed. Different techniques that are com-
monly used to estimate the wirelength of a given placement were presented.
Other commonly used cost functions, which are minimization of maximum
cut, and minimization of maximum density were studied. A large number
of good heuristics are available for solving the placement problem [37].
A survey on commercially available automatic layout software in 1984
indicated that force-directed placement was the algorithm of choice [32;
15]. A recent survey indicated an even mix of the use of min-cut
based placement, force-directed algorithms, and simulated annealing [41;
42]. The above three methods have been discussed in detail in this chapter.

When partitioning a circuit for placement, it is not sufficient to consider
only the internal nets which intersect the cut line. Nets connecting external
terminal or other modules in another partition must also be considered. To
incorporate this, a method called terminal propagation was proposed by
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Dunlop and Kernighan. This extension considerably improves the quality
of final solution. This technique was also presented with the help of an
example [11].

Simulated annealing is currently the most popular technique in terms of
placement quality, but 1t takes an excessive amount of computation time.
The general algorithm was discussed in detail in Chapter 2. In this chapter
the application of the algorithm to solve the placement was presented with
the help of an example. We also discussed the TimberWolf3.2 package
which uses simulated annealing for module placement [35].

Force-directed algorithms operate on the physical analogy of masses
connected by springs, where the system tends to rest in its minimum energy
state with minimum combined tension from all the springs. The basic
algorithm was illustrated with an example.

Other recent attempts to solve the placement problem include use of
Neural networks and Genetic algorithm. These approaches were presented
in Section 4.5.

4.7 Bibliographic Notes

The three techniques popularly used for circuit placement are discussed in
this chapter. They are, min-cut placement [4; 5], simulated annealing ap-
proach [20; 35)], and force-directed techniques [37; 15]. In this chapter we
discussed approaches that ignore the dimensions of cells. In many popular
methodologies,; such as standard-cells and gate-array based design, these
assumptions are valid and do not affect the quality of solution. In general-
cell approach or macro-cell based design systems, the variation in sizes of
different modules in a circuit is large, and the above assumptions will yield
poor results. The problem is then approached differently. Lauther applied
the min-cut placement procedure to the placement of general cells [23]. In
his method, blocks generated by the partitioning process are represented
by a polar graph which retains information about relative positions of the
blocks. His implementation also includes an improvement phase in which
module rotation, mirroring and other compression techniques are used.
The general algorithm for simulated annealing was presented in Chapter
2. The application of this approach to the placement problem was presented
in this chapter. A class of adaptive heuristics for combinatorial optimization
and their application to solve combinatorial optimization problems was



Bibliographic Notes 223

presented by Nahar et al. These authors also experimented with simulated
annealing using different probablistic acceptance functions and cooling

schedules [28; 29].

Exercises

Exercise 4.1 Consider the two-dimensional placement of m x n functional
cells as an array of size m x n. All the cells have identical shape and size.
Let the cells be numbered 1,2,---,m x n. Cell ¢ is placed in row r; and
column ¢; of the array.

(1) Given two cells i and j, derive an expression for the Manhattan distance
d;; between the two cells in terms of r;, ¢;, r;, and ¢;.

(2) Let w;; be the number of wires between cells ¢ and j. Derive an expres-
sion for the total wirelength of the placement.

(3) Verity your formula for Figure 4.2(b).

Exercise 4.2 Given n modules to be placed in a single row show that there

are ”7' unique placements of n modules. When n is large, show that the

number of placements is exponential in n.

Exercise 4.3 A 5-point net is shown in Figure 4.40. The cost of connecting
one point to another is measured by the Manhattan distance between the
two points. Construct a minimum spanning tree to join all the five points
of the net. What is the cost of the minimum spanning tree?

A

Fig. 4.40 Net of Exercise 4.3.

Exercise 4.4 Repeat Exercise 4.3 using the minimum chain method to re-
alize the 5-point net. Compare the resulting cost with that of the minimum
spanning tree of Exercise 4.3.
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Exercise 4.5 Programming Exercise: Write a procedure CALC-LEN
to evaluate the total wirelength of a given placement. The inputs to the
procedure are:

(1) the number of modules n,

(2) the connectivity matrix C'; C'is an nxn matrix of non-negative integers,
where ¢;; indicates the number of connections between modules ¢ and
J;

(3) the placement information. The placement surface is a uniform grid of
dimensions M x N. The array P[l---M,1---N] is used to represent
the placement information. P[i, j] contains the number of the module
placed in row ¢ and column j.

You may assume that M - N = n. What is the complexity of your
procedure?

Exercise 4.6 Programming Exercise: Write a procedure CALC-LEN2
to evaluate the wiring requirements of a placement. The inputs to the
procedure are the same as in Exercise 4.5, except that the connectivity is
represented by a netlist rather than a connectivity matrix. The number of
nets is also an input to the procedure, and is indicated by 7. For each net
k, the netlist consists of a linked list of modules that are connected by the
net k. The data structure for a netlist of 3 nets is shown in Figure 4.41.
Net 1 connects modules 2, 1, 5. Net 2 connects modules 2, 3, 4, 5. Net
3 connects modules 1, 4, 5. What is the complexity of your procedure in

(

A\

Mod No °

A 4

Net No o »{Mod No| ©

)

Net No o—+—» O O O

O O O4—o

Fig. 4.41 Netlist data structure for Exercise 4.6.

terms of n and 7?7 What is the advantage of using a netlist representation
rather than a matrix representation?
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Exercise 4.7 For min-cut partitioning, show that if ®p(c;y1) <
Pp(c;),1 < i < r—1, then the application of the cut-lines in the fol-
lowing order, ¢1,¢a,...,¢r, leads to the minimization of X(P) as defined
by Equation 4.3.

Exercise 4.8 Given n modules to be placed using the min-cut placement
technique. Alternate horizontal and vertical cutlines are to be used. The
Kernighan-Lin algorithm of Chapter 2. is used at each stage to generate a
two-way cut. What is the time requirement of the placement procedure?
(Recall that the Kernighan-Lin algorithm takes O(k? log k) time to partition
k modules into two blocks.)

Exercise 4.9  Apply the min-cut algorithm and place the circuit of Figure
4.1(a) on a 2 x 4 mesh. You may use the Kernighan-Lin algorithm for
generating the partitions. Use alternate horizontal and vertical cutlines.
What is the maximum wiring density of your solution?

Exercise 4.10  Prove the result of Equation 4.5.

Exercise 4.11  Programming Exercise: Suppose that n modules are
placed in a row. The placement information is represented by array p[l..n],
where p[i] indicates the module placed in the ith location. If the modules
are numbered 1..n, then p is simply a permutation of 1..n.

Write a procedure DELTA-LEN to compute the change in total wire-
length when two modules in p are swapped. Assume that the connectivity
information is represented by a connectivity matrix C as in Exercise 4.5.

Exercise 4.12  (*) Programming Exercise: Implement the constructive
placement algorithm of Figure 4.10. Use appropriate data structures for
efficient implementation of “select_cell” and “select_slot” subroutines. Test
your algorithm on the circuit of Figure 4.42.

Exercise 4.13  The min-cut algorithm discussed in the chapter assumes
that all the cells have identical shape and size. Extend the min-cut algo-
rithm to handle unequal sized cells, i.e., outline a procedure which will place
unequal sized cells by repeated two-way partitioning. Assume all cells are
rectangular in shape. Apply your algorithm to the circuit of Figure 4.1(a).
Assume that NAND gates are twice as large as NOR gates.

Exercise 4.14  (*) Programming Exercise: Write a procedure QMIN-
CUT to implement the Quadrature min-cut algorithm. The inputs to the
procedure are
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Fig. 4.42 A tree circuit with 15 EXOR gates.

(1)
(2) the connectivity matrix C' for the set of modules,
(3) the type of cutline (1 = horizontal, 0 = vertical),
(4) the level of bisection k.

the number of modules n,

The output of the program must be given as follows. For each module ¢, its
placement must be encoded using a string of log, n bits. To illustrate, refer
to Figure 4.43, where n = 16 and log, n = 4. The position of the module
placed in the top left corner is encoded as ‘0000’. Figure 4.44 shows how
this encoding was obtained in four steps. (Hint : You may want to use
recursion to code the QMINCUT procedure.)

0000 | 0001 | 0100| 0101

0010|0011 | 0110]| 0111

1000|1001 | 1100( 1101

1010|1011 | 1110| 1111

Fig. 4.43 Min-cut encoding.

Exercise 4.15  Comment on the running time of the min-cut procedure for
placement given in Figure 4.15.
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000 0000{ 0001
0 00 01
001 0010(0011
1
(@) (b) (©) (d)

Fig. 4.44 Derivation of min-cut encoding. (a) k =1. (b) k=2. (c¢) k=3. (d) k = 4.

Exercise 4.16  (*) Programming Exercise: Implement a placement al-
gorithm based on simulated annealing. Assume that there are 210 modules
to be placed on a 15 x 14 mesh. There are two types of modules, functional
blocks and I/O pads. The I/O pads must be placed only on the periphery
of the mesh, whereas a functional block may be placed in any empty slot.
Assume 28 T/0O pads and 182 functional blocks. The connectivity of the
modules is described in the format of a netlist (see Exercise 4.6). Note the
following:

Generate a random initial placement which satisfies the pad position
constraint. Use the following annealing schedule. Ty = 10.0, « = 0.9,
8 =101 = 0.1, M = 200. The perturb function must allow a circular
shuffling of modules in A slots, where X is a user-specified constant. To
test your program, you may set A = 2 or A = 3. The perturb function
must respect the pad position constraint. Use the DELTA-LEN procedure
of Exercise 4.11 to evaluate the change in cost function Ah.

(1) Test your program for the sample circuit shown in Figure 4.45. In other
words, synthesize the connectivity matrix for the circuit and give it as
input to your program.

(2) Run your program for several random initial placements. Does the
initial solution influence the final solution?

(3) Generate a ‘good’ initial solution for the circuit using either a construc-
tive heuristic discussed in this chapter or one of your own heuristics.
Does a good initial solution give better results than a random initial
solution?

(4) Study the influence of the A parameter on the quality of the final so-
lution. Vary X in the range 2 to 5. Does the run time depend on
A?
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Fig. 4.45 210 cell mesh for Exercise 4.16.
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(5) In this book, we have been using the exponential function e
the acceptance criterion. Can you suggest an alternate function for this

purpose? Experiment with your alternative and compare the results.

Exercise 4.17 (*) Programming Exercise: Consider the annealing
schedule used in the TimberWolf3.2 placement algorithm. The initial tem-
perature is 77, the mid-range temperature starts at 75, the low-range tem-
perature starts at 73, and 7} is the final temperature. The cooling rate in
the high, middle and low temperature ranges are o1, as, and as respec-
tively. At each temperature, M moves are made per cell. Calculate the
number of moves attempted by the algorithm if there are n cells in the
circuit.

Compute the number of moves using your formula when 77 = 105,
Ty =100, 75 = 10, T}, = 0.1, a3 = 0.8, oy = 0.95, az = 0.8, M = 1000,
n = 100.

Exercise 4.18 (*) Gate Array Placement

Refer to the circuit shown in Figure 4.42. The I/O structure of a sin-
gle EXOR gate is shown in Figure 4.46; here, A and B are inputs and C'
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is the output. Note that inputs and outputs are available on both sides of
the module (e.g. the pin A on the left hand side is internally shorted to the
pin A on the right hand side.)

Fig. 4.46 The I/O interface of a two-input EXOR cell. The input A may come from
either side of the cell. Similarly B and C.

The problem is to assign the EXOR gates to the logic blocks of a 4 x 4
gate array. Show a gate assignment and sketch the wiring plan for each net.
What is the required channel capacity (horizontal and vertical) of the gate
array? If the horizontal and vertical channel capacity of the gate array is
fixed to be 2, is it possible to implement the circuit?

Exercise 4.19 In the previous problem, modify the I/O structure of the
EXOR block as shown in Figure 4.47. Thus, inputs and output are available
on all sides of the logic block. How does this I/O structure affect the
requirement on channel capacities?

I I I

A c B
B — — A
cl— —c
A — —B

I I |

B c A

Fig. 4.47 A modified cell for two-input EXOR gate. Now the inputs A, B and the
output C can come from all four sides.

Exercise 4.20 In Exercise 4.18, we ignored the pins VDD and GND. Mod-
ify the I/O structure of the EXOR, gate to include the power and ground
pins as well, and repeat Exercise 4.18.
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Exercise 4.21  (*) Standard-cell Placement

The description of a simple sequential circuit is shown in Figure 4.48. The
circuit has 4 inputs, GO, G1, G2, G3, and a single output, G17. It is rela-
tively straightforward to interpret the circuit description. For example, the
statement

(12 = NOR(G4, G7)

means (15 is the output of a NOR gate whose inputs are signals are G4
and G'7. The functional cells used in the circuit description are NOR, OR,
NAND, AND, NOT, and DFF (D Flip-flop). The statement

G's = DFF(G1o)

means (5 is the @ output of the D Flip-flop, whose D input 1s G'19. Assume

INPUTS (Go, G1, G2, Gs)
OUTPUT (G7)

G5 = DFF(Gio)
G6 = DFF(Gll)
G7 = DFF(Glg)
Gig = NOT(GO)

G17 = NOT(Gll)

Gy = NAND(G16,G15)
G'1o = NOR(G14, G11)
Gy = NOR(G5,G9)
Gis = NOR(Gl,G7)
Gi3 = NOR(GQ,GlQ)

Fig. 4.48 Netlist description of a sequential circuit for Exercise 4.21.

that a standard-cell library is available, and has all the required cells to
implement the above circuit. All the cells are rectangular in shape, and
their widths are summarized in Table 4.6. All the cells have the same
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height, namely, 7 units. The objective of this problem is to place the

Table 4.6 Table of cells and their dimensions for Exercise 4.21.

Cell Name Width  Functionality

NOR 3 units  2-input NOR gate
OR 4 units  2-input OR gate
NAND 3 units  2-input NAND gate
AND 4 units  2-input AND gate
NOT 2 units  Inverter

DFF 9 units D Flip-flop

circuit using the standard-cells available in the library.

(1) Which placement algorithms are suited for this problem? Justify your
answer.

(2) Represent the placement information using a one-dimensional array
p. Apply the algorithm you selected above to generate a good one-
dimensional placement. Use total wirelength as the objective function.

(3) The one-dimensional placement will have an unacceptable aspect ratio,
and must therefore be transformed into a two-dimensional placement
which looks squarish. Propose a scheme for this transformation. Ensure
that your transformation does not increase the wirelength achieved by
the one-dimensional placement.

(4) Give a rough estimate of the area of the circuit.

Exercise 4.22 Complete Example 4.10 and obtain all the elements of the
synapse matrix.
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Chapter 5
Grid Routing

5.1 Introduction

In the process of automatic design of VLSI layouts and printed circuit
boards (PCBs), the phase following cell placement is routing. The number
of cells on a VLSI chip, or IC chips on PCBs to be interconnected is gen-
erally very large. For this reason, routing is accomplished using computer
programs called routers. The task of router consists of precisely defining
paths on the layout surface, on which conductors that carry electrical sig-
nals are run. These conductors (also called wiring segments) interconnect
all the pins that are electrically equivalent.

Routing takes up almost 30 percent of design time and a large percentage
of layout area. Automatic routing algorithms were first applied to design
of PCBs. In the beginning PCBs were not very dense. None the less, basic
ideas of automatic routing had been developed and some are still valid, and
are being adapted to new emerging problems and larger PCBs. Recently,
the main application of automatic routers has been in the automated design
of VLSI circuits.

In this chapter we shall discuss algorithms for routing. The general
definition of the problem is given in Section 5.2. In Section 5.3 cost functions
and routing constraints are presented. One very common technique that is
used to connect two points belonging to the same net considers the layout
as a maze. Finding a path to connect any two points is similar to finding a
path in the maze. Such routers that connect two points by finding a path
in a mage are called maze routers. Maze routers assume the layout floor
to be made up of a rectangular array of grid cells. Functional cells to be
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interconnected fill up some slots in this grid and constitute the obstacles
of the maze. Maze routing is discussed in Section 5.4. The most popular
algorithm to find a path through the maze is Lee algorithm [16]. This
algorithm is discussed in detail in Section 5.4.1. Running time of this
algorithm is large and memory requirement is high. Limitations of Lee
algorithm and several improvements to the algorithm to decrease both the
running time and memory required are presented in Section 5.4.2. Maze
routers such as those based on the Lee algorithm connect a pair of points
at a time. Multi-pin nets (number of pins greater than 2) can be connected
in a spanning-tree like fashion. As will be seen, this procedure yields very
poor solutions. An efficient technique that uses the standard Lee algorithm
to connect multi-pin nets is presented in Section 5.4.3. A technique that
finds a certain desirable path, not necessarily the shortest is given in Section
5.4.4. Other algorithms based on variations of Lee algorithm to reduce its
running time are presented in Section 5.4.5.

Another class of routers that do not use a physical but an imaginary
grid to overcome the memory requirement of maze routers are based on
line search algorithms. The algorithms used in these routers are introduced
in Section 5.5. Other issues related to routing such as multi-layer routing,
effect of ordering of nets on the quality of solution, and routing of power
and ground nets are discussed in Section 5.6. Current trends in routing and
recent work are presented in Section 5.7.

5.2 Problem Definition

Routing can be defined as follows: Given a set of cells with ports (in-
puts, outputs, clock, power and ground pins) on the boundaries, a set of
signal nets (which are sets of points that are to be electrically connected
together), and locations of cells on the layout floor (obtained from place-
ment procedure, see Chapter 4), routing consists of finding suitable paths
on the available layout space, on which wires are run to connect the de-
sired sets of pins. By suitable is meant those paths that minimize the given
objective functions, subject to constraints. Constraints may be imposed
by the designer, the implementation process, or layout strategy and design
style. Examples of constraints are minimum separation between adjacent
wires of different nets, minimum width of routing wires, number of available
routing layers, timing constraints, etc. Examples of objective functions in-
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clude reduction in the overall required wire length, and avoidance of timing
problems due to delays of interconnects.

The connections that are used in routing are made by first uniformly
depositing metal on a carrier surface. Then unwanted metal is etched away
to leave wires that carry signals. In PCBs this surface is usually fiberglass,
while in VLSI it is silicon. In VLSI design, in addition to metal, polysilicon
1s also used to carry signals. Polysilicon wires carry signals on one layer and
metal on the other (two-layer routing). These two layers are separated by
an oxide insulating layer. Holes in this insulating layer called contact-cuts
are used to connect conductors between two layers that belong to the same
net. Certain VLSI technologies allow three layers for routing. Here, two
layers are used to carry conductors in metal (commonly known as metal-
1 and metal-2) and the third layer carries wires in polysilicon. Holes in
the insulating layer that connect conductors between two metal layers are
known as vias. (Holes in PCBs used to connect conductors on two sides of
the board are also called vias.) An illustration of a general routing problem
is given in Figure 5.1. The signal nets could be two-point or mulli-point as
shown.

Np={1,2,3}
No={4,5,6,12}

N3={7,9}

N4 ={8,10,11}

Fig. 5.1 Illustration of general routing.

5.3 Cost Functions and Constraints

The main objective of a routing algorithm is to achieve complete automatic
routing with minimal need for any manual intervention. As mentioned
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earlier, the total area taken up by a circuit is the sum of functional area
and the wiring area. In order to implement a circuit in minimal possible
area, 1t 1s essential that the wiring area is reduced. Individual connections
lengths must also be kept small in order to satisfy performance criteria.
Referring to Figure 5.2(a) the two points a and a’ are connected using the

@ (b)

Fig. 5.2 Two possible paths connecting a pair of points. (a) The shortest path. (b) A
longer path with more bends.

shortest path shown. The path is the shortest because its length is equal to
the Manhattan distance between a and a’. An alternate path that connects
the same two points is shown in Figure 5.2(b). This path is longer, and
it uses more routing cells (more area). It also has more bends. A signal
traveling along this path will take longer time. Clearly, the path in Figure
5.2(a) is preferable over that of Figure 5.2(b).

The objective of automatic layout systems is to produce chips with
smallest amount of area. Thus, a common goal of most routers is to accom-
plish complete automatic routing using as small a wirelength as possible.

Bends in a path result in holes for contact-cuts or vias. When two-
layer routing is used, all horizontal segments are assigned to one layer,
and vertical to the other. Connectivity between segments belonging to
the same net is made using these holes. The yield of the manufacturing
process decreases with the increase in the number of cuts or vias. Delays
due to impedance of cuts and vias also degrade performance (reduce speed).
Therefore reducing the number of cuts/vias is crucial.

In addition, it is required that performance must not be affected due to
signal delays. Currently, the switching delay of gates have been so much
reduced that delays due to interconnects or wiring can no longer be ignored.
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In fact, sometimes the delays due to wiring dominate. The objective of the
router then is not only to reduce the overall wirelength but to do so keeping
the maximum delay of any net within a certain minimum.

Finally the routing programs must be capable of handling very large
circuits. Thus it is imperative that the algorithms used are time efficient
and use minimal memory.

Routing programs have to perform their task within a set of given con-
straints. The basic type of constraints are (a) placement constraints (b) the
number of routing layers and (c) geometrical constraints.

5.3.1 Placement Constraints

Many routing programs are based on fixed placement. This means that
all cells are in predefined locations and are not movable. This concept
leads to imperfect solutions and may leave some nets unconnected. These
constraints apply to PCBs, gate-arrays and to some extent to standard-cells
too.

Full-custom and general-cell layout styles allow both the size and place-
ment of cells to be specified. In gate-arrays, all cells in the layout are of
the same size. Cells are placed in fixed locations in rows with horizontal
and vertical separation between them being available for routing. Thus the
available routing space in gate-arrays is fixed. As in the gate-array ap-
proach, standard-cell design methodology is characterized by fixed height
rows of cells. The size of the layout surface in not predetermined. The
problem is to make all connections between nets using the smallest width
of horizontal space between rows called channels (see Chapter 7).

5.3.2  Number of Routing Layers

Another constraint to a routing program is the number of layers which are
available for routing. Single-layer routing is most economical and is often
useful in PCB design. Planar routing algorithms are necessary in single-
layer layouts. But they are of high computational complexity and generally
do not accomplish complete routing.

In most applications routing is constrained to two layers. The usual
approach in this case is called H—V routing; one layer carries wires in the
horizontal direction only, the other carries wires in the vertical direction.
Connectivity between layers is achieved by vias or contact holes. Using
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this concept, 1t is guaranteed that all connections of a circuit can be wired
provided that the routing area is large enough and that the vias are not
restricted. The disadvantage of H—V routing is that the number of vias or
cuts is high. Since the yield of a product decreases with increasing number
of vias, the elimination of redundant holes is achieved in most applications
by a post processor. This post processor assigns vertical wire segments not
crossed by horizontal segment of other nets into the horizontal layers, and
assigns horizontal segments not crossed by vertical segments of other nets
to the vertical layer.

Due to speed requirements on signal paths and power distribution, two-
layer techniques are not sufficient for all applications. Advanced technolo-
gies use more than two layers. But high production costs and yield consid-
erations still give preference to two-layer routing. This holds for standard
MOS technologies which use one metal layer and one polysilicon layer.

5.3.3  Geometrical Constraints

During routing, minimal geometries must be maintained. These include
minimum width and spacing of routing paths, which are dictated by the
technological process. In manual designs, design-rule-checking (DRC) pro-
grams are used for this task. Automatic routing tools must be able to
consider all geometrical constraints, thus abolishing the need for design
rule checking. For routing purposes, only those design rules must be con-
sidered which define geometries of wires and contact holes. Commonly, this
is achieved by using a proper equidistant grid. Wires are represented by
lines and restricted to grid line positions. Hence wire widths and separation
between wires is constant for all nets and design rules are avoided. How-
ever, in this approach, a realization of variable wire width, which may be
required for power nets or other special nets, is not easy.

5.4 Maze Routing Algorithms

A class of general purpose routing algorithms which use a grid model are
termed as maze routers. The entire routing surface is represented as a
rectangular array of grid cells. All ports, wires, and edges of bounding
boxes that enclose the cells are aligned on the grid. The segments on
which wires run are also aligned with the grid lines. The size of grid cells
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is defined such that wires belonging to other nets can be routed through
adjacent cells without violating the width and spacing rules of wires. Two
points are connected by finding a sequence of adjacent cells from one point
to the other. Maze routers connect a single pair of points at a time.

In any routing problem, a certain minimum width of conductors, and
a minimum separation between them must be maintained. If w represents
the minimum width, and s the minimum separation between two adjacent
conductors, then the two requirements can be combined into a single con-
straint called A, where A = w4+ s. Now by defining a uniform grid, with
the edge length of each grid cell being A, and allowing wires to run on grid
lines (or parallel to them shifted by a fixed amount), ensures that the above
constraints are satisfied. This is illustrated in Figure 5.3.

J

AN
A

I
r*

Fig. 5.3 Illustration of grid cell size.

5.4.1 Lee Algorithm

The most widely known maze routing method for finding a path between
two points on a grid that has obstacles is Lee algorithm [16]. An excellent
characteristic of Lee algorithm is that if a path exists between two points,
then it is surely found. In addition it is guaranteed to be the shortest
available one. The algorithm can be divided into three phases.

The first phase of Lee algorithm consists of labeling the grid, and is
called the filling or wave propagation phase. It is analogous to dropping a
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pebble in a still pond and causing waves to ripple outwards. The pair of
grid cells to be connected are labeled S and T'. In this phase, non-blocking
grid cells at Manhattan-distance ¢ from grid cell S are all labeled with i
(during step ). Labeling continues in an expanding diamond fashion until
the target grid cell T is marked in step L, where L is the length of the
shortest path, and each grid cell on that path contributes one unit length.
The process of filling continues until on the ith step:

a. the grid cell T' is reached; or

b. T is not reached and at step i there are no empty grid cells adjacent to
cells labeled ¢ — 1; or

c. T is not reached and ¢ equals M, where M is the upper bound on a path
length.

If grid cell T 1s reached in step ¢ then there is a path of length i between
points S and 7. On the other hand, if at step ¢ there are no empty cells
adjacent to the cells labeled with ¢ — 1, then the required path is not found.
An upper bound on path length may be placed. If ¢ = M where M is the
upper bound on the path length, and if 7" is not reached, then the path
with the requirement L < M is not found.

The filling phase begins by entering a ‘1’ in all empty cells adjacent to
the source cell S. Next, 2s are entered in all empty cells adjacent to those
containing 1s. Then, 3s are entered adjacent to 2s and so on. This process
continues and is terminated when one of the above three conditions occurs.
The process of filling is illustrated in Figure 5.4(a).

The second phase of the algorithm is called the retrace phase. This
procedure is the reverse of the procedure for filling. The actual shortest
path is found in this phase as follows. If grid cell T was reached in step
t, then surely there will exist at least one grid cell adjacent to it which
contains label ¢ — 1. Likewise, a grid cell containing ¢ — 2 will be adjacent
to one containing label ¢ — 1 and so on. In the example of Figure 5.4(a),
since the target T was reached on the 8th step, surely there must be a cell
with label 7 adjacent to it. Likewise, there i1s at least one cell with label 6
adjacent to 7. By tracing the numbered cells in descending order from T'
to S, the desired shortest path is found. The cells of the retraced path for
the filled grid of Figure 5.4(a) are shaded in Figure 5.4(b). In the retrace
phase, there is generally a choice of cells. That is, there may be two or
more cells with label i — 1 immediately adjacent to the cell with label i.
Theoretically, any of the cells may be chosen and the shortest path is still
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8 8
8[7]8 8[7]8
g|7]6]7[8 8| 7[6]7]8
716[5[6]7]8 7]6[5]6]7[8
T|7]|6|/5[4[5[6]7]8 6| 5]4[5[6]7]8
8l7]6[5[4[3]4]5]6]7]8 8 s[4]3[4[5[6[7[8
8|7|6[5|4[3[2[3[4][5]6]7]s 8|7 4[3[2[3[4[5[6[7[s
sl716[5[4]3]2]1 6|78 8|7]6 3[2]1 6[7]8
6]5[4]3]2]1]sS 8 6|5 8
6[5[4]3]2]1 6[5]4]3]2]1
8|7]6[5[4]3 8[7]e6[5]4]3
8|7]6]5[4]5 8[7]16[5[4]5
8]7]6]5 8[7[6[5
8[7]6]7 8l7]6]7
8718 | 8[7]8] |
8 I 8 I
(a) (b)

Fig. 5.4 Lee algorithm. (a) Filling. (b) Retrace.

found. In practice, the recommended rule is not to change the direction of
retrace unless one has to do so. This is because bends in paths result in
vias which is undesirable. Once the desired path is found, the cells used
for the route connecting S and 7" are regarded as occupied for subsequent
interconnections.

The final phase is called label clearance. In this phase all labeled cells
except those used for the path just found, are cleared for subsequent inter-
connections. In the label clearance phase, searching for all the labeled cells
is as involved as the wave propagation itself (see Exercise 5.3).

5.4.2  Lwmatations of Lee Algorithm for Large Circuits

In Lee algorithm, if L is the length of the path to be found, then the
processing time for filling is proportional to L?, while the processing time
for retrace is proportional to L (Why?). Therefore, the algorithm has a time
complexity of O(L?) for each path. In addition, for an N x N grid plane,
the algorithm requires O(N?) memory. Also, some amount of temporary
storage 1s required to store the positions of cells that are on the wavefront.
The worst case running time is also of O(N?).

Several extensions to the basic Lee algorithm exist that aim at reducing
the running time of the algorithm. To reduce the problem of storage, coding
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schemes for labeling of grid cells have been proposed. We now present some
schemes proposed for reducing the running time and memory requirement
of Lee algorithm.

Coding Schemes to Reduce Memory Requirement

A non-trivial storage problem in the Lee algorithm is that a unit of memory
space 1s needed for every grid cell. Suppose a 250 x 250 grid plane 1s to
be filled. Then, if maximum path lengths of up to 250 (M) grid units are
allowed, during the filling phase, a cell may be labeled by a number as large
as 250. This implies that at least 8 bits must be allocated for each grid cell.

Now consider the filled grid of Figure 5.4. Observe that for each cell
labeled k, all adjacent cells are labeled either £ — 1 or k& + 1. Therefore,
during retrace, it is sufficient if we can distinguish the predecessor cells
from the successor cells. Labeling schemes based on this idea are widely
used. Two are listed below.

(1) TIn the first scheme labeling begins as in Lee algorithm with cells adjacent
to S labeled with 1s, and those adjacent to 1s with 2s; and those adjacent
to 2s with 3s. Then cells adjacent to 3s are again labeled with 1s; and
the process continues. Therefore the sequence 1,2,3, 1,2,3 .. .is used for
labeling. Only three bits per memory cell are required since a grid cell
may be in one of the 5 states which are, labeled with 1, 2, or 3, empty,
or blocked.

(2) The second scheme proposed by Akers is to use the sequence 1,1, 2,2,
1,1, 2,2 .... This scheme is most economical, since each cell will be in
one of the four states: empty, blocked, labeled with 1, or labeled with
2 [3]. Thus, independent of the grid size, two bits per memory cell are
sufficient for the implementation of the labeling phase of Lee algorithm.

Example 5.1 Fill the grid of Figure 5.4 with sequences 1,23, 1,2,3 ...,
and 1,1, 2,2, 1,1, 2,2 .... Comment on the running time of the algorithm
that uses these schemes of filling.

SoLUTION The grids filled with the above sequences are shown in
Figure 5.5(a) and (b) respectively. Since the number of grid cells labeled
using these sequences are the same as in the case of the standard Lee
algorithm, the running time is unchanged.
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2 2
2[1]2 2[2]2
2f1]3]1f2 2f2]1f2]2
1[3]2]3]1]2 211122
3[2]1[2]3]1(2 1]a]2fa]1]2]2
2 21312312 2 1|2f2]2]1f2]2]2
21 1323|2312 22 221 2]2Ta]1]2]2
2[1[3 321 312 2[2]1 2[1]1 1212
32 S 2 11 S 2
3[2[1[3]2]1 1f1]2]2f1]1
2132123 2|2]1[1]2]2
2[1]3]2]1]2 2211212
2[1[3]2 2211
2[1]3]1 221112
21217 2[2]2]]
2 1] 21
(@) (b)

Fig. 5.5 Filling sequences that reduce memory requirement. (a) Sequence 1,2,3,1,2,3
.... (b) Sequence 1,1, 2,2,1,1,2,2 ....

Reducing Running Time

Running time is proportional to the number of cells searched in the filling

phase of Lee algorithm. Thus, to reduce the number of cells filled, the

following speed-up techniques may be used.

(1)

Starting point selection: In the standard Lee algorithm either of the two
points to be connected can be chosen as the source or starting point. The
number of cells filled is lesser if the point chosen as starting point is the
one that is farthest from the center of the grid. Since the source is closer
to the frame of the grid, the area of wave propagation is bounded by
it. This is illustrated in Figure 5.6(a). The shaded portion in the figure
indicates the number of cells filled if either point is chosen as the source.
Double fan-out: In this technique, during the filling phase, waves are
propagated from both the source and target cells. Labeling continues
until a point of contact between the two wavefronts is reached. This
technique approximately halves the number of cells filled (Figure 5.6(b)).
Framing: In this technique, an artificial boundary is made around the
terminal pairs to be connected, as shown in Figure 5.6(c). The size of
this boundary may be 10% to 20% larger than the size of the smallest
bounding box containing the pair of points to be connected. This ap-
proach speeds up the search considerably. If no path is found then the
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@

.
—

(b) (©)

Fig. 5.6 Schemes to reduce running time of Lee algorithm. (a) Starting point selection.
(b) Double fan-out. (c) Framing.

bounding frame is enlarged and the search is continued.

5.4.3 Connecting Multi-point Nets

Lee algorithm as seen above connects two terminal pins using the shortest
path on the grid. A multi-pin net consists of three or more terminal pins to
be connected. The optimal connection of these terminal pins belonging to
the same net which gives the least wirelength is termed as the Steiner tree
problem*. This problem has been proven to be NP-hard. Our objective is
not to find the minimum solution but one that satisfies constraints. In this
case it 1s sufficient for the wirelength to be within a certain given maximum.
A sub-optimal solution to connect a multi-point net can be obtained using
Lee algorithm. The method is explained below followed by an example.

In the classical Lee algorithm the two points to be interconnected were
labeled as S (source) and T (target). To connect a multi-point net, one of
the terminals of the net is treated as source, and the rest as targets. A wave

*See Chapter 1 for definition.
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is propagated from the source until any one of the targets is reached. Then
the path connecting the source with this target is found in the retrace phase.
Next, all the cells in the determined path are labeled as source cells and the
remaining unconnected terminals are labeled as targets and the process is
repeated until one of the remaining targets is reached. Again, the shortest
path from the determined target to one of the sources is obtained. This
process is continued until all the terminals are connected.

Example 5.2  Consider the five points belonging to the same net shown in
Figure 5.7(a). Explain how this multi-pin net is routed using Lee algorithm.
Suggest a technique to improve the wire length of the generated sub-optimal
tree.

@) (b) ©

Fig. 5.7 Routing a multipoint net. (a) Five points of a net. (b) Interconnection tree
found by repeated application of modified Lee algorithm. (c) A shorter interconnection
found by deleting an edge and re-routing.

SOLUTION Initially one terminal, say A, is chosen as the source. Then
the wave is propagated starting from A with the other four terminals
B, C, D, and E as targets. The filling phase continues until one of
the targets (the closest), in this case B, is reached. The path obtained
from A to B is laid out. Now all the cells in this laid out path are
labeled as source cells and the remaining three (C, D, FE) as target
cells. Again the wave i1s propagated starting from the cells on path
A-B as the sources until any one of the target points i1s reached. In
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this case 1t is point C'. A path from one of the cells of path A-B to
terminal C' is laid out. Next, all the cells on the path A-B-C' become
source cells, and this process continues. Figure 5.7(b) shows the final
pattern of the interconnection.

The interconnection obtained by this process is not guaranteed to be
of minimum length. A shorter interconnection between two points can
be found using the following simple technique. Removing any segment
(edge) from a tree will result in two subtrees. The shortest path be-
tween subtrees can be found by applying the Lee algorithm again with
all cells in one subtree serving as source cells and all cells in the other as
target cells. If the shortest path obtained is smaller than the length of
the deleted segment, then by inserting this new path, a shorter length
interconnection is obtained. Applying this technique to the segment
between subtree A-F and subtree B-C-D, a shorter interconnection, as
shown in Figure 5.7(c), is found.

5.4.4  Finding More Desirable Paths

Often practical situations require a more desirable path, not necessarily
the shortest, to be found. An example of such a situation is of finding a
path that will cause least amount of difficulty for finding subsequent path
connections. The filling phase of the Lee algorithm can be easily modified
to accommodate such and other constraints. The basic requirement of any
modified filling phase is that the desired path be unambiguously traced
back. Akers observed that a path running along obstructions would leave
more room for subsequent interconnections [3]. Suppose, for example, that
a net z has already been routed as shown in Figure 5.8, and that pin S is to
be connected to T'. The standard Lee algorithm will result in the shortest
path z. However, the longer path y could be more preferable. Before
proceeding to find the desired path let us understand the motivation for
finding it. Four grid segments make a grid cell. A grid segment is common
to at most two grid cells (see Figure 5.9). Once a grid cell is occupied
by a path or blocked, its segments are not usable. A segment is said to
be eliminated or unusable if a path cannot cross it. The number of grid
segments eliminated by the path y are less than that by path z. Also, paths
such as y tend to reduce dead space on the layout grid.

In any case, if the objective is to accomplish the desired path such as
y, then the required path selection can be accomplished by preparing a
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Fig. 5.8 Illustration of desirable paths.

Grid segment
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grid segment [}

Occupied grid cells

common to grid
cells 6 and 7

Fig. 5.9 Usable and unusable grid segments.

weighted array as shown in Figure 5.10. The weight assigned to a grid cell
in this case is the number of usable grid cell segments (or edges) minus one.

2[2]2 2222223

2

120221212 3
1(3(3[3]3

2[1 233 [3[3]2)3

33%3333333

Fig. 5.10 A weighted cellular array.

The desired path may be generated by routing a net so as to minimize
the total weight of used cells. For path y this weight is 13, and for path
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z 1t 1s 15. The wave propagation phase in Lee algorithm is modified to
minimize the total weighted sum of grid points. The modified procedure is
explained below followed by an example.

Refer to Figure 5.10. The process begins by selecting source pin S (with
weight zero) and assigning each cell adjacent to S with a value equal to its
weight. Fach such cell is marked as the latest cell (circled in the figure).
At each step from here on, each latest cell C' (with value V) is selected
and every empty adjacent cell (with weight W) receives a value V.+ W. In
addition, the newly filled cells serve as the list of latest cells. In the above
procedure, if an adjacent cell has already a value greater than V + W then
the old value is replaced and the cell with the replaced value is added to the
list of latest cells. Therefore, some old latest cells may become new latest
cells again if their value is decreased.

Example 5.3 Using the technique described in Section 5.4.4 find a path
of minimum weight between S and T in the weighted grid shown in Figure

5.10.

SOLUTION Latest cells in each step are indicated by circles in the grid.
Initially, cells adjacent to S become latest cells. This is shown in Figure
5.10. The procedure just explained is then applied and the next eight
steps are shown in Figure 5.11(a)-(h).

In step 2 (Figure 5.11(a)), the wavefront expands and latest cells are
again marked with circles. Think of these circles as moving towards the
target. In each step the circles cause adjacent cells to become latest cells
(encircled), and also pick up their weights. In step 7 (Figure 5.11(f))
one circle has reached the target 7" and its weight (which is equal to the
weight of the path it followed) is 15. Although the target cell is reached,
it does not mean that the desired path has been found. Why? Observe
that there are other latest cells (circles) on the wavefront which have
weights lesser than that of the one that has reached the target. The first
circle to reach the target does not constitute the desired path because
our objective is not only to find the path, but to find the one with the
least weight. And as long as there are latest cells with weights lesser
than the weight of the target, there is hope that when they reach the
target, the total weight of the path they generate may be lesser than
the weight of the path already found. Filling must therefore continue.
In step 7 (Figure 5.11(f)), cell with weight 12 is one such contender.
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(b)

Fig. 5.11

(h)

Filling in a weighted array.
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In step 8 (Figure 5.11(g)), the value of cell above T, which was earlier
15 is updated to 13, and since this is still less than the current value of
cell T" the procedure is continued.

Step 9 (Figure 5.11(h)) is the last and final step of the procedure. The
value of target cell is renewed to 13. The minimum value of the latest
cells (other than the target) is 19 and this value is not smaller than the
value of any old latest cell, hence further filling is abandoned.

The desired path is retraced as follows. Starting at the target cell,
the adjacent cell with the minimum weight that 1s in the direction of
the retrace, is selected. This process continues until the source cell
is reached. For this example the desired path is indicated in Figure

5.11(h) (see Exercises 5.14 and 5.15).

5.4.5 Further Speed Improvements

The filling phase of Lee algorithm is similar to the breadth first search
technique in graph theory. It can also be thought of as construction of a
tree with each node having at most four children. Each node corresponds
to a cell and the four children correspond to its four neighbors. As the
filling proceeds, each node of the tree further produces (at most) three
more children, and this process continues for all nodes in each level of the
tree, until the leaf node corresponding to the target cell is reached. Figure
5.12(a) shows a grid being filled where adjacent cells are searched in the
following order: top(T), left(L), right(R), and bottom(B). Figure 5.12(b)
shows the corresponding tree. As described earlier, the running time for
a particular instance of source-target pairs is proportional to the number
of cells being searched until the target is reached. In Section 5.4.2 few
speed-up techniques were discussed. The common idea behind speed-up
techniques is to advance the wavefront with a higher priority towards the
target direction. In this section we present two more speed-up techniques
based on this idea.

Hadlock’s Algorithm

This is a shortest path algorithm with a new method for cell labeling called
detour numbers. The algorithm was suggested by Hadlock [11]. It is a goal
directed search method. The detour number d(P) of a path P connecting
two cells S and T is defined as the number of grid cells directed away from
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Fig. 5.12 (a) Filled grid. (b) Tree corresponding to filled grid of (a).

its target T. If M D(S,T) is the Manhattan distance between S and T,
then it can be proved that the length {(P) of a path P is given by

I(P) = MD(S,T) +2 x d(P). (5.1)

Figure 5.13 illustrates how path length is represented by the detour num-
ber. Note that P is the shortest path if and only if d(P) is minimized among
all paths connecting S and T. Note also that in Equation 5.1 M D(S,T')
is fixed, independent of the path connecting S and T'. Based on this idea,
the filling phase of the Lee algorithm is modified as follows:
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O=Directed away

. from the target

d(P) =4
MD(S,T) =7
I(p)=7+2* 4 =15

Fig. 5.13 Path length and detour number.

(1) Instead of filling a cell with a number equal to the distance from the
source, the detour numbers with respect to a specified target are entered.
(2) Cells with smaller detour numbers are expanded with higher priority.

Figure 5.14(a) shows the filling of a grid using the detour algorithm. Ob-
serve that for any cell filled with ¢, if the adjacent cell is towards the target,
then 1t is filled with the same number, and if it is away from the target
then it is filled with ¢ 4+ 1. Thus the cell to the right of S is filled with a
0 because target 7' is to the right of source S. And cell to the left of S is
filled with 1 because it is away from target 7'

Path retracing is slightly different from the standard Lee algorithm (see
Exercise 5.20). The number of grid units filled in Hadlock’s algorithm is
considerably smaller than in Lee algorithm. Therefore, the speed improve-
ment due to this algorithm is obviously remarkable. Running time for an
N x N grid ranges from O(N) to O(N?) and depends on the position of
the source-target pairs and the locations of obstructions.

Soukup’s Algorithm

The previous algorithms performed filling in a breadth first manner.
Soukup suggested adding depth to the search [23]. In Soukup’s algorithm
a line segment starting from the source is initially extended toward the
target. Then, the cells on this line segment are searched first. The line seg-
ment is extended without changing direction unless it is necessary. When
the line hits an obstacle, Lee algorithm is applied to search around the ob-
stacle. During the search, once a cell in the direction of the target is found,
another line segment starting from there is extended toward the target.
Figure 5.14(b) shows the set of searched cells. The darkened circles in the
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Fig. 5.14 (a) Hadlock’s detour algorithm. (b) Soukup’s fast algorithm.

figure indicate the cells directed towards the target.

