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PREFACE

MOTIVATION

Combinatorial optimization problems are encountered everywhere, in sci-
ence, engineering, as well as in industrial management, economics, etc.
Most Engineering and business schools offer several courses in algorithms
and optimization. The advent of the digital computer is credited for all
of this explosion in the amount of algorithmic solutions to combinatorial
optimization problems. Such solution techniques were unthinkable before
this magnificent invention.

This book in concerned with one class of combinatorial optimization
algorithms: general iterative non-deterministic algorithms. The growing in-
terest in this class of algorithms is attributed to their generality, ease of im-
plementation, and mainly, the many success stories reporting very positive
results. We shall limit ourselves to five dominant iterative non-deterministic
algorithms, which, in order of popularity are: (1) Simulated Annealing
(SA), (2) Genetic Algorithm (GA), (3) Tabu Search (TS), (4) Simulated
Evolution, and (5) Stochastic Evolution. All five search heuristics have sev-
eral important properties in common.

1. They are blind, in that they do not know when they reached the optimal
solution. Therefore they must be told when to stop.

2. They are approximation algorithms, that is, they do not guarantee
finding an optimal