Although this algorithm guarantees finding the path if one exists, it does
not guarantee that it 1s the shortest. Its disadvantage is that it generates
sub-optimal paths (both in terms of length and number of bends). However,
it is extremely fast, especially when the routing space is not congested.
Soukup claims that it 1s 10-50 times faster than the Lee algorithm on typical
two-layer routing problems.

5.5 Line Search Algorithms

As seen above, one of the major drawback of Lee algorithm and its varia-
tions is the amount of memory required for the grid representation of the
layout. Line search algorithms overcome this drawback.

The idea behind these algorithms is as follows. Suppose two points S
and T on the layout are to be connected. For the moment assume that
there are no obstacles. If a vertical line is drawn passing through S and
a horizontal line passing through 7', the two lines will naturally intersect
giving a Manhattan path between S and 7. Will this always work? In the
absence of obstacles, yes. But in general, more is to be done to find a path
between S and T
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As opposed to Lee’s maze running algorithm and its variations, which
proceed in a breadth-first manner, line search algorithms perform a depth-
first search. Therefore, maze running guarantees finding the shortest path
even if 1t i1s most expensive in terms of vias. However, because of their
depth-first nature, line search algorithms do not guarantee finding the short-
est path, and may need several backtrackings.

In practice, line search algorithms produce completion rates similar to
Lee algorithm, with the difference that both memory requirements and
execution times are considerably reduced. This is because the entire routing
space 1s not stored as a matrix as in the case of Lee algorithm but the routing
space and paths are represented by a set of line segments. Line search
algorithms were first proposed by Mikami-Tabuchi [17] and Hightower [12].
A brief description of these two algorithms is presented below.

Mikamai-Tabuchi’s Algorithm

Let S and T be a pair of terminals of a net located on some intersection of
an imaginary grid. The first step is to generate four lines (two horizontal
and two vertical) passing through S and 7. These lines are extended until
they hit obstructions (a placed cell for example) or the boundary of the
layout. If a line generated from S intersects a line generated from 7" then a
connecting path without any bend or with one bend has been found. If the
four generated lines do not intersect, then they are identified as trial lines
of level zero and stored in temporary storage. Then at each step ¢ of the
iteration the following operations are done.

11110 222 2
1
1
1
1 T T Trial lines from source
2 S -1%-'?}1:){' ------- Trial lines from target
1 :-_I:l:l:-*:l: X  Base point
1 S S S O Point of intersection
1 S
1 - |“|"|"*'*‘f‘ o B oF Sl
1 1 10 l 1

Fig. 5.15 Routing using Mikami-Tabuchi line search algorithm.
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(1). Trial lines of level ¢ are picked one at a time. Along each trial line all its
grid points (base-points) are traced. Starting from these base-points new
trial lines are generated perpendicular to trial line z. Let the generated
line segments be identified as trial lines of level ¢ + 1.

(2). If trial line of level (¢ 4 1) intersects a trial line (of any level) originated
from the other terminal point, then the required path is found by back-
tracing from the point of intersection to both points S and 7". Otherwise
all trial lines of level (¢ + 1) are added to the temporary storage and the
procedure is repeated from Step 1.

The above algorithm guarantees to find a path if one exists, provided that
all trial lines up to their deepest possible level of nesting are examined.

Figure 5.15 illustrates an example of finding a path by the application
of the procedure. In this example the trial line of level 1 originating from
T intersects a trial line of level 2 generated from S.

Hightower’s Algorithm

This algorithm is similar to the Mikami-Tabuchi’s algorithm. The difference
is that instead of generating all line segments perpendicular to a trial line,
Hightower algorithm considers only those lines that are extendable beyond
the obstacle which blocked the preceding trial lines.

0 2

T
0o— @D gof e

b
——————— *i-——-——--o—-—— ---1

Fig. 5.16 Routing using Hightower’s Line Search algorithm.

The procedure is best explained with the illustration in Figure 5.16. As
before, let S and T be two points to be connected. The shaded regions p,
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g, and r constitute obstacles around which the path is to be found. We
need to define a few terms here. The procedure begins by constructing
horizontal and vertical escape lines from the source and target.

Blockage: A blockage is a cover of a point if a horizontal or vertical line
from it passes through the point. For example, in Figure 5.16 blockage
p is a cover of point S because a horizontal line from p passes through
point 5.

Escape line: Escape line passing through a point is a line that is perpen-
dicular to the two nearest blockages on both sides (either left and right,
or top and bottom). For example, lines # and y are escape lines through
S.

Escape point: Given a point k and its escape line L, an escape-point on L
is a point that is not covered by at least one cover of k. Thus point d is
an escape point for escape line = passing through S. Similarly point a is
an escape point for escape line w passing through 7.

Now we shall see how a connection between two points .S and T is found.
The procedure begins by constructing horizontal and vertical escape lines
from the source and target. First, for each escape point, the longest escape
line is found. In case of a tie the escape line nearest to the starting terminal
is taken. Thus escape lines u and v are drawn through escape points @ and
d. Proceeding in this way, escape line m through escape point ¢ on line v
intersects line u at b (labels of lines are encircled). Escape points are then
retraced to find the required path which in this case is T'abedS.

When the routing area is not congested, the above algorithms are ex-
pected to run fast. Particularly, Hightower algorithm is expected to run
in time proportional to the number of bends. A conservative estimate of
running time in a complicated maze is O(N*) (see Exercise 5.23). Thus the
memory saving in line search algorithm is dramatic, but the running time
does not improve very much. We might also need to backtrack from dead
ends (resulting from bad sequences of trial lines).

5.6 Other Issues

Maze routers connect two points at a time. The entire set of nets can
be divided into a set of pairs of points to be connected. Multiple points
belonging to the same net can be connected using the technique suggested in
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Section 5.4.3. Once a net is placed, it becomes an obstruction to other nets
to be routed. The order in which pairs of points are chosen for routing may
affect the quality of final solution. Due to large amount of current carried
by power/ground nets, and problems of delay and skew on clock nets; they
are to be treated differently. In the following discussion we will look at the
requirements for successful multi-net routing, the effect on ordering of nets,
and routing of power/ground nets.

5.6.1 Multi Layer Routing

In the previous discussion (Section 5.4), we have seen how points belonging
to a net can be connected either with shortest paths or paths that meet our
requirements. If a single net is to be routed, then, given enough separation
between cells, one layer is sufficient. However, if several nets are to be
connected, which is generally the case, then the problem of finding complete
connectivity becomes very difficult. This is because the path found will
occupy grid cells which may become obstacles to future paths. Consider

Fig. 5.17 Multi-net routing.

two nets Ny = {a,a’} and Ny = {b,b'} of Figure 5.17. Net N is connected
using one of the algorithms discussed earlier. If we have a single layer for
wiring, then net N can never be connected. However, if another layer was
available (for example the second side of the PCB), then it is possible to
route No. Clearly, the more the number of layers, the greater is the chance
of accomplishing complete routing of multi-nets. In this section we will see
how we can use Lee algorithm to interconnect pins belonging to different
nets on the same layout using two layers.
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Three-Dimensional Grid

In general, multi-layer interconnection can be accomplished by extending
the standard Lee algorithm to a three-dimensional grid. Here, a cellular
array consisting of unit cubes 1s used. To find a path in a 3-dimensional
cellular array the same technique of filling, as proposed in the original Lee
algorithm is followed, except that all adjacent empty cells including those
accessible from above or below are labeled at each step. The process leads
to a path which occupies a minimum number of cells. Note that inter-
layer connection through vias or contact-cuts is assumed to have the same
weight as unit length of one layer. For a specific case of two-layer routing,
the cellular array is as shown in Figure 5.18.

Fig. 5.18 Three dimensional cellular array for two layer routing.

Two Planar Arrays

Another implementation of two-layer routing is to use two planar cellular
arrays, one for each layer. The filling process is the same as in Lee algo-
rithm except (a) filling both layers is done simultaneously and (b) whenever
an empty cell in one layer is labeled, the same label is entered in the corre-
sponding cell on the other layer, unless that cell is already occupied. This
procedure is illustrated in the example below.

Example 5.4 Two routing layers, layer-1 and layer-2, are shown in Fig-
ure 5.19(a) and (b) respectively. The shaded cells in these layers indicate
that the cells are occupied by other paths on that layer and cannot be
used for routing. Apply the method discussed above which uses two planar
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arrays (one for each layer) and determine the path between points S and

T.

SoLUuTION The grids corresponding to the two layers are filled using
the required scheme. Labels in cells are shown in Figure 5.19(a) and
(b). In the 10th step the target 7" is reached. Retrace can begin in any
layer. Let’s choose layer-1. During the retrace in layer-1, when the cell
labeled 7 is reached, we find no adjacent cells with label 6. A wvia is
assigned to this location and a switch to layer-2 is made. The retrace
now continues in the array corresponding to layer-2 (Figure 5.19(b)).
In layer-2, when the cell with label 5 is reached we find that there is no
cell with label 4 adjacent to 1t. A via is placed again in this location
and a switch back to layer-1 is made. Retrace continues in this manner
and the obtained path is shown in Figure 5.19(c).
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5.19 Two layer routing using two arrays. (a) Layer-1. (b) Layer-2. (c) Retrace

path.

An efficient approach generally adopted to two layer routing is to as-

sign all horizontal wiring segments to one layer and all vertical segments to

the second layer. Two layer routing which strictly follows this horizontal-

vertical rule can be achieved by blocking vertical runs on one layer and

horizontal runs on the other during the filling phase of Lee algorithm. Of

course this approach is going to create a large number of unnecessary vias.

A post processing step may be used to assign all horizontal segments of

the horizontal layer not crossed by vertical wires to the vertical layer. Sim-
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ilarly, some vertical segments are assigned to the horizontal layer. Each
such movement of segments between layers causes a reduction of 2 vias or
contact-cuts.

5.6.2 Ordering of Nets

Both the maze router and the line-search router (Section 5.5) presented in
this chapter are intended for routing a single net. Of course, in practice an
entire netlist needs to be routed. Let there be n nets in the netlist, and let
us order them in some fashion so that we can use the maze or line search
router to route the individual nets sequentially, thus:

For : =1 to n Do
Use maze router to route net p;;

The order py, pa, - - -, pn 18 a permutation of 1,2, -- - n. After any net p; has
been routed, the area occupied by its wiring must be marked as obstacles to
the unrouted nets. The permutation p influences the routability of the nets
(see Exercise 5.24). Thus, even though all the nets are indeed routable, the
routing order may prevent successful completion of routing.

Maze routers which connect one net at a time suffer from the shortcom-
ing that they do not provide any feedback or anticipation in the routing
process to avoid conflict between wires to assure that some early wire rout-
ing will not prevent successful routing of some later connections. Because
of this, it is felt that the order in which a set of nets is routed is of crucial
importance to the successful completion of routing.

Consider the situation in Figure 5.20(a). It is required to connect two
two-point nets a —a’ and b—b'. Which net should be connected first? Since
there are only two nets to consider, a brute force approach may be used
to determine the effect of ordering. Say net a — @' is the first net chosen
for interconnection. The two possible paths which may be found by our
router are as shown in Figure 5.20(b) and (c). From the figure it is clear
that if the path chosen by the router is as in Figure 5.20(b) the length of
path b — b’ is equal to its Manhattan distance. But if the path a — @’ is
determined as in Figure 5.20(c) then the length of path b — ¥’ is far greater
than its Manhattan distance.

Now let us see what would happen if b — 0’ is chosen as the first pair
of points to be connected. The two possible paths between b — b’ are as
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Fig. 5.20 Figure illustrating ordering of two two-point nets.

shown in Figure 5.20(d) and (e) respectively, and both paths do not cause
any obstacle to the shortest path between a — a’ to be determined.

Now referring to Figure 5.20(f) which consists of the bounding boxes
of pins a — a’ and b — b, it appears that this two wire case will yield the
following result: If a pin p belonging to one net lies within the bounding box
formed by pins belonging to another net q then net p must be laid out first.

Let us extend this observation to three two-point nets a —a’, b —b’, and,
¢ — ¢, of Figure 5.21. The bounding boxes around these pins are shown.
Applying the same logic as before for this example results in the following
conditions to be satisfied:

a must be routed before b
b must be routed before c
¢ must be routed before a

Clearly, due to lack of transitivity, the rule cannot be universally ap-
plied. But it 1s also clear that if a certain point p is in rectangle formed by
net g — ¢’ it is desirable to layout p before ¢q. This rule can be generalized
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Fig. 5.21 Illustrating non-transitivity of three two-point nets.

as follows: The greater the number of pins in a certain rectangle formed by
pins ¢ — q', the greater the number of wires which should be laid out before
q — ¢’ 15 laid out. The rule can be used to assign priorities to nets, where
the priority number of net p is given by the number of pins in the rectangle
formed by p — p/. The larger the number, the lower the priority of the
corresponding net.

Example 5.5 Consider the four pin pairs a —a’, b—¥', c—¢’, and d — d’
as shown in Figure 5.22. Order the nets using the priority scheme discussed
above and show the layout.
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Fig. 5.22 An example of four two-point nets to be ordered (Example 5.5).
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SoruTioN When the four bounding-boxes with nets a — a’, b — ¥/,
c¢—c, and d — d" are drawn, the number of pins within the bounding
box formed by pins of these nets (that is a, b, ¢, and d) are found to
be 0, 1, 6, and 2 respectively. Thus the order for this set of nets is a,
b, d, and ¢. the layout is shown in Figure 5.22(b).

In the above paragraphs we presented a method to order two point nets
on a single layer. Other most common methods for interconnection ordering
which can be used for two-layer and multi-layer routing are:

(a) order the nets in the ascending order of their lengths;
(b) order the nets in the descending order of their lengths; and
(c) order the nets based on their timing criticality.

The first two criteria are conflicting. Proponents of the first criterion argue
that it is easier to route a long wire around a short wire than vice versa;
whereas supporters of the second criterion believe that longer wires are
more difficult to lay out, and hence should be attempted first.

The topic of net ordering is controversial. There are several arguments
against the importance of even investigating an optimal ordering. First,
there are n! possible orderings for connecting n nets. Heuristics aimed at
obtaining sub-optimal ordering are disappointing and no effective means
i1s known to compare the goodness of orderings. Secondly, an experiment
has been conducted to show that the performance of a router is almost
independent of the order in which connections are attempted [1]. In spite
of this, it is possible to find examples where one particular ordering leads
to a higher completion rate than the other.

Whatever scheme is used to order the nets, since the actual length of
the net is not known until routing is complete, a technique to estimate the
net length must be adopted. One possibility is to define the net length as
the length of the minimum rectilinear Steiner tree (MRST). A sub-optimal
but quick constructive algorithm that can be used for MRST generation
and net length calculation is given in Figure 5.23.

The third ordering criterion targets the performance of the circuit. In
high speed circuits it may be required that the lengths of all nets must be
less than a certain critical value. If this is the case then it may be preferable
to check during the ordering step for those wires whose pin-pairs are too far
apart. These wires may have to be laid out early in the process to ensure
that their actual lengths will meet the required constraints.
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Algorithm Generate_ M RST
Begin
For each n-terminal net Do
Find the pair of terminal with shortest rectilinear distance Ly;
Construct a shortest rectilinear path (MRST);
k+1;
L+ Lo;
Repeat
Find terminal k& with shortest distance L; to MRST;
Connect 1t to MRST by a shortest path;

L+ L+ Lg;
ke—k+1;
Until all terminals are connected;
EndFor
End.

Fig. 5.23 Constructive algorithm for MRST generation.

ax a
a b a b
b b

|
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Fig. 5.24 (a) Optimal routing of a prevents routing of b. (b) Optimal routing of
prevents routing of a. (c) Non-optimal routing of nets a and b.

Next, an example which illustrates a condition where net ordering is of
no help is presented. Refer to Figure 5.24. It i1s assumed that the router
generates a shortest path with least amount of bends. If net a is connected
first (Figure 5.24(a)) it blocks net b and if net b is connected first (Figure
5.24(b)) it blocks net a. A solution in which both nets a and b are routed
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is given in Figure 5.24(c). Note that the connectivity here is made by
non-optimal paths.

5.6.3 Rip-up and Rerouting

For most complex layouts, it is usually the case that the detailed router
fails at connecting all pins required by the netlist. There are two general
approaches to this problem; (1) the manual approach, where an expert
human designer attempts to complete the connection left by the router,
and (2) the automatic procedure, which consists of identifying the congested
routing area that caused the unconnects, ripping-up a selected number of
connections, then rerouting them.

The manual strategy is very time consuming and impractical for designs
of reasonable complexity. The automatic procedure can be interactive or
activated in batch-mode. However, the interactive procedure is more at-
tractive and is the one most widely used. It consists of two steps: (1) iden-
tification of bottleneck regions— completed connections going through these
regions are responsible for the unconnects, therefore a selected number of
these completed connections are ripped off using some built-in criteria or
user input; (2) the blocked connections are routed, and finally the ripped-up
connections are re-routed.

These steps are repeated until all connections are completed, or a
time limit is exceeded. In this latter case a human designer intervenes
to complete the few remaining unconnects. Numerous papers are avail-
able which report similar as well as other more elaborate strategies [10; 9;

18].

5.6.4 Power and Ground Routing

Routing of power and ground nets requires special consideration. First,
power and ground nets must be routed preferably on a single layer. This
1s because parasitic capacitance and resistance of contact-cuts and vias are
high. Second, power and ground nets are much wider than other nets
because they carry larger amounts of current. As a consequence of their
varying widths routing of these nets cannot be done with an equidistant
grid. If an equidistant grid is used then the program must be modified to
accommodate variable width routing.

In determining the widths of power net segments, the power index for
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each module indicating its power consumption is used. The process of rout-
ing can be achieved in three steps: (1) planar topological representation of
power nets, (2) computation of widths of net segments, and (3) embedding
of segments into the routing layer.

1. Planar topological representation of nets: In this step, each net is rep-
resented by a tree. Branches of the tree correspond to net segments. For
power and ground net routing the minimization of total length of a net is
not the objective but rather the planar routing of both the power supply
and ground in a single layer. There are two conditions that guarantee a
planar routing of two nets in one layer:[20]

(a) Each macro cell must have only one connection point for each of the
power and ground nets.

(b) The cells must be spaced such that both nets may be routed next to any
macro cell edge.

0 O 0 0
0 O 0 10
| —
GND Vvdd
H - W =
n = N | = 1 o
0 O 0 0
(@) (b)

Fig.5.25 (a) Topological trees for power and ground nets. (b) Actual widths of routing
layers.

Two trees corresponding to two nets (power and ground) are generated,
one from the left edge of the chip and the other from the right edge. The
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two trees are inter-digitated into each other. The routing order of termi-
nals influences the tree topology. By selecting a routing order based on the
horizontal distance of each connecting point from the edge of the chip, both
nets are grown simultaneously. This is illustrated in Figure 5.25(a).

2. Computation of widths of net segments: Once a planar solution has
been found, the wire widths need to be determined based on the electrical
demands of the circuit. Given the trees of both power and ground nets as
determined above, and the power consumption of each module as indicated
by its power index, the widths of each segment can be calculated depending
on local current values as follows. Each segment corresponding to a branch
in the tree is weighted by the total supply currents of those modules which
are connected to the root via this segment. This calculation can be based
on a simple tree analysis starting at the power input pad of the chip as
the root of the tree. Then the necessary width of the segments are scaled
proportionally to the calculated individual current values.

3. Embedding of segments into the routing layer: Given the width of all
segments of both nets as calculated before, the embedding into the routing
layer is done by widening each line segment to a rectangle of proper width.
The translation of the topology into actual widths and the embedding of
the segments into the routing layer is illustrated in Figure 5.25(b).

5.7 Other Approaches and Recent Work

The maze running technique explained in this chapter is very general and
can be modified to route complex circuits with obstacles. It has been suc-
cessfully used in two routers, Mighty and Beaver. The Mighty router
is based on an incremental routing strategy [22]. It employs maze run-
ning but has the special feature of modifying the already-routed nets. The
cost function penalizes long paths and those which require vias. Rip-up
and rerouting may be necessary to complete routing. The other recently
developed heuristic that uses maze routing is Beaver [8]. The algorithm
consists of three successive parts: corner routing, line-sweep routing and
magze routing. A priority queue is used to determine net ordering. In ad-
dition, track control is employed to prevent routing conflicts. The maze
routing technique has also been used in a routing phase of Magic’s layout
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system [19].

In the past decade new heuristics for routing standard-cells and gate-
array methodologies have been developed. They are known as channel rout-
ing and switchbox routing heuristics. We shall discuss these in Chapter 7.
The other type of routers that have been used in PCB design are commonly
known as pattern routers. The idea of pattern router is to enumerate all
possible patterns according to cost functions and then to determine the
best path for a two-terminal net [24; 4]. This strategy has been combined
with others to develop template based routers [25].

Recently there has been an increased activity in the development of
special-purpose hardware architectures for solving a number of design au-
tomation problems. These special purpose hardware processors are com-
monly known as hardware accelerators, backend processors, and special pur-
pose engines.

A rectangular grid has a natural mapping into a two-dimensional array
of processors. Specialized array processor machines dedicated to the im-
plementation of shortest path grid routing algorithms have been reported
in literature [6; 14; 7]. A class of two-dimensional SIMD (single instruction
multiple data) array processors for implementation of grid routing algo-
rithms was proposed by losupovici [15]. More general array processors
which can be programmed to implement routing along with other DA tasks
have also been reported [5; 13; 2; 21].

5.8 Conclusions

In this chapter we examined two types of grid routers, the maze router
and line-search router. The maze router uses a regular physical grid, and
line search routers use an imaginary grid. The basic grid router that uses
Lee algorithm has a large memory requirement and also may require a
large amount of running time [16]. Techniques to reduce the running time
and memory requirement were discussed in detail. Other algorithms that
modify the filling phase of Lee algorithm to reduce the running time are
Hadlock’s algorithm and Soukups’s algorithm. Their techniques were illus-
trated with examples. Line search algorithms overcome the high memory
requirement of Lee algorithm. Two line search heuristics, one due to Mikami
and Tabuchi [17], and the other due to Hightower [12], were presented.
Maze running algorithms guarantee finding a shortest path if one ex-
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ists, even if it is the most expensive in terms of the number of vias. Line
search algorithms guarantee finding a path if one exist; (not necessarily the
shortest). But they may require several backtracks for all dead ends that
are reached. In practice however line search algorithms can be significantly
faster than maze running algorithms.

The major advantage for which maze running algorithms are preferred
over line search algorithms is that the former are grid-cell oriented. This
gives more flexibility to the weighting of routing area of the chip. This is of
extreme importance since proper weighting of cells enables finding superior
routes.

Both the maze router and line-search router connect a single net at a
time. Modifications to the basic routing technique to accommodate multi-
point nets, and use of multi-layers were also presented. Other issues such
as multi-layer routing, power and ground routing, and issues related to
ordering for successful completion of routing were also examined.

5.9 Bibliographic Notes

The most popular and widely referenced algorithm for maze routing is Lee
algorithm [16]. Several modifications to Lee algorithm have been presented.
Modifications to labeling during the filling phase of the Lee algorithm were
proposed by Akers [3].

Modifications, which add breadth and depth to reach the target while
searching in a maze are due to Hadlock and Soukup respectively [11; 23].
Line search algorithms have been successfully applied for automating PCB
design and also in routers for VLSI designs. The two line search algorithms
discussed in this chapter are due to Hightower and Mikami-Tabuchi [12;
17].

Exercises

Exercise 5.1 S and T are two points on a routing grid, as shown in Figure
5.26. The horizontal separation between S and T is m units, and the vertical

separation is n units. Show that there are R(m,n) = (mntr_lzl) ways of
routing a two-pin net from .S to 7. Assume that only vertical and horizontal

routing is permitted, and assume that there is a single routing layer. What
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happens to R(m,n) when m = n? Plot R(n,n) for n = 2,4,8,16,--- and
write your conclusion. Derive a close form expression for R(n,n) by using
Stirling’s approximation for n!.

Exercise 5.2 In the above problem, if we permit 45° and 135° routing
also, how many ways are there to route a net from .S and 77

Fig. 5.26 Routing grid for Exercise 5.1.

Exercise 5.3 The label clearing phase of Lee algorithm is as complex as
the filling phase. Suggest a technique to speed up this process.

Exercise 5.4 (*) Programming Exercise: Assume a maze routing pro-
cedure M ROUTE?2 that can route a given two-pin net. The inputs to
M ROUTE?2 are the source and destination points in the maze. The proce-
dure returns SUCCESS or FAILU RE depending on whether or not it can
find a route. Upon success, the procedure updates a global data structure,
MAZE, by writing the net number in each cell used by the route found by
MROUTE2.

Construct a procedure which uses M ROUTE2 to route a k-pin net,
k> 2.

Exercise 5.5  (*) Explain how you will use the maze router explained in
this chapter to handle multiple routing layers.

Exercise 5.6  (*) How will you extend the maze router explained in the
chapter to handle 45° and 135° paths?

Exercise 5.7 Suppose that n nets, numbered 1,2, n are to be routed
one after another using a maze router. Which of the following strategies do
you think will be most successful in completely routing all the nets?
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1. Order the nets randomly.
2. Sort the nets in the descending order of their length, i.e., longest net first.
3. Sort the nets in the ascending order of their length, 1.e., shortest net first.

Exercise 5.8 Continuing the above exercise, give an example where the
longest net first strategy succeeds but the shortest net first strategy fails.

Exercise 5.9 1In a certain technology that allows two-layer routing, the
width of the wires that are used to connect pins is 3 units. The minimum
separation to be maintained between wires is 4 units. The size of a contact-
cut 18 3 x 3 units and it is required that metal must extend beyond the cut
on all sides by at least 1 unit. What must be the size of a grid unit in order
to implement a maze router in this technology?

Exercise 5.10  The number of grid cells marked during the filling process of
Lee algorithm depends on the distance between the points to be connected.

1. Suppose that the distance between the two points to be interconnected is
L. Develop an expression giving the number of marked cells as a function
of L. You may make any necessary assumptions.

2. With the help of the expression you developed in the first part of this
question prove that the double fanout method will be faster than the
regular method where fan-out is done only from the source node.

Exercise 5.11  What is the percentage saving in memory when the con-
ventional filling sequence as proposed by Lee is modified to the sequence
1-1-2-2-1-1-2-2- .. .7 Assume that the layout contains 100 cells each of size
8 x 8 grid units and the average routing area is twice the area occupied by
the cells. Clearly state any assumptions made.

Exercise 5.12  Given two points (21, y1) and (22, y2) to be connected using
Lee algorithm, write the pseudo code of a procedure that will assign one
of the points as the source and the other as the target. Remember that
proper selection of starting point affects the number of grid cells filled and
thus the speed of the algorithm. What other information is required by
your procedure?

Exercise 5.13 (*) Programming Exercise: Design and implement a
two-layer maze router. Use the router to experiment with different ordering
schemes.
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Exercise 5.14  Fill the grid given in 5.27 with weights equal to the number
of usable grid segments as explained in Section 5.4.4, and find the least
weighted path between S and T

Fig. 5.27 Grid of Exercise 5.14.

Exercise 5.15  (*)

(1)

The labeling procedure given in Section 5.4.4 and illustrated in Example
5.3 does not run as fast as Lee algorithm, Why?

Determine the time complexity of the algorithm to fill a weighted grid as
discussed in Section 5.4.4.

Show that using priority queues for storing the set of latest cells will
result in O(N?log N) running time.

Another implementation to find desirable paths is not to obtain the min-
imum value of latest cell at each step but to continue labeling until no
cell on the wavefront receives a smaller value. Show that the worst case
running time in this case is O(N?). This implementation seems to be
more efficient than the one of the previous question with priority queues
unless cell weights are distributed over a wide range. Is this true?

Exercise 5.16  Derive Equation 5.1.

Exercise 5.17  Fill the grid of Figure 5.28 using the technique suggested
by “Hadlock” for the minimum detour router.

Exercise 5.18 Write an algorithm that uses two stacks to manage the
efficient filling of the grid for Lee algorithm. One stack always contains the
locations of those cells on the wave-front to be examined and the second
stack contains the cells that will constitute the wave-front in the next filling

phase.
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Fig. 5.28 Grid of Exercise 5.17.

Exercise 5.19 Modify the algorithm of the previous problem to perform
filling using detour numbers to implement the Hadlock router?

Exercise 5.20 (*) Path retracing in the Hadlock algorithm is not as
straightforward as in the case of Lee algorithm. Why? Suggest a suit-
able data structure to store the filled values and write the pseudo-code of
the procedure that will generate the retraced path efficiently.

Exercise 5.21  In the Mikami-Tabuchi procedure, if a level ¢ trial line orig-
inated from the source intersects a level j trial originated from the target,
what is the number of bends (vias) of the generated path?

Exercise 5.22  Discuss the merits and drawbacks of routers based on the
magze running algorithm as compared to those that use the line-search al-
gorithm.

Exercise 5.23  For the implementation of line-search algorithm, assume a
linked list data structure to manage lines. Let each line segment be defined
by 3 integers to specify the (#,y) coordinates of its two end points. The
lines are sorted according to their (x,y) coordinates, and the co-horizontal
(co-vertical) lines are grouped together. For each y (z) coordinate there
is a pointer to the first horizontal (vertical) line on that coordinate and
for every line there is a pointer to the line that comes next. (The lines
generated while searching a connection can also be stored in a temporary
storage with a similar data structure).

For an N x N grid plane show that the memory requirement is of order
O(N?) and running time is of order O(N?%).
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Fig. 5.29 Maze of Exercise 5.24.

Exercise 5.24  Consider the maze shown in Figure 5.29. There are 5 two-
point nets to be routed. The nets are numbered 1, 2, --- 5. Assume that
a single layer is available for routing. Suppose that the maze router is used
to route the nets in the order 1, 2, 3, 4, 5. Is it possible to complete the
routing? Assume that the router visits adjacent cells in the order W, E,
N, S.

In what order should the nets be routed to complete the routing using
the maze router?

Exercise 5.25 What restrictions are usually placed when routing
power/ground nets on general cells?

Bibliography

[1] L. C. Abel. On the ordering of connections for automatic routing. [EEFE
Transactions on Computers, C-21:1227-1233, November 1972.

[2] H.G. Adshead. Employing a distributed array processor in a dedicated gate
array layout system. IFEF International Conf. Circuits and Computers,
pages 411-414, September 1982.

[3] S. B. Akers. A modification of Lee’s path connection algorithm. I[EEFE
Transactions on FElectronic Computers, pages 97-98, February 1967.

[4] T. Asano. Parametric pattern router. Proceedings of 19th Design Automation
Conference, pages 411-417, 1982.

[5] T.Blank et al. A parallel bit map processor architecture for DA algorithms.
Proceedings of 18th Design Automation Conference, pages 837845, April
1981.

[6] M. A. Breuer and K. Shamsa. A hardware router. J. Digital Systems,
4(4):393-408, 1981.

[7] C.R. Carrol. A smart memory array processor for two layer path finding. In



[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]
[24]

[25]

Bibliographic Notes 277

Proceeding of Second Caltech Conference on VLSI pages 165-195, January
1981.

J. P. Cohoon and L. H. Patrick. Beaver: A computational-geometry-based
tool for switchbox routing. IFEF Transactions on Computer-Aided Design,
CAD-7(6):684-696, June 1988.

W. A. Dees and P. G. Krager. Automated rip-up and reroute techniques.
Proceedings of 19th Design Automation Conference, pages 432—-439, 1982.
W. A. Dees and R. J. Smith. Performance of interconnection rip-up and
reroute strategies. Proceedings of 18th Design Automation Conference, pages
382-390, 1981.

F. O. Hadlock. A shortest path algorithm for grid graphs. Networks, 7:323—
334, 1977.

D. W. Hightower. A solution to line-routing problem on the continuous
plane. Proceedings of 6th Design Automation Workshop, pages 1-24, 1969.
S. J. Hong and R. Nair. Wire Routing Machines — New Tools for VLSI
Design. Proceedings of IEFE, 71:57-65, Jan 1983.

A. lTosupovici. Design of an iterative maze router. In Proceeding of Interna-
tional Conference on Circuits and Computers, pages 908-911, 1981.

A. Tosupovici. A class of array architectures for hardware grid routers. [FEF
Transactions on Computer-Aided Design, CAD-5(2):245-255, April 1986.
C. Y. Lee. An algorithm for path connection and its application. IRE
Transactions on Flectronic Computers, EC-10, 1961.

K. Mikami and K. Tabuchi. A computer program for optimal routing of
printed circuit connectors. Proceedings of IFIP, HA7:1475-1478, 1968.

T. Ohtsuki, M Tachibana, and K. Suzuki. A hardware maze router with
rip-up and reroute support. Proceedings of I[CCAD, 1985.

J. K. Ousterhout et al. Magic: A VLSI layout system. Proceedings of 21st
Design Automation Conference, pages 152-159, 1984.

H. Rothermel and D. A. Mlynski. Computation of power supply nets in
VLSI layout. Proceedings of 18th Design Automation Conference, pages 37—
42, 1981.

R. A. Rutenbar et al. A class of cellular architecture to support phys-
ical design automation. [FEF Transactions on Computer-Aided Design,
CAD(3):264-278, Oct 1984.

H. Shen and A. L. Sangiovanni-Vincentelli. Mighty: A rip-up and reroute
detailed router. Digest of Technical Papers, ICCAD, pages 2-5, November
1986.

J. Soukup. Fast maze router. Proceedings of 15th Design Automation Con-
ference, pages 100-102, 1978.

J. Soukup and J. Fournier. Pattern router. In Proceeding of IEFE ISCAS,
pages 486-489, 1979.

A. Srinivasan and N. Shenoy. Template based pattern router. EFCS244
Class Report, University of California, Berkeley, 1988.



278 Grid Routing



Chapter 6
Global Routing

6.1 Introduction

The two principal steps of physical design are placement and routing. Place-
ment consists of assigning the cells of the circuit to fixed locations of the
chip, while routing consists of interconnecting the cells consistently with
the circuit netlist. All of the mathematical models of the placement prob-
lem gave rise to NP-hard problems. It is for this reason that heuristic
approaches as well as hierarchical decomposition are used to find a solution
(usually sub-optimal) to the placement problem.

Similarly, all of the mathematical formulations of the routing problem
led to NP-hard problems. Here also routing is solved in a stepwise fashion as
a hierarchy of easier problems, which are sometimes polynomially solvable,
or are small enough that a full enumeration approach is practical. The
main objective is to quickly find a solution which satisfies the constraints.
This decomposition is of course at the expense of global optimality.

The accepted practice to routing consists of adopting a two-step ap-
proach: global routing is performed first, then followed by detailed routing.
The objective of the global routing step is to elaborate a routing plan so
that each net 1s assigned to particular routing regions, while attempting
to optimize a given objective function (usually an estimate of the overall
wiring length). Then, detailed routing takes each routing region and, for
each net, particular tracks within that region are assigned to that net. In
the previous chapter, we described one class of routing algorithms, that
is maze running. This routing technique was described in the context of
detailed routing. However, as we will see in this chapter, it is also used for
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global routing.

Global routing approaches belong to four general categories: (1) se-
quential approach, (2) mathematical programming approach, (3) stochastic
iterative approach, and (4) hierarchical approach.

For the sequential approach, nets are selected one at a time in a spe-
cific order and routed individually. The routing space may or may not be
updated after the routing of each net. When the available routing space
i1s updated after each net, the approach is order dependent, otherwise it is
order independent. For the mathematical programming approach, global
routing is formulated as a 0-1-integer optimization program, where a 0-1
integer variable is assigned to each net and each possible routing tree of
that net. The stochastic iterative approach, such as simulated annealing,
iteratively updates current solution by ripping up and rerouting selected
nets, until an acceptable assignment of the nets is found. Hierarchical ap-
proaches can be bottom-up or top-down. For the bottom-up approach, grid
cells are clustered into bigger cells until the entire chip is seen as a super-
cell. At each level of the hierarchy, global routing is performed between the
individual cells considered for grouping. For the top-down approach, the
hierarchy proceeds from super cells to cells, until each cell is an individual
grid cell or a small group of individual grid cells. The top-down approach
is usually guided by the structure of the design floorplan.

6.2 Cost Functions and Constraints

Global routing is slightly different for different design styles. For the gate-
array design style the routing regions consist of horizontal and vertical
channels. Channels are rectangular regions with pins on the opposite sides
of the region. The available routing capacities within the channels are fixed.
A feasible global routing solution should not exceed the channel capacities.
Among possible feasible solutions, the one that optimizes the given cost
function is selected. The cost function is usually a function of the global
routes of all nets, and/or function of overall performance (interconnect
delays on the critical paths). Since the array has a fixed size and fixed
routing space, the objective of global routing in this case is to check the
feasibility of detailed routing.

For the standard-cell design style the routing regions are horizontal
channels with pins at their top and bottom boundaries. Global routing
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consists of assigning nets to these channels so as to minimize channel con-
gestion and overall connection length. Interchannel routing is provided by
feedthrough cells inserted within the cell rows. Here, the channels do not
have pre-fixed capacities. Channels can be made wider to achieve routabil-
ity.

In building-block design style the cells are of various shapes and sizes.
This leads to irregular routing regions. These routing regions may be de-
composed into horizontal and vertical channels, and sometimes switchboxes
(rectangular regions with pins on all four sides). The identification of these
routing regions is a crucial first step to global routing. Here again, the
routing regions do not have pre-fixed capacities. For both the standard-cell
and building-block layout styles the objective of global routing is to min-
imize the required routing space and overall interconnection length while
ensuring the success of the following detailed routing step. Therefore the
cost function is a measure of the overall routing and chip area. Constraints
could be a limit on the maximum number of tracks per channel and/or
constraints on performance.

An important problem we are faced with in all design styles is the iden-
tification of the shortest set of routes to connect the pins of individual nets.
For two-pin nets, the problem is trivial and amounts to finding the short-
est path connecting the two pins. For multi-pin nets, the problem consists
of finding the shortest Steiner tree spanning all pins of the net. Steiner
tree problems are generally NP-hard. However, there are several heuristic
algorithms which find reasonable short Steiner trees.

6.3 Routing Regions

Routing regions definition consists of partitioning the routing area into
a set of non-intersecting rectangular regions called channels. Two types
of channels may arise: horizontal and vertical. A channel is horizontal
(vertical) if and only if it is parallel to the x- (y-) axis. In most cases,
horizontal and vertical channels can touch at T-intersections (Figure 6.1).
The channel representing the stem of the T is called the crosspiece and the
other is called the base.

Channel definition and ordering is an essential part of layout design.
It is the knot that ties placement, global routing, and detailed routing
together.
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Base channel —
(Crossbar of the T)

T

Crosspiece channel
(Stem of the T)

Fig. 6.1 T-intersection.

6.3.1 Routing Regions Definition

In a building-block layout style, three types of channel junctions may occur:
an L-type, a T-type, and a +-type. L-type junctions occur at the corners
of the layout surface. For such junctions, the ordering does not have an
impact on the final detailed routing. For T-type junctions, the stem channel
(crosspiece) must be routed before the base channel (the crossbar). The +-
type junctions are more complex and require the use of switchbox routers.
On the other hand, L-type and T-type channels can be completely routed
using channel routers. This is of extreme importance since channel routers
are the best and most widely investigated routing approaches. Therefore 1t
1s advantageous to transform all +-type junctions into T-type junctions so
that a channel router can be used for the following detailed routing step.
However, this conversion should be carried out carefully so as not to create
cycles in the corresponding order constraint graph®.

In the following paragraphs we describe a conversion approach due to
Cai and Otten [2]. This approach assumes that the layout has a slicing
structure. Since a general building-block layout is not necessarily a slicing
structure, the authors also give a polynomial time algorithm to convert a
general layout into a slicing structure [2]. Slicing structures are preferred
topologies because they can be internally represented using a simple and
flexible data structure (the slicing tree). Moreover, such structures lead to
computationally efficient manipulation algorithms.

*The order constraint graph (OCG) indicates the order of performing the detailed routing
of the individual channels. It is Discussed later in this section.
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Criteria for Channel Crossing Conversion

There are two ways of converting a +-junction into a T-junction: (1) ver-
tical conversion where the horizontal channel is split, and (2) horizontal
conversion where the vertical channel is split (see Figure 6.2). This conver-
sion must be carefully performed so as to avoid creating cycles in the order
constraint graph. This is illustrated in Figure 6.3.

(a) (b) ©

Fig. 6.2 Conversion of cross junctions. (a) Cross junction; (b) Horizontal conversion;

(c) vertical conversion.

(@) (b) ©

Fig. 6.3 Conversion of cross-intersections. (a) A channel configuration. (b) A cycle-free

conversion. (c) A conversion introducing cycles.

After converting all cross-junctions into T-channels, the channel order-
ing constraints are captured by a directed graph called the order constraint
graph (see Figure 6.4). Another positive property of slicing structures is
that, a slicing structure is guaranteed to have at least one conflict-free
channel structure, i.e., a cycle-free order constraint graph.

To minimize the negative side-effects that channel conversions might
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(a) (b)

Fig. 6.4 Order constraint graph. (a) Channel structure. (b) Its corresponding order
constraint graph.

have on the wireability of the layout as a whole, the following two criteria
are used [2]:

1. Critical path isolation criterion: The objective of this criterion is to pro-
tect the critical paths of the channel position graphs (see Chapter 3) from
neighboring channels. Recall that a vertical (horizontal) channel position
graph is a bipartite graph representing the vertical (horizontal) adjacen-
cies between the blocks and the routing channels. The vertical (horizontal)
channel position graph has a vertex for each block and each horizontal (ver-
tical) channel. There is an edge from vertex b to vertex ¢ if and only if the
bottom (right) side of block & is bordering channel ¢. Each block-vertex
in the horizontal (vertical) channel position graph is assigned a positive
weight indicating the width (height) of the corresponding-block. Also, each
channel vertex is assigned a positive weight indicating the width of the
corresponding channel. The length of the critical path in the vertical (hor-
izontal) position graph is equal to the height (width) of the design.

The critical path criterion attempts to perform the conversion in the
direction of the critical path. This is in order to make neighboring channels
perpendicular to the direction of the critical path as short as possible, thus
splitting them. This is illustrated in Figure 6.5. Such criterion will also
lead to a reduction in the widths of the channels along the critical paths,



Routing Regions 285

thus, reducing the overall layout size.

Critical path Critical path c
. c ,
a . L | a,
—

by

Fig. 6.5 Illustration of the critical path criterion.

2. Major flow criterion: Channel conversion is carried out after global rout-
ing. Therefore, the number of wires flowing across all channels is known
before the conversion process starts. In order to minimize the number of
wire bends across channels, among the two channels of the cross-junction,
we split the thinner of the two, i.e., the channel with the lesser number of
flowing nets (see Figure 6.6).

Fig. 6.6 Illustration of the major flow criterion. Channel b is assumed to be having
more nets than channel a.

For each cross-junction, the above two criteria are used to compute a
positive gain function. This function is a bonus rewarding conversions of
cross-junctions that favor the critical path isolation and major flow criteria.
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Therefore, for each cross-junction adjacent to a channel segment that is on
some critical path, a bonus is added to the conversion in the direction of
the path. Furthermore, for each cross-junction, a bonus is added to the
direction of the channel with the largest wire flow. For all other cases, a
zero bonus is assigned to the crossing conversion in either direction.

The optimal channel structure is the one with the largest sum of crossing
conversion bonuses.

Conversion Algorithm

The algorithm assumes that the layout has already been converted to a
slicing structure. A bipartite directed graph called the slicing graph is
constructed. The slicing graph has a vertex for each candidate slice-line
and a vertex for each slice. There is a directed edge from a slice-vertex
to each of its candidate slice-line vertices. There is a directed edge from a
slice-line vertex to the two resulting slice vertices (see Figure 6.7).

Slice vertex

Slice line vertex

Fig. 6.7 A generic slice graph.

Cai and Otten made the clever observation that we need not have a
vertex for each possible slice-line [2]. This is due to what they referred to
as the locality property.

The preferred conversion direction of a cross-junction is the direction
with the maximum bonus. When both directions have the same bonus,
then both are equally good choices, and both should be considered.

Suppose that for a particular slice there is a slice-line which converts all
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crossings on that line in their preferred directions (for example slice-line kg
of Figure 6.8). Such a slice-line is called an optimal slice-line. Moreover,

D v, E 71 H
h3
b 4
¢ 7 [
c G
hy )
A
v e
B F
v3

Fig. 6.8 Channel conversion example.

if an optimal slice line is selected and the resulting two channel definition
problems are optimally solved in the two subslices, then the combined so-
lutions constitute an optimal solution to the original slice. Therefore, to
get an optimal solution to the channel definition problem (corresponding
to the entire layout), we need to enumerate only decision sequences (trial
slice-lines) that have the potential of leading to optimal solutions. This
drastically reduces the number of enumerated decision sequences. This 1s
similar to the dynamic programming algorithm strategy, where the solu-
tion to the problem is arrived at as a result of a sequence of decisions [10].
The dynamic programming algorithm is based on the optimality principle,
which we state next, in the context of the channel conversion problem.

Optimality Principle

Let [dy,ds, ..., d;, ..., dg] be a sequence of decisions with respect to the first
slice-line, second slice-line,- - - k*" slice-line. If di — to — dy is an optimal
sequence of k consecutive decisions, then dy —to—d; s an optimal sequence
of decisions and d; —to—dj; s also an optimal decision sequence with respect
to the state (the subslices) resulting from the dy —to—d; decision sequence.

The consequence of the above discussion is that the slice graph should
be constructed in a depth first manner, starting at the root (representing
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the entire layout), and making a decision at each slice vertex as to the
slice-lines that should be tried with that particular slice.

The slice graph will have a single source vertex (with no incoming edges)
corresponding to the entire layout. The graph will have exactly n sink ver-
tices (with no outgoing edges), where n is equal to the number of layout
blocks (see Figure 6.9). The construction of the slice graph will be illus-

trated later with the help of an example.

ABCDEFGH 4

Fig. 6.9 The slice graph corresponding to the layout of Figure 6.8.

Once the slice graph has been constructed, the algorithm proceeds with
a breadth first traversal of the graph, from the sinks to the source. Dur-
ing the course of this traversal, the maximum bonus of each slice vertex
is computed. The maximum bonus corresponding to a slice s 1s defined

recursively as follows [2]:

Bonus(s) = H}ax{Bonus(ls) + Bonus(sy) + Bonus(sa)} (6.1)

where s; and s, are the subslices resulting from cutting slice s with
slice-line I (see Figure 6.7).
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Once we reach the source vertex, the channels that lead to the maximum
bonuses are identified by tracing back the slice graph from the source to
the sinks. The steps of the algorithm are summarized in Figure 6.10.

Algorithm Channel_Conversion

Begin

Determine the conversion bonuses of all channel crossings;
Determine the bonus of each slice-line;

Construct the slicing graph;

e N =

For each sink vertex v Do
Bonus(v) < 0
EndFor;
5. Traverse the graph sinks-to-source, computing along the way
the maximum bonus of each slice vertex;
6. Traverse the graph source-to-sinks, selecting along the way
the slice-lines that incurred maximum bonuses;
7. Output the selected slice-lines;
End.

Fig. 6.10 Channel conversion algorithm.

Example 6.1 Suppose we are given the slicing floorplan of Figure 6.8.
The floorplan has eight blocks identified with the letters A to H, and three
cross-junctions ¢1, cs, and cs. Let ¢;® and ¢;¥ denote the horizontal and
vertical conversions of cross-junction ¢;, ¢ = 1,2, 3. ¢; 1s said to be vertically
(horizontally) converted if the horizontal (vertical) channel is split into left
and right (top and bottom) sub-channels. Assume that the three cross-
Jjunctions have the following bonuses:

Bonus(¢¥) = 0;  Bonus(c?) = 2;
Bonus(cy) = 0;  Bonus(ck) = 1;
Bonus(cy) = 1;  Bonus(ck) = 0;
We would like to identify the channel structure corresponding to a max-
imum bonus conversion of all three cross junctions.

SoLuTioN The slicing structure of Figure 6.8 assumes that the cross-
ings are initially converted in their preferred directions. The slicing
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graph corresponding to this floorplan is given in Figure 6.9, where the
slice vertices are represented by boxes and the slice-lines by circles. The
number next to each vertex is the maximum bonus corresponding to
the slice vertex or slice-line. The sinks (vertices A to H) are assigned
zero bonuses.

The graph is constructed as follows. Starting at the source vertex
ABCDEFGH, we find that there is only one optimal slice-line h3. Line
hs converts the cross junctions ¢; and co in their preferred directions.
On the other hand, the line v, » = v1Uvs is not optimal since it does not
convert the cross-junction ¢y into its preferred direction. The subslices
resulting from cutting the original floorplan with slice-line ks are [DEH]
and [ABCFG]. For slice [DEH], there are two slice-lines of equal merit
(both have a zero bonus). Therefore, both should be included in the
slice graph. However, the other subslice [ABCFG] has only one optimal
slice-line w3, with a bonus equal to 1. The other slice-line, vy, is not
optimal, and therefore is not included in the graph. This process is
continued until the entire graph is constructed (see Figure 6.9).

Now that the slice graph has been constructed, we first determine the
bonuses of all slice-line vertices. The bonus of a horizontal (vertical)
slice-line is equal to the sum of all horizontal (vertical) conversion
bonuses of the cross-junctions traversed by that line. Therefore, for
our example, the slice-line bonuses will be,

Bonus(hy) = Bonus(hs) = 0;
Bonus(hg) = Bonus(c?) + Bonus(ck) = 3;
Bonus(vy) = Bonus(vy) = Bonus(vy) = 0;
Bonus(vs) = Bonus(c}) = 1.

The next step is to traverse the slice graph from the sinks to the source,
and compute the maximum bonuses of the intermediate slice vertices.
Proceeding this way, we get,

Bonus(EH) Bonus(vy) + Bonus(E) + Bonus(H) = 0;

Bonus(DE) = Bonus(vy) + Bonus(D) + Bonus(FE) = 0;

Bonus(DEH) = max {Bonus(va) + Bonus(D) + Bonus(EH);
Bonus(vy) + Bonus(DE) + Bonus(H)} = 0.

The maximum bonuses of the remaining slice vertices are computed in
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a similar way and are as follows,

Bonus(BC) = 0, Bonus(F'G) =0, Bonus(ABC) =0,
Bonus(ABCDFG) = 1, and Bonus(ABCDEFGH) = 4;

The last step of the algorithm is to proceed from the source to the sinks
in order to determine the slice-lines that contributed to the maximum
bonuses. For this example, ks is selected first. Then proceeding down
to subslice DEH, we have two equally good choices, either line vs or
line v4. Suppose we randomly select slice-line v4. Then, the remaining
slice lines are vs, vs, vy, hy, and finally hs. Hence, the initial slicing
structure 1s the optimal one. The order constraint graph corresponding
to these channels is given in Figure 6.11. Notice that this constraint
graph 1s cycle free.

Géﬁ ©,

Fig. 6.11 Order constraint graph corresponding to the channels of Figure 6.8.

Channel Ordering

Once all nets have been assigned to individual channels, the final step is to

assign the nets to individual tracks within every channel, i.e., to perform

detailed routing. The channels are usually routed one at a time in a specific

order. Channel ordering is an important intermediate step executed prior

to detailed routing and after global routing. This step is needed to specify
to the detailed router which channel to route first, which second, and which
last. Obviously, it is assumed that all routing regions are channels.

Channel ordering is an important final step of global routing. The



292 Global Routing

order in which channels should be routed is dictated by the fact that pin
locations must be fixed before performing detailed routing of that channel.
Therefore, of the two channels of a T-intersection, the crosspiece channel
must be routed before the base channel. This is for the following two
reasons [14]:

1. To route the base channel, we need the pin information at the T-junction,
i.e., the nets going through the junction. This necessitates that the cross-
piece be routed before the base.

2. When routing the crosspiece channel, we may realize that we need to
move blocks at the left (top) and/or right (bottom) of that channel to
provide for extra tracks. This will change the pin positions within the
base channel. This 1s another compelling reason to route the crosspiece
channel before the base.

To order the channels, an order constraint graph (OCG) is built as
follows. Each channel is represented by a vertex. There is an arc (4, 7) in
the OCG if and only if channels ¢ and j touch at a T-junction of which ¢ is
the crosspiece and j is the base (see Figure 6.4).

6.3.2 Routing Regions Representation

Once the routing regions have been defined, a routing graph is constructed.
There are three general approaches to construct this graph.

1. Use a channel connectivity graph G' = (V, E') where each channel is rep-
resented by a vertex. Each edge models the adjacency between the cor-
responding channels (see Figure 6.12). Vertices can be assigned weights
to indicate the number of nets passing through the channel and/or the
number of available tracks in that channel. Notice that the channel con-
nectivity graph is the order constraint graph when arc directions are
removed (compare Figures 6.4(b) and 6.12(b)).

2. Use a bottleneck graph G = (V, E) [14], where only switchboxes are
modeled by vertices. There is an edge (u,v) € E if and only if the
corresponding switchboxes are on opposite sides of the same vertical or
horizontal channel. These routing channels are called bottllenecks, hence
the name of the graph. The concepts of switchboxes and bottleneck
regions are illustrated in Figure 6.13(a) where switchboxes are shaded.
A building-block layout and its corresponding bottleneck graph are given
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Fig. 6.12 Channel connectivity graph. (a) A building-block layout. (b) Corresponding
channel connectivity graph.

in Figure 6.13(b). Notice that edges in this graph model horizontal and
vertical channels.

3. Use a grid graph G = (V, E') where vertices model global cells and edges
adjacencies between these cells (see Figure 6.14). For two layer-routing,
each vertex is assigned two numbers indicating the number of available
horizontal and vertical tracks.

6.4 Sequential Global Routing

Sequential global routing is the most widely used approach. This approach
is graph based. Once the routing channels have been identified and the cor-
responding routing graph constructed, global routing proceeds as follows.
For each net, we mark the vertices of the channel connectivity graph in
which the net has pins. Hence, routing the net amounts to identifying a
tree (preferably the shortest) covering those marked vertices.

If the net has pins in only two vertices, the problem reduces to finding
the shortest path between the marked vertices. If the graph is a grid-graph,
we can use Lee algorithm, which was explained in the previous chapter.
For all three graph models, we can use Dijkstra shortest path algorithm [9].
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Fig. 6.13 Bottleneck graph. (a) A building-block layout. (b) Corresponding bottleneck
graph.

A global cell

Fig. 6.14 Grid graph. (a) A two-dimensional grid. (b) Corresponding grid graph where
each global cell (3 X 2 grid cells) is modeled by a vertex.

Figure 6.15 gives a formal description of this algorithm.

However, in general, nets have three or more pins. Finding the shortest
paths covering three or more nodes 1s known as the Steiner tree problem.
This problem is of crucial importance to sequential routing and is the sub-
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Algorithm Shortest_Path(s, (i)

(* s: a source vertex, and G is a weighted graph *)
(* D;: estimated shortest distance from s to node ¢; *)
(* di;: weight of edge (7, j) (or distance between nodes i and j); *)
(* M: set of permanently marked nodes. *)
Begin

1. (* Initialization *)

M s

Dy « 0

ForEach j € V(G) Do D; <+ d,; EndFor;

2. (* Find the next closest node *)

Find a node i ¢ M such that D; = min;gy Dy;

M« MU{i);

If M contains all nodes then STOP;

3. (* Update markings *)

ForEach j ¢ M Do D; + min;(D;; D; + d;;) EndFor;

Goto 2;
End.

Fig. 6.15 Dijkstra’s shortest path algorithm.

ject of the following subsection.

6.4.1 The Steiner Tree Problem

Let M be the set of marked vertices. A tree connecting all vertices of M as
well as other vertices of G that are not in M is called a Steiner tree (refer
to Figure 6.16). A minimum Steiner tree is a Steiner tree with minimum
length.

The Steiner tree problem is NP-hard. Therefore, instead of finding a
minimum Steiner tree, heuristics are used to identify as quickly as possible
a tree of reasonable length not necessarily of minimum length. Most Steiner
tree heuristics use a modification of minimum shortest path algorithm of Di-
Jkstra or a variation of Lee’s maze routing algorithm. Usually the heuristic
proceeds in a greedy fashion as follows. First, one of the marked vertices
is selected. Then the shortest path to any one of the remaining marked
vertices is identified. Then, one of the remaining marked vertices is picked
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Fig. 6.16 Steiner tree corresponding to the net M = {a,b,c,d,e}.

and a shortest path from that node to any of the nodes of the partial tree

is identified. This process continues until all marked vertices have been

processed. A formal description of this heuristic is given in Figure 6.17.

Example 6.2

Apply the algorithm of Figure 6.17 on the grid-graph of Figure 6.16

and determine a minimum weight Steiner tree corresponding to the net

{a’

b,e,d,e}. Assume that all horizontal edges have weights equal to 2 and

all vertical edges have weights equal to 1.

SoLuTiON The vertices of the graph are {a,b ¢, d, e, W, X, Y, Z}. Ini-
tially V' = ¢ and the set of marked vertices M = {a,b,¢,d, e}. Suppose
vertex a is selected first. The shortest path to any of the remain-
ing marked vertices is m, 5 = [a, X,b]. Therefore, the sets V and M
become, V = {a, X,b}, and M = {c¢,d,e}. Assume that vertex c is
selected next. The shortest path from ¢ to any of the vertices of V is
e, x = [¢, X]. Therefore, the sets V and M become, V = {a, X, b, c},
and M = {d,e}. Assume that vertex d is selected next. The shortest
path from d to any of the vertices of V is 74, = [d, ¢]. Therefore, the
sets V and M become, V = {a, X, b, ¢, d}, and M = {e}. Finally vertex
e 18 selected last. The shortest path from e to any of the vertices of V' is
Te,c = [€,¢]. Therefore, the sets V and M become, V = {a, X, b,¢,d, e}
and M = ¢. Hence, the Steiner tree identified by the algorithm has
the following edges, (a, X), (X,b), (X, ¢), (¢,d), and (¢, e). The weight
of the tree 1s equal to 7.
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Algorithm Steiner_Tree
Begin M + set of marked nodes; (* nodes in which the net has pins *)
s + select a node from M;
M« M —{s};
Apply Dijkstra_algorithm to find 7, ., the shortest
path from s to some node e of M,
M« M —{e};
V V(7 e); (* nodes of the Steiner tree *)

While M # ¢ Do

Begin
e + next(M); (* get another node from M *)
Apply Dijkstra_algorithm to find 7. ., the shortest

path from e to some node z of V;

V(7 o) < nodes covered by 7. o;
Ve VUV (7es);
(* remove marked nodes covered by the path m, ).
M«M-MOV(res);

EndWhile

End.

Fig. 6.17 Steiner tree heuristic.

Another heuristic that could be applied to find a sub-optimal Steiner
tree is based on a variation of a minimum spanning tree algorithm. The
heuristic can be summarized as follows. Let M be the set of the nodes
(vertices) in which the net has pins. We first find the shortest paths between
all pairs of nodes in M. There are exactly (g) such paths, where n is equal
to the number of nodes in M. These paths are sorted in increasing lengths,
and are processed one at a time. The shortest path identifies the first
branch of the Steiner tree. Each following path identifies another branch
of the tree. The algorithm stops when all nodes have been covered and
connected. This may very likely happen before processing all paths. A
formal description of this heuristic is given in Figure 6.18.

If the graph is a grid graph, then Lee algorithm modified for multi-pin
nets, as described in the previous chapter, can be used to route the net
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Algorithm Steiner_Approximation
Begin
M + set of marked nodes; (* nodes in which the net has pins *)
Find the shortest paths between all pairs of nodes in M;
P + sequence of paths sorted in descending order of their lengths;
V «— ¢;
E « ¢;
While V # M Do;
Begin
path < next(P); (* get the next shortest path and remove it from P *);
ForEach (i, j) € E(path) Do
If (i, ) does not create a cycle in the graph G(V, E)

Then
Ve« Vuiij}
E+« Fu{(, )}
EndIf
EndFor

End
End.

Fig. 6.18 Approximation heuristic of Steiner tree using a variation of Kruskal minimum
spanning tree algorithm.

between the global cells (vertices). This algorithm will be described in the
following subsection. All three heuristics exhibit the same time complexity
and quality of solution.

6.4.2 Global Routing by Maze running

The first step in global routing is to model the routing regions. Figure 6.19
depicts a two dimensional channel model. To simplify the explanation, we
drop the requirement that all routing regions be channels.

Horizontal and vertical routing areas are defined by extending the hor-
izontal and vertical edges of the placed cells up to the bounding frame.
This is illustrated in Figure 6.19(a) and (b). Routing regions in the model
are the intersections between horizontal and vertical routing areas. This
is illustrated in Figure 6.19(c). Notice that this is a different approach to
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Fig. 6.19 Two dimensional routing model. Shaded spaces indicate cells. The un-
shaded spaces are routing areas. (a) Horizontal routing areas. (b) Vertical routing
areas. (c) Routing regions model.

defining the routing regions from what we have seen in the previous sec-
tion. This approach is straightforward. However, the routing regions are
not guaranteed to be channels. This will require a switchbox router or a
grid router for the following detailed routing step. Nevertheless, we shall
adopt this last technique of routing region definition to illustrate the maze
running approach to global routing. We shall also be referring to routing
regions as channels.

Once the routing channels (regions) have been identified, the task now
is to assign nets to them. To accomplish this, the channels are modeled by a
weighted undirected graph called channel connectivity graph. Nodes of the
graph correspond to channels and edges between nodes indicate that the
corresponding channels are adjacent. For two layer routing, each node is
assigned two weights giving the horizontal capacity (width) and the vertical
capacity (length) of the corresponding channel (see Figures 6.20) [18].

The sequential approach is the simplest and most widely used approach
to global routing. This approach consists of picking one net at a time and
finding an optimal (or sub-optimal) Steiner tree which covers all the pins
of the net. Two general approaches are possible in this case: (1) the order
dependent approach and (2) the order independent approach.

For order independent global routing, each net is routed independently
of all other nets. Then congested passages are identified and the affected
nets are rerouted, while penalizing paths going through such passages. This
approach avoids net ordering and considerably reduces the complexity of
the search space since the only obstacles are the cells. However, this might
require a large number of iterations before a feasible global routing solution
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1s found.

For order dependent global routing, first the nets are ordered according
to some criteria. Then the nets are routed in the resulting order, while
updating the available routing space after each net. The search is slightly
more complex, since the number of obstacles has increased (cells and already
routed nets). Furthermore, net ordering is crucial to the final outcome of
the global routing step. Both approaches are somewhat similar, in that,
they try to identify a Steiner tree for one net at a time. In the remainder
of this section, we shall be describing the order dependent approach only.

Each side of a block 1s unambiguously attached to a unique channel.
Hence, each pin is uniquely associated with a channel. Therefore, the nodes
of the channel connectivity graph in which a net has pins are unambiguously
determined. Then globally routing a net amounts to determining a tree that
covers all those nodes in which the net has pins.

To illustrate the search process, we shall focus on the easy case when
the net has pins in only two nodes. In that case, assigning a net to channels
1s accomplished by searching for a path in the channel-graph. A path from
the channel which contains the source node to the one that contains the
target node 1s searched. The search procedure is similar to the one used in
Lee algorithm. For simplicity, we assume that the length of all edges in the
channel-graph is one unit. Asin Lee algorithm, starting from a node labeled
k, all adjacent nodes are labeled k& + 1. The labeling procedure continues
until the target node is reached. The shortest path in the channel graph
is found by a sequence of nodes with decreasing labels. Once the path is
found, the net is assigned to the channels and for all nodes (channels) in
the path the capacity weights w and [ are decreased according to the width
and length of the net to be routed.

Figure 6.20(a) gives a placement of cells with two nets, A — A’ and
B — B, to be connected. Figure 6.20(b) shows the corresponding channel-
graph. Pin A is adjacent to channel number 6 and pin A’ to channel number
8. The shortest path in the graph from node 6 to node 8 (6-7-8) is shown
in Figure 6.20(d).

Observe that the weights of nodes in this part of the graph in Figure
6.20(d) are updated. The width and length of the channel are reduced by
an amount equal to the space used by the wiring segment. If a path bends
in a channel then both its vertical and horizontal weights are reduced. If the
path goes only vertically(horizontally) then only the weight corresponding to
its length(width)} is reduced. This means that one entire row and one entire
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Fig. 6.20 Global routing. (a) Channel model. (b) Channel connectivity graph.
(c) Global routing A — A’. (d) Actual channel graph with A — A’ routed. (e) Global
routing B — B’. (f) Actual channel graph with A — A’ and B — B’ routed.
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column of each channel (6, 7, and 8) are assigned to this net as shown in
Figure 6.20(c). The next step is to assign channels to net B — B’. Pin
B is adjacent to channel 2 and pin B’ to channel 8. Let us look at two
possible paths which connect node 2 to node 8. One is the path 2-3-6-
7-8 and the other is 2-1-5-9-10-11-12-8. Channels 6 and 7 have a width
of unity and have been assigned to net A — A’. Due to this assignment
the horizontal capacities of channels 6 and 7 have been depleted to zero.
The available shortest path therefore is 2-1-5-9-10-11-12-8. The updated
weights in the channel graph are shown in Figure 6.20(f). If the net has a
third pin located in another vertex of the graph, then the expansion will
continue at that third pin and will terminate when any of the three nodes
6, 7, or 8 is reached.

Another application of the above technique is to determine the required
separation between cells in order to ensure routability of the chip. By
routability is meant the certainty that all the nets of the circuit will be
completely connected by the detailed router. Therefore, the global router
is used only to determine the required separation between cells. When
detailed routing is done for the entire chip, it is not necessary that the
detailed router follows exactly the channels assigned to nets by the global
router.

The modification to the above method to determine separation between
cells would be to start with a zero separation, and this will represent the
initial weights of the nodes. Next, every time a path is found, the weights of
the corresponding weights are increased. At the end of this procedure, the
relative placement of the cells 18 maintained, but the minimum separation
between the cells will be as given by the horizontal and vertical weights
of the nodes of the channel-graph. Notice here that the estimations are
somewhat pessimistic since they assume that nets do not share routing
tracks.

In order to avoid congestion of nets between channels, an upper limit
for each node of the channel graph can be set. The global router then will
look for alternate paths in the channel-graph. The following example will
further clarify this point.

Example 6.3 A placement containing two cells is shown in Figure
6.21(a). The corresponding channel graph is shown in Figure 6.21(b). The
cells contain two nets A— A’ and B— B’. Determine if the circuit is routable.
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Fig. 6.21 Illustration of Example 6.3.

SoLUTION The weights in the nodes indicate the width (w) and length
({) of the channel. Since nodes A and A’ are adjacent to channels 5
and 7, a shortest path through the graph must be found between these
nodes. The path obtained is 5-6-7. The weights of these nodes are
updated as shown in Figure 6.22(a). Since the initial widths of these
channels were unity, they are now both reduced to zero.

Now B — B’ also may use the same path. If this is done, the weights of
the nodes corresponding to channels 5,6, and 7 are further reduced as
shown in 6.22(b). Since the updated widths of the channels are -1 (neg-
ative), the channel widths in the actual placement must be increased
by one unit. This can be done by shifting the cells above the channel
one unit upwards. Then both the nets A— A’ and B— B’ can be routed
through channels 5,6, and 7.

Assume that there is no provision to increase the initial separation
between cells. Is the placement routable?

Observe that an alternate path from 5 to 7 exists, namely 5-2-3-6-9-10-
7. Since all channels except 6 along this path have widths and heights
greater than one, and the path from channels 3 to 9 through 6 uses
only the length of channel 6 and whose current length is 2, the layout
is routable. The weights of the updated nodes are shown in Figure
6.22(c). The updated channel-graph and wires through the channels on
the given placement are shown in Figures 6.22(d) and (e) respectively.
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Fig. 6.22 Illustration of solution of Example 6.3. (a) Weights of nodes after loose
routing A — A’ between nodes 5-6-7. (b) Weights of nodes after loose routing B — B’
between nodes 5-6-7. (c) Alternate path for net B — B’. (d) Updated channel-graph.
(e) Connection of nets A — A’ and B — B'.

6.5 Integer Programming

Here, global routing is formulated as a 0-1 integer program. The layout is
modeled as a grid graph, where each node represents a grid cell (super cell).
The boundary between any two adjacent grid cells [ and k is supposed to
have a capacity of ¢; ; tracks. This corresponds to a positive weight ¢;  on
the arc linking nodes [ and & in the grid graph. For each net i, we need to
identify the different ways of routing the net. Suppose that for each net ¢,
there are n; possible trees ti, t}, ..., t;l, to route the net. Then, for each
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tree t;, we associate a variable x; ; with the following meaning:

(6.2)

1 if net ¢ is routed according to tree ¢’
Tij = . J
’ 0  otherwise

For each net i, we associate one equation to enforce that only one tree
will be selected for that net,

inhj =1 (63)
j=1

Therefore, for a grid graph with M edges and T trees, we can represent
the routing trees of all nets as a 0-1 matrix A7 = [a; p] Where,

T = i n; (6.4)

where NN is the number of nets, and,

1 if edge i belongs to tree ¢, and p as defined in equation 6.6.
a; p, = .
P 0  otherwise

(6.5)

-1
p=> nmtk (6.6)
m=1

A second set of equations 1s required to ensure that the capacity of each
arc (boundary) ¢, 1 < i < M, is not exceeded , i.e.,

N ng

ZZaiyp X Xk S C; (67)

k=11=1

Finally, if each tree t‘g is assigned a cost g;;, then a possible objective
function to minimize 1s,

N ny
I = ZZgi,j X Zjj (6.8)

i=1j=1
Therefore, a possible 0-1 integer programming formulation of global
routing is,
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Fig. 6.23 Integer programming example. (a) A gate-array layout. (b) Grid graph.
(c) Trees of net 1. (d) Trees of net 2. (e) Trees of net 3. (f) Completed routing.

the

N n . . .
Dim1 i1 9ij%ij < minimize

subject to :

Y imi T =1 1<i<N

szzl Sk aiprig < 1< i< M,and p as defined in 6.6
zp; =01 1<k<N, and 1 <j<ny

(6.9)
Note that if g; ; = g for all ¢ and j and if we change the objective to
maximization of F', then this is equivalent to seeking a solution that

achieves the maximum number of connections.
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Example 6.4 Suppose you are given the gate-array layout of Figure
6.23(a). The layout has four cells and three nets. Assume that the capacity
of each boundary is equal to two tracks. Formulate the corresponding global
routing problem as a 0-1 integer program.

SoLuTIoN First, a grid graph is built (see Figure 6.23(b)). Each node
of the graph is marked with the label of those nets which have pins in
that node. There are three trees for net 1, three trees for net 2, and two
trees for net 3. These are given in Figure 6.23 (c), (d), and (e). The
cross capacity of each boundary is equal to two tracks. There are four
boundaries corresponding to four edges in the grid graph. The matrix
A will be as follows,

hot ty 13 1y 1§ 1
1o 1 1 1 0 1t 1 0
201 0 1 0 1 1 1 0
3/0 11 1 1 0 0 1
401 1 0 0 1 1 0 1

Assume that the cost of tree t‘g is equal to the length of that tree.
In that case,

n1=2, gi2=3, gi13=3,

921 =2, g22=3, ga3=3, and

931 =2, gs2=2.

Therefore, the resulting 0-1 integer program is

F=2r11+321 2+ 3213+ 2221 + 3222+ 3223+ 2231 + 223 2 ¢ minimize
Subject to :

i1+ xi2+xi3=1

o1+ xoa+x23=1

r31+x32=1

Ti2+ 213+ 221+ T23+ 131 <2

r11+ 213+ 222+ 223+ 237 <2

Tio+ 213+ 221+ 222+ 32 <2

T11+ 212+ 222+ 223+ 32 <2

xm»zo,l 1§Z§3,1§]§3
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The integer programming formulation is elegant and finds a globally op-
timum assignment of the nets to routing regions. However, this approach
suffers from the following problems:

1. We need to identify several Steiner trees for each net. This could be
a very time consuming step. Moreover, how many such trees would be
enough? Obviously, the number of trees should not be too large, as the
size of the integer program is proportional to the number of such trees.
Furthermore, it is not an easy task to enumerate, say, the best n; Steiner
trees for each net .

2. The trees should be selected so as to guarantee the feasibility of the
problem. Hence, when the formulated integer program does not have a
solution we can not tell if it is because of a bad selection of the rout-
ing trees or if the problem is unfeasible no matter how many trees are
included.

3. There are too many a; ;’s, leading to too many constraints.

4. There may be too many arcs, i.e., too many ¢;’s, leading to too many
constraints.

5. All constraints are integer constraints.

As we will see in a later section, hierarchical approaches come to the
rescue, and can be used to solve some of the above problems. This prob-
lem decomposition will of course be at the price of not achieving global
optimality!

6.6 Global Routing by Simulated Annealing

The first reported application of simulated annealing to global routing ap-
peared in 1983 [26]. The authors formulate the problem as an unconstrained
integer program, where all edge capacities are equal to one. Only two ter-
minal nets are considered. Furthermore, only routes with one bend are
considered. The cost function used is a sum of the squares of the loads of
all individual routing regions.

In this section, we will describe the simulated annealing formulation of
global routing adopted in the TimberWolf package [21]. TimberWolf is a
package for the placement and global routing of standard-cell designs with
two metal layers.

After an initial placement phase, TimberWolf proceeds with global rout-
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ing. Global routing is solved in two stages. The objective of the first stage
is to assign the nets to the horizontal routing channels so as to minimize
the overall channel densities. At the end of the first stage, all nets that are
switchable (assignable to an adjacent channel) are identified. The goal of
the second stage is to attempt to reduce the overall channel densities by
changing the channel assignment of the switchable nets.

After global routing, TimberWolf proceeds with a refinement of the
placement by randomly interchanging neighboring cells. After each inter-
change, both stages of the global router are invoked to reroute the nets
affected by the interchange. It is only during the second stage of global
routing (as well as the placement refinement phase) that simulated anneal-
ing is used.

6.6.1 The Fuirst Stage

In this stage, an order independent sequential approach is taken. The nets
are taken one at a time and routed.

Before describing the algorithm of this stage, we first need to define the
required terminology [21].

A group of pins of a given cell that are internally connected are called
a pin cluster. The pins of the same cluster are all equivalent. The -
coordinate of a pin cluster P is equal to the average of the z-coordinates of
its constituent pins, 1.e.,

1 .
2(P) = ik > (i) (6.10)

iEP

These concepts are illustrated in Figure 6.24.

A portion of a net connecting two pin clusters, say P; and P», is called
a net segment. If P, and P, belong to two different cells placed on the
same row and both have pins on the top and bottom sides of the cells, then
the net segment connecting both clusters is called a switchable segment.
Hence, a switchable segment can be assigned to the routing channel above
the cell row or the channel below it. The decision as to which channel each
switchable segment should be assigned to is based on the cost function.

The cost function used is equal to the sum of the total channel densities,

le.,
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Fig. 6.24 Illustrating the pin cluster concept; P = {1,5,6,7} and z(P) = W = %.

D =Y dc) (6.11)

where d(c) is the density of channel ¢, which is equal to the number of nets
assigned to the channel.

The global routing algorithm of the first stage has four distinct steps
which are executed for each net.

(1) Initialization: All pin clusters of the net are identified, together
with their z-coordinates. Then the pin clusters are sorted on their x-
coordinates, from smallest to largest.

(2) Construction of a cluster graph: In this step, a cluster graph is
constructed, where nodes model the pin clusters and edges possible con-
nections (net segments) between the corresponding pin clusters.

(3) Construction of a minimum spanning tree: In this step, Kruskal
algorithm is used to construct a minimum spanning tree of the cluster
graph.

(4) Identification of all net segments: In this final step of the first stage,
individual pins within the pin clusters are selected to form the actual net
segments. Also, if the net segment is switchable, then two pairs of pins
are selected, one pair for the upper row, and one for the lower row.

A semi-formal description of the algorithm used in the first stage is given
in Figure 6.25.

Example 6.5 Assume we are given the partial standard-cell design of
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Algorithm Stage_1_Global_routing
Begin
ForEach net n Do
Identify the pin clusters of net n;
ForEach pin cluster P find z(P);
Sort the pin clusters of n on their z-coordinates;
Repeat
(* Construct the cluster graph corresponding to net n *)
TorB + 0;
(* TorB =1,-1,0, if row(P,) = row(P1) + 1, row(P1) — 1, or row(P), respectively. *)
If clusters=[ ] Then Exit;
EndIf;
Py « Head(Clusters); (* Get the leftmost element of clusters *)
Repeat
find the closest pin cluster P> to the right of P,
such that row(Pz) = row(P1), row(P1) + 1, or row(Py) — 1,
If there is no such P>, Then Exit; (* exit from the innermost repeat loop *)

Else
Case
(1) row(P2) = row(Py): TorB =0;
(* connect nodes P, and P, *)
add the edge (P1,P:) to the cluster graph;
Exit;
(2) row(P2) = row(P1)+1: If TorB #1 Then
Begin
add the edge (P1,P2) to the cluster graph;
If TorB = —1 Then Exit;
Else TorB = +1; (* P, is on top *)
EndIf:
EndIf:
(3) row(P2) = row(P) —1: If TorB # 1 Then
Begin
add the edge (P1,P2) to the cluster graph;
If TorB = 4+1 Then Exit;
Else TorB = —1; (* Py is on top *)
EndIf:
EndIf:
EndCase
EndIf

Until doomsday;
Until doomsday;
(* Algorithm Stage_1_Global_routing (Continued) in Figure 6.26 *)

Fig. 6.25 The first stage of TimberWolf global router.
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(* Algorithm Stage_1_Global_routing (Continued from Figure 6.25) *).
Construct a minimum spanning tree (MST) on the nodes of the cluster graph;
ForEach net segment in the MST Do

(* Identify all switchable net segments *)
If the segment connects pin clusters at the same row Then
If the segment is switchable Then
two pairs of pins are selected;
(* one pair for the channel above and one for the channel below; *)
EndIf;
EndIf;
EndFor;
EndFor;
End.

Fig. 6.26 The first stage of TimberWolf global router (continued).

Figure 6.27 (a). Suppose that each pin cluster has exactly two pins avail-
able on opposite sides of the cell. Assume further that one of the nets is
connecting exactly five pin clusters labeled a, b, ¢, d, and e as illustrated
in Figure 6.27 (a). We would like to illustrate how the cluster graph is
constructed for this net.

SOLUTION Once all pin clusters have been identified, we determine
the x-coordinate of each pin cluster and sort them on their z’s. This
results in the following sorted sequence clusters = [a,e,d,b,¢]. The
sorted sequence will be processed one element at a time until the cluster
graph is constructed (one edge at a time).

At the first execution of the outer repeat loop, P, = a, a is removed
from the sequence clusters, and the variable TorB = 0. TorB is equal
to 0, +1, —1, to indicate that the next pin is at the same row, the
top row, or the bottom row respectively. The closest pin to the right
of a that is located at the top, bottom, or same row is pin cluster d.
Therefore, P» = d, row(d) = 2, and TorB is set equal to 1 (Ps is
on top of Pi). Hence the edge (a,d) is added to the cluster graph.
The next closest pin cluster to the right of a is . However because
row(b) = 1 = row(a), the edge (a,d) is not added. The reason is that
there must exist at least one intermediate pin cluster between a and
b. Therefore, b should be connected to its closest left neighbor not
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Fig.6.27 Construction of the cluster graph. (a) A partial standard-cell design. (b) Clus-
ter graph constructed during stage 1 of TimberWolf.

to a. Then, the next closest pin cluster to the right of a is ¢. Since
row(c) = row(a) = 1, edge (a, ¢) is not considered. At this time, we exit
from the inner repeat loop, T'or B is reset to 0, and the head(clusters)
returns pin cluster e, which is removed from clusters. The closest pin
cluster to the right of e and located in the same row or adjacent row
is pin cluster d. Therefore, P, = d, TorB = —1, and the edge (e, d) is
added to the graph. No other pin in the same or adjacent row is to the
right of e. Therefore, we exit from the inner repeat loop. Continuing
in this way, edge (d,b), then edge (b,¢) will be added to the cluster
graph. At this moment, the sequence clusters becomes empty. The
cluster graph thus constructed is given in Figure 6.27 (b). The positive
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numbers indicated on the edges of the graph represent the lengths of
the corresponding net segments. Notice that the graph is already in
the form of a minimum spanning tree. As observed by the author of
this approach [21], the cluster graph will in most cases turn out to be a
minimum spanning tree. Notice that, among the net segments selected,
only segment b — ¢ is switchable. Therefore for this segment, two pairs
of pins are selected, one if the segment is assigned to the channel above,
and one if 1t is assigned to the channel below.

6.6.2 The Second Stage

In stage 2, the simulated annealing search technique is used to refine the
global routing solution produced by the stage 1 sequential algorithm. Only
switchable net segments are considered for re-routing. The simulated an-
nealing algorithm has been given and explained in Chapters 2 and 3. In this
subsection we shall describe only the cost function used, how new solutions
are generated, and the cooling schedule.

The objective of this stage is to minimize the total channel density as
expressed by Equation 6.11. The generate function used to obtain new
solutions is as follows. First, a switchable segment is randomly selected
from the pool of switchable net segments. Then, the channel assignment of
the selected segment is switched from its current channel to the opposite
one. If the switch reduces the value of the cost function, then the switch
is accepted. If the new solution has the same cost as the previous one,
then the switchable segment is assigned to the channel with the smaller
density over the span of the net segment. The purpose of this decision is to
facilitate the following step of detailed routing. New solutions with higher
cost functions are not accepted.

As for the cooling schedule, the temperature is maintained equal to zero
throughout the search. Hence only downhill moves are accepted. Further-
more, since 7' = 0, there is no need for the inner loop, nor a need to update
the schedule parameter. The stopping criterion used is a function of the
number of switchable segments. The search is stopped after the genera-
tion of S = 30 x N new states, where N 1s the number of switchable net
segments.
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6.7 Hierarchical Global Routing

In order to reduce the complexity of the overall global routing problems,
hierarchical approaches proceed with a hierarchical decomposition of the
problem into subproblems. The subproblems are solved individually. Then,
the partial solutions are combined to produce a solution to the original
global problem.

There have been several hierarchical formulations of the global routing
problem. Among the first reported formulations was that of Burstein and
Pelavin [1]. Several other hierarchical formulations were also reported [14;
12; 19]. The approaches proposed by Sadowska [19] and Lauther [12] are
similar and were reported to generate superior solutions than all other
hierarchical approaches. This approach to global routing is used in both
the PROUD and BEAR layout programs [25; 8].

In this section we shall be describing the hierarchical formulation due
to Sadowska [19]. It is a top down approach. The top level is the entire
layout, which is decomposed in a top down fashion. At each level of the
hierarchy, an attempt is made to minimize the cost of nets crossing cut
lines of this current level of the hierarchy. The set of cut lines is derived
from the design floorplan. The floorplan is not constrained to have a slicing
structure.

This approach can be used with various design styles. We shall illustrate
the approach for the sea-of-gates design style. In this design style, the cells
are porous, 1.e., through and over the cell routing is allowed. Therefore, 1t
is realistic to assume that the routing resources are uniformly distributed
across the layout surface. At the lowest level of the hierarchy, the layout
surface is divided into R x R grid regions. The capacity of each grid region
boundary is equal to C' tracks. Hence, no more than C' nets (net segments)
are allowed to cross a region boundary (see Figure 6.28).

Let R; be the number of grid regions of a given cut line [. When a cut
line is applied, it can readily be divided into M = % sections, each ' grid
units long (see Figure 6.29). Suppose that there are N nets, each with pins
on both sides of a current cut line. Obviously we must have N < M x .
Routing these nets amounts to assigning each net to a specific section of the
cut line without exceeding the capacity of any of the sections. Such a global
routing solution (at this level of hierarchy) is called a feasible solution. Let
w;; be the cost of assigning net ¢ to section j of the current cut line. Then a
minimum global routing solution will be a feasible solution with minimum
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Fig. 6.28 Hierarchical partitioning based global routing.

assignment cost. Hence, at each level of the hierarchy, and for each cut line
at that level, global routing is formulated as a linear assignment problem
as follows.
Let
1 if net ¢ is assigned to section j
@i = ,
0 otherwise

Let us assume that each net is allowed to cross the cut line exactly once.
Therefore,

M
=1, 1<i<N (6.12)
=1

Furthermore, the assignment should not exceed the capacity of any of
the M sections of the cut line, 1.e.,

N
< O 1<j<M (6.13)
i=1

Let w;; be the cost of assigning net ¢ to section j of the current cut line,
1 <i<N;and, 1 <j < M. Then an optimum assignment will be one
which minimizes the following cost function,

N M
cost = ZZwijxij (6.14)

i=1 j=1
This is a formulation of a classic network flow problem, whose minimum-
cut maximum-flow solution can readily be obtained using available pack-
ages. Notice also that this formulation is very similar to the 0-1 integer
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programming formulation of Section 6.5. A possible choice of assignment
costs 18 the sum of net lengths, where the length of individual nets are ap-
proximated by the semi-perimeter method. Another possible cost function
would be to use a weighted sum of the net lengths, where critical nets are
given higher weights. Still another objective function would be to mini-
mize the number of wiring bends so as to favor assigning nets to their ideal
sections (see Figure 6.29).

To each cut line corresponds a network flow problem. Once all of these
problems are solved individually, the outcome is the specification for each
region of a netlist in terms of pseudo-pins (locations on the regions bound-
aries at which nets cross) and cell terminals within that region. The detailed
router will then take this netlist as input and determines the detailed routes

within each region.

Upper leftmost pin of net

| «—— Bounding box

Section —L
' — Ideal sections to route this net
e

,—b

Cut line

Lower rightmost pin of net _/

Fig. 6.29 Decomposition of a cut line into sections.

6.8 Other Approaches and Recent Work

Recall that a crucial preparatory step to global routing is the determination
of the routing areas. Numerous approaches have been suggested to perform
such task. Most of these approaches were described in this chapter [2:
14].

In a recent paper by Cai and Wong [3], an algorithm is given to define
the routing areas as rectangular channels and switchboxes, such that the
number of switchboxes is minimized. The same authors, in a more recent
paper [4], present an algorithm which decomposes the routing areas into
rectangular channels while minimizing the number of L-shaped channels.
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Another important problem encountered during global routing as well
as detailed routing is that of finding a Steiner tree for each net. There are
numerous works on this subject [20; 7; 11].

In one approach [20], a bottom-up hierarchical strategy to Steiner tree
construction is described. At each level of the hierarchy a collection of
partial Steiner trees are enumerated using a variation of minimum spanning
tree algorithm. At each higher level of the hierarchy, the trees of the lower
level are merged, while removing duplicate edges and avoiding the creation
of cycles. The tree corresponding to the top level of the hierarchy is the
desired Steiner tree for the current net.

Another approach uses a modification of minimum spanning tree and
Steiner tree algorithms to grow a routing tree with bounded length and
bounded maximum interconnect delay [7]. In yet another recent ap-
proach [11], an iterative heuristic is used to find optimal Steiner points.
These points are found and added in a greedy fashion one at a time until
no further reduction in the overall tree length i1s achieved. Experimental
results indicate that the cost of the Steiner tree found is bounded by % that
of the optimal Steiner tree.

During floorplanning, location of pins on the boundary of blocks is not
known. One of the main tasks of floorplan sizing is the determination
of these pin locations. The pin assignment and global routing problems
are heavily interdependent. Usually the quality of pin assignment solution
is measured by the overall interconnection length and routing area, which
require that global routing be performed. Hence, it seems that if both tasks
are integrated we will achieve a solution of superior quality in terms of pin
assignment cost as well as routability. One such approach has recently been
reported, where global routing 1s used to first assign pins to particular sides
of the blocks. Then in a second stage, channels are processed one at a time
in order to assign pins to particular locations of the corresponding channel
boundary [6].

With the advent of VLSI, the speed of circuits is becoming dominated by
the interconnect delays. In order to avoid having long interconnect delays
on the timing critical paths, there have been attempts to make the global
routing step driven by the timing requirements of the circuit. Minimizing
the overall interconnection length will not necessarily lead to minimum
interconnect delays. The number of wiring bends as well as other electrical
characteristics of the nets are as important as the net length itself. In
a recent approach [7], global routing is performed while minimizing the



Other Approaches and Recent Work 319

total connection length as well as the longest interconnection delay. The
Steiner tree heuristic suggested grows greedily a tree with bounded overall
length and bounded maximum delay. Another timing driven global routing
approach has been reported [15], where global routing is integrated with
timing analysis. The routing process is guided by the interconnect delays.
Whenever a connection is routed the slacks of the affected paths are updated
at the corresponding path sinks. The cost function maximized is the slack
of the longest path.

There are other approaches to global routing that were not described in
this chapter. For example, in one approach global routing is formulated as
a multicommodity network flow model [23]. The solution is obtained in two
steps. In the first step, the unconstrained problem is solved. Then in the
second step, an iterative procedure is applied, where at each iteration the
connection that will result in a maximum decrease in overflow is rerouted.

In another approach [5], a line search algorithm was adopted to globally
route general cell layouts, thus avoiding to use a grid. The algorithm is a
generalization of the A* search algorithm widely use in artificial intelligence.
A path is found between a source s and a destination d by greedily adding
one line segment at a time, starting from the source s, until we reach the
target d. This is achieved as follows. A graph with source s and sink d is
constructed, adding one edge at a time, until a minimum path is established
from s to d. The edges correspond to line segments, and the vertices to line
intersection points. Each edge is assigned a cost equal to the length of the
corresponding line segment. The search for a shortest source-to-sink path
is performed using the A* algorithm.

Recently, global routing was solved using neural networks [22]. The au-
thors adopted a two-layer neural network. One layer is used to minimize
net lengths and obtain an even distribution of the nets over the routing
channels. The second layer is used to enforce the channel capacity con-
straints.

Traditionally, global routing has been used to elaborate a routing plan to
be executed by the detailed router. However, another use of global routing is
to assess floorplanning and placement solutions. During placement, global
routing is used to guide the placement procedure into producing a routable
placement. One of the early reported works in this respect describes a
constructive global routing driven placement algorithm [24]. The placement
solution 1s constructed one slice at a time, starting from the left of the chip
until all cells are placed. Whenever a group of cells is placed, global routing
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1s performed to connect the recently placed cells to already placed ones and
reserve the necessary routing resources. The simulated annealing approach
described in this chapter also combines placement with global routing.

Routing in general can be a very time consuming process. Nevertheless,
almost all of the proposed solution approaches lend themselves easily to
parallel implementations. One of the latest reported parallel implementa-
tions of global routing describe two strategies for parallelizing this task [17].
For the first strategy, several nets are routed in parallel. In the second strat-
egy, several routing trees for each net are evaluated in parallel. The paper
reports significant speed-up for both strategies.

There are very few books on the subject of physical design in general
and global routing in particular. The edited book by Ohtsuki [14] contains
a chapter on the subject. Unfortunately the book is out of print. A more
recent text which contains a small section on global routing is the book
edited by Preas and Lorenzetti [16]. The most recent text, which gives a
thorough and formal discussion of the problem of global routing is that of
Lengauer [13].

6.9 Conclusions

Global routing is a preparatory step to detailed routing. Usually, global
routing is executed for the purpose of elaborating a routing plan for the
detailed router.

Global routing is formulated differently for different design styles. For
the gate-array design style the routing regions consist of fixed capacity hori-
zontal and vertical channels. Since the array has a fixed size and fixed rout-
ing space, the objective of global routing in this case is twofold: (1) check
the feasibility of detailed routing, and (2) elaborate a routing plan.

For the standard-cell design style the routing regions are horizontal
channels with pins at their top and bottom boundaries. Global routing
consists of assigning nets to these channels so as to minimize channel con-
gestion and overall connection length. Here, the channels do not have pre-
fixed capacities. Channels can always be made wider to achieve routability.

In building-block design style the cells are of various shapes and sizes.
This leads to irregular routing regions. These routing regions may be de-
composed into horizontal and vertical channels, and sometimes switchboxes.
The identification of these routing regions is a crucial first step to global
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routing. Here again, the routing regions do not have pre-fixed capacities.
For both the standard-cell and building-block layout styles the objective
of global routing is to minimize the required routing space and overall in-
terconnection length while ensuring the success of the following detailed
routing step. Therefore the cost function i1s a measure of the overall rout-
ing and chip area. Constraints could be a limit on the maximum number
of tracks per channel and/or constraints on performance.

An important problem we are faced with in all design styles is the iden-
tification of the shortest set of routes to connect the pins of individual nets.
This is known as the Steiner tree problem. There are several good heuristics
for this problem, some of which were given in this chapter.

Global routing is a natural multi-commodity network flow problem. Sev-
eral approaches have been reported in the literature to solve this problem.
They fall into four general classes: (1) the sequential approach, (2) integer
programming, (3) the random search techniques such as simulated anneal-
ing, and (4) hierarchical decomposition. In this chapter, we described all
four approaches. Among these four approaches, the most powerful seems
to be the integer programming approach when combined with hierarchical
decomposition.

6.10 Bibliographic Notes

The sequential approaches, specially those relying on a maze running
search, are the easiest and exhibit a high completion rate.

The integer programming formulation of global routing is elegant and
eliminates the need to order the nets. Unfortunately it may lead to un-
acceptably large programs. However, when combined with a hierarchical
decomposition approach, this technique exhibits acceptable run times and
solutions of superior quality to those obtained from other approaches.

The hierarchical approaches are very fast and usually lead to superior
global routing solutions than all other approaches. Hence, this approach
is the most suitable for large designs. Nets are processed simultaneously,
thus leading to an order independent approach.

The stochastic iterative approaches usually exhibit the largest run time,
since the search space of rip-up and rerouting can be quite large. Therefore,
this approach cannot be used with large designs. However, they usually
achieve high completion rate and good solution quality.



322 Global Routing

Exercises

Exercise 6.1 Discuss the basic differences between detailed routing and
global routing. Which one is the more difficult problem? Explain.
Exercise 6.2 What are the general uses of global routing? Explain.

Exercise 6.3  Briefly explain the two main global routing models.

Exercise 6.4  Discuss the global routing problem and objectives for various
layout styles, namely, gate-array, sea-of-gates, standard-cell, and building-
block design styles.

Fig. 6.30 A floorplan structure.

Exercise 6.5 Using the floorplan given in Figure 6.30:

(a) Construct the corresponding channel intersection graph.
(b) Describe a global routing algorithm that will use the channel intersection
graph to perform the tasks of global routing.

Exercise 6.6  (*) For the figure of the previous exercise,

(a) Construct the corresponding order constraint graph.
(b) Suggest at least two techniques for removing cycles from the order con-
straint graph.

Exercise 6.7  Given the floorplan structure of Figure 6.30.

(a) Construct the corresponding channel connectivity graph.
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(b) Assume that a net has five pins located on the following block sides:
right(B), bottom(E), left(G), top(C), and left(H). Find the channel as-
signment for the above net using the Steiner tree heuristic of Figure 6.17.

(c) Find the channel assignment for the above net using the Steiner tree
heuristic of Figure 6.18.

(d) Compare the trees obtained in (¢) and (d).

Exercise 6.8 Perform a time complexity analysis of the Steiner tree heuris-
tic of Figure 6.17.

Exercise 6.9  Perform a time complexity analysis of the Steiner tree heuris-
tic of Figure 6.18.

Exercise 6.10 (*) In some cases (e.g., before floorplan sizing), we do not
know beforehand as to which side of the blocks the pins belong. Give a
solution approach that will find a side assignment for the pins as well as a
channel assignment for the nets.

Exercise 6.11 Suppose you are given the slicing structure of Figure 6.31,
which has nine blocks labeled A-to-I and five slice-lines. Assume further
that the conversion bonuses of the three crossings are,

bonus(c¥) = 0; bonus(c?) = 2;

bonus(cy) = 1; bonus(ck) = 0;

bonus(cy) = 1; bonus(ck) = 0;

E v, F va G \7
hg hy
|
011 C2
C D
A hy 031 hy
\Z B H

Fig. 6.31 A channel conversion example.

(a) Construct the slice graph corresponding to this slicing structure. Show
all intermediate construction steps.
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(b) Use the algorithm of Figure 6.10 to identify the channels which maximize
the bonus conversion of all crossings.

(c) Construct the order constraint graph corresponding to the channel struc-
ture resulting from (b).

(d) Use the order constraint graph of part (c) to indicate a possible conflict
free channel ordering for the following detailed routing step.

Exercise 6.12 Perform a time complexity analysis of the channel conver-
sion algorithm of Figure 6.10.

Exercise 6.13  Given the coarse grid of Figure 6.32.

(a) Formulate the corresponding mathematical program to optimally route
the four nets as indicated in that figure. Assume that the cross boundary
capacity in the horizontal as well as the vertical direction of the coarse
cells is equal to two.

(b) Solve the formulated integer program using the mathematical program-
ming package available to you.

— 1
IRV ST ORI B
[ I [ I
Enrl e et B
- L L L L L L L
A YN I
I | [ I
IR AN T
| -1, = + -1
L [ [ L
3\ | 4! | | | | |
A B B
T N I -
[ |2 o o
— T I 1
L) o de oo i
o I [ o
R N R
o . .

Fig. 6.32 A coarse grid example.

Exercise 6.14 For the mathematical programming approach to global
routing, give the size of the resulting mathematical program in terms of
the number of nets and the number of trees per net.
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Exercise 6.15 Using the standard-cell placement of Figure 6.33 apply the
algorithm of Figure 6.25 to construct the cluster graph corresponding to
the net {a,b,¢,d e, f}.

.......

.......

Fig. 6.33 A standard-cell placement example.

Exercise 6.16 Does the global router provide pessimistic or optimistic
estimation of routing resources needed for detailed routing? Discuss.

Exercise 6.17 Assume a layout of cells where the ‘power — indez’ of each
cell 1s known. The amount of current drawn by the cell is proportional to its
power-index. It is required that the width of a routing segment belonging
to a net be proportional to the current flowing through the net.

1. In the global routing phase that determines separation between cells,
given the power-index for each cell, explain what modifications are to be
made to determine channel dimensions.

2. In the detailed routing phase, if the current flowing through each net is
assumed to be constant then the standard Lee algorithm can be applied.
Explain how you will modify the Lee algorithm to route nets of different
widths.

Exercise 6.18 (*) Programming Exercise: Implement a program
which takes as input a slicing structure described as Polish expression and
constructs the corresponding channel connectivity graph (CCG) similar to
that of Figure 6.12.
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Exercise 6.19 (*) Programming Exercise: Implement a program
which takes as input a channel connectivity graph (CCG) and a net (set
of channel labels) and marks the corresponding nodes in the CCG, then
returns the set of marked nodes.

Exercise 6.20 (*) Programming Exercise: Implement a program
which accepts as input a CCG and a subset from the set of vertices in
V(CCG) and construct a Steiner tree on these vertices (output the edges
of the tree).

Exercise 6.21 (*) Programming Exercise: Implement a program
which accepts as input a slicing structure and a netlist (net={channel la-
bels}) and returns a channel assignment for each net. Assume that each
channel has a weight equal to one, and that the objective minimized is the
overall connection length.
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Chapter 7

Channel Routing

7.1 Introduction

Channel routing is a special case of the routing problem where intercon-
nections are made within a rectangular region having no obstructions. A
majority of modern IC routing systems are based on channel routers. These
systems apply a ‘divide-and-conquer’ strategy in which the layout routing
problem is divided into channel routing problems which are solved sepa-
rately. Channel routers are used in the design of custom chips as well as
uniform structures such as gate-arrays and standard-cells. In layout de-
sign using gate-arrays, after the placement and global routing phases the
channel router is invoked to perform final interconnection within individual
wiring bays. Similarly channel routers are used to complete interconnec-
tion of standard-cell based designs. In custom layout of VLSI chips channel
routers are used to complete interconnection between macro blocks.
Channel routing strategy is very popular because it is efficient and sim-
ple, and it guarantees 100 percent completion if channel width is adjustable.
The actual router implementation is technology dependent. Different tech-
nologies introduce different instances of the problem. In this chapter we
present the classical channel routing problem. The classical model (also
known as the Manhattan model) consists of a rectangular space between
two parallel rows of pins (terminals). The locations of these pins are fixed
and aligned with vertical grid lines. Two layers are available for routing
one exclusively used for horizontal wires and the other for vertical wires.
Horizontal wire segments called ¢trunks run along tracks and vertical wire
segments called branches connect trunks to terminals as shown in Fig-
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ure 7.1.
Col# 1 2 3 4 5 6 7
m k p
o Q Q Q
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Fig. 7.1 Channel, terminals, trunks and branches.

7.2 Problem Definition

The channel to be routed is defined by a rectangular region with two rows
of terminals along its top and bottom sides. A number between 0 and
N is assigned to each terminal. These numbers are labels of grid points
located at the top and bottom of the rectangle as shown in Figure 7.1.
They represent the netlist. Terminals having the same label ¢ (1 < i < N)
must be connected by net 7. Zeros indicate that no connection has to be
made to the corresponding point. The netlist is usually represented by two
vectors TOP and BOT. TOP(k) and BOT (k) represent the grid points on
the top and bottom sides of the channel in column k, respectively.

The task of the channel router is to specify for each net a set of hori-
zontal and vertical wire segments that interconnect the net, and whose end
points are located on the terminals or tracks. In case of a standard-cell
design methodology, the objective is to use a minimum number of tracks to
complete routing. Therefore, the width of the channel (i.e., the number of
tracks required) is to be determined by the router. For gate-array design
methodology the objective is to finish routing using a specified number of
tracks.

Generally two or three layers are available for routing. We shall restrict
our discussion to two layer routing (also known as H-V routing). Poly is
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used on one layer and metall on the second. Connection between segments
of poly and metall are made with contact cuts. In two layer routing, all
horizontal wires are laid out on tracks on one layer and all vertical wires
on the other. If two horizontal segments belonging to different nets do
not overlap, then they may be assigned to the same track. If they overlap
then they must be assigned to different tracks. Referring to Figure 7.1,
the horizontal segment corresponding to net m does not overlap with the
segment of net p. But the intervals of segments k& and p overlap. Thus,
there are horizontal constraints on nets; whether they can be assigned to
same tracks or not.

Also, any two nets must not overlap at a vertical column. If we assume
that there is only one horizontal segment per net, then it is clear that the
trunk of a net connected to the upper terminal at a given column must be
placed above the trunk of another net connected to the lower terminal at
that column. In Figure 7.1, the terminal corresponding to net & appears on
the top of the column (column 3) and the terminal corresponding to net p
on the bottom. Clearly the trunk of net & must be above the trunk of net
p. Therefore, we also have vertical constraints among nets. Briefly no two
nets can overlap at contact, branch or track.

7.2.1 Constraint Graphs

For any instance of the channel routing problem we can associate two con-
straint graphs, one to model the horizontal constraints and the other to
model the vertical constraints. For both graphs, every net is represented
by a vertex.

Horizontal Constraint Graph

The horizontal constraint graph denoted by HCG(V, E) is an undirected
graph where a vertex ¢ € V represents net ¢ and edge (i,j) € F if the
horizontal segments of net ¢ and net j overlap.

Vertical Constraint Graph

The vertical constraints in the channel routing problem can be represented
by a directed graph VCG(V, E), where each node ¢ € V corresponds to net
i, and each vertical column introduces an edge (¢, ) € F if and only if net
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¢ has a pin on the top and net 5 on the bottom of the channel in the same
column. That is, for any two nets with pins at the same column on opposite
sides of the channel, there will be an edge between their corresponding
vertices in the VCG.

Therefore, if there is a cycle in the VCG| the routing requirement can-
not be realized without dividing some nets. We will now illustrate the
construction of the above graphs with the help of an example.

Example 7.1 For the channel routing problem shown in Figure 7.2, con-

struct the HCG and VCG.

Col# 1 2 3 4 5 6 7
0 1 6 1 2 3 5
o) Q o o) Q fo) o
O O O O O O
6 3 5 4 0 2 4

Fig. 7.2 Netlist for Example 7.1

SOLUTION The netlist can be represented by two vectors TOP and
BOT given by TOP=[0,1,6,1,2,3,5] and BOT=[6,3,5,4,0,2,4]. To de-
termine if two horizontal segments of nets overlap we define a set S(7),
where S(4) is the set of nets whose horizontal segments intersect col-
umn ¢. The number of elements in each set is called the local density.
Since horizontal segments (trunks) of distinct nets must not overlap,
the horizontal segments of two nets in any set S(¢) must not be placed
in the same horizontal track.

For the above channel routing problem the values of S(¢) are:
S(1)
S(4)
S(7)

{6} S(2) ={1,3,6} S(3) ={1,3,5,6}
{1,3,4,5}  S(5)=1{2,3,4,5}  S(6)=1{2,3,4,5}
{4,5}
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Since elements of S(¢) represent trunks of those nets that must not be on
the same horizontal track, we can eliminate those sets which are already
subsets of other sets. For example, S(1) = {6}, and S(2) = {1,3,6} are
subsets of S(3) = {1,3,5,6}. Therefore they need not be considered.
The remaining sets S(¢) after elimination are called maximal sets.
For this example, the maximal set are:

S(3) ={1,3,5,6} S(4) ={1,3,4,5} S(5) =1{2,3,4,5}

The HCG (also known as the interval graph) is now constructed by
placing an edge between vertices ¢ and j if both ¢ and j belong to a
set S(k), for some k. For example, S(3) = {1,3,5,6}. Therefore edges
are placed between vertices (1,3), (1,5), (1,6), (3,5), (3,6), and (5,6).
The complete HCG is shown in Figure 7.3(a). An alternate represen-

2 1 5 2 L
3
4
4 3 6 5
61|
@ (b) (©

Fig. 7.3 (a) Horizontal constraint graph. (b) Zone representation. (c) Vertical con-
straint graph.

tation of the HCG is the zone representation. A zone representation
is a graphical representation of the maximal sets S(¢). Each set S(4)
is represented by a column and the elements of the maximal sets S(7)
are represented by line segments as shown in Figure 7.3(b). Note that
Figure 7.3(b) has three columns corresponding to the three maximal
sets S(3), S(4) and S(5). The first column has 4 horizontal line seg-
ments at 1, 3, 5, and 6, corresponding to the elements of the maximal
set S(3). The second and the third columns correspond to maximal
sets S(4) and S(b) respectively. In terms of the interval graph a zone
is defined by a maximal clique, and the clique number is the density.
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The zone-table for channel routing problem of Example 7.1 is given in

Table 7.1.

Table 7.1 Zone Table for channel routing of Example 7.1.

column S(1) zone
1 {6}
2 {1,3,6} 1
3 {1,3,5,6)
3 1345 2
5 123,451
6 {2345} 3
7 {4,5}

The VCG is simpler to construct. For every column & of the chan-
nel not containing a zero in either TOP(k) or BOT(k) a directed edge
is drawn from vertex TOP(k) to vertex BOT(k). For example, in the
given netlist, TOP(2)=1 and BOT(2)=3. Therefore the VCG will have
an edge from vertex 1 to vertex 3. Similarly there is an edge from vertex
6 to vertex 5, and so on. The complete VCG is shown in Figure 7.3(c).

7.3 Cost function and Constraints

One common objective of most layout design systems is to reduce the total
overall area required by the chip. In the channel routing problem the length
of the channel is fixed. The objective then is to assign the required segments
to the given layers so as to electrically connect all the nets with minimum
number of tracks. Unnecessary contact cuts and vias are also highly un-
desirable. They cause an increase in area, decrease in yield and reliability
and poor electro-magnetic characteristics. Therefore reducing the number
of vias must be an important objective of any routing heuristic.

The number of layers available for routing i1s constant. In most existing
VLSI technologies, the number of available layers is either two or three.
For three layer routing, in addition to poly and metal (known as metall), a
second layer of metal (metal2) is available. Several routing models exist for
three layer channel routing. One of them known as VHV routing uses layer-
1 for vertical segments originating from the upper boundary of the channel,
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layer-3 for vertical segments originating from the lower boundary, and layer-
2 for all horizontal segments [3; 17]. In such a model there are obviously
no vertical constraints. If layer-1 and layer-3 are assigned for horizontal
runs (tracks) and the middle layer for vertical runs, the resulting model
is called HVH routing. Each of the two models (HVH and VHV) has its
strengths and weaknesses. VHV is good when the VCG has long chains, and
HVH is good when VCG has a large number of incomparable nodes (two
nodes are incomparable when there is no path from any of the two nodes
to the other). The solution to VHV model is trivial while studies have
shown that the HVH model uses fewer tracks and is more economical [6].
A mixed HVH-VHYV algorithm for three-layer channel routing was reported
by Pitchumani and Zhang [15].

As mentioned earlier, in this chapter we present heuristics to solve the
two layer H-V routing problem. We try to minimize the first objective, that
is, the number of routing tracks.

7.4 Approaches to Channel Routing

Most of the solution techniques of the channel routing problem are based on
the left-edge algorithm with several extensions and variations of this tech-
nique. In this algorithm tracks are processed one at a time. In this section
we present just the basic left-edge algorithm. Then, the dogleg algorithm
proposed by Deutch which performs splitting of nets is described [7]. Fi-
nally another technique that uses merging of nets proposed by Yoshimura
and Kuh is explained [19]. All the above techniques aim at reducing the
total number of horizontal tracks required to perform channel routing.

7.4.1 The Basic Left-Edge Algorithm

The original left-edge channel routing algorithm was proposed by
Hashimoto and Stevens [10]. It attempts to maximize the placement of
horizontal segments in each track. Segments of nets to be connected are
sorted in the increasing order of their leff end points from the left-edge of
the channel, hence the name. The basic algorithm imposes the restriction
that each net consists of a single trunk, and that trunks (horizontal seg-
ments) are routed on one layer and branches (vertical segments) on the
other. In the absence of vertical constraints the algorithm produces a so-
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lution with minimum number of tracks given by max; | S(¢) |, which is also
the lower bound on the number of tracks.

The procedure for assigning trunks to segments is as follows. First
the edges are sorted on their leftmost end-points as explained above. The
algorithm then selects the trunk corresponding to the first net and places
it on the lowermost track, the net is deleted from the list. The algorithm
then scans through the remaining list for the first net that does not overlap
with the placed net. If it finds one, then it assigns it to the same track. The
process is repeated until no more nets can be placed in the first track. The
algorithm starts again using the remaining unplaced nets in the list and fills
track 2, and so on until all the nets in the list are placed. The algorithm
1s also known as the unconstrained left-edge algorithm and is illustrated in
Figure 7.4.

ALGORITHM Unconstrained_ChannelRouter
Begin
1. Sort all nets on their leftmost end positions;
2. Select the net with the lowest left position;
Place it on the lower most available track;
Delete net from list;
3. Continue scanning the list and select from it nets
that do not overlap with the nets assigned to this track;
Assign the nets to the current track and delete from list;
4. If list # ¢ Then Goto 2;
5. Exit
End.

Fig. 7.4 Unconstrained left-edge algorithm.

Example 7.2  For the netlist shown in Figure 7.2 (Example 7.1), use the
left-edge algorithm to assign nets to tracks.

SOLUTION The trunks, sorted in the order of their left end points, are
6, 1, 3, 5,4 and 2. This is illustrated in Figure 7.5. Let us ignore the
vertical constraints for the moment. Using the left-edge algorithm we
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Fig. 7.5 Sorted horizontal segments of Example 7.2.

try to assign the sorted segments to tracks. The first segment chosen
from the above sorted list 18 6 and is placed in track 1. The next
segment in sequence is 1. But since we have an edge (1,6) in HCG (see
Figure 7.3(a)) it cannot be placed in the same track as 6. So also is
the case with the trunks of nets 3 and 5 which are after net 1. The
next net in sequence is 4 and since there is no edge (6,4) in HCG, 4 is
assigned to the same track. The last element in the sorted list is 2, and
although there is no edge (6,2) in HCG, we do have (4,2), therefore 2
is not assigned to track 1.

The set of remaining sorted nets contains 1, 3, 5 and 2. Now the same
procedure is repeated to place the remaining segments in track 2, and
then in track 3 and so on. The final solution is shown in Figure 7.6.

In the absence of vertical constraints the above solution is acceptable.
But we do have vertical constraints, and as mentioned earlier, ignoring
them will create short-circuit between nets. We leave it to the reader to
verify that the above solution is not acceptable if two layer routing is used
where horizontal segments are assigned to one layer and vertical segments
to the other.

A more elaborate algorithm which takes into account the vertical con-
straint is the constrained left-edge algorithm reported by Perskey et al [14].
As in the previous case, horizontal segments are placed on tracks from the
lower left corner of the routing region. The algorithm will place a horizontal
segment of a net only if i1t does not have any descendants in the vertical
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Fig. 7.6 Optimal ordering for netlist of Example 7.2 ignoring vertical constraints.

constraint graph. The algorithm is commonly known as the constrained

left-edge algorithm and is illustrated in Figure 7.7.

Example 7.3 Obtain a solution to the channel routing problem of Fig-

ure 7.2 taking both the horizontal and vertical constraints into account.

SOLUTION The same procedure as above is now repeated but tak-
ing into consideration the vertical constraints. In this case, a segment
corresponding to a net can be placed in a track only if the nets corre-
sponding to its descendants have already been assigned.

Referring to the vertical constraint graph of Figure 7.3(c), we see that
only nodes 4 and 2 have no descendants. Now scanning the sorted list
we ignore nets 6, 1, 3, and 5 because they all have descendants and the
corresponding nets have not been assigned. The first candidate is net
4. Therefore net 4 is assigned to track 1 and is deleted from the sorted
list as well as from the VCG. Continuing the scanning of the sorted
list, we reach net 2, which cannot be assigned to track 1 because of
horizontal constraint (Figure 7.3(a)).

The nets remaining in the list are 6, 1, 3, 5, and 2. We now search
for candidates that can go into track 2. Scanning the sorted list, we
ignore nets 6, 1, and 3 since these have descendants in the VCG. The
next net, which is 5, is chosen and assigned to track 2. Net 2, the next
in sequence cannot be assigned to the same track as net 5 because of
horizontal constraint. The above procedure is continued, and the final
solution is shown in Figure 7.8.
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ALGORITHM Constrained_ChannelRouter
Begin
1. Sort all nets on their leftmost end positions;
2. Select the next net n with the lowest left-end position;
If n has no descendents in VCG
Then Begin
Place n on the lowermost available track;
Delete n from the sorted list;
Delete n from VCG
End
Else Goto 2
EndIf
3. Continue scanning the sorted list and from it select
those nets which do not overlap with nets assigned
to this track and have no descendents in VCG;
Remove all selected nets from the list
4. If list # ¢ Then Goto 2
5. Exit
End.

Fig. 7.7 Constrained left-edge algorithm.
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Fig. 7.8 Final correct solution of Example 7.3.
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7.4.2 Dogleg Algorithm

The algorithm mentioned in the previous section will fail if there are cycles
in the VCG. Consider the channel routing problem and its VCG shown in
Figure 7.9(a) and (b) respectively. In this example the constrained left-

1 1 2 1 1 2
fo) fo fa)

O O O [€]

2 0 1 2 0 1

@ (b) (c)

Fig. 7.9 (a) Routing problem. (b) Vertical constraint graph. (c) Solution using dogleg-
ging.

edge algorithm will not be able to route net 1 or net 2, since each one is the
descendant of the other in the VCG. Figure 7.9(c) shows that a solution to
this problem is possible only if we allow horizontal segments of the net to
be split.

In many instances, even if the VCG contains no cycles, it is desirable to
allow splitting of horizontal tracks in order to reduce the channel density.
Consider the example routed in Figure 7.10(a). The optimal solution shown
uses 3 tracks if splitting of horizontal segments is not allowed. However the
same example can be realized with only two tracks by horizontal splitting,
as shown in Figure 7.10(b).

The splitting of horizontal segments of a net is called doglegging. This
is used, not only to avoid vertical conflicts, but also used to minimize the
number of horizontal tracks. In the case of doglegging we assume that the
horizontal splitting of a net is allowed at terminal positions only and no
additional vertical tracks are allowed.

The Algorithm

This algorithm was proposed by Deutch[7] to avoid vertical constraint loops
and to decrease the density of the channel. It helps in reducing the number
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Fig. 7.10 Example illustrating doglegging. VCG has no cycles. (a) Problem and solu-
tion without doglegging uses 3 tracks. (b) Solution with doglegging uses 2 tracks.

of horizontal tracks, particularly for channels with multi-pin signal nets.

Deutch’s algorithm takes each multi-pin net and breaks it into indi-
vidual horizontal segments. A break occurs only in columns that contain
a pin for that net. Figure 7.11(a) illustrates the horizontal segment def-
inition. Figure 7.11(b) illustrates the VCG without splitting of nets and
Figure 7.11(c) shows the new VCG when nets are split.

Using the new vertical constraint graph the dogleg algorithm is similar
to the constrained left-edge algorithm. Horizontal segments are sorted in
increasing order of their left end points. The first segment in the list that
has no descendants in the vertical constraint graph is placed in the channel.
The node corresponding to this section of the net is removed from the
vertical constraint graph. Then, the next net in the list that does not
overlap with the first segment and has no descendants is placed. This
process continues for elements in the list from left to right until all segments
have been completed.

Example 7.4 For the channel routing problem shown in Figure 7.11(a)

find a solution using the dogleg algorithm described in this section.

SoLuTiON The sorted list of net segments is [1,2a,3a,2b,3b.4]. The
set of nets S(¢) whose horizontal segments cross column ¢ are given by

S(1) =A{1,2a} S(2) ={1,2a,3a} S(3) = {2a,2b,3a}
S(4) = {2b, 3a, 3b} S(5) = {2b,3b,4} S(6) = {3b,4}
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Fig. 7.11 (a) Channel routing problem. (b) VCG without splitting of nets. (c) VCG
with nets split.

Referring to Figure 7.11(c) the net segments that do not have descen-
dants in the VCG are 2a, 3a and 4. Scanning the sorted list of net
segments we find that the first net segment that does not have descen-
dants is 2a. This segment is placed in the lowermost track. Continuing
the scanning of the sorted list, the next segment in sequence is 3a, but
due to horizontal constraint (see S(2) above) it cannot be placed in the
same track as segment 2a. Net 4, the next candidate in sequence, does
not have any horizontal constraint with segment 2a, and therefore is
placed in the same horizontal track. The placed nets are deleted from
the sorted list and the corresponding nodes are deleted from the VCG.
The above procedure is repeated by placing the remaining segments in
the next track, and so on. The final solution is shown in Figure 7.12.
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Fig. 7.12  Solution of Example 7.4

The original dogleg algorithm suggested by Deutch has one difference from
the procedure explained above. That is, the segments are chosen as sug-
gested above for the first track, and horizontal segments are placed from
left to right in that track. Then the algorithm switches to the top track in
the channel and places horizontal segments in it, from right to left; then the
second track from bottom is considered, and so on, until all segments are
placed. The above technique can be easily incorporated into the algorithm
above by selecting a horizontal segment that has no descendants for the
placement in the bottom tracks, and segments that have no ancestors for
placement in the top tracks. This symmetric alternating is claimed to pro-
duce routing with smaller total vertical length than routing all nets from
the bottom to the top of the channel.

7.4.3  Yoshimura and Kuh Algorithm

If there is a path ni-ns-ng----ng in the vertical constraint graph, then
obviously no two nets among {ni,ns,ns, -+, ng}t can be placed on the
same track. Therefore, if the longest path length in terms of the number of
nodes on the path is k, at least & horizontal tracks are necessary to realize
the interconnections.

In this section we present two algorithms proposed by Yoshimura and
Kuh [19]. The first algorithm uses the VCG and the zone representation of
HCG and attempts to minimize the longest path in the VCG. This is done
by merging nodes of VCG (which correspond to nets), so that the longest
path length after merging is minimized as much as possible. Obviously, this
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merging is performed for the purpose of minimizing the channel density.

The second algorithm proposed by Yoshimura and Kuh achieves longest
path minimization through matching techniques on a bipartite graph. Both
techniques report better results than the dogleg algorithm. Before describ-
ing these algorithms we first introduce the required terminology.

Definitions
Let ¢ and j be the nets for which,

1. there exists no horizontal overlap in the zone representation, and
2. there is no directed path between node ¢ and node j in the vertical
constraint graph,

(i.e., net 7 and net j can be placed on the same horizontal track). Then,
the operation “merging of net ¢ and net j”, results in the following.

1. Tt modifies the vertical constraint graph by shrinking node ¢ and node j
into a single node i - j; and,

2. It updates the zone representation by replacing net ¢ and net j by net ¢- 5
which occupies the consecutive zones including those of net ¢ and net j.

Example 7.5 Consider the netlist given below.

014516704900
235352689879

The zone table for this example is given in Table 7.2. The VCG and the
zone representation are shown in Figure 7.13. Consider nets 6 and 9. Since
there is no horizontal overlap in the zone representation (both nets 6 and
9 do not appear in the same S(¢)), and no vertical conflict (they are on
separate vertical paths), nets 6 and 9 are candidates for merging. The
merge operation explained above can then be applied. The updated VCG
and the zone representation are shown in Figure 7.14. Due to merging,
both nets 6 and 9 will be placed in the same horizontal track. However the
position of the track is not yet decided.

The Algorithm

It can be easily proved that if the original vertical constraint graph has
no cycles then the updated vertical constraint graph with merged nodes
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Table 7.2 Zone Table for channel routing problem of Example 7.5.

column S(1) zone
5

{1,2,3}
{12345 1
{1,2,3,4,5)
{1,2,4,5)

(2,4,6] 7
{476,7} 3
{4,7,8}

{4,77879}

{77879} 4
{7,9}

{9}

T35 © ook wio
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7 o °
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©

OO
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Fig. 7.13 Zone representation and VCG for Example 7.5. Note that transitive edges
(eg., from 1 to 3) are not shown.

does not have cycles either (see Exercise 7.9). Since it is assumed that
there is no cycle in the initial VCG, we can repeat the operation merging
of nets without generating any cycle in the graph. The algorithm shown in
Figure 7.15 merges nets systematically according to the zone representation.

Example 7.6 Apply the algorithm of merging of nets to the channel
routing problem of Example 7.5 and obtain the routed solution.

SOLUTION
Zone 1: Refer to Figure 7.13. The set of nets that terminate at
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Fig. 7.14 Modified zone representation and VCG with merged nodes for Example 7.5.

Algorithm mergel{z;, z;}

Begin

1. L={}; z; =leftmost zone; z; =rightmost zone.
2. For z =z, to z; Do

Begin
3. L = L+{nets which terminate at zone z};
4. R ={nets which begin at zone z + 1};
9. merge L and R so as to minimize the increase of the
longest path in the vertical constraint graph;
6. L =L—{ni,ny, -, n;}, where {ny,ny, -+, n;}, are
the nets merged at Step b;
End,;
EndFor;
End.

Fig. 7.15 Algorithm #1 to merge nets.

zone 1 is L = {1,3,5} and the set of nets which begin at zone 2 is
R = {6}. The merge operation can merge nets (1,6), (3,6) or (5,6).
Verify that only the merging of nets 5 and 6 causes minimum increase
in the length of the longest path. Therefore nets 5 and 6 are merged
to form a merged net 5 - 6 which ends at zone 3. The updated set L is
L ={1,3,5} — {5} = {1, 3} (see Figure 7.16(a) and (b)).
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Zone 2: In the next iteration, nets that terminate at zone 2 are added
to L. Note that net 2 ends at zone 2. The updated set L is {1,2,3}.
Only one net begins at zone 3, that is net 7, therefore R = {7}. In the
VCG, (see Figure 7.16(b)) since nets 2 and 3 are along the same path
as net 7, the only candidate that can be merged with net 7 is net 1.
The new merged net is 1-7. Next (see Figure 7.16(c)), L is updated by
adding nets that end at zone 3 (net 5 - 6) and removing the nets that
are merged (net 1), L = {1,2,3} = {1} +5-6 ={2,3,5-6}. The set of
nets which begin at zone 4 is R = {8, 9}.

Zone 3: Observe that the merged net 5 -6 ends at zone 3. In this
step the merged net 5-6 is merged with net 9, and net 3 is merged with
net 8 to form the merged nets 5-6-9 and 3 - 8.

The above procedure continues until the last zone is reached. Fig-
ure 7.16 illustrates how the vertical constraint graph is updated by the
algorithm. Thus, applying the algorithm of Figure 7.15, first, net 5
and net 6 are merged. Then net 1 and net 7, and finally nets 5 - 6 with
net 9 and net 3 with net 8 are merged. The final graph is shown in

Figure 7.16(d).

QR PARL Q A QM
©® OO 00 00 O &

Fig. 7.16 Updated vertical constraint graphs for problem of Example 7.6.

In the next step we apply the left-edge algorithm and assign horizontal
tracks to the nodes of the graph. The list of nets sorted on their left-
edges is [2,3-8,1-7,5-6-9,4]. The final routed channel is shown in
Figure 7.17.
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Fig. 7.17 Channel routing solution of Example 7.6.

Mintmizing the Longest Path

The key step of the algorithm in Figure 7.15 is Step 5 where two sets of
nets are selected and merged. Let us define a few terms needed for the

explanation of the merging process.

First the VCG is modified by adding two artificial nodes s (source) and
t (sink), and arcs from s to previously ancestor-free nodes and from
previously descendent-free nodes to ¢ (see Figure 7.18).

Let P = {ni,ne,---,np} and Q = {mq, ma,---,mg} (p > ¢) be the two
sets of candidate nets for merging, where elements of P are on separate
vertical path from that of ).

Jo

. ‘@I’

@ (b)

Fig. 7.18 (a) Vertical constraint graph. (b) Modified vertical constraint graph.

Let u(n), n € PUQ, be the length of the longest path from s to n.
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Let d(n), n € PUQ, be the length of the longest path from n to ¢.

When two nodes n € P and m € @, that are on two separate paths from s
to ¢ are merged, the length of the longest path will either increase or will
remain the same. The exact increase denoted by h(n,m) is given by,

h(n,m) = K™*(n, m) — max{u(n) + d(n),u(m) + d(m)} (7.1)

where A™*(n,m) = max{u(n), u(m)}+max{d(n),d(m)}. The proofis left
as an exercise (see Exercise 7.10).

The purpose here is to minimize the length of the longest path after the
merge. However, it will be too time consuming to find an exact minimum
merge. A heuristic merging algorithm is proposed by Yoshimura and Kuh
[19]. In this heuristic, first a node m € @ which lies on the longest path
before the merger is chosen; furthermore, it is farthest away from either s
or t. Next, a node n € P is chosen such that the increase of the longest
path after merger is minimum. If there is a tie then the selected n is such
that u(n) 4+ d(n) is nearly maximum and that the condition %(%)l = Z(Z)
is nearly satisfied. This is in order to incur the minimum increase in path
length. The above heuristic is implemented by introducing the following:

(1) for every m € Q;

f(m) = Co x {u(m) +d(m)} + max{u(m),d(m)}, Cu >>1.
(2) for every n € P, and every m € @;

g(n,m) = Ceo x h(n,m) — {y/u(m) x u(n) + /d(m) x d(n)}

A formal description of the merging algorithm corresponding to Step b
of Figure 7.15 is given in Figure 7.19. Next we illustrate the algorithm with
an example.

Example 7.7 Given @ = {6,7} and P = {1,3,4}, for the VCG shown

in Figure 7.18, using the technique explained above, find a pair of nodes to

be merged.
SOLUTION
w(l)=1, u3)=3, ud)=4, wu(6)=2, u(7)=3
dil)=4, d(3)=2, d(4)=1, d(6)=2, d(7)=1
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Algorithm merge2{P, Q}
begin
1. While @ is not empty Do
2. among @, find m#* which maximizes f(m);
3. among P, find nx which minimizes g(n, m«), and which is
neither ancestor nor descendant of msx;
4. merge n¥ and mx;
5.  remove nx and mx from P and @), respectively;
Endwhile;
End.

Fig. 7.19 Algorithm #2 to merge nets.

Let us pick Coo, = 50. Then
f(6) = Coo x 4+ max{2,2} = 202
f(7) = Coo x 4+ max{3,1} = 203

The values of u(m), d(m) and f(m) are tabulated in Table 7.3. Since
F(7) > f(6), node 7 is chosen from Q).

Table 7.3 Tabulated f(m) for Example 7.7.

P Q
m 1 3 4 6 7
u(m) 1 3 4 2 3
dm) 4 2 1 71
F(m) 202 203

Next we evaluate h(n, m*) where m* = 7.

h(1,7) =max{u(l), u(7)} + max{d(1),d(7)}—
max{u(1) + d(1),u(7) + d(7)}
h(1,7) =3+ 4 —max{b,4} =2
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Similarly
h(3,7) =34 2—max{h,4} =0 and
h(4,7) =441 —max{h,4} =0

Next, we evaluate g(n,7),

g(n,m) =50 x h(n,m) — {{/u(m) x u(n) + /d(m) x d(n)}
g(1,7) =50 x h(1,7) — {\/u(1) x u(7) + /d(1) x d(7)}
g(1,7)=96.268

The results of computation of h(n,m) and g(n,m) are shown in Ta-
ble 7.4. Since g(4,7) is the smallest, we can merge node 4 with 7.

Table 7.4 Tabulated values of A(n,7) and g(n,7) for Example 7.7.

n 1 3 1
h(n,7) 2 0 0
g(n,7) 9627 -4.41 -4.46

An Improved Algorithm Based on Matching

In the algorithm of the previous section it is possible that a merging of nets
may block subsequent mergings. To avoid this type of situation as much as
possible and in order to make the algorithm more flexible, Yoshimura and
Kuh introduced another algorithm. In this algorithm a bipartite graph G,
is constructed where a node represents a net and an edge between net a and
net b indicates that nets @ and b can be merged. A merging is expressed
by a matching on the graph which is updated dynamically [19].

In this section two examples will be presented, one to illustrate how a
merging can block further mergings, and then an example to illustrate the
idea of merging based on matching.

Example 7.8 Given the problem instance of Figure 7.20. Let us assume
that at zone 1 the algorithm merges net @ with net d, and net & with net
e respectively (if we follow the merging algorithm of the last section these
mergings will not occur, but they are assumed only for illustration). The
vertical constraint graph and zone representations are modified as shown
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in Figure 7.21. The merged vertical constraint graph indicates that net
f cannot be merged with either net ¢ or net g because a cycle would be
created. However if we merge net ¢ with d and net ¢ with e, then net f
can be merged with net b as illustrated in Figure 7.22. Therefore the final
solution is order dependent.

d h
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Fig. 7.20 Zone representation and vertical constraint graph for Example 7.8.
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Fig. 7.21 Merging of nets a and d, and nets b and e blocks further merging.

Example 7.9 In this example we introduce a bipartite graph where a
node represents a net and an edge between net @ and net b signifies that
net ¢ and net b can be merged. A merging is expressed by a matching on
the graph. The idea is explained using the example of Figure 7.20.

In that example we see that net d as well as net e can be merged with
any of the three nets a, b or ¢ in zone 1. The algorithm constructs a bipartite
graph G}, as illustrated in Figure 7.23(a) and a temporary merging is fea-



Approaches to Channel Routing 353

ad h @ @

ce

b.f @ °
@

@) (b)

Fig. 7.22 Merging of nets ¢ and d, ¢ and e, and b and f.
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Fig. 7.23 Bipartite graphs G, for Example 7.9.

sible but neither the vertical constraint graph nor the zone representation
are updated. Next we move to zone 2, where net g terminates and net
f begins. So we add ¢ to left and f to the right of G as shown in Fig-
ure 7.23(b). Since the VCG in Figure 7.20(b) indicates that net f can be
merged with either net a, net b or net ¢, three edges are added and the
matching is also updated as shown by the heavier lines in Figure 7.23(b).
Of course there is no guarantee that the merging which corresponds to the
updated matching satisfies the vertical constraints (horizontal constraints
are satisfied automatically), so the algorithm checks the constraints and
modifies the matching as shown in Figure 7.23(c).

At zone 3, net d and net f terminate. This means that, in processing
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(a) (b)

Fig. 7.24 (a) Updated graph G},. (b) Updated VCG after processing zone 3.

zone 3, node d and node f should be moved to the left side in graph
Gy, and merged with their partner nets a and b, respectively, as shown in
Figure 7.24(a). Net ¢ and net e have not been merged yet, since e has
not terminated. The vertical constraint graph is also updated as shown in
Figure 7.24(b). A matching is next sought for the updated Gj,. The above
procedure continues until all zones have been processed (see Exercise 7.12).

7.4.4 Greedy Channel Router

The channel routers discussed in the earlier sections route the channel one
track at a time. They are based on the left-edge algorithm or its variations.
In this section we describe the working of a greedy heuristic for channel
routing known as the ‘greedy channel router’ [16].

The algorithm routes the channel column by column starting from the
left. In each column the router applies a sequence of greedy but intelligent
heuristics to maximize the number of tracks available in the next column.
The router does not use horizontal or vertical constraints. All decisions are
made locally at the column. The algorithm handles routing problems even
with cycles in the VCG. Routing is always completed, sometimes with ad-
ditional columns at the end of the channel. Unlike other channel routers, in
this technique a net can occupy two different tracks until the heuristic de-
cides to merge them. Also, instead of doglegging only at terminal locations,
the greedy router allows any horizontal connection to change tracks.
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Before we explain this technique we present some definitions and terms
used in the explanation of the procedure.

Definitions

Initial-channel-width : This is the number of tracks initially available to
the greedy router. Generally this number is the local density. As routing
proceeds, a new track i1s added only if routing cannot continue at a given
column. When a track is added, the current assignment of nets to tracks
to the left of the current column is preserved, and routing does not restart,
but continues from the current column with additional tracks. Clearly,
different inetial-channel-widths will give different results. In some cases,
the router may have to use area beyond the channel. This area can be
minimized by iterating the entire procedure with a higher value of nitial-
channel-width. According to Rivest and Fiduccia best results are usually
obtained with initial channel width equal to just a little less than the
final channel width [16].

Minimum-jog-length : A jog is a vertical wire placed on a net to bring
it closer to the channel side where the next pin of the net is located.
The router will make no jogs shorter than k, the minimum-jog-length.
Usually this value is taken to be %, where w is the best channel width
available. This parameter affects the number of vias and tracks in the
final routing. A high value of k& reduces the number of vias, while a lower
value reduces the number of routing tracks.

Steady-net-constant : This is a window size (given in number of columns).
This parameter determines the number of times a multi-pin net changes
tracks, and is used to classify nets as rising, falling, or steady.

Rising, falling, and steady nets :  When routing at a given column, the
router classifies each net which has a pin to its right as either rising,
falling, or steady. A net is rising if its next pin (after the current column)
will be on the top of the channel, and the net has no pin on the bottom
of the channel within a window size equal to the steady-net-constant.
Falling nets are defined similarly. Finally, a net 1s steady if it is neither
a rising net nor a falling net.

Split net and collapsible net :  If more than one track is occupied by one
net, the net is called as split net. A split net is eventually collapsed to a
single track (or zero tracks if the last pin of the net is passed) by making
an appropriate jog. Therefore, a split net is also called a collapsible net.
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Spillover area : This is the additional area (columns) used at the end of
the track to collapse split nets to complete routing.

The greedy router takes as input the specific channel routing problem
and three non-negative integers, initial-channel-width, minimum-jog-length,
and steady-net constant. The router scans the channel column-by-column
from left to right. It uses six steps in routing each column. The wiring at
a given column is completed before proceeding to the next. We will now
explain the general idea and the various steps involved.

Step 1. Make feasible top and bottom connections in minimal
manner: In this step, each pin connection at the current column is brought
to an empty track or to a track occupied by the same net, whichever uses
the least amount of vertical wire. If the channel is fully occupied, then
bringing a new net is deferred until Step 5. If two nets (one from the top
and the other from the bottom) have a conflict (overlap), then the one that
uses the least wire is connected, the other is again deferred to Step 5. If
there are no empty tracks and both the pins (on top and bottom) belong
to the same net, and this net is not placed on any track, then a vertical
straight-through connection is possible. The various possibilities that are
processed in this step are shown in Figures 7.25(a)-(f). Each figure has two
parts, one part depicting the channel status be fore the step and the other
after the processing of the step. In Figure 7.25(a) pin ‘1’ is brought to an
empty track and pin ‘4’ is brought to track 4 which is occupied by net ‘4’.
Pin ‘1’ in Figure 7.25(b) and pins ‘1’ and ‘2’ in Figure 7.25(c) are brought
to an empty track and not to a track occupied by the net, since the former
uses a lesser amount of wire. In Figure 7.25(d) there is not enough room
to connect net ‘5’ therefore nothing i1s done in this step, and addition of
a track is deferred until Step 5. In Figure 7.25(e) two nets, one from top
and the other from bottom create a conflict due to overlap. Therefore pin
‘27 18 connected to net ‘2’ while connection of net ‘3’ is deferred until Step
5. Finally, in Figure 7.25(f) we see that there are no empty tracks, but a
straight through connection can be made.

Step 2. Free up as many tracks as possible by collapsing split nets:
In this step, a column tries to free up as many tracks as possible by making
vertical connecting jogs that “collapse” nets currently occupying more than
one track. This step may also complete a connection by connecting a pin to
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Fig. 7.25 (a)-(f) Step 1 of Greedy channel router.

the track that its net currently occupies. Step 1, as seen above, may stop
at an available empty track. (See Figure 7.26(a)).

This is an important step in the algorithm since it makes more tracks
available to the nets arriving to the right of the channel. A collapsing
segment (a piece of vertical wire that connects two adjacent tracks occupied
by the same net) is used. Fach collapsing segment has a weight of 1 or 2,
depending on whether or not the net continues to the right beyond the
current column. This weight represents the number of tracks freed as a
result of the collapse. The best collapsing segment is one which frees most
tracks, and does not overlap with segments of other nets or the routing of
Step 1. This segment is found by a combinatorial search (Figure 7.26(a)-
(b)). If there is a tie, the segment that leaves the outermost uncollapsed net
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as far as possible from the channel side is chosen (Figure 7.26(c)). The idea
here 1s to keep the free area as close to the sides as possible. If there are
still ties, then the segment (pattern) that maximizes the amount of vertical
wire is used. (See Figure 7.26(d)).

Before 2 After 2 Before 0 After 0O
I ) .1 .~
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_— 3 o 4 4
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2 - 2 4 4
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Before 1 After 1 Before 0 After O
1 - 1
2 - 2 -
1 - 1 .
2 - 2 -
4 » 4 - 1 - 1 o
3 3 2 - 2 -
0 0 0 0

(© (d)

Fig. 7.26 (a)-(d) Step 2 of Greedy channel router.

Step 3. Add jogs to reduce the range of split nets: In this step, the
range of tracks assigned to the net of each uncollapsed split net is reduced
by adding vertical jogs. These jogs have the effect of moving the net from
the highest track to an empty one as far down as possible, and the one in the
lowest level to another empty track which is as far up as possible. Of course,
no jogs must be smaller than the minimum-jog-length. Furthermore, the
Jjog must be compatible with vertical wiring already placed in the column
by previous steps. (See Figure 7.27(a)).

Step 4. Add jogs to raise rising nets and lower falling nets: This
step tries to move all nets closer to the side they prefer, based on the side
of the next pin of the net. If the next pin is on the top of the channel, the
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greedy router tries to move the net to a higher track. Moving the track is
done by jog addition.

If such jogs are permissible and if the length of such jogs is greater than
the minimum jog length, then they are added to move the net to an empty
track which 1is as close as possible to its target side. This is shown in Figure

7.27(b); ‘=’ (4) indicates falling (rising) net.
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Fig. 7.27 Greedy channel router. (a) Step 3. (b) Step 4. (c) Step 5. (d) Step 6.

Step 5. Widen channel if needed to make previously infeasible top
or bottom connections: If nets in the current column failed to enter the
channel in Step 1, then new tracks are added and the nets are brought to
these tracks. Such new tracks are placed as near the center of the channel
as possible if they do not conflict with existing wiring. (See Figure 7.27(c)).

Step 6. Extend to next column: In this step, the list of tracks
occupied by the unsplit nets that ended at the current column are deleted.
And, the tracks occupied by both the unfinished nets and the split nets are
extended to the next column. (See Figure 7.27(d)).
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This completes the description of the greedy router. The router will
always complete routing successfully, although, to do so, sometimes it may
use a few additional columns beyond the right end of the channel.

Example 7.10 Apply the greedy algorithm of Rivest and Fiduccia ex-
plained in Section 7.4.4 to route the netlist given below.

Let the nitial-channel-width be 6 tracks, and the minimum-jog-length al-
lowed be equal to 1.
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Fig. 7.28 Solution to greedy router problem of Example 7.10

SoLuTioN Let the tracks be numbered from T, to 7% as shown in
Figure 7.28. We shall explain the application of the above heuristic at
each column starting from the left-most.

Column 1: Connect pin 4 to 75 and extend it to the next column.
Column 2: Connect pin 1 to Ty and pin 3 to 74 and extend tracks 7g,
T4, and Ts to the next column.
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Column 3: Connect pin 2 to 77 and pin 5 to 75. Jog net 5 from T3
to Ts since net b is a rising net. Extend tracks Ty, 71, T%, T4, and
Ts to the next column.

Column 4: Connect pin 5 to 75 and pin 3 to 7y. Jog net 5 from 75
to T3 since net 5 now is a falling net. Extend tracks Ty, 71, 75, T4,
and T5.

Column 5: Connect pin 7 to 7% and pin 5 to 75. Extend tracks Tg,
11, 15, Ty, and T to the next column.

Column 6: Connect pin 1 to Ty and pin 4 to T5. Jog net 1 from Ty
to T3 since net 1 is a falling net. Extend tracks 7T, Ty, T3, and T4.
Column 7: Connect pin 6 to Ty and pin 7 to T5. Merge tracks 75 and

Ts. Extend tracks Ty, 71, T3, and Tj.

Column 8: Connect pin 1 to 75. Jog net 5 from Ty to 75 and jog
net 1 from 75 to T5. Extend tracks T, 1>, 15, and T4 to the next
column.

Column 9: Connect pin 2 to 77. and pin 3 to T5. Merge tracks Ty
and Ty and extend tracks 75 and 73.

Column 10: Connect pin 9 to Ty and pin 1 to 7T5. Jog net 9 from Tj
to 77, merge Tracks T3 and 75 and then extend tracks 77 and 7%.
Column 11: Connect pin 6 to 75, merge Tracks 75 and 7Ty, and extend

tracks Ty and 77.
Column 12: Connect pin 9 to 75 and merge tracks 77 and T5.

The complete solution obtained by the application of the greedy router
is shown in Figure 7.28.

7.4.5 Switchbox Routing

When rectangular cells are placed on the layout floor, normally two kinds
of routing regions are created. These routing regions are called channels
and switchboxes. Channel rectangular regions limit their interconnection
endpoints or terminals to one pair of parallel sides. Switchboxes are gen-
eralizations of channels and allow terminals on all four sides of the region.
In the detailed routing stage, channel routers and switchbox routers are
required to complete the connection. The channel router is a special router
designed for routing in an area with no inside obstructions and with ter-
minals placed on two opposite sides. In earlier sections we studied the
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heuristics used for channel routing. In this section we discuss the switchbox
routing problem which, as will be seen, is more difficult than the channel
routing problem.

Problem Definition

A switchbox 1s a rectangular region with no inside obstructions, and with
terminals lying on all four sides. The terminals are grouped into a collection
S of disjoint sets called nets.

To identify which terminals are to be connected, each terminal is labeled
with a net identification number k, 1 < k < |S|. Formally a switchbox is
defined as a region R={0,1,---,m} x {0,1,---,n} where m and n are
positive integers. Each pair (i, j) in R is a grid point [12]. The ith column
is a set of grid points COL(4) = {(i,j) | j € {0,1,---n}}, 1 < i <m. The
Jth row or track is a set of points ROW(j) = {(¢,j) | j € {0,1,---m}},
1 < j < n. The zeroth and m'”* columns are the left and right boundaries of
the switchbox respectively. Similarly, the zeroth and n'”? rows are the top
and bottom boundaries of the switchbox. The connectivity and location of
each terminal is represented as LEFT(¢) = k, RIGHT(¢) = k&, TOP(¢) = k,
and BOT({) = k, depending on which side of the switchbox it lies on,
where ¢ stands for the coordinate of the terminal along the edge and k for
its identification number.

Lee-type algorithms are not suitable for solving this problem. Lee-type
routers do not check ahead to avoid unnecessary blocking of other terminals.

The goal of the switchbox router is to electrically connect the terminals
in each individual net. Connections run horizontally or vertically along
rows and columns along grid lines. As in previous cases, only a single wire
is allowed to occupy each row and each column segment. The wires are
allowed to cross. An example of a switchbox is shown in Figure 7.29 for
which we have

R={0,1,2,--7,8,9} x {0,1,2,---, 15,16,17}

7.8)

(1,2

(1,2,--7.8)
LEFT = (12, --14,15,16)

(1,2

RIGHT = -,14,15,16)

=[8,7,1,2,6,1,5,3]
=[10,12,1,10,3,9,5,11]
=1[0,3,10,0,0,0,2,0,11,1,0,0,13,6,0,4]
10,5,9,2,12,5,8,11,7,5,7,3,13,6,3,4]

——— —
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4 4
0 3
6 6

13 13
0 3
0 7
1 5

11 7
0 11
2 8
0 5
0 12
0 2

10 9
3 5
0 10

10 12 1 10 3 9 5 11

Fig. 7.29 Example of a switchbox.

Switchboxr Routing Algorithm

In this section we present an efficient switchbox routing algorithm due to
Luk [12]. This algorithm is a modification and extension of the greedy
routing heuristic of Rivest and Fiduccia discussed in Section 7.4.4. Some
operations of the greedy heuristic that are not vital to its operation are
relaxed and modified to overcome the additional constraints of switchbox
routing. The additional constraints are:

1. the matching of the terminals on the LEFT and RIGHT of the routing
region,

2. bringing in left-edge terminals directly into the routing region as hori-
zontal tracks at the column,

3. instead of jogging to the next top and bottom terminals as in Step 4 of the
greedy router, the horizontal tracks must be jogged keeping in mind the
target row, which is, a row where a right edge terminal is located. This
jogging 1s to ensure matching the nets with their right edge terminals.

Jogging Strategies

The main modification to the greedy channel router of Rivest and Fiduccia
is in the jogging schemes applied to accommodate the additional switchbox
constraints discussed above [16]. The various jogging schemes are defined
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as follows.

1. (Jogr). For nets that have terminals on the RIGHT, this jog is performed
until the net occupies a track that matches one of the right edge terminal
positions.

2. (Jogr,B). For nets that only have terminals on TOP and BOT, this jog
is similar to the one in the greedy channel router.

3. (Jogr/B; Jogr). In this jogging scheme, first (Jogr,p) is performed on
every net and then a switch is made to perform (Jogg) at the column
where the last top and/or bottom terminals appear.

Examples of the above jogging schemes are illustrated in Figure 7.30

0 1
1 0 1
2 0
0 3
3 2
2 0 1 o0
(@ (b)

Fig. 7.30 Jogging schemes. (a) (Joggr). Nets 1,2, and 3 jog to right side target terminal.
(b) (Jogr/B;Jogr). (Jogr;p) performed until column 3 and then (Jogr).

The general structure of the switchbox routing algorithm is given in
Figure 7.31. We will now briefly describe the various steps of the algorithm.

The algorithm begins by assigning one of the four edges of the switchbox
as the LEFT edge. Then the direction of scanning is determined. This is
done in Step 0. The quality of the final solution depends on the direction of
the scan. A good heuristic based on augmented channel density distribution
is proposed by Luk [12].

Once the scan direction is decided, the LEFT edge terminals are brought
into the first column. Then, for each column the next four steps are re-
peated.

In Step 1 the nets TOP(é) and BOT(¢) are brought into empty rows.
In the second step split nets are joined as much as possible to increase the
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Algorithm SwitchboxRouter
Begin
0. Determine Scan Direction;
Bring in LEFT terminals into column.
Loop for i from 1 to m — 1 Do
1. If empty tracks exist then bring TOP(¢) and BOT(?) into empty rows;
2. Join split nets as much as possible;
3a. For net with no right terminal Do
Bring split nets closer by jogging;
3b. For net with right terminal Do SWJOG;
4. When close to right edge Do
Fanout to targets;
5. If Step 1 failed then increase number of rows;
Repeat Stepl; update columns 1 to ¢;
While split nets exist Do;
6. Increase number of columns by 1;
Join split nets as much as possible;

End.

Fig. 7.31 Switchbox routing algorithm.

number of free tracks. Step 3 comprises of jogging. In Step 3a, as in the
case of the greedy channel routing algorithm, trunks of each split net, which
have no terminals on the right are brought closer by jogging. And in Step
3b, for those nets which have terminals on the right we use the combination
of jogging strategies discussed above.

This procedure is called SWJOG. It divides the routing region into a
left p-portion and a right p-portion. The jogging strategy to be applied
depends upon the location of the column (in left or right p-portion) where
the decision is to be made. The value of p is between 0 and 1. Below we
now enumerate the rules for SWJOG.

1. For nets that do not have right side terminals, always perform Jogr,p.

2. For nets that have a right side terminal and whose rightmost top/bottom
terminal is on the right p-portion of the routing region, perform Jogg for
that net.
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3. For nets that have a right side terminal and whose rightmost top/bottom
terminal i1s on the left p-portion of the routing region, perform
(Jogr,B; Jogr), that is, (Jogr,p) before the last top/bottom terminal
and (Jogr) at and after the last top/bottom terminal.

4. The value of p may vary between 0 and 1. If p = 0 perform (Jogg).
Obviously, if p = 1 perform (Jogr,p; Jogr). A typical value of p is 0.5.
(See Figure 7.32).

In the implementation, a distance dependent threshold scheme is used to
avoid excessive jogging. A net is allowed to jog to its target row only if it
can be brought to or beyond half-way between the initial position and final
target position.

@ (b)

Fig. 7.32 For nets that have a terminal in RIGHT and whose right-most top/bottom
terminal is (a) on right p-portion of routing region perform (Jogg). (b) on left p-portion
of routing region perform (Jogr,g; Jogr).

In Step 4 for nets that occupy more than one location on the RIGHT,
when they get closer to the right edge, these nets are made to fan-out to
their final terminal locations. Step 5 consists of increasing the number of
rows if Step 1 failed. And in Step 6, if split nets exist then the number of
columns is incremented and split nets are joined as much as possible. The
complete routed solution of Figure 7.29 is shown in Figure 7.33.

The time efficiency of the switchbox router i1s the same as the greedy
channel router. The router can be modified to route a region with terminals
fixed on any three sides.

7.5 Other Approaches and Recent Work

In this section we look at some related work in the area of channel and
switchbox routing. Recent algorithms for both channel and switchbox rout-
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Fig. 7.33 Solution to switchbox routing of Figure 7.29.

ing, and techniques for multilayer and over the cell channel routing are
discussed.

We begin this section with a channel routing approach proposed by
Chaudry and Robinson [2]. Their approach is based on sorting and assumes
that wires, in addition to running horizontally and vertically, can also run
at 45° and 135°. The technique uses bubble-sort for routing two-pin nets,
and can be easily extended to handle multiterminal nets.

Channel Routing by Sorting

Without loss of generality the nets in TOP can be assumed to be numbered
in sequence 1,2,--- n.

Example 7.11 For example the channel routing problem TOP=[54,3,
2,1,6] and BOT=[1,2,4,3,5,6] can be also be specified as TOP=[1,2,3,4,5,6]
and BOT=[5,4,2,3,1,6], where the terminal labels in TOP are reordered to
be in sequence and corresponding changes are made to the labels in BOT
(see Figure 7.34). The problem can also be specified as [5,4,2,3,1,6].

Then, the nets in BOT are a permutation of the sequence in TOP. Two
permutations p; and p;y1 are said to be adjacent if the routing problem
obtained by assigning p; to the lower side and p;;1 to the upper side of
the channel can be routed in one track. Possible adjacent permutations
and the associated routing are shown in Figure 7.35. The solution to the
channel routing problem is represented as a series of permutations {p;},
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Fig. 7.34 Equivalent channel routing problems.
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Fig. 7.35 Examples of adjacent permutations.

i =1,2,3,---,w such that py is the given permutation (BOT) and p, =
(1,2,---,n) (TOP), and p; is adjacent to p;y1, for 0 < i < w. The channel
routing problem then amounts to finding a series of intermediate adjacent
permutations {p;} such that the number of permutations w is minimized.
We now present the basic idea behind two routers, namely Swap-router and
Sort-router. These routers are based on permutations and sorting.

Swap Router

In swap router, two nets that have adjacent terminals in the wrong order
are interchanged. These nets can be connected using X routing as shown
in Figure 7.36. Note that it is assumed that connections can run at 45°
and 135°. A series of adjacent permutations can be built using only X

Fig. 7.36 X routing used in swap-router.
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routing. This corresponds to factoring the permutation as a product of
transpositions. Routing is done from bottom to top. If (a1, aq, -, ay) is
the bottom permutation, we compare a; and a;41 for i =1,3,5,---,n; and
swap the terminals if @; > a;41. In the next step the process is repeated for
t=2,4,6,---,n. The above two steps are repeated until all the terminals
are in the correct order. Since two nets cross only once if their terminals are
not in order the routing obtained by this swap-router is a minimal crossing
solution.

Bounds on the channel width are obtained in terms of span number.
The span of a terminal in a permutation is the difference of the terminal
number and its position in the permutation. For example, in the permu-
tation (5,4,1,3,6,2), number 1 has a span of -2, number 2 has a span of -4,
number 3 has a span of -1, and so on. The span number tells us how far
the number is from its correct position. Since in each step a net moves by
at most 1 column, a net with span of y will require y steps. It can therefore
be concluded that

number of steps > max(|span;|), 1<i<n (7.2)

Clearly, channel width can be reduced by removing the restriction of moving
only one column at each step.

Example 7.12 Determine the number of tracks required to route the
channel instance specified by [5,4,6,2,1,3] using the swap-router.

SoLuTioN For the problem under consideration, TOP=[1,2,3,4,5,6],
BOT=[5,4,6,2,1,3]. We begin from bottom. In the first pass we
compare a; and a;41 for ¢ = 1,35, ---. This leads to a permuta-
tion (4,5,2,6,1,3). In the next pass, we repeat the above, but for
i =2,4,6,---. The resulting permutation is (4,2,5,1,6,3). In the third
pass, again we apply swapping for ¢ = 1,3,5,---. and the resulting per-
mutation is (2,4,1,5,3,6). The last two permutations are (2,1,4,3,5,6)
and (1,2,3,4,5,6) respectively. The routed solution is illustrated in Fig-
ure 7.37.
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Fig. 7.37 Swap router solution of Example 7.12.

Sort Router

From the previous discussion it is clear that any sorting algorithm based
on exchanges can be easily converted to a channel router. An algorithm
based on bubble-sort is presented by Chaudry and Robinson [2]. The steps of
bubble-sort swap a pair of numbers only once if they are in the wrong order.
Therefore, as in the case of swap-router, the sort-router always produces a
minimal crossing solution. Since in one pass of the bubble-sort at least one
number moves to its final place, 1t would require at most n steps to sort
the n numbers. Thus the channel width will be < n, where n is the number
of nets. Here again 45° routing is allowed. We will illustrate this process
with an example.

Example 7.13 Apply the sort-router based on bubble sort to the channel
routing problem where TOP=[1,2,3,4,5,6], and BOT=[5,4,6, 2,1,3].

SoLUTION The problem instance to be routed is (5,4,6,2,1,3). We
now have to sort these numbers. Each intermediate step of sorting
will produce an adjacent permutation and will require one track. The
numbers in bubble-sort can be either scanned from left to right or
vice-versa; and the number of passes required to complete sorting will
depend on the direction of scan.

If the numbers are scanned from left to right we call this a right-step,
and if they are scanned from right to left we call this a left-step. The
number of steps required to route varies depending on the direction
of scan. The intermediate permutations for both the right-step and
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left-step are shown below as R-step and L-step respectively.

1 2 3 4 5 6 1 2 3 4 5
2 1 3 5 6 1 2 3 5 4
R—step=]14 2 1 3 5 6 L—step=1]1 2 5 4 6
4 2 1 3 6 1 5 4 6 2
5 4 6 2 1 3 5 4 6 2 1

Coincidentally, in this example, the number of intermediate permuta-
tions for both the right step and the left step are the same. The channel
routing solution of the above problem for both scan directions are given

in Figure 7.38.

1 2 3 4 5 6 1 2 3 4 5 6
2 1 3 4 5 6 1 2 3 5 4 6
4 2 1 3 5 6 1 2 5 4 e/ 3
4 5 2 1 3 6 1 5 4 6 2 3

5 4 6 2 1 3 5 4 6 2 1 3

Fig. 7.38 Sort router solution of Example 7.13. (a) Left to right scanning. (b) Right
to left scanning.

Details of choice of optimal step-type, and extensions to multiterminal nets,
and multilayer routing are available in literature [2].

Quer-the-cell Channel Routing

Another extension to the classical channel routing problem is over-the-cell
channel routing. This method is employed when there are at least two layers
in the routing channel; and one routing layer over the channel. Certain nets
can be partially or totally routed on one side over the channel using the
single available layer. Then, the remaining net segments are chosen for
routing. Therefore, a common approach to over-the-cell channel routing
is to divide the problem into three steps, namely, (1) routing over the

W W wos o
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channel, (2) choosing the net segments, and (3) routing within the channels.
The third step can be accomplished easily using one of the conventional
techniques discussed in this chapter. Cong and Liu showed that the first
step can be formulated as the problem of finding a maximum independent
set of a circle graph and can be solved optimally in quadratic time [5]. In
this step a row of terminals are routed on one side of the channel using
a single routing layer. The result is that the number of hyperterminals
are minimized. Cong and Liu called this problem multiterminal single-
layer one-sided routing problem (MSOP). The second step is formulated
as the problem of finding a minimum density spanning forest of a graph.
An efficient heuristic which produces satisfactory results is proposed [5].
A channel routing problem and its over-the-cell solution are illustrated in

Figure 7.39.

l<€— Over-the-cell routing
1 2 1 6 2 6/ 3 3 4 6

IS

2 1 3 ll 6 4 5 6 5 4 4 <€&— Over-the-cell routing

Fig. 7.39 Over-the-cell channel routing.

Techniques for Multilayer Channel Routing

New techniques for routing multilayer channels and their implementation
in a multilayer channel router called Chameleon were presented by Braun
et al [1]. These new techniques handle a variety of technology constraints.
For example, (a) the line width and line spacings can be specified indepen-
dently for each layer, (b) contact stacking can be forbidden or allowed etc.
Chameleon consists of two stages, a partitioner and a detailed router. The
task of the partitioner i1s to divide the problem into two- and three- layer
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subproblems such that the global channel area is minimized.

A new approach to three-layer channel routing problem based on the
idea of transforming a two-layer solution into a three-layer one was pre-
sented by Cong et al [6]. Their transformation consists of several steps
which can be formulated as two-processor scheduling, maze routing, and
the shortest path problem respectively. Since the above problems are well
understood and have polynomial time complexity, three-layer channel rout-
ing can be solved optimally. HVH model for three-layer routing is used.
Most of the above techniques can also be extended to four-layers.

A channel routing heuristic which assigns wires track by track in a
greedy way was proposed by Ho et al [11]. The data structure and strategy
used is simple and can be generalized to obtain a class of channel routing
heuristics. This algorithm has a backtracking capability that increases the
chance of completing the routing with a minimum number of tracks. In
addition the concept discussed can be applied to switchbox routing, and
three-layer and multilayer channel routing.

A new robust channel router with very simple heuristics was proposed
by Yoeli [18]. It supports a wide variety of routing models and handles two-
layer channels and three-layer channels (both HVH and VHV). Both these
routers, that is, the greedy channel router and the robust channel router,
achieve excellent results. For example, the Deutsch difficult example is
routed in 19 tracks (which is its local density) [7].

Other Switchbor Routers

In the area of switchbox routing, Hamachi and Ousterhout presented a
router called Detour which is capable of routing both switchboxes and
channels which contain pre-existing wiring as obstacles [9]. Their router
is based on Rivest and Fiduccia’s greedy channel router. Detour routes
over single layer obstacles such as wiring, and jogs nets around multilayer
obstacles such as contacts. Detour was developed as a part of the Magic
layout system [13].

Cohoon and Heck [4] presented a new fast router called BEAVER. This
i1s a computational geometry-based-tool that uses heuristics which produce
a switchbox solution that minimizes both via usage and wire length. It
also maximizes the use of preferred routing layer. It consists of four tools
that are run successively, (a) a corner router, (b) a line sweep router, (c) a
thread router, and (d) a layerer. The corner router is used to make single
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bend terminal-to-terminal connections. The line sweep router is used for
making straight-line connections, single-bend connections, and two-bend
connections. The thread router makes connections of arbitrary form and
the layerer completes switchbox routing by layering wires that have been
assigned a location but are yet to be assigned to a layer. The quality of
solution produced by BEAVER (in terms of wire length) is better than or
comparable to previously reported solutions.

Finally we refer to switchbox routing algorithm called PACKER. [8].
PACKER proceeds in two steps. In the first step, connectivity of each net
is established without taking the other nets into account. This of course
will result in conflicts and short circuits. In the second step these conflicts
are removed iteratively using what 1s known as connectivity preserving local
transformations (CPLTs). CPLTs perform the task of reshaping a segment
without disconnecting it from the net.

7.6 Conclusions

In this chapter, we presented the problem of channel routing. Graph theo-
retic approaches to solve the channel routing problem were presented. The
most commonly used technique, known as the left-edge algorithm was dis-
cussed in detail. Following this, the algorithm which performs splitting of
nets, known as doglegging was described [7]. We also presented two algo-
rithms due to Yoshimura and Kuh [19]. Their first algorithm uses merg-
ing of nodes so that the longest path length after merging is minimized
as much as possible. The second algorithm proposed by Yoshimura and
Kuh achieves longest path minimization through matching techniques on
a bipartite graph. Both techniques report better results than the dogleg
algorithm. Further, we discussed the working of a greedy router, which,
unlike the above mentioned methods, routes the channel column by col-
umn. A modification of the greedy heuristic to route switchboxes, called
the ‘switchbox router’ was also presented.

Interesting heuristics that employ sorting and swapping to route chan-
nels were presented in the section dedicated to ‘other approaches’. Over-
the-cell channel routing, techniques for multilayer channel routing, and
other popular switchbox routers were briefly mentioned.
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Exercise

Exercise 7.1  Describe the basic channel routing algorithm. Explain why
designers prefer to use channel and switchbox routers over maze or line-
probe routers.

Exercise 7.2 Given the following instance of the channel routing problem:

TOP=[2,1,5,1,2,3,6] and
BOT=[5,3,6,4,0,2,4]

(1) Determine the maximalsets and find a lower bound on the channel width.
(2) Draw the HCG and VCG.
(3) Apply the algorithm given in Figure 7.7 to route the channel.

Exercise 7.3 Find the time complexity of the algorithm given in Fig-
ure 7.7.

Exercise 7.4 Suggest an improvement to the algorithm given in Figure 7.7
with respect to time complexity [Hint: Reduce time complexity of Steps 1

and 2].

Exercise 7.5 Compare and discuss the routing algorithms given in Fig-
ure 7.7 and obtained in Exercise 7.4 in terms of quality of their solutions
(qualitative discussion) and time complexity.
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Exercise 7.6 For the netlist given below find an assignment of nets to
tracks to complete routing. Use doglegging to break cycles.
TOP=[1,4,2,0,2,3,4,5] and

BOT=[2,0,3,3,1,4,5,5].

Exercise 7.7 Apply the basic left-edge algorithm to the channel routing
problem of Example 7.5. Compare and comment on the result.

Exercise 7.8 In a channel routing problem with vertical constraints, the
length of the VCG can be reduced by merging nodes corresponding to nets
that can be placed in the same track. Find a solution that uses the least
number of tracks to the channel routing problem given below using the
merging technique suggested by Yoshimura and Kuh.

TOP=[0,1,0,2,1,5,5,6,8,0,1, 9, 8,10,11,12] and
BOT=[2,3,1,4,4,3,6,3,1,9,9,11,10,11,12,12]

Exercise 7.9  Prove that if the original VCG has no cycles then merging
of nodes using Algorithm # 1 of Figure 7.15 does not generate cycles.

Exercise 7.10  Prove that the increase in length of the longest path due to
merging of two nodes in the vertical constraint graph is given by

h(n,m) = h™**(n,m) — max{u(n) + d(n),u(m) + d(m)}, where
hme%(n,m) = max{u(n), u(m)} + max{d(n),d(m)}.

For definitions of u, and d see Section 7.4.3.

Exercise 7.11 Programming exercise: Design and implement a pro-
gram to determine the vertical constraint graph of a channel. The program
must be able to remove loops from the graph by inserting doglegs.

Exercise 7.12 Complete Example 7.9.

Exercise 7.13  Show that the function \/u(m) X u(n)—i—\/d(m) x d(n) used

in the cost function g(n,m) minimized by the Yoshimura-Kuh algorithm is

maximum when %(%l = %(%l.

Exercise 7.14  Solve the channel routing problem given in Exercise 7.6
using

1. the greedy channel router;
2. the swap and sort router.
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Exercise 7.15  Route the switchbox given below by applying the technique

discussed 1n Section 7.4.5.

R:{O’. . ’7} x {0’ . ’5}

RIGHT=(1,--4) = [4,7,1,2]
LEFT =(1,--4) = [3,6,5,1]
BOT =(1,--6) = [0,3,2,838.2]
TOP =(1,--6) = [5,6,2,4,7,5]
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Chapter 8

Layout Generation

8.1 Introduction

A compilation is usually implemented as a sequence of transformations
(SL,L1), (L1, L2), ..., (Lg,TL) from a source language SL to a target
language T'L. Each language L; is called an intermediate language. Inter-
mediate languages are introduced for the purpose of decomposing the task
of compiling from the source language to the target language. In silicon
compilation SL is a digital system specification and 7' is VLSI layout
specification.

The input source to a silicon compiler, which is a representation of
the digital system to be synthesized, may be either behavioral, structural
or phystcal. The behavioral level representation is the most abstract and
hides a large amount of detail. Lower in the hierarchy is the structural level
representation, followed by the physical level.

8.1.1 Behavioral Level

The behavioral level model of a digital system describes the way the system
and its components interact with their environment, that is, the mapping
from inputs to outputs without any reference to structure. The behavior of
a logic circuit can be defined in terms of Boolean functions. For example
the behavioral description of a circuit that produces the sum output in a
full-adder can be given as

Sout = AP B® iy, (8.1)

379
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where @ indicates Exclusive-Or (XOR) operation, A, B, are the inputs and
Cin 18 the carry-in.

Behavioral descriptions are technology independent and hide implemen-
tation specific information. Higher levels of behavioral descriptions are
possible. For instance the arithmetic add operation may be written as

C=A+B (8.2)

In the above expression no indication of the size of the adder (number of
bits) or its implementation is given. The adder may be implemented as a
carry look-ahead adder or a ripple carry adder. Besides that, no information
about C'is known (it may be a bus or a register). The behavior of a digital
system can also be expressed as an algorithm in a high level programming
language such as Pascal or Fortran [23; 22].

8.1.2 Structural Level

The abstraction level below the behavioral level is the structural level.
A structural level specification primarily contains information about the
components used and their interconnection (netlist, for example). In ad-
dition, structural level description may also contain information about the
technology used, dimensions of devices, their electronic characteristic, in-
put/output capacitances, etc.

Take the example of Syyt, the sum output of the full-adder (Boolean
Equation 8.1). Let us assume that the XOR gate is implemented using four
2-input NAND gates and that the NAND gate is implemented in CMOS
technology. These details about implementation and technology can be
included in the structural model. The circuit diagram of the two-input
NAND gate is given in Figure 8.1(a). The XOR gate implementation that
uses four NAND gates is given in Figure 8.1(b), and the circuit to implement
Sout 18 given in Figure 8.1(c). The complete structural model of the CMOS
circuit in SPICE format is given in Figure 8.2. Observe that the SPICE
model describes components and their interconnectivity. In addition to this,
it contains information about the output capacitance. In SPICE, electrical
characteristics of MOS devices can also be included [17].
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Fig. 8.1 (a) CMOS 2-input NAND gate. (b) XOR gates implemented using four NAND
gates. (c) Sum output of a full-adder using two XOR gates.

8.1.3  Physical Level

The physical level of representation defines how the particular circuit is to
be constructed to yield a specific structure and hence the behavior. The
lowest level of physical specification is the representation required by the
various steps of the fabrication process.

MOS technology offers 4 to 5 layers of conducting materials in which
wires are run to build circuits. They are diffusion (p-type or n-type de-
pending on the type of transistor to be fabricated), polysilicon (also known
as poly), and metal (one or two layers). When poly crosses over diffusion
a transistor is formed as depicted in Figure 8.3. An electrical property of
a MOS transistor that enables its use as a switch is that current can pass
along the diffusion wire from A to B only if the voltage on the poly wire
C' — D is high. A low voltage on poly does not allow current to pass (this
is the case for nMOS, for pMOS the voltage levels are reversed). A set of
rules commonly known as “design rules” specify precisely the requirements
of sizes of rectangles and restrictions on their spacing. A MOS layout of
any digital system can be constructed using the above mentioned layers.
As an example, the complete layout of a CMOS transmission gate is shown
in Figure 8.4.

The layout can also be represented using a geometry language known as
CIF (Caltech Intermediate Form) [16]. This is a language used to describe
the mask geometries of the chip. The CIF description of the CMOS trans-
mission gate is given in Figure 8.5. In CIF, coordinates and dimensions of
all rectangles that make the masks are accurately defined. In CIF, a box is
created by a statement of the form

B <width> <height> <x-center> <y-center>
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FULL_ADDER OUTPUT CIRCUIT
SUBCKT NAND 12 4
*Transistors in a NAND circuit
** D G S B Transistor-Type
M13 14 3P

M23 24 3P

M34 15 ON

M45 20 ON

VDD 30 DC 5V

.MODEL P PMOS

.MODEL N NMOS

.ENDS NAND

SUBCKT XOR 11 12 25
*NAND gates in XOR circuit
NAND1 11 12 22 NAND
NAND2 22 11 23 NAND
NAND3 22 12 24 NAND
NAND4 23 24 25 NAND
.ENDS XOR

*XOR gates in FULL_ADDER
XORI1 11 12 25 XOR

XOR2 25 13 31 XOR

CAP 31 0 1.0PF

.END

Fig. 8.2 SPICE model of circuit in Figure 8.1(c).

Where ‘B’ is a keyword abbreviation for box, <width> and <height> rep-
resent the size of the box, and (<x-center> <y-center>) are the coordinates
of the center of the box. The specification of the layer assignment of the
box is stated as follows.

L <layer specification>

Layer specification is a code for the name of one of the layers used in the
layout. For example, for CMOS technology the layer designations together
with their meanings are: CWG (for well), CWP (for p-well), CAA (for
active area), CSG (for select), CSP (for p select), CSN (for n select), CPG
(for poly), CCP (for contact to poly), CCA (for contact to active), CMF
(for metal-1), CVA (for via), CMS (for metal-2), and COG (for glass). The
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Fig. 8.4 (a) Transmission gate circuit. (b) Layout of CMOS transmission gate.

specification of a cell is introduced by the statement
DS <symbol-number> <scale>

where DS is a keyword meaning ‘definition start’, <symbol-number> is an
integer that serves as the name of the cell, and <scale> is a pair of integers
‘a’ and ‘b’, such that all dimensions and coordinates of boxes are multiplied
by the ratio ¢ (used for scaling designs). The end of a specification is
marked by the statement DF (definition finish). The call of a cell is achieved
by a statement of the form
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DS 125 2;
9 trans;
L. CWP;
B 348 180 138 -126;
L. CMF,
B 480 60 60 198;
B 72 96 -96 72;
B 228 60 138 90;
B 120 72 -120 -12;
B 72 48 -96 -72;
B 72 36 216 42;
B 120 72 240 -12;
B 228 60 -18 -126;
B 72 108 216 -102;
B 480 60 60 -234;
L CPG;
B 36 540 -18 -18;
B 36 540 138 -18;
L. CAA;
B 228 60 -18 90;
B 228 60 138 -126;
L. CCA;
B 24 24 -96 90;
B 24 24 60 90;
B 24 24 60 -126;
B 24 24 216 -126;
L. CSP;
B 276 108 -18 90;
L. CSN;
B 276 108 138 -126;
DF;
C1;
End

Fig. 8.5 CIF description file for the CMOS transmission gate of Figure 8.4.

C <symbol-number> <list of transformation>

where list of transformation may contain commands to rotate, translate or
mirror the cell [16].
The traditional manner of creating the physical layouts of custom VLSI
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chip requires a human to interact with a graphics-based hierarchical layout
editing program. For large designs, this approach is time consuming and er-
ror prone. An automated physical design system would take the behavioral
or structural level description of systems and automatically synthesize VLSI
layouts. That is, it would translate automatically a structural/behavioral
description to a physical level representation.

In the previous chapters we presented algorithms and heuristics for au-
tomatic partitioning, placement and routing of functional modules of a
digital system. These modules are layouts of Boolean logic functions and
flip-flops, or layouts of macro cells such as ROMs, Programmable Logic
Arrays (PLAs), multiplexers, etc. The layouts of such cells may be hand-
crafted (drawn using an intelligent interactive layout editor such as Magic
(see Chapter 9)), or may be generated automatically [19].

A large portion of routine circuitry can be automatically produced by
CAD software programs. Programs that take the structural or behavioral
descriptions and produce layouts are called ‘silicon compilers’. Programs
that automatically produce VLSI layouts of cells whose functions are known
from input descriptions (or parameters) are called layout generators. These
programs are generally technology dependent, and are suitable for the cre-
ation of layouts which have a well defined structure (e.g., ROMs, PLAs,
multiplexers, etc). These generators require a number of leaf cells. They
also depend on the layout style adopted. The final structure of the layout
1s predefined.

In this chapter we shall restrict ourselves to MOS technology. We
present techniques to automatically generate layouts of standard-cells where
the input description is of an AND/OR MOS circuit [24]. Another sys-
tematic method for performing chip layout called gate matrix is also pre-
sented [14]. Following this, we discuss the synthesis of multi-output two

level AND/OR circuits as PLAs.

8.2 Layout Generation

Generators are tools that produce high quality VLSI layouts from transistor
level netlist descriptions or from Boolean functions. These tools capture the
expertise of a designer. Layouts can be generated in terms of modules such
as ROMs/RAMs, PLAs etc., or as standard-cells, or as special structures.
Layout generators provide the advantage of producing error free layouts
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with quick turn-around time. They use a systematic procedure to map
netlist to physical level layouts that have high performance and minimum
area.

Cell generators can generate layouts confining to certain constraints e.g.,
fixed height. Before going into a study of some popular structures in which
layouts can be designed, we present the advantages of implementing a func-
tion using a functional cell over the implementation which uses universal
gates.

Logic functions can be implemented by means of circuits consisting of
one or more universal gates such as NAND or NOR, or by means of a single
functional cell. However, synthesizing cells at the transistor level usually
leads to more efficient implementations. For example consider the function

F=xy+7y (83)

An implementation of the function which uses only NAND gates is shown
in Figure 8.1(b). In CMOS, this implementation requires 16 transistors and
a large number of interconnects. Frequently, it is possible to implement a
complex logical function more efficiently with a single functional cell, in-
stead of using several primitive logic circuits such as NAND or NOR gates.
The alternate implementation of the XOR function that takes advantage
of the functional cell which realizes the function x + yz is shown in Figure
8.6(a). The CMOS circuit of the XOR function is shown in Figure 8.6(b).
This alternate implementation results in better performance, reduced de-
lay and smaller size than the design of Figure 8.1(b). Tt uses only ten
transistors [24].

In this chapter we restrict ourselves to AND/OR networks. In CMOS,
such networks can be realized by means of series/parallel connections of
transistors, where the pMOS and nMOS sides of the circuit are dual of each
other as shown in Figure 8.6(b). That is, if the nMOS side of the network
is a series/parallel circuit, then the pMOS side will be a parallel/series
circuit. The number of pMOS transistors is equal to the number of nMOS
transistors and for every AND/OR element this number is also equal to the
number of inputs to that element. This restriction in topology is commonly
used by designers of CMOS circuits.

In the following paragraphs we will briefly introduce some layout styles
whose details are discussed later in this chapter. We begin with fixed height
layouts of functional cells.



Layout Generation 387

Vbp
x—ié_x%
X y—|
- o ) Ry+xy
x
¥+
0

_|

@

Fig. 8.6 (a) Alternate implementation of XOR function. (b) CMOS circuit of function
in (a).

8.2.1 Standard-cells

The function to be synthesized can be mapped to a regular structure which
consists of an array of MOS transistors as shown in Figure 8.7. This ar-
ray consists of a row of pMOS transistors and a row of nMOS transistors
corresponding to the pMOS and nMOS sides of the circuit. The transis-
tors are vertically aligned, that is, a p-transistor and an n-transistor that
receive the same input are placed one above the other. The height of the
functional cell may be assumed to be fixed as in ‘standard-cell layout style’.
The devices are interconnected depending on the function to be realized to
yield the desired layout. More details on standard-cell layout generation
are presented in Section 8.3.

VDD

J—ro

pMOS

.
.
.
.
:

nMOS
GND

Fig. 8.7 Array of CMOS transistors for standard cell layout implementation.
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An extension of this method is the gate matrix layout style discussed
below.

8.2.2 Gate-matriz Methodology

This methodology was first proposed by Lopez and Law [14]. It uses an
orderly structure, which is, a matrix composed of intersecting rows and
columns. Columns are equally spaced, and are implemented in polysilicon
as parallel wires running vertically. All transistors having a common in-
put are constructed along the same column. Thus, columns serve a dual
purpose: (a) they are gates of many transistors which lie on the line, and
(b) they also serve as a common connect among the transistors. The sources
and drains of transistors are connected by horizontal segments of metal
which are placed in the rows of the matrix. In addition, short vertical dif-
fusion strips are sometimes necessary to connect the drains and sources of
transistors to metal lines on different rows. Connections to Vdd/Vss are in
a second metal layer (metal-2).

An example circuit and its corresponding gate matrix layout are shown
in Figure 8.8. Lines A, B, C and Z in Figure 8.8(b) correspond to inputs
(A B), internal node (C) and output (Z). Transistors 1,3,6 and 9, which
have the same gate signal (A) are placed in the same column.

8.2.3 Programmable Logic Array

Irregular combinational functions can be mapped onto regular structures
using PLAs. One very general way to implement a combinational logic
function of n-inputs and m-outputs is to use a ROM of size 2”7 x m bits.
The n inputs form the address of the memory and the m outputs are the
data contained in that address. Since it is often the case that only a small
fraction of the 2" minterms are required for a canonical sum-of-products
(SOP) implementation, a large area is wasted by using a ROM. A PLA
structure has all the generalities of a memory for the implementation of
a combinational logic function. However, any specific PLA structure need
contain a row of circuit elements only for product terms that are actually
required to implement a given logic function. Since it does not contain
entries for all possible minterms, it is usually far more compact than a
ROM of the same function. To achieve further reduction in area, the various
output functions can be jointly minimized before the PLA layout pattern
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Fig. 8.8 (a) A static CMOS circuit. (b) Corresponding gate matrix layout.

is defined. The example below illustrates the overall structure of a PLA.
Example 8.1 Consider the two functions given below:

Y1 =122 + 123 =p1 + P2

Y2 = X123 + TaT3z = P2 + P3
Both functions are expressed in the canonical sum-of-product form and can
be implemented using a two level AND/OR circuit.

A PLA is a very regular structure consisting of an AND plane and an
OR plane. The function of the AND plane is to produce the product terms,
and the OR plane the sums of the product terms.

The nMOS circuit of a PLA that implements the above functions y; and
Yo 18 given in Figure 8.9. The three rows in the AND plane implement the
three unique product terms (p1, p2, and p3). The function of the AND plane
is actually implemented using NOR, logic which receives inverted inputs.
The first row of the AND plane implements the product term x,73 since
the output p; is high when T7 and x5 are both low.

We have thus far seen three regular structures of layouts onto which
combinational functions can be easily mapped, two for CMOS (standard-
cell and gate matrix) and one for nMOS (PLAs). Of course PLAs can also
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Fig. 8.9 PLA implementing two functions with three product terms.

be implemented in CMOS. In the following sections we give more details
of the above three structures and then present algorithms for reducing the
area of generated layouts.

8.3 Standard-cell Generation

For the restricted CMOS environment discussed earlier in this chapter,
where the pMOS network is the dual of the nMOS network, the problem of
layout generation as standard-cells can be stated as follows. Given a circuit
specification, produce a functionally correct, area efficient and design rule
error free VLSI layout that represents the circuit. The AND/OR circuit
may be specified as a logic level netlist. It may also be specified at the
transistor level in a format similar to the one shown in Figure 8.2. The
layout produced may be in CIF format (Figure 8.5).

To understand the problem of layout generation and its optimization in
detail, consider the circuit of Figure 8.10(a). This network is the realization
of the SOP specification of the function  + yz by means of a series/parallel
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connections of transistors. Since the number of pMOS transistors is the
same as the number of nMOS transistors (the pMOS network is the dual of
the nMOS network) the entire circuit can be constructed by assigning the
devices of the circuit to the devices of the array (as shown in Figure 8.7)
and interconnecting the corresponding sources and drains. One possible
solution is shown in Figure 8.10(b). In this layout, the placement of devices

Grid unit
—p
1 2 3
a2 o Metal = pMOS
al| bE Gl s b|| c
CE G
e CE o Output
dE md c
Lo — 2 e 2 nMOS
x Separation| y z

@ (b)

Fig. 8.10 (a) Circuit that implements the function z 4+ yz (b) Corresponding CMOS
standard-cell layout.

of the circuit is in serial order of the labels on their gates. Any random
order of devices would also yield a workable but not necessarily an efficient
solution.

Before we proceed further, for the sake of explanation only, let us desig-
nate the diffusion area on the left side of the gate as the drain, and that to
the right of the gate as the source, and the label of the device as the input
number at its gate.

Now referring to Figure 8.10(b) we see that the source of device 1 (node
b) is connected to the drain of device 2 with a metal strip and the two
devices must be separated as dictated by the design rules. A physical sep-
aration whose value is dictated by the design rules is required if there is
no connection between physically adjacent diffusion rectangles or if they
are connected by metal. However if the source of a device is at the same
potential as the drain of the device adjacent to it, then both devices can
be connected by abutting their diffusion areas, therefore, reducing the sep-
aration to zero. This abutment does not violate any design rules. It will
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reduce the width of the array by a distance of one separation. This point
is further illustrated in Figure 8.11.
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Fig. 8.11 Abutment of adjacent devices reduces width.

It must be mentioned here that connecting sources/drains of adjacent
devices with metal runs can improve speed but will require vias that affect
yield. If speed is not as important as area, then the devices can be abutted
as explained above.

Area of the layout

Clearly, the area of the functional cell can be calculated as follows:

area = width x height; where
height = constant
width = basic grid size x (# of inputs + # of separations).

Since the number of inputs and the height of the layout are fixed, the
problem of reducing the layout area then becomes the problem of reducing
the number of separations. Separations can be reduced by ordering the
devices in a row such that the physically adjacent devices can be connected
by a diffusion area. Referring to the circuit of Figure 8.10(a) the order
1,3,2 of devices for both pMOS and nMOS devices will allow the sources and
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drains of adjacent devices 1,3 and 3,2 to be abutted (connected by diffusion).
The resultant layout is illustrated in Figure 8.12. In the following paragraph

1 3 2

B Output

Fig. 8.12 Resultant layout of circuit in Figure 8.10.

we present a graph-theoretic model of the circuit and an algorithm for
judicious pairing of sources and drains to reduce the overall area of the
layout.

8.3.1 Optimization of Standard-cell Layout

The optimization procedure explained in this section uses the following
graph model [24]. A p-side graph and an n-side graph are used to model
the pMOS side and the nMOS side of a circuit, respectively. The p-side
graph is defined as follows:

1. Every gate-drain and gate-source potential is represented by a vertex.
Drains (or sources) that are at the same potential are represented by the
same vertex.

2. Every transistor is represented by an edge connecting the drain and
source vertices of that transistor (see Figure 8.13).

The n-side graph can be defined in a similar way. An example of such
a graph for the circuit of Figure 8.14(b) is shown in Figure 8.14(c). Be-
cause of the restriction on the CMOS circuits under consideration, both
the n-side and p-side graphs are series-parallel graphs. Edges correspond
to transistors in both graphs and they are connected in a series/parallel
manner according to the series/parallel connections of transistors in the
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Fig. 8.13 n-pMOS graph construction.

circuit. For example, in Figure 8.14(c), edges labeled 2 and 3 are in parallel
in the p-side graph, and are in series in the n-side graph. This corresponds
to the pMOS transistors 2 and 3 being in parallel and the nMOS transistors
2 and 3 being in series. The names of input signals are used to label those
edges. The p-side graph and the n-side graph are dual of each other. The
following property of this graph model is of interest for the optimal layout
of CMOS circuits.

VbD

Out

(@ (b) ©

Fig. 8.14 (a) Logic diagram. (b) Corresponding circuit diagram. (c) Graph.

If two edges @ and y in the graph are adjacent, then it s possible to place
the corresponding transistors in physically adjacent positions of the same
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row, and hence connect them by a diffusion area. In order to minimize
the number of separation areas, it is necessary to find a set of paths of
minimum-size, which corresponds to chains of transistors in the row. As
indicated earlier, such a set will result in minimal area layout [24].

An Euler path is a path with no repeated edges that contains all the
edges of the graph. If there exists an Euler path then all gates can be
chained by diffusion areas. If there is no Euler path, then the graph can be
decomposed into several subgraphs which have Fuler paths. In the latter
case, each Euler path corresponds to a chain of transistors that is separated
from the next chain by a separation area.

In order to reduce the size of an array, it is necessary to find a pair
of paths in the dual graphs with the same sequence of labels. This is be-
cause p-type and n-type gates corresponding to the same input signal have
the same horizontal position in the CMOS array. For example the path
< 1,3,2,4,5 > of the n-side graph in Figure 8.14(c) produces a chain of
gates on the nMOS side, as shown in Figure 8.15(a). There is however no
corresponding Euler path in the p-side graph. Therefore, a separation exists
between gates 2 and 4 as shown. On the other hand, a path < 2,3,1,4,5 >
is an Euler path in both the p-side and the n-side graph of Figure 8.14(c).
Therefore, all gates can be chained together by diffusion areas without any
separation as shown in Figure 8.15(b).

The general procedure proposed by Uehara et al consists of three steps
which are itemized below:[24]

1. Enumerate all possible decompositions of the graph to find the minimum
number of Euler paths that cover the graph.

2. Chain the gates by means of a diffusion area according to the order of
the edges in each Euler path.

3. If more than two Euler paths are necessary to cover the graph model,
then provide a separation between each pair of chains.

The problem of finding an optimal layout of a Boolean function using the
restricted CMOS design style is then reduced to the decomposition of the
corresponding graph into a minimum number of Euler paths [24]. Next we
present a possible approach to determine minimum number of Euler paths.
The approach relies on the following reduction technique which consists of
reducing every odd number of series or parallel edges into a single one. This
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Fig. 8.15 (a) Layout generated from Euler path only on n-side. Path < 1,3,2,4,5 > is
an Euler path of n-side graph but not of p-side. (b) Layout generated from Euler Path
< 2,3,1,4,5 >. This is an Euler path in both p-side graph and n-side graph.

is repeated until no further reduction is possible (see Figure 8.16).

Theorem 8.1 If there is an Euler path in the reduced graph, then their
exists an Fuler path in the original graph.

Proof. 1Tt 1s possible to reconstruct an Euler path in the original graph by
replacing each edge of the Euler path in the reduced graph by a sequence
of the original odd number of edges. d

Theorem 8.2  If the number of inputs to every AND/OR element is odd,
then

(1) the corresponding graph has a single Euler path;

(2) there exists a graph such that the sequence of edges on the Euler path
corresponds to the order of inputs on a planar representation of the logic
diagram.
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€) (b)

Fig.8.16 Reduction of odd number of edges. (a) Odd number of edges in parallel(series)
corresponding to pMOS(nMOS) graph reduced to a single edge. (b) Odd number of edges
in series(parallel) corresponding to pMOS(nMOS) graph reduced to a single edge.

Proof.

(1) The CMOS implementation of an AND/OR function has a number of
series/parallel transistors that is equal to the number of variables of that
function. Since the number of edges in series or in parallel is always odd,
the graph model can be reduced to a single edge which 1s an Euler path
itself. So there exists an Euler path on the original path according to
Theorem 8.1.

(2) Tt is possible to construct the graph as follows:

(a) start with an edge corresponding to the CMOS circuit’s output,

(b) select an edge corresponding to the output of a gate and replace it by
the series-parallel graph for that gate,

(c) reorganize the sequence of new edges on the Euler path being con-
structed such that it corresponds to the order of the inputs on the
planar representation of the logic diagram. Such a rearrangement of
edges in the Euler path is always possible when the number of inputs
to an AND/OR element and hence, the number of edges in series or in
parallel 1s odd.

It should be noted that this algorithm assumes that every gate has an
odd number of inputs. This is obviously not the case for most AND/OR
networks in actual practice. a

The Heuristic Algorithm

The heuristic algorithm takes advantage of Theorem 2. Additional inputs
called “pseudo” inputs are introduced and the original problem is modified
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so that every gate in a logic diagram has an odd number of inputs. It is
guaranteed by Theorem 2 that there exists an Euler path for this modi-
fied problem. This Euler path contains edges corresponding to the original
inputs and also edges corresponding to the new pseudo inputs, which are
possible separation areas. The topology of the circuit should be selected
such that the number of separation areas is minimized. The heuristic algo-
rithm consists of the following steps:

(@ (b)

Fig. 8.17 (a) Adding pseudo inputs to AND/OR circuit. (b) Moving pseudo inputs to
the upper and lower ends of the figure.

1. To every gate with an even number of inputs a pseudo input is added.

2. Add this new input to the gate such that the planar representation of
the logic diagram shows a minimum interlace of pseudo and real inputs.
The reason is that a pseudo input at the top or at the bottom of the logic
diagram does not contribute to the separation areas.

3. Obtain the CMOS circuit corresponding to the original gate level logic
circuit.

4. Construct the graph such that the sequence of edges corresponds to the
vertical order of inputs on the planar logic diagram.

5. Chain together the gates by means of diffusion areas, as indicated by the
sequence of edges on the Euler path. “Pseudo” edges indicate separation
areas.

6. The final circuit topology can be derived by deleting pseudo edges that
are in parallel with other edges and by contracting pseudo edges which
are in series with other edges [24].

The procedure is applied to the circuit of Figure 8.14(a). Figure 8.17(a)
shows the addition of pseudo inputs.

Figure 8.17(b) is the same circuit with pseudo inputs moved to the top
and bottom of the logic diagram. The application of the reduction algo-



Optimization of Gate-Matriz Layout 399

‘ 6 N
'I' “ 8
¥---1---=% B s Bl 4
\ 1 I'
A ’
A KPS
(a) (b) ()
AR IAN
’ \
R x 1Y
* 8 “~x PRy B
\ X
\\ 7

(d) O] ®

Fig. 8.18 (a) The graphs corresponding to the original circuit with pseudo edges added.
(b) Merging edges p1, 2 and 3, into a single edge 6. (c) Merging edges 6, 1 and 7 into
a single edge 8. (d) Single edge representing existence of a single Euler path. (e) Euler
paths after one expansion of the reduced graph. (f) Euler path indicating the order of
devices in the row which consists of edges 2, 3, 1, 5, and 4.

rithm to the circuit is shown in Figure 8.18(a,b,c) and the reconstruction
of the graph to find the desired sequence is shown in Figure 8.18(d,e,f).

8.4 Optimization of Gate-Matrix Layout

In section 8.2 we introduced the structure of a gate matrix. In this section
we will look at the problem of optimizing its layout. In formulating the
problem, we consider only the n-transistor circuit, since the p-part of the
circuit can be determined once the n-part is known. Also, we ignore con-
nections to power supply and ground since they can be placed in metal-2
layer. The optimization problem and the solution explained in this section
are formulated by Wing et al [26]. We begin with some definitions.
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Terminology and Notations

Let

T = {t;|t; is a transistor}.

G = {4g:|g; 1s a distinct transistor gate}.

N = {n;} be the set of nets.

C' = {¢;} be the set of columns of the gate matrix.

R = {r;} be the set of rows of the gate matrix.

f G — C be the function that assigns the gates to the columns. We call
the function f the gate assignment function.

h: N — R be the function that assigns the nets to the rows. We call the
function h the net assignment function.

The gates of the transistors are labeled with distinct names (except that
two or more gates connected to the same node will have the same name).
A poly strip 1s assigned to each distinct transistor gate and to each output
terminal of the circuit. The poly strips are referred to as gate lines. In a
circuit, the transistors are connected to one another at their source, drain
and gate. A net is assigned to each node of the circuit and the set of nets
is denoted by N = {n;}. Every transistor (channel) connects two nodes
(nets) or a node and ground. Each net will be realized by a segment of
horizontal metal line which is connected to a drain, source, or gate of the
transistor of the node.

For each pair of functions (f, h), there is a layout L(f, h). Each layout
L(f,h) will result in a gate matrix with a certain number of rows. The
number of columns is fixed. The gate matrix layout optimization problem
can be stated as follows: Given a set of transistors 7' together with a set
of gates G and a set of nets N, find a pair of functions f : G — C and
h: N — R such that in the layout L(f, h) has a minimum number of rows
and is realizable.

We first consider the problem of reducing the number of rows in the gate
matrix layout. We then determine the conditions which make the layout
realizable.

The Abstract Model

Since each transistor is assigned a gate line, it 1s convenient to regard each
net as being a set of gate lines. An abstract representation of this relation
between gates and nets is as follows. Each gate g; will be represented by a
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vertical line and each net n; by a horizontal line segment. Associated with
each net n; is a net-gates set X(n;) = {g;|n; is connected to the source,
drain or gate of a transistor assigned to g;}. Also, associated with each
gate g; is a gate-nets set Y(g;) = {n;|g; € X(n;)}, which lists all the nets
connected to gate j.

A B c D E F
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Fig. 8.19 (a) CMOS circuit of Example 8.2. (b) Corresponding gate matrix layout.

Example 8.2 For the circuit shown in Figure 8.19 find the net-gates set
X(n;) and the gate-nets set Y (yg;).

SOLUTION The circuit has four nets labeled 1 to 4. There are five
transistors whose gates are labeled A, B, C, D, and E. The output ter-
minal node is F. The gate matrix will therefore require 6 columns and
at most 4 rows. The net-gates sets X (n;) for the 4 nets are as follows:

X(1)={A, £} X(2)={B,D};
X3)={C,D,F}; X(4)={AC E}.

Similarly, the gate-nets sets Y (g;) for all g; are:

Y(4)={1,4}; Y(B)={2}; Y(C)={34}L
Y(D)={3,2}; Y(E)={1,4}; Y(F)={3}.
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A gate matrix layout can be represented by either the set X (n;), n; € N,
or the set Y (g;), g; € G. Given X(n;), the problem is to find a pair of
functions f : G — C and h : N — R such that the number of rows in a
realizable layout is minimum.

Graph Representation

The gate-nets sets defined above can be represented by a connection graph
H = (V, E) where each net n; is represented by a vertex v;, and the edge
set E = {< v;,v; > |n; and n; € Y(gx) for some gate gz }. The connection
graph can be derived from the set Y (gx ), gx € G, and it completely describes
how the nets are connected to the gates.

In the abstract representation of the layout (see Figure 8.20), the nets
can be regarded as intervals which overlap one another. We define an
interval graph associated with the layout L(f, h) as I(L) = (V, B) where
V' is the same vertex set as in the connection graph H and the edge set
B = {< v;j,v; > |n; and n; overlap in L}. Figure 8.20(a) shows the abstract
representation of the circuit (L) given in Figure 8.19(b). The connection
graph and the interval graph are given in Figure 8.20(b) and (c) respectively.

A B C D E F
@ 4 1 4

® 7

®

(a) (b) (c)

Fig. 8.20 (a) Abstract representation of gate matrix layout of Figure 8.19. (b) The
connection graph H. (c) The interval graph I(L).

Now we are in a position to explain the gate matrix optimization prob-
lem. As stated earlier, the number of columns in a gate matrix layout is
fixed. Therefore the problem reduces to assigning nets to rows such that
the total number of rows required is minimized. The problem is similar to
the unconstrained channel routing problem discussed in Chapter 7. The
difference however is that unlike the channel routing problem, the order
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of columns can be changed to reduce the length of nets connecting the
columns. An optimal order of columns is one which assigns nets to rows
such that the total number of rows required in L(f, h) is minimal.

The problem can be divided into two sub-problems: (1) find an optimal
column ordering, and (2) assign the net segments to rows. The second sub-
problem can be solved using the left-edge algorithm presented in Chapter
7 [8]. A possible solution to the problem of column ordering was given by
Ohtsuki [18]. In the following paragraphs we will describe the solution to
the above two subproblems for the circuit of Figure 8.19.

To solve the above problem, we define a matrix A = [a;;] whose rows
are the vertices (nets) of the connection graph H and whose columns are
the sets of all dominant cliques of H. A dominant clique is a clique that 1s
not contained in another clique. Element a;; = 1 if and only if vertex ¢ is
contained in dominant clique j; otherwise a;; = 0. For the example circuit
under consideration (see Figure 8.20) we have three dominant cliques in H:

{1,4},{2,3}, and {3,4}. Therefore,

= W N

—_ o O =
O = = O N
—_— =0 O W

The above matrix is known as vertezr versus dominant clique matrix [6).

A connection graph is an interval graph if and only if its vertex ver-
sus dominant clique matrix has the property that the columns can be so
arranged that in each row, the ones appear in consecutive positions. In
general, the connection graph may or may not be an interval graph and the
matrix A may or may not have the consecutive ones property. A can be
made to have consecutive ones by replacing the zeros by ones (called fill-ins)
between the leftmost and rightmost ones in each row. The resultant matrix
then corresponds to an interval graph whose largest dominant clique has a
size equal to the largest number of ones in any column. (The size of the
clique is equal to the number of vertices in the clique.)

Our first subproblem can now be stated as follows: Given the vertex
versus dominant cliqgue matriz of a connection graph find a permutation
of the columns such that, when zeros are replaced by ones in some rows
to satisfy the consecutive ones property, the largest number of ones in any
column 1s minimized. As will become clear later, minimizing the number
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of ones in any column will result in reducing the net lengths. The above
matrix A is reproduced below with fill-ins (represented by x). Note that
column 2 has the largest number of ones, which is equal to three.

e W N

_ o O = =
e N e R N
—_ =0 O W

The computational complexity of the above problem is Q! where @ is
the number of dominant cliques. A fast heuristic that generates many
solutions from which the best can be picked is given by Wing et al.[26]
The strategy used is to reconstruct matrix A column by column in such a
way, that as each column is added, the number of fill-ins needed to satisfy
the consecutive ones property is minimized [26]. This is accomplished by
adding columns in such a way that (1) the number of new edges added by
the new clique is minimized and (2) the column is added to the right or left
of already placed columns that will result in minimum number of fill-ins.

Let us denote the matrix A constructed by the above procedure as A*.
One possible A* matrix is given below. We shall use this to illustrate the
gate matrix optimization problem.

3 1 2 Oldcolumn
1

2 3 New column

A*

I
e W N
O = = O
—__= O O
_ O O =

Determination of Gate Assignment Function f

Matrix A* in our example does not require any fill-ins since it satisfies the
consecutive ones property. The matrix A* that has the consecutive ones
property also corresponds to an interval graph 7(L) where L is the layout
to be determined. The technique to find f presented in this chapter was
given by Wing et al,[26] and uses the results of Ohtsuki [18]. The procedure
is summarized below.
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Let [; and r; be the numbers of the leftmost and the rightmost columns
in matrix A* in which row ¢ has 1’s. We define the interval of row (net) ¢
as [l;, 7;]. Then, gate gx in the layout L must lie within the interval [Lg, Rg]
where,

[T, Rl = [ [bri] (8.4)

ni€Y (gk)

The intervals [Lg, Rg] specify the relative positions of the gates. The as-
signment function f uses these intervals to determine the relative positions
of the columns. This i1s performed as follows. The intervals are topolog-
ically sorted in ascending order where [L;, R;] < [L;, R;] if and only iff
(Li < L) or ((L; = L;) and (R; < R;)). For the matrix A* given above,
the corresponding intervals together with the assignment function are given
in Table 8.1. For example, referring to Table 8.1, since the interval of C is

Table 8.1 Intervals specifying relative positions of gates and the gates assignment func-
tion f.

Gate ﬂ[ll, 7“2'] [Lk, Rk]
llarlml‘lar‘l [3’3]
12, 2

[
l3,7r3N 14,74 [
lo,raNlz, 73 [
Li,riNla,ry [

[

OO W
LW OTT N R = O,

l3a 3

[2,2] and that of E is [3,3], column C is assigned to the left of column E.

Determination of Net Assignment Function h

Having determined the gate assignments, we now move on to determine
the function h, that is, the assignment of nets to rows. This function is
determined by applying the left-edge algorithm [8]. Sorting the rows of A*
on their left edge results in the order [2,3,4,1]. Now scanning the sorted
list, we assign net 2 to row 1. Due to horizontal conflict, the next net, that
is 3, is skipped. Net 4 however can be assigned to row 1. Then, rescanning
the list, net 3 is assigned to row 2. Finally net 1 is also assigned to row 2
since it does not horizontally conflict with net 3 (see Table 8.2). The final
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layout L(f, k) is shown in Figure 8.21.

Table 8.2 Table for net assignment function h.

Net n;  h(n;) = Row

2 1
4 1
3 2
1 2
B D F C E A

Ly
©)
T

nMOS —E

Vss

Fig. 8.21 Final layout of circuit in Figure 8.19.

Realizable Layouts

In the above examples we saw that vertical diffusion runs are sometimes
required to connect sources and drains of transistors in different rows. For a
given layout L(f, h), for each pair of nets (n,m) such that h(n) # h(m) we
define the set of diffusion runs D(n, m) = {gi|h(n) # h(m) and there exists
a vertical diffusion run between net n and net m near gate line k}. D(n, m)
is said to be realizable if each of its vertical diffusion runs can be placed
such that it does not overlap with any transistor in the same column on a
row between row h(n) and row h(m). For example in Figure 8.22, D(1,2) is
realizable but D(1,4) is not. Thus, each function h : N — R induces a set
of diffusion runs. The function h is realizable if every D(n,m) it induces
is realizable. A layout L(f, h) is realizable if h is realizable.

The solution to the gate matrix layout optimization problem can there-
fore be divided into two stages. In the first stage the problem of realizability
is ignored and a layout which requires minimum number of rows is found.
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Fig.8.22 (a) Gate matrix layout with net D(1,4) unrealizable. (b) Permutation of rows
to make the layout realizable.

If the layout found in realizable then we are done. If the layout is not
realizable then we attempt to find a permutation of the rows to obtain a
realizable function A. If a satisfactory permutation i1s not available then the
last resort is to increase the spacing between some pairs of poly strips to
accommodate vertical diffusion runs which will not overlap any transistor.

8.5 Programmable Logic Arrays

In this section we will discuss the problem of minimizing the layout of a
PLA. We begin with a discussion of the structure and method of construc-
tion of PLAs.

As mentioned earlier, a PLA consists of two planes, the AND plane that
implements the unique product terms of all the functions to be implemented
by that PLA, and the OR plane which sums the product terms generated
by the AND plane. Wires that carry product terms or simply terms (the
outputs of the AND plane) are called term wires. These term wires run
horizontally in the AND plane. In nMOS implementation the term wires are
implemented in metal, with the pullup transistors on the left. The inputs
are fed to the AND plane using poly wires that run vertically. Between each
pair of vertical poly wires in the AND plane runs a diffusion wire connected
to ground. At certain places, a diffusions tap i1s connected to a term wire;
it crosses a poly wire, and connects to the adjacent diffusion ground wire
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as shown in Figure 8.23. The effect of a diffusion tap (crossing a poly and
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Fig. 8.23 (a) NOR implementation of AND function. (b) Stick diagram representation.
(c) And plane of PLA for the product term z1 2.

connecting the output to ground) is that a transistor is formed. Since the
transistor formed connects the output to ground, if the vertical poly wire
is on, that is, the input is high, any current that passes through the pullup
from Vpp will run to ground through the tap.

The only time the term wire can be high is when all poly wires crossing
that particular term wire where there are taps are low. Thus, in the AND
plane, each term wire implements the logical NOR, function; it is high if
and only if none of the vertical poly wires is high. If the inputs are inverted
before being fed to this plane, the NOR circuit will implement the desired
logical AND function.

In the OR plane, the role of rows and columns is reversed, with the
term wires becoming poly and the vertical wires running in metal. This
is because the OR plane is similar in structure to the AND plane except
that it is rotated by 90° clockwise. Each vertical wire in the OR plane
begins at the top with a pullup, and at the bottom it is the input to
an inverter. Diffusion taps at various places along each vertical wire will
connect that wire to ground if the term wire crossing at that point is high.
Thus the input to the inverter is high if and only if none of the term wires
crossing the taps are high. Therefore, the output of the inverter will be
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high if one or more of these term wires are high. That is, each vertical wire
in the OR plane implements the sum (logical OR) of some subset of the
terms represented by the term wires — those that cross the vertical wire
where there are taps. This point is illustrated in Figure 8.24. The general

Diffusion | |PulluP
tap

Voo

Metal from

AND plane T \f__
—F i : ) py
___.J______L____||||.
I
—F T 1 py
1
Yy1=P1 Y2 =P1t P2

Fig. 8.24 Structure of OR plane. p; and py are fed by the AND plane. y; = p;, and
y2 = p1 + p2-

procedure for implementing a collection of sums of Boolean functions as a
PLA is enumerated below.

1. For each literal used in one or more product terms, we require a vertical
wire in the AND plane.

2. For each function to be implemented make one vertical wire in the OR,
plane.

3. For each unique product term appearing in one or more functions, make
one term wire running horizontally across the planes.

4. Each term is the product of certain literals. For each of those literals, tap
the term’s wire at the points in the AND plane where the wires for each
of those literals (i.e., wires carrying signals that are the complements of
those literals) cross the term’s wire.

5. For each function which is a sum of terms, tap the vertical wire for the
sum at the points in the OR plane where the wires for the terms in the

SuIm Cross.
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8.5.1 PLA Personality

The essential information about a PLA consists of the following: (a) the
names of input variables, that is, the vertical lines in the AND plane and
the order of their occurrence, (b) the names for each output wire, that is,
the vertical lines in the OR plane and the order of their occurrence, (c) the
number of term wires corresponding to the number of unique product terms,
and (d) the tap positions. This information is represented in a matrix
notation commonly known as PLA personality.

The personality consists of two matrices side by side, one for the AND
plane and the other for the OR plane. The AND plane matrix consists of
0s, 1s, and 2s. The OR, plane matrix consists of only Os and 1s. The number
of rows of both the matrices is equal to the number of unique product terms
required to implement all the desired functions. The number of columns
of the AND plane is equal to the number of input variables. Similarly
the number of columns in the OR plane is equal to the number of output
functions. The AND plane matrix is constructed as follows:

1. A ‘0’ means there 1s a tap under the vertical wire ;. This wire is the
one that feeds x; uncomplemented in the AND plane.

2. A ‘1’ means there is a tap under vertical wire for x;, that is, the wire
being the one where z; is complemented before being fed to the AND
plane.

3. A ‘2" means that neither wire for z; is tapped for the term line under
consideration.

In the OR plane a ‘1’ indicates a tap and a ‘0’ indicates no tap in the layout.
That is, a ‘1’ indicates that the output function contains the product term
represented by that row. The following example will clarify the above ideas.

Example 8.3 For the three functions given below, draw the PLA stick
diagram®. Also give the personality matrix.

y1(w1, 2, 23) = £102 + 21203 + L2203
y2(21, 20, 23) = T1 Tz + 2123
y3(l‘1,l‘2,l‘3) = X1x2

*In stick diagrams, wires are represented by lines, and contact-cuts/vias are represented
by points.
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SOLUTION Since the three functions contain 4 unique product terms,
which are zixs = py, v1x3 = po, xox3 = p3 and Ty Tz = p4, the
PLA layout will have four rows. The number of columns in the AND
plane is equal to the number of input variables which is 3. Since we
are implementing a circuit for three functions, the number of outputs
in the OR plane is also three. The PLA layout in the form of a stick
diagram is given in Figure 8.25. The personality is given below.

D1 1 1 2 1 0 1
Ps 1 2 1 1 1 0
Ps 2 1 1 1 0 0
pa 0 0 2 0 1 0
1 T2 I3 Y1 Y2 Y3
===  Poly
Metal
o]l s
-1 - : »
L ------------- [EEEE IEERE I
pfl :
=} + * -
—_] »
P, A | I (I | S SO R ISR "
— — -
X, X, X, X, X, X, A Y, Y3

Fig. 8.25 Stick diagram of PLA in Example 8.3.

With this, we conclude the construction procedure of a PLA layout for
a given set of functions. In the next section we will see the problem of PLA
optimization.
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8.5.2  Optimization of PLAs

The size of the personality matrix also represents the size of the final PLA
layout. In this section we will use the personality representation of the
PLA and study algorithms to reduce its size, and hence the area of the
final layout. It is clear that the area of a PLA is directly proportional to
the size of the PLA personality which depends on (a) the number of product
terms, (b) the number of inputs and (c¢) the number of outputs. The area
of a PLA layout can be reduced in two ways:

1. Reduce the number of rows. This is possible by deleting redundant prod-
ucts terms. Deleting a redundant product term corresponds to deleting
a row of a personality and hence reducing the size of the PLA layout.

2. Allow two literals to share the same column. This technique i1s known as
“folding”. PLA folding consists of allowing AND plane inputs to enter
from either the top or the bottom; if the two different inputs arriving
from different directions, that is, top or bottom, can share a column then
the circuitry of the two columns can be placed in the area of one, thus
reducing the width of the PLA layout.

In the following paragraphs we will look at a technique used to determine if
a row 1s redundant. For the sake of notation let us suppose that the inputs
to the AND plane are z1, -+, z, and the outputs from the OR plane are
Y1, -, Yn. In the PLA personality each term p of n-variables represents
some points in an n-dimensional cube. For example if z1, x5, and x5 are
the three inputs of the PLA then the term 120 in the AND plane represents
the product term 173, which represents the two vertices 100 and 110 of

the 3-cube.

Redundancy Check

The first thing to check in reducing the size of the personality is to see if
a row 1s redundant. To find if a row is redundant we must consider every
output y; in which row r has a ‘1’ in the OR plane. Let S; be the set of
other rows that have ‘1’ for output y;. Row r is redundant for output y; if
the set of points covered by one or more points of S; is a superset of the
points covered by r. Row r is redundant if and only if it 1s redundant for
all the outputs y; in which it has a ‘1’.

Example 8.4 For the personality matrix given below determine if row
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ry 1s redundant.

7y 1 1 1 1 1
T 1 2 1 1 0
r3 0 1 2 1 1
T4 2 1 1 0 1

r1 Tz T3 vy Y2

SoLUTION The minterm covered by the term in 7y is 7 (111). For
output y1, the other rows that have a ‘1’ in the OR plane are r5 and rs.
The minterms covered by ra (121) are 101 (5) and 111 (7). Therefore
the term of ry (which is 111) is covered by the minterms of r; and r3
(which are 010, 011, 101, 111). But we cannot say if r; is redundant
until we have repeated the procedure for output ys since i1t also has a
one in the row corresponding to ry.

For the output ys, the rows other than r; that have a ‘1’ in the OR
plane are rs and r4. The minterms covered by these two product terms
are {2,3} and {3,7} respectively. Since the minterm of ry, which is
7, 1s covered by the minterms of other rows that have a ‘1’ in the
same column (y;, t=1,2) of the OR plane for all the outputs, row r; is
redundant.

We can also use the containment condition to determine if the minterms
contained in a row being considered for deletion are also contained in the
other rows for which the output column contains a 1. This is explained
below.

Contatnment Condition

The containment condition can be mathematically stated as follows. Let p
be the product term for the row r whose redundancy is being considered.
Focus on those outputs for which this row has a 1. Let p1, pa, - -+, pr be the
terms of all the other rows with ‘1’ in one of those outputs. We can say
that row r 1s redundant if the minterms covered in p are a subset of the
minterms covered by {p1,p2,---pr}. That is, a row r is redundant if

pCpi+p2t-+pr (8.5)
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Another way of testing for the condition of Equation 8.5 is to verify if

Ptpi+p2+t-pr (8.6)

is a tautology!. The procedure used to test the above condition must
perform two things: (a) determine P, and (b) test if the sum of products of
the complemented terms and the p;’s 1s a tautology.

If p is expressed as a sequence of 0s, 1s, and 2s then the procedure to find
p 1s as follows. For every ‘0’ in position ¢ of p, we create a new term with a
‘1’ in that position and ‘2’ elsewhere. The same thing is done for every ‘1’
in position ¢ of p, a new term is created with a ‘0’ in that position and 2s
elsewhere. No new terms are created for 2s in position i¢. The sum of these
newly created terms 1s the complement of p. For example, the complement
of the term 120 is 022 4+ 221. Note that the above procedure is simply the
application of the DeMorgan’s theorem. The term 120 represents z17T3 and
0224221 represents 77 + x3.

Testing for tautology is more involved [25; 4]. A heuristic is used which
is based on the idea that any function f(z1, 2, -, 2,) can be decomposed
as follows:

f(l‘l, Loy, l‘n) = l‘lfl(l‘z, cey l‘n) —|—l‘_1f0(l‘2, crcy l‘n) (87)

f1 1s formed by taking the rows with ‘1’ or ‘2" in the first column, and
fo 18 constructed similarly by taking the rows with ‘0’ or ‘2’ in the first
column. Thus an n-column personality matrix is converted into two n — 1
column matrices. The original matrix is a tautology if and only if both the
new matrices are tautologies. The method can be applied recursively, but
fortunately we do not have to extend it until we reach a matrix with one
column. There are two useful heuristics that can be used to find the answer
to the subproblem [25]. These are:

1. If a matrix has a row with all 2s | then it surely is a tautology, because
this one term covers all the points in the Boolean cube.

2. Suppose a matrix has n-columns, so its rows are product terms repre-
senting points in a Boolean n-cube. Each term ¢ with i; 2s represents 2t
points. The maximum number of points covered by all the terms can be
obtained by summing 2* over all terms ¢. If this number is less than the

tIf for any assignment of input values the expression is always true then the expression
is a tautology.
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total number of points in the n-cube, that is
n2it < 2" (8.8)

then we can conclude the matrix is not a tautology. However, if the above
inequality fails, then the matrix in question may represent a tautology.
Further testing is required. The tautology test can be applied to either
the original matrix or the decomposed matrix. If any of the decomposed
matrices does not represent a tautology then the original matrix also does
not represent a tautology.

The example below will further illustrate the tautology test.

Example 8.5 For the personality matrix M given below, determine if 1t
represents a tautology.

— O N =
O = =N
N — DN DN

SoLUTION Applying Equation 8.8, there are three literals z;, x5 and
x3. Therefore n = 3 and 2" = 8. However, the sum X2t = 4444142 =
11 > 2™ = 8. Hence, the matrix may be a tautology.

The above matrix can now be decomposed into two matrices say M
and My, where My is formed by taking the rows with ‘0’ or ‘2’ in the
first column and Mj is formed by taking the rows with ‘1’ or ‘2’ in the
first column. The two matrices are given below.

2 2
My = 1 ? M= 1 2
0 2

Clearly M, is a tautology since it contains a row with all 2s (25; 4]. My
cannot be further decomposed, and does not have a row with all 2s.
Therefore My as well as the original matrix are not tautologies.

Example 8.6 For the PLA personality given below determine if row 5
is redundant. Use the containment condition explained above to check for
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redundancy.
1 2 1 2 1 1
ro o 1 1 2 1
s 0 0 1
Ty T2 T3 T4 Y1

SoLUTION To determine if row 7 1s redundant, we first find the com-
plement of ra-term (0112). The complement of this term is (1222 +
2022 + 2202). Now we have to check if the matrix formed by the above
three terms as three rows and the terms represented by the other rows,
that is 71 (2121) and r3 (0210) represents a tautology.

O NN N =
N — N O N
— N O NN
O = N NN

Applying the decomposition procedure as in Example 8.5 it is easy
to verify that the above matrix represents a tautology. Hence ry is
redundant.

Raising of Terms

Raising of terms consists of taking a term ;1 f (or Z1f) where f is a product
of n — 1 other variables besides xi, and see if it can be replaced by f.
Observe that the points covered by f in the n-cube are twice the number
of points covered by 1 f. The motivation for doing so is that by increasing
the number of points covered by a given product term, there could be a
better chance that some other product terms become redundant.

To test if #1f can be replaced by f we have to know if the points
covered by @7 f are also covered by other terms. As before, for each output
column y, let the set of other available terms with a ‘1’ at this output be
{p1,p2, -, pr}- The containment condition described earlier can be used
to check if Z1f C {p1,p2, - ,pr}t. Only if the above is true, then the
replacement of z1 f by f = x1f 4+ Z1f will not change the function.

If there are several output functions then the above procedure must be
repeated for each output column in which the row for term z1f is a ‘1.
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Raising is represented by replacing a ‘0’ or a ‘1’ in the PLA personality by
a ‘2. We illustrate this raising technique with the following example.

Example 8.7 For the PLA personality shown below verify if the first
position of the first row which is a ‘0’ can be raised.

0 1 2 1
1 1 0 1
2 11 1

SOLUTION The question being asked is: can the first term 012, be
replaced by 212, that is, can the ‘0’ be raised to ‘2’7 This will result
in adding the term 112. The term 112 can be added if and only if it is
already contained in the function, or if its minterms are contained in
the terms covered by the remaining terms. To test this we can apply
the containment condition to see if the sum of the complement and
the remaining terms is a tautology. That is, if 112 C 110 + 211 or if
112 + 1104211 is a tautology, or if the matrix M below represents a
tautology.

N — N O

2
0
1
1

— O NN

Once again, applying the technique used in Example 8.5 we find that
M represents a tautology. Therefore the term 012 in the first row can
be replaced by term 212 by raising the ‘0.

PLA Folding

As seen 1n the previous section, a PLA maps a set of Boolean functions in
standard form also known as 2-level sum-of-products form into a regular
geometrical structure. The structure follows a fixed architecture in which
the connection wires (in metal, poly and diffusion), and power and ground
lines are deployed in advance. The possible transistor locations given by
the personality matrix depend on the function to be implemented. Because
of its regular and fixed architecture, the task of generation of layout cells
in the form of a PLA is very simple. Thus, the design time is shortened
and the cost is reduced.
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In the previous paragraphs, we saw a technique to reduce the area of a
PLA layout by deleting redundant rows. In this section we present the next
step in reducing the layout area of a PLA. This technique is called folding.
Folding consists of allowing 2 signals to share a single column in such a
way that some unused space is reclaimed without disturbing the regular
structure. The space to be reclaimed in the layout corresponds to 2s in the
personality or absence of any transistor in the layout. This is another good
reason for using the raising of terms technique explained in the previous
subsection.

Consider the two functions and their corresponding PLA personality
given in Figure 8.26. For the sake of illustration, let us assume that there are
no redundant rows and no terms can be raised. To understand folding, let

71 0 2 2 1 0

r9 2 1 2 1 0

Yy1 = T1+ w2+ w3 T3 2 2 1 1 1
Y2 = Z1T2+ T3 rq 1 0 2 0 1
r1 X3 X3 vy Y2

Fig. 8.26 Two functions and their PLA personality to illustrate PLA folding.

us concentrate on the AND plane in Figure 8.27. Observe that permuting
the rows from r{, 79, 73, 74 to r1, 74, r3, 79, does not disturb the function
as long as the taps in the OR plane corresponding to rows of the OR plane
matrix are also included in the permutation.

Referring to Figure 8.28(a), we observe that signal z; is input from the
top and signal zs from bottom. If this i1s allowed, and if we do not extend
the polysilicon wire that carries the signal beyond the last transistor to
which it is input, then the circuitry of signal x5 can be shifted below that
of signal x;, resulting in the layout compacted by one column. This is
shown in Figure 8.28(b). Also observe that if any row has both zeros (or
both ones) in the columns being considered for folding, then folding as
shown in Figure 8.28(b) is not possible. However, if a row has a ‘0" in one
column and a ‘1’ in another then pairing may be possible.

The folding shown in Figure 8.28 where wire 1 comes over x5 and 7
comes over Ts, that is, where complemented and uncomplemented wires
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Fig. 8.28 (a) Signal #; input from top and z2 input from the bottom. (b) Reducing

width by shifting circuit of column x5 below ;.

Fig. 8.27 PLA corresponding to pe
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face each other is termed as straight folding. Sometimes straight fold-

ing may not be possible. This situation occurs when any row in the two

columns under consideration has both zeros or both ones. In such a situa-

tion allowing complemented wires face uncomplemented ones, that is wire
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z1 facing Tz and wire 25 facing 1 may allow folding. This type of folding
is termed as twisted folding.

The Algorithm

A graph based algorithm for folding takes a PLA personality as input and
produces a pairing of columns indicating which of the two is above the
other [25]. It also provides the ordering of the rows that will make this set
of column pairs legal.

Let us first consider straight folding. The idea is to first select a pair of
columns ¢; and ¢s in some order. Then assuming that these can be paired
(the two columns must not have 1s or 0s in the same row and neither has
been paired with another column), we consider pairing ¢ and ¢ with either
one above the other. To determine if ¢; and ¢5 can be paired, a directed
graph is constructed. This directed graph represents the constraints on the
order of term wires induced by whatever pairing that has been made thus
far.

The procedure is to use two nodes p and ¢ for every two columns consid-
ered for pairing. Node p is used to represent the constraint that the terms
using wire ¢; must be above the terms using wire ¢o, while ¢ represents the
constraint that terms using wire €7 must be above those using wire ¢3. The
procedure applied to construct the directed graph is as follows:

For each row r,

If it has 1 in column ¢;, then draw an arc from r — p;
If it has 1 in column ¢s, then draw an arc from p — r;
If it has 0 in column ¢p, then draw an arc from r — ¢;
If it has 0 in column ¢o, then draw an arc from ¢ — r.

e N =

In other words, p is the target of arcs from all rows with ‘1’ in column ¢;
and source of arcs to all rows with ‘1’ in column ¢2. Similarly, ¢ is the
target of arcs from all rows with ‘0’ in ¢; and source of arcs to all rows with
‘0’ in eq.

It is obvious that if both (1) and (2) or both (3) and (4) hold, we cannot
malke the pairing because a cycle is surely introduced. Therefore for pairing
two columns straight, the 2 bits in any row of the column being considered
must not be the same. Having made the above pairing, we check if any
cycles have been introduced in the graph. If a cycle is introduced then
there is no way we can order the terms and still run the paired columns
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from top and bottom without occupying the same space.

If cycles are introduced, then the arcs introduced are removed and an-
other pair of columns is considered for pairing. If no cycles are introduced
then the pairing is made permanent.

If pairing ¢; and ¢y straight is not possible, then we may consider pairing
them twisted. The procedure used in that case is the same as above except
that the roles of p and ¢ are exchanged in (2) and (4). That is,

For each row r,

If it has 1 in column ¢;, then draw an arc from r — p;
If it has 0 in column ¢s, then draw an arc from p — 7;
If it has 0 in column ¢p, then draw an arc from r — ¢;

e N =

If it has 1 in column ¢s, then draw an arc from ¢ — r.

Again if both (1) and (2) or both (3) and (4) hold then a cycle is introduced
and we cannot make the pairing. Therefore, for twisted pairing, the two
bits in any row of the two columns being considered must not be different.

Since the possibility of folding two columns together rests entirely on
all rows populated on one column being above all rows populated by the
other column, ¢; and ¢; may only be folded together if they are disjoint.
If such a fold i1s actually implemented, the PLA rows must be permuted
such that the rows of R({) are all above those of R(j). This induces a
partial ordering on the rows and places constraints on the folding of other
columns. A second pair of columns can be simultaneously folded with the
first if the second folding pair does not induce constraints that violate the
partial ordering induced by the first pair of columns.

A directed edge from vertex r; to vertex r; is present in the graph if
and only if row ¢z must be above row j. The addition of a second folding
pair will add directed edges to the graph, and this will violate the partial
ordering if and only if the new edges induce a cycle in the graph.

Continuing the above procedure we make a maximal set of pairings that
gives us an acyclic graph. The graph represents a partial order on terms
wires or rows. We pick a total order consistent with the partial order.
This process is known as topological sort. We will now illustrate the entire
procedure with the aid of an example.

Example 8.8 For the PLA personality shown below use the procedure
discussed above to fold the AND plane.
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7y 1 2 1 2 1 0
9 2 0 1 1 0 1
r3 0 1 2 1 0 1
4 0 2 0 2 1 0

r1 Tz X3 T4 vy Y2

SOLUTION Let us consider the first two columns #; (as ¢1) and 3 (as
¢2). These two columns are possible candidates for folding. Since no
two rows of columns ¢; and ¢y have both 1s or both Os, we will attempt
to fold them straight.

To do this, we introduce two nodes p; and ¢; in addition to four nodes
corresponding to the four rows of the personality. Arcs are then drawn
to represent the constraint using the above explained procedure. For
example:

In column ¢; (#1):
Since we have a ‘1’ in row r; we draw an arc from r; to p;. Similarly
for zeros in rows r3 and r4 we draw arcs from nodes r3 and 74 to ¢;.

In column ¢z (22):

Since we have a ‘1’ in row rs we draw an arc from p; to r3. And for ‘0’
in 75 we draw an arc from ¢; to 5. The constructed graph is shown in
Figure 8.29(a). Since the constructed graph has no cycles the pairing
1s acceptable.

Now we choose the next two columns z3 (as ¢1) and x4 (as ¢z2). Since
these columns have ones in row ra, we cannot fold them straight. We
will therefore try to fold them twisted. Two additional nodes p, and
g2 are added and the procedure for twisted folding of the columns as
described above is applied. The new graph constructed is shown in
Figure 8.29(b). Again we find no cycles and therefore the pairing is
acceptable.

Pairing < 1, x2 > gives the constraint that 71 must be above rs, and
rq and rz must be above ra (see Figure 8.29(a)). Due to the addition
of the column pair < 3, #4 > new constraints are introduced as shown
in Figure 8.29(b). The additional constraint is that row ry, must be
above r3. Therefore one possible ordering of rows obtained from the
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Fig. 8.29 (a) Directed graph with constraints on order of rows when first two columns
considered. (b) Graph with next pair of columns included.

final constructed graph (Figure 8.29(b)) is

r1 above r3
r4 above r3
r3 above rs

Therefore the order of rows chosen is [rq, 74, rs, 72]. The folded PLA
is shown in Figure 8.30.

AND-Plane OR-Plane
X, X, l >73 Xg l
- T
A R . \ N B
X, Xy Xy X, Yy Y2

Product term

Fig. 8.30 (a) Folded circuit for PLA of Example 8.8.
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With this, we conclude the section on optimization of PLAs. We now
discuss some recent work in the areas of module generation and layout
optimization.

8.6 Other Approaches and Recent Work

In this chapter, we examined three well known techniques for module gen-
eration. In the first approach, we presented the work of Uehara and van-
Cleemput in which generation of layouts in standard-cell style from series-
parallel CMOS functional cells was presented [24]. Their work relies on
a heuristic optimization algorithm that makes use of Euler paths in the
graph representation of nMOS or pMOS circuits. Following their work, an
optimal non-exhaustive method of minimizing the layout area of CMOS
functional cells in the standard-cell style was presented by Maziasz and
Hayes [15]). They developed and illustrated a complete graph-theoretic
framework for CMOS cell layout. The approach demonstrates a new class
of graph-based algebras which characterize this layout problem and is a
generalization of the work by Uehara and VanCleemput [24].

A project developed at AT&T Bell Laboratories called CADRE per-
forms symbolic physical design of full custom CMOS VLSI chips [1]. The
symbolic design is later converted to geometrical level by a compactor pro-
gram external to CADRE. The design of a leaf cell generator program
called Excellerator (Ezpert Cell Generator) was presented by Poirier [20].
Excellarator fully automates the generation of virtual grid symbolic lay-
outs for CMOS leaf cells. It is intended to fill the role of CADRE’s leaf cell
agent. The input to Excellerator is a transistor level netlist with optional
constraints on layout shape and I/O port positions. The output is a high
quality virtual-grid-based layout suitable for use in a two-dimensional tiling
methodology. 1/O port locations can be optimized. Versatile support for
different layout shapes and port locations makes this system ideal for use
in a top-down, fully automatic physical design system.

Excellerator’s layout structure places the V4, bus along the top and the
Vs along the bottom. p-type and n-type transistors are placed in one or
more rows near the Vy; and Vi, bus respectively, with a gap of at least one
grid line separating p-transistors from n-transistors. Transistors of a sym-
bolic width two or greater are implemented by single transistors connected
in parallel. Routing occurs throughout the entire cell area, including the
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transistor areas. Excellerator has the ability to choose the number of rows
for its transistor placement so as to best match a given shape constraint.
This, combined with a powerful, yet general router, results in a very flex-
ible layout system. Several layouts of the same circuit may be generated
to meet the specified shape (aspect ratio) constraints [20]. Although opti-
mized for full-complementary CMOS, Excellerator can handle any type of
CMOS circuitry, including domino CMOS. Circuits are not limited to single
gates but may constrain multiple compound gates, transmission gates, and
feed-throughs.

Yehuda et al presented a new algorithmic framework for mapping CMOS
circuits into area-efficient, high-performance layouts in the style of one-
dimensional transistor arrays [27]. They use efficient search techniques and
accurate evaluation methods, to quickly traverse the large solution space
that is typical to such problems. The quality of designs produced is com-
parable to handcrafted layouts. Optimized circuits that meet pre-specified
layout constraints are generated. Their algorithm has been implemented
and used at IBM for cell library generation [27].

Most of the work presented in this chapter is based on fixed architec-
tures. These impose constraints on the final structure of the layout. This
is because of the high complexity of module compilation of flexible archi-
tectures. Compilation with flexible architectures provides a good ground
for application of artificial intelligence (AI) techniques. Knowledge based
approaches have also been attempted [11]. One system that uses this ap-
proach is known as TOPOLOGIZER [12]. This is a rule-based CMOS
layout generator. Similar to other approaches, it also uses a style in which
all p-type transistors are put in rows parallel to the Vg4 lines and all n-type
transistors are put in rows parallel to the Vs line. The input consists of
a transistor net list and environment constraints. The environment con-
straints include layout size (specified by height, width, or aspect ratio).
The aspect ratio is defined by the number of rows and columns available
for transistor placement. Pin constraints are made up of side, location,
layer, and loading. An iterative improvement strategy is used for transistor
placement and routing. A gate matrix-like array of transistor placement
having the desired aspect ratio is produced. The routing, however, is not
structured as in gate matrix. The output produced by TOPOLOGIZER is
a symbolic file of CMOS layout which is design-rule-independent.

In this chapter we also presented the automatic mapping of CMOS
functions into a structured array known as gate matrix layout [26]. In [10],
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Hwang et al. proposed a new representation of nets for gate matrix layout,
called dynamic-net-lists [10]. Their dynamic-net-list representation is better
suited for layout optimization than the traditional fized-net-list since, with
it, net-bindings can be delayed until the gate-ordering has been constructed.
Based on dynamic-net-lists, they developed an efficient modified min-net-
cut algorithm to solve the gate ordering problem for gate matrix layout.
Through theoretical analysis and experimental results they showed that
their approach significantly reduces the number of horizontal tracks and
hence the area. The time complexity of their algorithm is O(N log N),
where N is the total number of transistors and gate-net contacts. They
also present a modified min-net-cut heuristic for layout minimization.

A new approach to gate matrix layout is presented by Huang and
Wing [9]. This approach consists of two stages: the determination of an op-
timal gate sequence and an assignment of nets to rows such that the nets are
realizable. The gate sequence algorithm is based on Asano’s approximate
search [2]. Modifications are made to it to take into account constraints of
transistor sizing, serial subcircuit conflicts 1/O gates, and I/O nets. The net
assignment algorithm, called “zone-net assignment algorithm,” assigns nets
to a minimum number of rows determined by the gate sequence. It also pro-
vides a means to resolve vertical conflicts in the layout. Power connections
are made using power nets and possible added power rows. Results of exam-
ples show that the new approach can achieve a considerable improvement
compared to earlier algorithms while satisfying additional constraints [9;
26].

Finally we shed light on some related work in the area of PLA opti-
mization. As discussed, the area of the VLSI layout of a PLA is directly
proportional to the size of the PLA personality matrix and can be reduced
in several ways.

1. By reducing the number of rows. This is possible by deleting any redun-
dant products terms [7].

2. By PLA folding [7].

3. A PLA may be partitioned into two PLAs whose areas sum is less than
the area of the original single PLA [25].

4. Using 2-to-4 decoders whose outputs are fed to the AND plane of the
PLA. This causes the width of the PLA to remain unchanged, but the
number of product terms is considerably reduced [21; 3].

A restricted definition of a PLA folding, called bipartite folding was
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presented by Egan and Liu [5]. The additional constraints of a bipartite
folding force the resulting PLA to have a more uniform structure. This
structure of a column bipartite folding is then exploited when subsequently
folding the rows of the PLA. A column bipartite folding creates fewer con-
straints upon the ability to fold the rows of the resulting PLA. Thus there
is a greater probability of folding the rows. Obviously, the more columns
and rows of the PLA that are folded, the lesser the area that i1s needed to
implement the PLA. An efficient branch and bound algorithm which finds
an optimal bipartite folding of a PLA was presented [5]. The experimental
results show that the size of an optimal bipartite folding compares favor-
ably to the size of folding discovered by known heuristic algorithms. This
algorithm can also be used to partition a large PLA into smaller one’s [5].

Leckey et al presented graph theoretic properties of the PLA folding
problem [13]. These properties, not only give insight into the various fold-
ing problems; but also provide efficient algorithms for solving them. The
work 1s based on the transformation of the PLA into graphs where cliques
(completely connected subgraphs) in the graphs correspond to PLA folding
sets [13]. Variations of the general folding problem such as bipartite folding
and constrained folding are also addressed.

8.7 Conclusion

In this chapter, we presented an introduction to silicon compilation. Various
levels at which hardware can be modeled were examined, namely the be-
havioral level, the structural level, and the physical level. The main theme
of the chapter was the various techniques that can be used to automati-
cally generate VLSI layouts of modules as standard-cells, in gate matrix
style, and as PLAs. Graph-based optimization techniques for standard-cell
generation, that are based on the detection of Euler paths was presented.
Optimization of gate matrix was also discussed where the problem reduces
to one of column-ordering followed by the use of left-edge heuristic used in
Chapter 7. Finally we presented optimization of PLAs in which two possi-
ble ways to reduce the size: 1) by deleting redundant product terms thus
reducing the height, and 2) by folding columns to reduce the width.
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Exercises

Exercise 8.1 Explain clearly the differences between:

(1) Behavioral and structural level representation.
(2) Structural and physical level representation.
(3) High level synthesis and silicon compilation.
(4) Logic synthesis and layout synthesis.

(5) Design automation and physical design.

Exercise 8.2  Apply the technique discussed in Section 8.3 and implement
the layouts of the two functions given below as standard-cells.

yi=(A B)+(C+D) (E+F)+ (G- H)
y2=A+(B-C)+(D-E)

Exercise 8.3 For the function given below, draw the CMOS circuit, con-
struct the graph corresponding to it, and find the single Euler path.

F=I-(E+(H-(D+(G-(C+(J- (A4 B)))))

Exercise 8.4 (*) Programming Exercise: Write a program to deter-
mine Euler paths in graph representations of series/parallel CMOS circuits.
Include in your program the heuristic explained in the chapter to reduce
the number of edges in graphs.

Exercise 8.5 Lay out in gate matrix style the CMOS circuit of:

1) the function X = A- B+ C - D.

(1)

(2) the function X = E+ A, where A=B+ F, and F =C + D.
(3) the function X = A-B+B-C+ A-C.
(4)
(5)

4) a Half-Adder.
5) a 4-bit Half-Adder using the layout obtained in Exercise 8.5(4).



Bibliographic Notes 429

Exercise 8.6 (*) Programming Exercise: Write a program that will
take Boolean function as input and produce an optimal gate matrix layout
representation. Use the functions given in Exercise 8.5 to test your program.

Exercise 8.7 For the three input XOR function expressed in standard
sum-of-product form

(1) Draw its CMOS circuit.

(2) Draw its gate matrix layout and find the net-gates set and the gate-nets
set.

(3) Apply the technique discussed in Section 8.4 and optimize the gate matrix
layout by reducing the number of rows.

Exercise 8.8 The Boolean functions implemented by the two circuits given
in Figure 8.31 are identical. The circuits differ only in the order of transis-
tors. Using the technique discussed in this chapter implement the circuits
as optimal gate matrix layouts. Observe the difference in the number of
rows required for each circuit. Comment on your answer.

p-Transistors p-Transistors

e f g e f g
2 ST o e o
S e N S T
1 a- |-c
d ¢ f d b

(@) ()

Fig. 8.31 Circuit of Exercise 8.8.

Exercise 8.9 Three functions y;,ys,ys are defined on four inputs
X1, T, x3, vy as follows.

(1) y1 is ON if at least two of the inputs are 0.
(2) y2 is ON if at least two of the inputs are 1.
(3) ys is ON if exactly two of the inputs are 1.
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Show the organization of PLA which implements the three functions y1, y2,
and ys. Use circles to indicate switches. How many product lines did you
need?

Exercise 8.10 (*) Programming Exercise: Develop a PLA gener-
ator that takes as inputs a PLA personality and produces layouts in

nMOS/CMOS technology.

Exercise 8.11  Determine if the matrix M given below is a tautology.

1 2 2 1
2 1 2 2
M= 011 2
1 2 0 2
1 0 2 0

Exercise 8.12 (*) Programming Exercise: Write a program that will
take a PLA personality and

1. raise its terms,
2. determine redundant product terms and delete them, and
3. determine if its AND plane is a tautology.

Exercise 8.13 Optimize the PLA personality of Exercise 8.9.

Exercise 8.14 In the implementation of a certain class of problems using
PLAs, the inputs are either the literals or their complements, not both.
Suggest an efficient algorithm to fold such PLAs. Then apply your algo-
rithm to the PLA personality given below and optimize its area. Show all
steps. Do not reduce the number of product terms before folding.

e 1 2 2 2 0 1
P 2 1 2 1 10
3 12 2 1 0 0
Py 2 2 1 2 0 0
s 2 1 2 2 10

ry Ty x3 Ta Y Y2

Exercise 8.15 How will you fold the columns of both the AND plane and
the OR plane? Apply your algorithm to the personality given in Exercise
8.14 to include the OR plane personality in folding, and obtain a smaller
PLA.
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Exercise 8.16  Fold the PLA given below.

P 0 2 2 2 0 0 1 0
Pa 1 0 0 1 0 1 0 0
P3 1 2 2 0 0 1 1 0
Pa 1 0 1 1 1 0 0 1
Ps 1 0 2 2 1 0 0 1
Pe 0 2 2 0 1 0 1 1
P 2 1 0 1 0 1 1 1

1 Xg X3 T4 i Y2 ¥Ys Y4

Exercise 8.17  Obtain a minimal folded PLA for the following set of equa-

tions.
n=A B-G)+A-E-F)+(A-B-D-E)
p2=(A-B-G)+(B-C-F-G)+(C-F -H)+(B-G)
y3=(A-E-F)+(C-F-H)+(B-G)
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Chapter 9

Layout Editors and Compaction

9.1 Introduction

In the previous chapters we discussed various stages of VLSI physical design
automation — partitioning, floorplanning, placement, routing, layout gen-
eration, etc. Another important constituent in the series is layout editors
and layout compaction.

Today, high-level synthesis (HLS) systems are becoming increasingly
popular. HLS systems generate a structural level description of the system
(for example netlist) from their behavioral models. Physical design is typi-
cally the backend of HLS system which takes as input the generated netlist
and produces layouts. The physical design stages which generate VLSI lay-
outs use cell libraries and templates. The task of generating libraries and
templates at the physical level is fulfilled by layout generators and layout
editors. Layout generators make use of a large number of repeated patterns,
sometimes also known as leaf cells. Whereas layout generators are used for
generating layouts of regular parametrized designs, layout editors are used
in the design of layouts of basic cells and layouts of leaf cells.

In this chapter we discuss the capabilities of layout editors, and present
some details of a popular public domain layout editor, Magic, as a case
study [21]. The chapter also presents another physical design sub-problem,
namely, layout compaction. Layout is the final design step, where the
attempt is made at improving the area and performance of the layout.

433
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9.1.1  Capabilities of Layout Editors

The capabilities of layout editors have evolved from color graphic paint tools
to those which have knowledge about the electrical implications of the paint.
The fabrication process requires the circuit layout to represent appropriate
masks. The only feature of interest is the mask geometry. However, creation
of mask geometry in exact details as required for the fabrication process
is painstaking. Primitive layout systems were text-based and non-graphic.
The layouts were drawn on paper and then their coordinates entered via
a textual layout description language such as CIF [16]. Disadvantages of
text-based layout systems include (a) technology and fabrication process
dependence, since the layouts are drawn on a fixed grid and origin, and,
(b) the layouts are time consuming to make and difficult to modify.

The second generation layout editors came to the fore with develop-
ments in interactive color graphics. They began with dumb paint programs
which could represent geometrical shapes on a fixed grid. The shapes could
be rotated, mirrored and scaled. These had associated colors to represent
mask layers and allowed hierarchical design [10; 19]. Most of the systems
restricted the geometry to rectangles (Manhattan geometry), whereas some
others allowed arbitrary angles (Boston geometry). Algorithms were devel-
oped to manipulate interactively the geometry of the layouts on engineering
workstations.

A significant advancement in layout editors came with the concept of
scalable layouts based on A-grid (See Section 1.3.1). Further, the process
specific design rules were also specified in terms of A [16; 19]. These however
were still unintelligent, in the sense that they had no information about
connectivity, electrical properties, or design rules.

Apart from these, the layouts were still drawn as required for mask
generation. A more abstract way was to make layout symbolically without
using exact layers, in a form somewhat closer to circuit view and then to
automatically generate all the layers of the layout for fabrication. A number
of systems were developed based on this idea including one in which layouts
could be generated from stick diagrams [33].

Present day layout editors are smart and well integrated with the overall
design process. In the next section we briefly touch upon some features of
a popular public domain layout design system, namely Magic.[21]
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9.1.2  Introduction to Magic Layout System

Magic came out as a successor to KIC2 and Caesar layout editors [10;
19; 21]. It is an interactive editor for VLSI layouts and runs in a Unix
environment under a windowing system such as X11.

Magic was designed with a view that design is iterative in nature and
that the designer would need to try out several different alternatives. For
this to be feasible, the layout editor must provide (a) ease of design en-
try (both interactive and non-interactive), (b) on-line and fast DRC, and,
(c) a capability for circuit extraction from the layout and its interactive
simulation.

A hierarchically designed layout contains cells and sub-cells. These need
to be placed and routed non-interactively to achieve the desired complex
layout. In order for the designer to modify the design easily, routing should
be fast.

Magic provides all of the above mentioned features. It treats the layouts
as circuit objects rather than simple paint layers. It 1s not bound to any
technology or process. Technology dependent knowledge such as design
rules, etc., is obtained by Magic from user supplied technology files.
To support interactive editing of layouts and their simulation Magic comes
with four tools, namely, Box Tool, Wiring Tool, Netlist Tool, and RSIM
Tool. Box tool is the default tool and is used to create and position the
boxes of the layout and paint/erase them. The Wiring tool provides an
efficient interface to the wiring commands. It is used to connect points
using an interactive router. The Netlist tool provides a facility to specify
different points on the layout that belong to the same net. It is used to edit
netlists interactively. Finally, the RSIM tool provides an interface to the
RSIM/IRSIM switch level simulator used when simulating layouts made
using Magic [15].

Two important features of Magic that deserve mention are its symbolic
layout style and its layout representation. These features are discussed
below.

Logs layout style

Magic represents symbolic layouts using multiple layers. The layouts are
in actual size (fully fleshed), however, the system does not represent all
the mask layers. For example, layers corresponding to wells, contact-
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cuts etc., are not actually represented. Instead, only those combinations
of mask layers which have electrical circuit implications are represented by
special layers. For example, an overlap of poly and diffusion constitutes a
region on the transistor layer. Therefore, the designer interactively draws
his layout using the basic interconnect layers such as poly, diffusion, metal,
and contacts (not contact-cuts). This design style has been referred to as
logs [32]. When Magic writes out the CIF file for the foundry, it automat-
ically generates all the mask layers required for fabrication. To do this it
requires technology dependent information which it obtains from technol-
ogy files.

Fig. 9.1 Magic’s representation of inverter.

The logs style is much closer to the way a designer looks at the circuit.
Moreover, it also makes the task of DRC, routing, compaction, etc., faster.
The Magic representation of the inverter circuit is shown in Figure 9.1.
Compare this with the mask geometry shown in Figure 1.6 which also
contains the actual contact-cuts, wells, etc.

Layout Representation: Corner Stitching

The heart of the Magic system lies in the innovative data structure used to
represent a layout. Magic supports hierarchical representation of designs.
A Magic layout cell contains parent geometry and subcells. In each cell
the parent geometry is stored in different planes. Those layers which have
DRC sensitivity are placed on a single plane. DRC independent layers are
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on different planes. There is a plane to hold information about subcells.
For example, in MOS process, diffusion, polysilicon, and transistor are in
the active plane. Similarly, metal layers are in the metal plane. Each plane
is represented using tiles of different materials, that is, the entire plane is
made up of tiles. Those regions which do not represent any of the abstract
layers are represented by space tiles.

The data structure used to represent the layout is termed as corner
stitching [20]. Each tile on a plane is represented using four corner stitches,
two at its lower left corner and two at its upper right corner. The two
stitches at lower left corner, namely b4/ and Ib denote the neighboring
bottom-most tile on the left and left-most tile at the bottom. Similarly
two stitches at upper right corner of tile point to the right-most tile at top
(rt) and topmost tile on the right (¢r). This representation has led to sim-
ple search algorithms for the operations required for editing, compaction,
layout format translation, etc. The typical search operations involved are
point-finding (a point belonging to a certain type of tile), neighbor finding,
area search for solid (non-space) tiles, tile insertion/deletion, compaction,
space creation, etc. Figure 9.2 shows the tiles and corner stitches on the
active plane of inverter circuit. Although this technique requires three
times the storage compared to linked list representation, it allows interac-
tive operation due to fast search algorithms. The representation technique

Fig. 9.2 Corner stitches in the active plane.

of corner stitching and logs design style enable Magic to provide a number
of other facilities discussed below.
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Incremental DRC

While drawing boxes using the Box tool, Magic runs the DRC program in
background [29]. If the designer activates a change, the DRC stops and lets
the command be completed and then restarts.

During the editing of a layout, a designer spends some time thinking,
and this time is utilized for DRC. It is the logs design style and corner
stitching data structure that make fast DRC possible.

Each cell has reverify and error planes. When a layout is edited, Magic
records the area to be verified in the form of reverify tiles. If any DRC
violation is found it is immediately shown in the form of error tiles on error
planes of each cell. Magic supports hierarchical design rule checking. First,
mask information in each cell is checked for any violations, and then each
cell and its subcells taken together.

As the layers which have DRC interaction are stored in a single plane,
DRC is done on plane by plane basis without the need for considering all
planes as in other representations. This feature makes it possible to perform
DRC quickly.

Magic’s DRC is different from that in other systems. It is edge-based,
where edges correspond to those between tiles. The rules are read from a
technology file using Magic’s DRC language.

Plowing

Magic provides the operation of plowing to compact /create space and mod-
ify the layout [25]. The user can place a horizontal /vertical line segment
(plow) and give the direction and distance for the plow to move. The
plow catches edges parallel to it as it moves and carries them along with. It
moves edges only, stretching material behind the plow and compressing that
in front of it. Plowing maintains connectivity and design rule correctness.

Plowing can be used to compact an entire cell by placing a plow to
the left of the cell and moving to the right and then placing a plow at the
bottom of the cell and plowing it up. In the next section we shall discuss
the topic of compaction, in general.

Routing

Interconnecting pins belonging to the same nets can be done either inter-
actively using the wiring tool or by using a non-interactive router. The
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non-interactive router used by Magic is Detour [7]. This is a switch-box
router based on the greedy channel routing algorithm of Rivest and Fiduc-
cia [23]. Obstacle for routing may be (a) critical nets that have been routed
by hand, (b) routed power/ground nets, or (c) hints to the router in the
form of partially routed nets.

The router has the ability to avoid obstacles and to consider interactions
between nets as channels are routed. It is capable of handling designs not
based on fixed routing grid. It modifies the cells by introducing sidewalks
so that the cells lie on integral grid units.

The router works in three stages. In the first stage called channel defi-
nition, the empty space is divided into rectangular channels. This is done
using the space tiles in the subcell plane. Secondly, global routing processes
nets sequentially to find the channels to be assigned to each net. The cor-
ner stitching representation enables this to be done without creating any
new data structure. Finally, in channel routing each channel is considered
separately and wires are placed to connect the nets.

In channels or portions of channels without obstacles Detour produces
results comparable to traditional channel routers. In areas containing ob-
stacles, the router either jogs around obstacles, or switches layers and river
routes across them, thus combining good features from net-at-at-time router
(Lee algorithm) and traditional channel routers [7].

Circuit Extraction

After the layout is completed, a question that must be answered is, does the
layout represent the circuit being designed? To answer this Magic provides
a facility for circuit extraction from layout, and simulation of the extracted
circuit.

Magic’s circuit extractor finds connectivity, transistor dimensions, in-
ternodal capacitance and parasitic resistance [26]. The extractor is hierar-
chical and extracts each cell separately. It has two parts, a basic extractor
that considers mask layers and a hierarchical part that considers interac-
tion between a cell and its subcells. The basic extractor extracts nodes,
transistors and coupling capacitances. The task of node and transistor ex-
traction are simple due to the corner stitching data structure (a transistor is
represented explicitly as a layer type unlike other systems where transistor
extraction involves logical operations on layers of diffusion and polysilicon).
Then, the hierarchical extractor makes connections between nodes of the
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cell and its subcells and modifies the estimated capacitances. The task
of resistance estimation i1s done after flattening the hierarchical extracted
circuit [28].

Magic also comes with an interface to the switch level simulator, IRSIM.
This interface eliminates the need to map node names of circuits to objects
in the layout. It allows the user to select nodes in the layout using the mouse
and to apply stimuli to them or to display the node values determined by
the simulator in the layout itself [15].

A number of features of Magic were discussed in the preceding material.
An example showing the use of Magic layout system is presented next.

Example 9.1 A parity generator for 32-bit words can be realized using
a tree architecture as shown in Figure 4.42. This tree can be embedded in
a 2-D array shown in Figure 9.3. The boxes labeled ‘1’ are leaf nodes and
the one labeled ‘5’ is the root. The leaf cells receive the input and the root
node produces the output.

AoBo  ApBp  A2Bz  A3Bz  A4Bs  AgBs  AgBg

Fig. 9.3 Binary tree embedding on a 2D-array.

SOLUTION The first step in the design of this circuit is to make the
layout of a 2-input XOR gate. A number of XOR gate implementa-
tions are possible. The one used here implements the XOR function
using 2 transmission gates and two inverters (multiplexer based imple-
mentation). The layout of this can be drawn interactively or by using
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Fig. 9.4 Layout of a 2-bit XOR gate.

transmission gates as subcells. Once the layout is complete, with no
design rule violations, it can be extracted and simulated to verify its
correctness. The layout of the XOR gate is shown in Figure 9.4.

This 2-input XOR gate can now be used to build the layout of the
tree. Magic does not provide a placement facility. However, for this
example, the array construct of Magic can be used to layout XOR, gates
as a 2-D array. The cells in the array are systematically numbered by
Magic. This can be used to generate the interconnectivity netlist using
a simple C program. The netlist is an ASCII file with one terminal
per line and each net separated from the other using a blank line. The
netlist can alternatively be made interactively. Magic’s router can now
be invoked to automatically route the nets. The layout for the 32-bit
parity checker i1s shown in Figure 9.5.

9.2 Layout Compaction

When a symbolic or sticks design approach is used, designers create lay-
outs by using abstract objects (such as wires, contacts, transistors) rather
than actual mask layout objects. Once the symbolic design i1s complete; a
compaction program is applied to generate the actual masks with the de-
sired spacings consistent with the underlying design rules of the technology.
Hence, the designer need not worry about actual sizes or spacings of the
layout objects, thus shortening the design turnaround time.
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N

Fig. 9.5 Magic Layout of a 32-bit parity checker.

In most general terms compaction can be defined as the process of tak-
ing a topological arrangement of geometric objects and attempting to move
these objects so as to make the layout as small as possible, while main-
taining minimum spacing requirements between the objects. Compaction
maintains the underlying circuit topology and enforces design rule correct-
ness. Maintaining the given circuit topology is mandatory in order not to
render the previous design steps obsolete.

Compaction is an important step when a symbolic layout approach is
adopted. Symbolic design when combined with a good compaction tech-
nique can lead to layouts that are as dense as hand-crafted ones.

Besides minimizing the overall chip area (e.g. by removing unneces-
sary routing spaces), a compactor is a valuable tool when scaling down a
design to a new technology. The compactor is usually used to generate
different mask layouts corresponding to the same symbolic layout for dif-
ferent technologies. Several surveys of symbolic compaction are available
in literature [2; 18; 22].

Compaction algorithms are classified according to whether they pro-
ceed along one dimension at a time or the two dimensions simultaneously.
One-dimensional algorithms compact the layout along the a-direction (hor-
izontal) then the y-direction (vertical) or vice-versa. Two-dimensional ap-
proaches proceed with the compaction along both directions simultaneously.
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The one-dimensional approach is the most widely used compaction
strategy. Two dimensional compaction is achieved by performing hori-
zontal compaction, followed by vertical compaction or vice versa. At each
compaction phase, wasted layout areas which cut through (horizontally or
vertically) the chip are identified and eliminated. In this section we shall
describe only one-dimensional compaction.

Compaction algorithms can also be classified based on the model used
to abstract the mask layout. Graph-based approaches model the layout as a
constraint graph where the vertices represent the layout objects and spacing
constraints between pairs of objects are modeled by directed weighted arcs.

Virtual grid-based approaches assumes that the objects are laid out on
a virtual grid. The layout is compacted along the grid lines while satisfying
minimum spacing requirements. Both these approaches are one dimen-
sional.

The graph based approach has been the dominating approach since its
introduction in the CABBAGE system [9].

A compaction tool requires three things:[18]

1. the initial layout;
2. technology information (design rules); and
3. a compaction strategy.

Initial Layout Representation

The layout may be represented at the mask level (eg: Magic) or cell level.
The layout surface is assumed to be a mask grid, as in Magic, or a vir-
tual grid. For the mask grid representation, the mask objects are basic
rectangles aligned on the mask grid lines. The grid unit is the distance
between two consecutive mask grid lines, which indicates the smallest dis-
tance between any pair of mask objects as allowed by the technology. For
the virtual grid representation, the objects are aligned on the virtual grid
lines. However, the spacing between the grid lines does not have physical
meaning.

At the cell level, the layout is seen as a set of interconnected cells. Each
cell is seen as a black box. Only the cell contours and the interconnections
between cells are represented.



444 Layout Editors and Compaction

Technology Information

Technology information can be seen as a set of design rules stating spacing
constraints between the layout objects. Usually the location of each object
is indicated by the (z,y)-center coordinates of the object.

For example, suppose that the center coordinates of two objects A and
B are (#4,ya) and (zp,yp), (see Figure 9.6). Then a design constraint of
the form zp —x4 > d indicates that the compactor must maintain a center-
to-center separation between the two blocks equal to at least d units. In

general, technology design rules are of three types:

1. minimum spacing rules of the type just discussed;
2. minimum size rules (on the width of objects);
3. minimum overlaps among elements of different mask layers.

el <

YB - - ————— -

17 L

—- X

Fig. 9.6 Spacing constraints between layout objects.

These types of rules are defined for each layout object and stored in the
technology file or database.

9.2.1 Compaction Algorithms

The two-dimensional compaction problem has been shown to be NP-
complete [24]. Therefore, although two-dimensional compaction is superior
since 1t better accommodates global tradeoffs in moving an object, most
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existing approaches are one-dimensional. For example, the plowing tech-
nique of the Magic layout system allows one-dimensional compaction only
in the direction perpendicular to that of the plow.

One-dimensional compaction algorithms brake the two-dimensional
problem into two one-dimensional compaction problems. First horizontal
(vertical) compaction is performed, followed by vertical (horizontal) com-
paction. The compaction program identifies movable objects, which are
then shifted by the correct amount either horizontally or vertically. As
we sald, topological relationships between the objects is maintained, i.e.,
objects are not allowed to jump over each other and connectivity between
connected objects must be preserved. All wires are assumed to be stretch-
able and objects are restricted to have rectangular shapes (and so does the
layout surface).

Since horizontal and vertical compactions are similar, we shall describe
in this section horizontal compaction only. We will assume that the left
boundary of the layout surface is fixed at # = 0 and that compaction is
performed by shifting horizontally movable elements from right to left. The
general compaction procedure has two main steps:

1. The first step consists of searching for the movable objects in the direction
of compaction. This step is carried out in consultation with the input
description of the layout and the technology files (the design rules).

2. The second step consists of actually performing the compaction. The
movable objects are moved while satisfying the design constraints.

These two steps depend on the layout model adopted. Next, we shall
briefly describe these for both the virtual grid and constraint graph models.

9.2.2 Horizontal Virtual Grid Compaction

A layout of m x n grid units is represented as a m X n bitmap . Each
bit cell G(4,j) is set either to zero (0) or one (1). A bit cell is set to zero
if the corresponding grid cell is occupied by either a block or a vertical
wire segment (see Figure 9.7). All other bit cells are set to one. Therefore,
vertically connected objects, together with their vertical wire segments will
be moved together. On the other hand, horizontal wire segments will be
stretched or contracted as the objects they connect are moved. The size
of the grid unit is determined by the design rules. Usually, objects are
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restricted to one unit moves.

One of the search techniques used to identify movable elements is the
cut search technique [1]. The cut search technique consists of identifying
a set of empty bit cells which cut the layout (the bitmap) in two parts.
There can be two kinds of cuts: (a) simple cut when the bit cells form a
vertical column of the bitmap; and, (b) rift line cut when the cut is the
union of vertical sub-columns joined by horizontal rift lines (see Figure 9.7).
Therefore, each cut removal results in a 1-grid unit horizontal compaction.
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Fig. 9.7 Virtual grid compaction. (a) Initial layout. (b) Corresponding bitmap.
(c) Layout after horizontal compaction.
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The search for movable objects (identification of the cuts) and the com-
paction which follows are made easy because of the simple bitmap repre-
sentation of the layout. However, the grid resolution can be very coarse.
You might suggest that you can always reduce the grid unit size. This nec-
essarily improves the grid resolution, but it also leads to unacceptably large
bitmaps. Large bitmaps require large memory space and large processing
time. The basic cut search technique has been modified to deal with this
resolution problem. For example, the interested reader can consult works

of Dunlop[5] and that of Weste[31].

9.2.3  Constraint Graph Compaction

The constraint graph approach was first described by Hsueh and Peder-
son [9]. However, constraint graph compaction was first used in the FLOSS
system [3; 22]. In this approach, the layout topology and spacing con-
straints are represented by a weighted directed graph called the constraint
graph. The construction of this graph is the time consuming step of con-
straint graph compaction. Among the approaches that have been used to
construct this graph are the shadow propagation method and the coarse
grid method [8; 9]. The shadow propagation method consists of “shining”
a light from behind the group under consideration and identifying all the
groups that will be covered by the shadow of that group. For the coarse grid
method, the layout is represented as a bitmap. In this case, identification
of group adjacencies is straightforward.

Each node in the graph represents a group of blocks that are connected
by vertical wire segments. The edges of the graph connect groups that have
spacing constraints, i.e., there is an arc (g;, g;) with weight d; ; if and only if
groups ¢; and g; are adjacent and are constrained to remain some distance
d; ; apart. Lower bound distance constraints are represented by positive
weights on the corresponding edges, while upper bound constraints are
represented by negative weights. For example, if two groups ¢; and g; must
be kept at least d; ; units apart, then the vertices corresponding to these
two groups will be connected with the weighted directed edge (g;, g;), with
weight +d; ; (vefer to Figure 9.8(a)). On the other hand, constraints used
to maintain connectivity between two elements are stated as upper bounds
and therefore are modeled by two directed arcs with negative weights. This
is illustrated in Figure 9.8 (b), where we have a contact cut w; and a wire ws
that must remain connected. If the center-to-center distance between these
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two elements is d, then the elements will remain connected if the following
inequality remains satisfied |21 — @2| < d. This constraint is represented
by two directed edges with negative weights set to —d (see Figure 9.8(b)).
The negative weights indicate that the center of either element can be to
the left of the center of the other element.

gi 9j wy

: ‘
Xj = Xi+dij

Igxpl <d
+dij

(@) (b)

Fig. 9.8 Graph modeling of spacing and connectivity constraints. (a) Spacing con-

straint. (b) Connectivity constraint.

The constraint that two elements a and b must be kept a fixed distance
d unit apart 1s represented by two directed edges with equal and opposite
weights, i.e. an edge (a, b) with weight d and an edge (b, a) with weight —d.

To complete the construction of the constraint graph, two extra vertices
are added: a source vertex L representing the leftmost position of the
layout, and a sink vertex R representing the layout rightmost position. For
each element e adjacent to the leftmost side, a directed arc (L, e) is added
with positive weight set to the required distance from the layout leftmost
side to the center of the element. Similarly, for each element e adjacent
to the rightmost side, a directed arc (e, R) is added with positive weight
set to the required distance from the center of the element to the layout

rightmost side.
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Once the construction step is complete, the constraint graph is used
to assign z-locations to the vertices so as to satisfy the constraints and
minimize the layout width. This is achieved by assigning z-values to the
vertices so as to minimize the length of the longest I —to— R path(s) (the
critical path(s)). The length of a path is equal to the sum of the weights of
those arcs traversed by the path.

In the remainder of this section, we shall assume that the constraint
graph does not have any edges with negative weights (the graph is therefore
acyclic).

Central to the constraint graph approach is the critical path algorithm.
This algorithm is used to find for each vertex v, the range of z-locations
[{(v), r(v)] that can be tolerated by that vertex.

Let LengthFromL(v) be the length of the longest path from the source
L to vertex v. Similarly, define LengthToR(v) to be the length of the
longest path from vertex v to the sink R. Therefore, the range of movement
tolerance for each vertex v can be defined as follows:

l(v) = LengthFromL(v);
r(v) = LengthFromL(R) — LengthToR(v);

It should be obvious to the reader (see Exercises 9.15-9.16) that (L)
= r(L) = 0, and I{(R) = r(R) = LengthFromL(R), which is the length
of the longest path from the source L to the sink R. Also, based on the
principle of optimality, for each vertex v on one of the critical path(s),
l(v) = r(v).

For acyclic graphs, the critical path problem is straight forward. A
semi-formal description of such an algorithm is given in Figure 9.9.

Once the moving tolerances for all vertices have been computed, the
next task is to assign locations to the corresponding elements consistently
with their tolerance ranges. To do that, we need to have a moving strategy.

There are three general moving strategies: the minimum, the maximum,
and the optimum strategies.

The minimum moving strategy assigns each element closest to the right
boundary of the chip, i.e., for each vertex v, (v) = r(v). This is the
strategy used in the plowing technique of Magic.

The maximum moving strategy assigns elements closest to the left
boundary of the chip, i.e., for each vertex v, z(v) = I(v). Both these
strategies are simple and lead to layouts that are densely packed on either
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Algorithm Critical_Path(L, R, G)
(* G: Constraint graph *)
(* L: source vertex of graph G *)
(* R: sink vertex of graph G *)
(* LengthFromL(i): length of longest path from L to vertex 1 *)
(* LengthToR( ): length of longest path from ¢ to R *)
(* d;,j: weight of edge (i,7) (spacing constraint between nodes ¢ and j) *)
(* F+( ): successor vertices of 1 *)
(* T'7(4): predecessor vertices of i *)
Begin
1. (* Initialization: levelize the graph *)
Let K be the number of levels, and V; the vertices in level 1;
therefore, Vi = {L} and Vx = {R};
2. (* Forward trace *)
LengthFromL(L) =0
For k=2 To K Do
ForEach ¢V, Do
LengthFromL(i) + max cr- ;y{LengthFromL(y) +d;:}
EndForEach
EndFor;

3. (* Backward trace and compute tolerance ranges *)
LengthToR(R) =0
For k= K — 1 DownTo 1 Do
ForEach ¢V, Do
LengthToR(i) + max;cr+ ;) {LengthToR(j) + di s };
1(1) = LengthFromL(1);
r(1) = LengthFromL(R) — LengthToR(1)
EndForEach
EndFor;

End.

Fig. 9.9 Algorithm to determine range of tolerance for all groups.

side of the chip. This is undesirable since it leads to an increase in the
overall wire length.

An optimum moving strategy attempts to assign x-locations to elements
according to some optimization criterion. A possible criterion would be to
assign each element to the middle of its range of tolerance, i.e., for each
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vertex v, z(v) = M Another possible criterion is to use a force-
directed approach. In this case, the criterion would be to minimize the sum
of the forces acting on each element. The objective minimized in this case
1s the sum of the squares of the z-distances between the element and its
neighbors.

The general steps of the constraint graph compaction approach are sum-
marized in Figure 9.10. Next, we shall illustrate this approach with an
example.

Algorithm Constraint_Graph_Compaction;
1. Construct the constraint graph G(V, E);
2. Apply the critical path algorithm and find for each vertex v, [[(v), r(v)];
3. Move each element to within its range of tolerance;

End.

Fig. 9.10 Constraint graph compaction.

Example 9.2 Given the layout of Figure 9.11, perform horizontal com-
paction using the constraint graph approach. Assume that the minimum
horizontal center-to-center spacings between the individual elements are as
fOHOVVS, dAyp = 5, dA,E = 5, dC,E = 5, dC,F = 5, dD,G = 4, d[)’H = 4,
dp.m =4, dg,r =5, and drp; = 5. Assume further that the elements have
the following widths, wy =4, wp =6, we =4, wp =4, wg =4, wp = 4,
wg = 2, wyg = 2, and wy = 4.

SoLuTION The constraint graph is given in Figure 9.11(b). Since
blocks B and C' are connected by vertical wires, they are grouped to-
gether. The same applies to blocks D and E, and blocks G and H.
In this example, we assume that the minimum distance between two
adjacent blocks 1s equal to 1.

The minimum distance d; ; between two groups g; and g; are defined
as follows,

diyj = max v{da,b} (91)

a€g;&beg;

Therefore, da pg = max{5,5} = 5. Similarly, dr. 4 = 2, dr pc = 3,
dgc,pe =6,dpc,r =6,dpe,cr =4,dpe 1 =5,drr =5, Dgar =1,
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Tllustration of constraint graph compaction. (a) Initial layout. (b) Constraint

Fig. 9.11

graph where each vertex is labeled by I(v)|r(v). (c) Compacted layout.
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and d[yR = 2.

The graph has 5 levels. Let V; be the vertices of level . Then, V; = {L},
Vo ={A,BC}, Vs = {DE, F}, V, = {GH, I}, and V5 = {R}. Then, a
forward trace of the graph is performed where, for each vertex ¢, the
values LengthFromL(i) are determined as described in the algorithm
of Figure 9.9. For this example, we obtain the following:

Level 1:
LengthFromL(L) = 0.

Level 2 :
LengthFromL(A) = LengthFromL(L)+dpa=0+4+2=2;
LengthFromL(BC) = LengthFromL(L) + dr, pc =0+ 3 =3.

Level 3

LengthFromL(DE) = max{LengthFromL(A) + dapE;
LengthFromL(BC)+ dpe,pp} = max{7,9} =9 ;
LengthFromL(F) = max{LengthFromL(BC) + dgc,r} = 9.

Level 4 :
LengthFromL(GH) = max{LengthFromL(DE) + dpg.ar = 13;
LengthFromL(I) = max{LengthFromL(DE) + dpgr;

LengthFromL(F)+ dpr} = max{14,14} = 14.

Level 5 :
LengthFromL(R) = max{LengthFromL(GH) + damr;
LengthFromL(I) 4+ dr r} = max{14,16} = 16.

The next step 1s to perform a backward trace of the graph. During
this step, for each vertex v, the values LengthToR(v), l(v), and r(v)
are computed as described in the algorithm of Figure 9.9. Hence, the
following is obtained for all vertices of the graph:

verter R: LengthToR(R) = 0; I(R)y=16, r(R)=16—-0=16;
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vertex GH: LengthToR(GH) = (GH)=13, r(GH)=16—1=15;
vertex I: LengthToR(I) = 2; (=14, r(I)=16-2=14;
vertex DE:  LengthToR(DE) = I(DE)=9, r»(DE)=16—-7=09;
vertex F': LengthToR(F) = 7 I(F)=9, r(F)=16-7=09;
vertex A: LengthToR(A) = 1 l(A) =2, r(A)=16—12=4;
vertex BC: LengthToR(BC) =13; |(BC) =3, r(BC)=16—-13=13
vertexr L: LengthToR(L) = 1 (L) =0, r(L)=16—16 =

The final step of the algorithm is to find the z-location of the cen-
ter of each group. Let @min(7), Zmax(7), and z,p¢(7) be the z-location
of the center of group i according to the minimum, maximum, and
optimum strategies respectively. For this example, assuming that
Topt (1) = M, these variables will be assigned the following val-

ues:
vertex R: Zmin(R) = 16; ZTmax(R) = 16, Zopt(R) = 16;
vertex GH: amin(GH) = 15; nax(GH) = 13, Topt (GH) = 14;
vertex I Zmin (1) = 14; Tmax (1) = 14, Topt (1) = 14;
vertex DE:  amin(DE) =9; max(DE) =9, Zopt(DE) = 9;
vertex F: Zmin(F) = 9; Tmax(F) =9, Topt(F) = 9;
vertex A: Zmin(A) = 4; Tmax(A) = 2, Topt(A) = 3;
vertex BC:  amin(BC) =3;  nax(BC) =3, Zopt (BC) = 3;
vertex L: Zmin (L) = 0; Tmax(L) =0, Zopt(L) = 0.

Figure 9.11(c) gives the resulting compacted layout when a horizontal
maximum moving strategy is adopted.

9.3 Other Approaches and Recent Work

In this chapter, we described traditional and most widely used approaches
to leaf cell compaction. Qur objective in this chapter was to explain the
basic goal and techniques used to compact layouts and reduce the required
chip area. Compaction dates back to the early seventies. After nearly
twenty five years of efforts, compaction is now a mature field of design
automation. A nice survey paper on compaction was published by Boyer [2].



Conclusion 455

Wolf and Dunlop wrote a good description of compaction approaches and
algorithms in Chapter 6 of the book edited by Preas and Lorenzetti [22].
Lengauer in his recent book dedicated a chapter to compaction [12].

There are several other compaction approaches. For example, two-
dimensional compaction was formulated as a mathematical optimization
problem [30]. The general combinatorial optimization technique, Simulated
annealing, has also been applied to perform compaction [17].

Area minimization is not the only important optimization criterion dur-
ing compaction. With the increasing performance requirement (circuit
speed), it is becoming imperative to minimize the interconnect delays. Tt
1s important that the compactor be aware of the critical wires so that time
critical wires are net stretched. Numerous approaches to optimize other
cost measures have been reported [27; 14; 11; 4; 35]. These approaches,
in addition to optimizing the area, perform also wire length minimization.
This is of crucial importance when the constraint graph approach is used.
The reason is that for the constraint graph approach, the range of move-
ment tolerance of each group gives freedom of movement to the group,
which could lead to harmful consequences to the performance speed of the
circuit.

Compaction for improved performance is one of the many active research
areas in layout compaction.

9.4 Conclusion

Layout editors are essential to VLSI design. Usually they work with sym-
bolic objects which are rectangles close to those in actual masks, or symbols
such as wires, vias, contacts, transistors, etc. In this chapter we presented
the Magic layout system which includes among other features an efficient
layout editor, an interactive design rule checker, and a compactor. The
Magic layout editor works with basic tiles/rectangles. In this chapter we
presented briefly the capabilities of this popular and widely available layout
system. Magic was implemented by Ousterhout et. al.,[21] at the University
of Berkeley, and is available in public domain.*

Compaction is the last step in the design process. The handcrafting of

*To obtain Magic via FTP contact “magic@Qdecwrl.dec.com”. Magic may also be ob-
tained on magnetic tapes from “EECS/ERL Industrial Liaison Program, 479 Cory Hall,
University of California at Berkeley, Berkeley, CA, 94720, USA.”
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designs using layout editors is a very tedious process. Layouts produced
by such editors generally obey design rules, however, they are not area
efficient. Even when an automatic layout approach is used, the resulting
layout usually contains unnecessary empty spaces. Compaction is needed
to remove any unnecessary wasted area without violating design rules.

Even for designs of reasonably small size, manual compaction 1s very
difficult. Two major techniques widely used for automatic compaction are
the grid-based approach and the graph-based approach. However, the most
attractive approach is the graph-based. Both techniques were presented in
this chapter and illustrated with examples.

9.5 Bibliographic Notes

There are several papers describing various aspects of the Magic layout sys-
tem [21]. These aspects are, the internal data structure (corner stitching)
used by Magic,[20] the interactive design rule checking,[29] the plowing tech-
nique used to stretch or compact layouts,[25] and the routing algorithm(7].

Two-dimensional compaction is an NP-hard problem [24]. For this rea-
son, heuristic techniques are employed which consist of performing one-
dimensional horizontal (vertical) compaction followed by one-dimensional
vertical (horizontal) compaction. The most widely used approaches for one-
dimensional compaction is the constraint-graph approach and the virtual
grid approach [2]. The most attractive and flexible of the two is the graph-
based approach. Several experimental studies were conducted to compare
both approaches in terms of running time and quality of solution (layout
area after compaction) [34; 6; 13]. The experiments indicated that both
approaches have comparable run times. However, the constraint graph
approach consistently produced smaller layouts (15 percent to 30 percent
smaller) than those obtained by the virtual grid approach. An experiment
to study the sensitivity of the compaction algorithm to small changes in the
layout was also conducted [34]. Results of the experiment showed that the
virtual grid approach produced a wide range of layout sizes. On the other
hand, the graph based approach was much less sensitive to layout changes
and consistently produced layouts of comparable sizes.

Although all experiments are in favor of the constraint graph approach,
the virtual grid approach is still widely used. The reason is that the vir-
tual grid approach i1s much easier to implement. We believe that both ap-
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proaches will remain dominant in the coming years over other compaction
approaches, with a slight shift toward graph based techniques. A very good
discussion on performance aspects of these two approaches is provided in
Chapter 6 of the book edited by Preas and Lorenzetti [22].

In this chapter, we considered only the problem of leaf-cell (flat cells
with no hierarchy) compaction. Leaf cell compaction is the backbone of
hierarchical compaction. Hierarchical compactors allow the objects to be
wires, transistors, or cells of any complexity [18; 22; 2]. A cell is modeled
as a black box, i.e., only the cell contour is of interest to the hierarchical
compactor.

Exercises

Note:

For Exercises 9.1 to 9.9 design the layout using Magic’s layout editor (or
any other layout editor of similar capability available in your laboratory).
Then, extract the circuit from the layout, and simulate the extracted circuit
to verify the design.

Exercise 9.1 A 2 x 1 multiplexer realized using transmission gates can
be used as a universal logic module. The block diagram and the circuit are
illustrated in Figure 9.12.

4

f(0,b) f(0,b)
lae e
f(1,b) 1 mux f(Lb)

a
f(a,b)
: T

@) (b)

Fig.9.12 A 2x 1 multiplexer used as a universal module. f(a,b) =a- f(0,b)+a- f(a,b)
(a) Block diagram. (b) Circuit diagram.

1. Design the layout of a 2 x 1 multiplexer (Figure 9.12) using CMOS trans-
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mission gates.
2. Test the 2 x 1 multiplexer to generate 2-variable Boolean functions.

Exercise 9.2 Programming Exercise: Write a program to generate an
n x 1 multiplexer using 2 x 1 multiplexers. You may use any technique for
placement. The program must generate the netlist which will be used by
the routing tool to automatically inter-connect multiplexers.

Exercise 9.3 Design a full-adder using only 2 x 1 multiplexers. Using this
module, hierarchically design a 4-bit ripple carry adder. The full-adder
cell may be designed so that by abutting 4 such cells the 4-bit adder is
synthesized.

Exercise 9.4 Design a 4-bit adder using only 2 x 1 multiplexers. You
may use as many 2 X 1 multiplexers as required. Place them in rows as in
standard-cell design methodology. The netlist must be generated automat-
ically. Use Magic’s router to interconnect the required nets. Compare the
area and performance of your design with the one in Exercise 9.3.

Exercise 9.5  Modify the design of full-adder in Exercise 9.3 to work as an
adder/subtractor. An additional control line is required to choose between
the operation add or subtract. Use this design to generate the layout of a
4-bit arithmetic unit.

Exercise 9.6  Design the layout of a logical unit with 2 control lines C, Cs,
that will perform the logical operations given in Table 9.1.

Table 9.1 Logic unit function table.

C7 Oy  Function

0 0 AND

0 1 OR

1 0 XOR

1 1 XNOR

Exercise 9.7 Integrate the designs of the arithmetic unit designed in Ex-
ercise 9.5 and the logic unit designed in Exercise in 9.6 to build an ALU.

Exercise 9.8  Design a controller for a digital system that is used to mul-
tiply two 4-bit numbers using the ALU designed in Exercise 9.7.
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Exercise 9.9 (*) Programming Exercise: Write a program that will
read a PLA personality and produce the layout of the PLA.

Exercise 9.10

(a) For the layout given in Figure 9.7(c), perform a vertical compaction using
virtual grid approach.

(b) For the layout given in Figure 9.7(a), perform a vertical compaction
followed by a horizontal compaction using the virtual grid approach.

(c¢) Compare the compacted layouts resulting from (b) with that resulting
from (a).

(d) Discuss your results.

Exercise 9.11

(a) For the layout given in Figure 9.7(a), perform a horizontal compaction
using constraint graph approach.

(b) Compare and discuss the resulting compacted layout with that obtained
from the virtual grid approach (see Figure 9.7).

Exercise 9.12

(a) For the horizontal compacted layout given in Figure 9.11(c), perform a
vertical compaction using constraint graph approach.

(b) Perform a horizontal compaction on the layout resulting from part (a).

(c) Using the constraint graph approach, perform a vertical compaction fol-
lowed by horizontal compaction on the layout of Figure 9.11(a).

(d) Compare and discuss the resulting layouts from part (a) and part (c).

Exercise 9.13  Give a layout example for which horizontal compaction fol-
lowed by vertical compaction leads to a different compacted layout than if
vertical compaction is performed first followed by horizontal compaction.

Exercise 9.14 Compare and discuss the time complexity of compaction
algorithms using the virtual grid and constraint graph approaches.

Exercise 9.15  Show that, for each vertex v in the constraint graph, r(v) =
LengthFromL(R) — LengthToR(v).

Exercise 9.16  Show that, for any vertex v on the critical path(s), l(v) =
7(v).

Exercise 9.17  Discuss as to why virtual grid compaction is more sensitive
to layout changes than graph based compaction.
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Exercise 9.18 (*) Programming Exercise: Write a program that will
read a layout described in the CIF language and performs one dimensional
compaction using the virtual grid approach. The direction of compaction
should be a user specified parameter. The output should be given in the
CIF language.

Exercise 9.19 (*) Programming Exercise: Write a program that will
accept as input a layout described in the CIF language and performs one
dimensional compaction using the constraint graph approach. The direction
of compaction should be a user specified parameter. The output should be
given in the CIF language.
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Appendix A

Graph Theory and Complexity of
Algorithms

This appendix introduces the notations and formalisms used throughout
this book. The first section describes the notation used to specify the
computational complexity of algorithms. The second section introduces
terms such as ‘hard,” ‘easy,” and ‘intractable,” which are used to specify
the complexity of problems. The idea of NP-completeness 1s discussed
with examples. The final section introduces the basic concepts from graph
theory.

A.1 Graph Theory

A graph G = (V, E) consists of a set of nodes V and a set of edges F. An
edge is a pair of nodes from V; we use an unordered pair (¢,7), ¢ € V and
j € V, if the edge is undirected. The corresponding graph is an undirected
graph. An edge is an ordered pair of nodes < 7,5 > when a direction is
associated with the edge. Graphs with directed edges are called digraphs.
When we refer to a ‘graph’ without a qualifier, we mean undirected graphs.
A graph can have at most (l‘gl) edges, i.e., an edge between every pair of
nodes. A graph is said to be complete if it has all the possible edges. A
graph is called dense if the number of edges |E| is O(|V|?). Sparse graphs
have O(|V]) edges.

A path in a graph is a set of edges of the form (¢, ), (4, k), (k,{) - A
graph is connected if there is a path from any vertex to any other vertex.
Given a graph G = (V, E), a subgraph H = (U, F) can be constructed
by setting U C V and selecting F' to contain all those edges in E which
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are incident on the nodes of U. Given a graph G, a clique is a complete
subgraph of (. The size of a clique is the number of nodes in the clique. For
example, an edge is a clique of size 2. A clique is a maximal size clique
(or simply maximal clique) if it is not a subgraph of another clique. A
maximum clique is a clique whose size is the largest possible. A maximum
clique 1s necessarily a maximal clique, but not vice versa. A clique partition,
or a clique cover, is a set of cliques C, (s, - - -, C, satisfying two conditions:
(1) for i # j, the node set of C; does not overlap with the node set of j and
(2) the union of the node sets of C; is the set V. The number r is known
as the size of the clique cover and ranges from 1 (for a complete graph) to
|V| (for a graph that has no edges.) The cligue number of a graph G is the
size of the smallest possible clique cover of G.

Given a graph G, a set of nodes in G is said to be independent if no
pair of nodes in the set share an edge. A maximal independent set is
an independent set of nodes, which 1s not a subset of another independent
set. A proper node coloring of (7 is obtained by associating a color with
each node in the graph, such that no two nodes which are directly connected
by an edge are assigned the same color. The minimum number of colors
required to properly color a graph is known as the chromatic number of
the graph. For further definitions in graph theory, the reader may refer to
Reingold [6].
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Fig. A.1 (a) A graph G with 6 nodes and 7 edges. (b) G’, the complement graph of G.

Example A.3 Consider the graph in Figure A.1(a). The nodes 2,3,6
form a clique; this is also a maximal clique, since there is no larger clique
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that contains these nodes. There 1s no clique of size 4 in this graph. There-
fore, {2,3,6} is also a maximum clique. {1,2,5} is another maximum clique
in the graph. A clique cover of size 3 is obtained by considering the cliques
Cy =1{2,3,6}, Cy = {1,5}, and C5 = {4}. The reader can verify that this
is also a minimum clique cover. Therefore, the clique number of the graph
is 3.

A proper coloring of the graph is obtained by using three colors. Color
nodes 3 and 5 using red paint, nodes 2 and 4 using blue paint, and nodes 1,6
using green paint. It is easy to verify that there cannot exist a 2-coloring of
this graph; the nodes {2,3,6} form a clique of size 3, and must all be painted
using different colors. Therefore, the chromatic number of the graph is 3.

In a directed graph, a path is said to exist from node ¢ to node j if
it 1s possible to reach node j starting from node ¢ by following a set of
unidirectional edges. A cycle or a circuit is a closed path; in other words,
a set of nodes i1, s, - - -, i form a cycle if 1t 1s possible to start from ¢; and
visit 29, 23, - - -, ¢ and return to ¢; by following a set of unidirectional edges.
A directed graph that has no cycles is said to be acyclic. An Eulerean
path in a graph is a path that includes every edge in the graph exactly once.
Similarly, an Eulerean circuit is a cycle which includes each edge exactly
once. Note that an Eulerean circuit may visit the same node several times.
A Hamiltonian circuit is a cycle which includes each node in the graph
exactly once.

A.2 Complexity of Algorithms

Two important ways to characterize the performance of an algorithm are
its space complexrity and time complexity. Space complexity refers to the
amount of core memory (main memory) taken up by the algorithm. Simi-
larly, time complexity refers to the amount of CPU-time required to execute
the algorithm. Sometimes, the time complexity of an algorithm is simply
referred to as its complexity. The space and time complexities depend on
the problem size as well as the target machine. One way to describe the
performance of an algorithm is to quote its running time (in seconds) and
its memory usage (in mega bytes) on the machine that was used; but this
method has some limitations. It does not bring out the growth rate of the
time and space complexities with the problem size. Secondly, the numbers
quoted refer to specific machines and hence are not universal. In order
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to overcome these problems, the analysis of the time complexity of an al-
gorithm is restricted to determining an expression of the number of steps
needed as a function of the problem size. Since the step count measure
is somewhat coarse, one does not aim at obtaining an exact step count.
Instead, one attempts only to get asymptotic bounds on the step count [7].
Asymptotic analysis makes use of the Big-Oh, Big-Omega and Big-Theta
notations. These notations help describe the complexity of an algorithm as
a function of the problem size.

A.2.1 Big-Omega Notation

We say that f(n) = Q(g(n)) if there exist positive constants ng and ¢ such
that we have f(n) > ¢ - g(n) for all n > ny. Another way to say the same
thing is to specify that f(n) is lower bounded by g(n). This notation is
useful when we speak of problem complexity. For example, it is well known
that at least nlog, n comparisons are necessary to sort n keys. The same
statement can be rephrased as ‘a comparison-based algorithm for sorting n
keys requires Q(nlogn) time.’

A.2.2 Big-Oh Notation

We say that f(n) = O(g(n)) if there exist positive constants ng and ¢ such
that for all n > ng, we have f(n) < e-g(n). Alternately, we say that f(n) is
upper bounded by g(n). The Big-Oh notation is used to describe the space
and time complexity of algorithms. For example, consider the ‘bubble sort’
algorithm to sort n real numbers.

Example A.4 The procedure ‘BubbleSort” shown below requires O(n)
storage (for the array A) and O(n?) running time (two nested for loops).
The above statement should be taken to mean that the BubbleSort proce-
dure requires no more than linear amount of storage and no more than a
quadratic number of steps to solve the sorting problem. In this sense, the
following statement is also equally true: the procedure BubbleSort takes
O(n?) storage and O(n?®) running time! This is because the Big-Oh nota-
tion only captures the concept of ‘upper bound.” However, in order to be
informative, it is customary to choose g(n) to be as small a function of n as
one can come up with, such that f(n) = O(g(n)). Hence, if f(n) = a-n+b,
we will state that f(n) = O(n) and not O(n*), k > 1.
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Algorithm BubbleSort (A[l:n]);
Begin /* Sort Array A[l:n] in ascending order */
var i,jJ;
For : =1 To n Do
For j=:4+1To n Do
If A[i] > A[j] Then
swap (A[i], Alj]);
End Algorithm ;

The Big-Oh notation can also be used to describe the complexity of a
particular step in an algorithm. For example, the ‘swap’ operation in the
bubble sort procedure requires a constant number of steps; an alternate
way to describe this is to say that swapping requires O(1) time.

A.2.3 Buig-Theta Notation

We say that f(n) = ©(g(n)) if f(n) = Q(g(n)) and f(n) = O(g(n)).
©(g(n)) is known as the tight bound for f(n). In Example A.4 above, we
say that the BubbleSort procedure requires ©(n) storage and ©(n?) running
time.

A.3 Hard Problems Vs. Easy Problems

An algorithm is said to be a polynomzal-time algorithm if its time complex-
ity is O(p(n)), where n is the problem size and p(n) is a polynomial function
of n. The BubbleSort algorithm of Example A.4 is a polynomial-time al-
gorithm. In contrast to a polynomial-time algorithm, an ezponential-time
algorithm is one whose time complexity is O(a™), where a is a real con-
stant larger than 1. A problem is said to be tractable (or easy) if there
exists a polynomial-time algorithm to solve the problem. From Example
A.4 above, we may conclude that sorting of real numbers is tractable, since
the BubbleSort algorithm solves it in O(n?) time.

Unfortunately, there are problems of great practical importance that
are not computationally easy. In other words, polynomial-time algorithms
have not been discovered to solve these problems. The bad news 1s, it 1s
unlikely that a polynomial-time algorithm will ever be discovered to solve
any of these problems. Such problems are also known as ‘hard problems’ or
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‘intractable problems.” Examples of hard problems are the traveling sales-
person problem, satisfiability, graph partitioning, Steiner tree, quadratic
assignment, etc [3]. Most design automation problems are hard problems,
such as, global routing, two-layer channel routing, floor planning, place-
ment, etc [7].

Example A.5 Consider the satisfiability problem (SAT). Given a circuit
with n inputs and a single output; each input can be set to 0 or 1. The
question 1s, is it possible to set the wnputs such that the output s driven
to logic 17 This problem commonly arises in the testing of combinational
circuits, where 1t is desired to find an input test pattern that will drive
the output to a specified state. Since each of the n inputs can take two
values, there are 2" input patterns. An algorithm which applies all input
patterns to solve the satisfiability problem will require O(2") time. This
is an exponential-time algorithm. It turns out that all known algorithms
for the problem require exponential time in the worst case. In electronic
testing, the D-algorithm is commonly used to generate test patterns for
combinational circuits [1; 2]. The D-algorithm is based on the concept of
backtracking. While it is quick for most circuits, the D-algorithm is known
to take exponential time for certain classes of circuits.

Example A.6 The traveling salesperson problem (TSP) is one of the
oldest problems known to be computationally hard. There are many vari-
ations of the problem; in this example, a version known as the ‘Euclidean
TSP’ is described. The objective of the problem is to find the shortest
Hamiltonian tour of n cities. The input to the problem is given as an n x n
matrix C. Entry Cj; of the matrix represents the Euclidean distance from
city ¢ to city j. It 1s assumed that the salesperson can travel from any city
¢t to any other city 7. A Hamiltonian tour begins at some city a, visits each
of the remaining cities exactly once, and returns to the city a. The tour
can be represented by a permutation T of n cities; T; is the ith city visited.
The cost of the tour 7" is given by
n—1
o(T)= (> Crrn) + Cromy (A1)
i=1
Given n cities, there exist Ln—;lﬁ Hamiltonian tours. To see why, observe
that a permutation T of n cities is completely specified by the first n — 1
cities. Further, a permutation 7" and the reversal of the permutation T
represent the same tour; this accounts for the factor 2 in the denominator.
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When n is large, the number of tours is exponential. Literally hundreds of
heuristic algorithms have been developed to solve the TSP [4; 6; 5).

A.3.1 NP-complete Problems and Reduction

It is known that many hard problems are ‘equivalent’ in the following
sense: if someone were to discover a polynomial-time algorithm to solve
one of these problems, then the same algorithm can be modified to solve all
these problems in polynomial-time. These problems are called NP-complete
problems. The term ‘NP’ needs some explanation. It stands for ‘nonde-
terministic polynomial.” A problem is said to be NP if a nondeterministic
(or randomized) algorithm can solve the problem in polynomial-time. The
word ‘complete’ refers to the above notion of equivalence — if we were to
construct an imaginary graph with NP-complete problems for its nodes and
join two nodes if the corresponding problems are equivalent, then we will
end up with a complete graph.

How 1s one NP-complete problem equivalent to another? To understand
this, we need the notion of reducibility. Let P, be an NP-complete problem.
Py is said to be reducible to P» if, using a polynomial amount of work, Py
can be made to look like P;. If P; can be reduced to P, then essentially
Py is ‘equivalent’ to Ps. In other words, if some one were to discover an
algorithm for solving P, in polynomial-time, then we can use the same
algorithm to solve P; in polynomial-time — simply reduce P; to Ps, and
solve Ps.

Example A.7 Consider the ‘maximum independent set’ problem
(MIS) for graphs. Given a graph GG on n nodes, it is required to identify
the largest subset of nodes which are independent of one another, i.e, do
not share edges. To illustrate, a graph with six nodes and seven edges is
shown in Figure A.1(a). By inspection, a maximum independent set in this
graph is {4,5,6}. Another maximum independent set is {3,4,5}. Tt will be
shown that MIS is reducible to the ‘maximum clique’ problem (MC), which
identifies the largest clique in the graph. Incidentally, the largest clique in
the graph is the largest subset of nodes such that every pair of nodes in the
subset is connected by an edge.

The MIS problem can be reduced to the MC problem by constructing
the complement graph of G. Let K,, = (V, E,,) be the complete graph on n
nodes. The complement graph of G is defined as G' = (V, E,,— E). Creating
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G’ can be completed in polynomial time, since a graph on n nodes can have
at most ("(”2_1)) edges. Figure A.1(b) shows the complement graph of the

graph in A.1(a). Note that it has eight edges. Together, the two graphs
of Figure A.1 have 15 edges. The reader may verify that Kg also has 15
edges. It is easy to see that the maximum clique in G’ corresponds to the
maximum independent set in G. For example, {4,5,6} in Figure A.1(b)
i1s a maximum clique. Thus, the problems MIS and MC are equivalent in
complexity.

One other comment i1s in order. This regards the proof of NP-
completeness of a problem . To show that @ is NP-complete, two things
must be accomplished:

(1) Prove that @ is NP.
(2) Prove that a known NP-complete problem @' is polynomially reducible
to Q.
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Full adder, 5, 8, 379, 380
carry circuit, 29, 31
Full-custom layout, 9-12
Functional
area, 8
blocks, 4
cell, 385, 387, 392
description, 19
elements, 8
modules, 8

Gain
due to interchange, 52
due to movement, 60
of a cell, 61
update, 67
Gate matrix, 385, 388, 389
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optimization, 399-407
Gate-array layout, 12—-14
Gate-arrays, 9, 12, 13, 17, 19, 23, 35,

166, 172, 174, 205, 222, 228, 229

239, 270, 329
Genetic algorithm, 102, 213

crossover, 214-216

cycle, 216
ordered, 216
PMX, 216

fitness, 214, 215

generation, 214, 219

inversion, 217

mutation, 217

offsprings, 214-216

population, 214, 217, 218, 220
Global cells, 293, 298
Global routing, 25, 35, 106-108, 130,

132, 279281, 439

by integer programming, 304—308

by maze running, 298

by simulated annealing, 308-314

hierarchical, 280, 315-317

in building-block layout, 281, 321

in gate-array design, 280, 320

in standard-cell design, 320

mathematical programming, 280

sequential, 280, 293

stochastic iterative, 280
Graph, 30, 33, 395, 396, 398

bipartite, 101, 344, 351, 352, 374

definition, 463

Interval, 402—-404
Graph model, 395

adjacency graph, 98

channel intersection graph, 98

channel position graph, 98

decomposition, 395

for floorplanning, 98

for standard-cell generation, 393,

395

polar graph, 98
Greedy channel router, 354-361, 439
Grid

Index

imaginary, 236, 256, 270
Grid graph, 293, 297, 304-307
Ground

nets, 25

pin, 29

wires, 23
Ground routing, 267

H-V routing, 330, 335
Hadlock’s algorithm, 252
Hardware accelerators, 270
HCG, 331-333, 337, 343, 375
High-level synthesis, 6, 433
Hopfield network, 210

Horizontal channels, 280, 281, 283,

292, 293, 320

Horizontal constraint graph, see HCG

Horizontal conversion, 283, 289

HVH model, 335

Independent set, 464
Inference engine, 102
Initial-channel-width, 355
Integer programming, 304
Interconnection

length, 95

networks, 1, 3

overall length, 95

resources, 21, 22
Intermediate languages, 379
Intractable problem, 468

Iterative heuristic, 46-48, 53, 59, 71,

101, 178, 180
[terative placement, 203, 220

Kernighan-Lin algorithm, 54
complexity analysis, 56
for TWPP, 54
variations of, 43, 58

Knowledge based, 101, 102

Layout
gate-arrays, 29
Layout compaction, 441-454



Layout editors, 9-11, 34, 385, 433
capabilities of, 434
Magic, 435-441
Layout generators, 385-424
for gate matrix, 388
for PLAs, 388
for standard-cells, 390
Layout styles, 9-23
logs, 435
Leaf cell, 457

Index

Lee algorithm, 236, 241-243, 297, 300

coding schemes, 244
double fan out, 246
extensions to, 243
filling phase, 241-244
for multi-pin nets, 246, 247
framing, 245, 246
in global routing, 293, 295
labeling phase, 244
limitations of, 243
retrace phase, 243
running time of, 236, 245, 246
wave propagation, 241, 250
Left-edge algorithm, 335, 336, 338,
340, 354
constrained, 337, 339, 341
unconstrained, 336
Library
CMOS, 19
of cells, 12
of module, 7
standard-cells, 14
Line search algorithms, 255-258
Linear ordering, 102, 103, 105, 129
Locality property, 286
Logic block, 14
Logic circuit
behavior of, 379
Logic density, 23
Logic design, 4, 7-8
Logic minimization, 1, 2
Longest path, 449, 450
Lower bound, definition, 467
LRAT, 176

LS, 2

Macro-cell layout, 17-18

Macro-cells, 7, 28, 166, 196

Magic, 11, 385, 433-437, 443, 445,
449, 457, 458
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Manhattan distance, 32, 95, 165, 211,

212, 214,
262
Manhattan
Manhattan
Manhattan model, 329
Manhattan routing, 32
Matching, 351-354
Mathematical programming, 101,
122, 130
Maximal clique, 464
Maximal Independent Set, 464
Maximize
routability, 94
Maximum clique, 464
Maximum Independent Set, 469
Maze, 235
memory requirement of, 236
Maze routing, 240-255
Memories, 1, 4, 18
Metal migration, 9

geometry, 167, 434
measure, 192

Metropolis

acceptance probability, 74

criterion, 74

procedure, 73-75
Microprocessors, 1, 3, 10, 11, 37
Mikami-Tabuchi algorithm, 256
Min-cut placement, 181-186

limitations of, 186-188
Minima

global, 71-73

local, 66, 73

multiple, 71

trapped in local, 80
Minimization of

dead space, 105

wiring length, 105
Minimize

223, 238, 242, 253, 255,
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area, 94
area of PLA, 388, 412
delays, 94
dominant clique, 404
longest path, 348
maximum cut, 171
maximum density, 174
number of Euler paths, 395
number of tracks, 330, 334
number of vias, 334
overall area, 334
routing tracks, 335
rows of gate matrix, 402
rows of PLAs, 418
separation area, 395, 398
size of array, 395
width of interval, 403
wirelength, 94, 170
Minimum moving strategy, 449
Minimum spanning tree, 168, 169,
223, 297, 310, 312, 314, 318
Minimum-jog-length, 355
Minterms, 388
Module
circuit, 2, 4
library, 7
logic, 1
pre-designed, 7
Module generation, 18-19
Module library, 7
MOS, 381
Moving strategy, 449, 454
maximum, 449
optimum, 450
MPGA, 12, 21-23
MRST, 265, 266
MSI, 16
MSOP, 372
Multiplexer, 4-8, 14, 23, 385
Multiplier, 4, 18

Net, 28
weighted, 32
Net segment, 309, 310, 314, 315

Index

Netlist, 19, 28-30, 32, 38, 380, 385
Nets
effect of ordering, 236
multi-pin, 236, 237, 246
ordering of, 259, 262, 264, 265
two-pin, 237
two-point, 262, 263, 276
Neural computing, 209
Neural networks, single layer, 210
Nondeterministic polynomial (NP),
469
NP-complete, 43, 46, 165, 168, 444,
469
NP-hard, 26, 94, 95, 246, 279, 281,
295, 456

OASIS, 14
Objective function, 23-25
conflicting, 24
cost of edges cut, 77
delay, 25
in routing, 330
number of nets cut, 59
ratio-cut, 80, 81
sequential, 182
wirelength, 25
wiring density, 25
Optimal
global, 59, 71, 72
local, 72
slice-line, 287, 290
Optimality principle, 287-292
OR plane, 19, 20, 35
Order constraint graph, 282, 283,
291, 292
cycle free, 283, 291, 292
Over-the-cell routing, 371-372

PAL, 23

Partition
improving a, 52

Partitioning, 35
approaches, 46-48
bounded size, 44-45
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circuit, 24 containment condition, 413
cost constraints, 44 folding, see Folding
cost, function, 44 Merits and limitations, 20-21
external cost, 49, 50 minimization, 407-424
Fiduccia-Mattheyses heuristic, personality, 410-411

59-70 Raising of terms, 416
graphs, 43 redundancy check, 412
internal cost, 49, 50 Placement, 1, 8, 16, 35, 83, 91, 92,
iterative improvement, 53 279, 281, 300
Kernighan-Lin algorithm, 48-59 1-D, 163, 165, 231
logic, 8 2-D, 223, 231
minimize external wiring, 45 approaches to, 178-207
problem definition, 43, 44 bisection, 184

Simulated annealing

. algorithm, 7.3 complexity of, 165
simulated annealing, 70-78 constraints. 167—177

circuit, 24

neighbor function, 76 cost functions, 167-177

. Ct]vgvo—lwz;y, 11681212222535 V37 230, 250 force-directed, 166, 180, 199-207
» Ly 0y 10, 44, J ’ ’ ’ greedy, 180, 183

270, 271 .
n gate-arrays, 24
Performance, 3, 6, 8 . .
. numerical techniques, 199-207
degradation, 41

maximize the, 7 of circuit modules, 34

of a circuit, 8, 10 of gate arrays, 181

of chip, 11

of design, 3

of heuristic, 27
prediction tools, 4

of macro-cells, 24

of standard-cells, 24, 220

partial, 178-180

partition-based methods, 181-191

speed, 96 problem definition, 166
timing, 7 quadrature, 184, 186, 225
Permutations, 367, 368 quality, 163
Personality matrix, 410, 412, 415, 417 relative, 302
Photomask, 381 simulated annealing, 191-199
Physical design, 279, 320, 433 slice/bisection, 184
complexity of, 25 symbolic, 163, 164
constraints, 25 Plowing, 438, 445, 449
design steps, 24 Polar graph, 98, 99
difficulties in, 23 equivalent representation, 100, 101
importance, 7 horizontal, 98
objective function, 25 longest path in, 99
Physical level, 379, 381 vertical, 98
Pin cluster, 309-312 Polish expression, 109, 110, 112, 113,
Pipeline, 3 119, 120

PLA, 9, 12, 19-21, 385, 388-390 classification, 111
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normalized, 109, 111, 113, 115,
118, 120
representing slicing floorplan, 111,
112

Poly, see Polysilicon
Polycell, 14
Polynomial function, 26
Polynomial time, 34, 43, 95, 169
Polynomial time algorithm, 467
Polysilicon, 381, 400, 407, 408, 417
Power

dissipation, 7

nets, 25

pin, 29

signal, 15

wires, 23
Power routing, 267
Principle of optimality, 449
Problem definition

Floorplanning, 92
Product terms, 388-390, 407, 409
Programmable

gate-arrays, 23

in field, 22

logic arrays, 12

pads, 21

switches, 21, 23

Quadratic assignment problem, 94
Queue, 4

Rectangular dissection, 96, 100, 109,
111, 116, 133, 134
Rectangular dual, 101, 131, 133-135
Reduction, among problems, 469
Reliability
of chip, 8, 9
of the system, 42
Rent’s rule, 41
Rift line cut, 446
Rising nets, 355
ROM, 385, 388
Routability, 106, 122, 130, 172, 174,
175, 181, 199, 302, 303, 319

Index

Router, 235
Beaver, 269
Mighty, 269
automatic, 235
grid, 270
line search, 236
maze, 235, 236, 240, 241, 258, 262,
275
pattern, 270
template based, 270
Routing, 8, 16, 25, 83, 279, 438
architecture, 23
channels, 14, 16-18, 25
constraints, 25
hardware, 8
inter-cell, 35
layers, 23
Manhattan style, 32, 33
model, 23
multi layer, 259-262
multi-layer, 236
of a net, 33
over the cell, 14
plan, 25
resources, 25
signal nets, 32
streets, 14
switchbox, 25
Routing architecture
complexity of, 23
Routing channels, 106, 131
Routing layers
number of, 239, 259
Routing plan, 279, 319, 320
Routing region, 279-281, 291
definition, 281, 282
identification, 281
ordering, 281
representation, 281, 292
Routing regions, 298, 299, 308
as horizontal channels, 280, 320
in BBL, 320
in standard-cell design, 320
in standard-cells, 280
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Satisfiability problem, 468

Sea-of-gates, 14, 315

Search space, 26

Semi-perimeter estimate, 168

Sets and sequences, 103

Shift register, 4-7

Shortest path, 281, 293, 295-298, 300,
302, 303

Signal nets, 25, 28, 32, 236, 237

Silicon compilation, 19, 379, 385

SIMD, 270

Simple cut, 446

Simulated annealing, 280, 320
accept function, 192, 223
background, 71
for floorplanning, 108-109
neighbor function, 76, 192, 196
partitioning using, 74
perturb function, 192, 193, 197, 227

simulated annealing, 70-78

Slicing floorplan, 97, 289

Slicing graph, 286, 289, 290

Slicing structure, 96, 111, 282, 283,
286, 289, 291, 315

Slicing tree, 96, 109-111, 116-118,
282
skewed, 96, 111

Solution quality, 27

Solution space, 111, 113

SOP, 19, 21

Sort router, 370-371

Sorting, 367, 368

Soukup’s algorithm, 254

Span, 369

Spanning forest, 372

Spanning tree, 33, 34, 95, 108

Speed improvements, 252

SPICE, 380, 382

Spillover area, 356

Split net, 355

SSI, 2, 16

Stack, 4

Standard form, 417

Standard-cell layout, 14-17
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Standard-cells, 12, 14, 17, 19, 24, 28,
166, 172, 181, 184, 195, 196, 198,
222, 230, 231, 239, 270, 329, 330,
385, 387, 389-391

Steady nets, 355

Steady-net-constant, 355

Steiner point, 33, 34

Steiner tree, 33, 34, 108, 281,
295-297, 299, 308, 318
algorithm, 295, 318, 319
construction of, 34
minimum, 295
minimum cost, 34
minimum length, 295
problem, 281, 294-298, 321

Stick diagrams, 410, 411, 441

Stochastic algorithm, 46, 47, 213

Stopping criteria
first failure, 48
out of computer time, 48

Structural description, 19

Structural level, 379, 380, 385, 436
model, 380

Sum terms, 409

Swap router, 368-369

Switch, 381

Switchable segment, 309, 314

Switchbox, 13, 21, 25, 174, 175, 281,
292, 361, 362

Switchbox routing, 282, 292, 299,
361-366

Symbolic design, 441, 442

Symbolic layout, 434, 435

Tautology, 413-417
Technology
CMOS, 10, 11, 14, 19, 380
integration, 41
MOS, 381, 385
Technology files, 11
Magic, 435
Terminal propagation, 188-191
Testability, 6, 7
Testing, of circuits, 468
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Three-D grid, 260
Tight bound, definition, 467
TimberWolf algorithm, 191, 196, 308
global routing in, 308, 309, 311-313
Time
to market, 11
to test, 11
Timing verifiers, 176
Tolerance, 449-451
in mask alignment, 10
of manufacturing, 10
Topological layout, see Floorplan
Topological placement, see Floorplan
Topology, 386, 398
floorplan, 98
of circuit, 398
restriction in CMOS, 386
Track density, 13
Tractable problem, 467
Transmission gate
CMOS, 381
Traveling salesman, see TSP
Trial lines, 256, 257
Trunks, 329, 330, 332, 333, 335-337
TSP, 83, 468
Two way partitioning, sce TWPP
TWPP, 46, 48, 54, 63, 71, 74, 80, 82,
83
k-way, 58
balanced, 82
unequal sized blocks, 58
unequal sized elements, 58
using simulated annealing, 71

Uniform distribution, 74
Universal gate, 386
Upper bound, definition, 467

VCG, 331-335, 338344, 375

Vertical channels, 280, 281, 292, 293,
320

Vertical constraint graph, see VCG

Vertical conversion, 283, 289

VHYV model, 335

Index

Virtual grid, 443, 445, 446, 459
VLSI
CAD, 1
design, 1-2
design automation, 1, 2, 34
design process, 2-7, 34
PLAs in, 20
problem sizes, 26
technology, 1, 2

Weight
of a net, 32
Wheel, 97
Wiring
area, 8, 24
area estimate, 25
channel, 24
impedance, 8

Yield, 8, 12, 238, 240, 334, 392

Zone representation, 333, 343-346,
352, 353
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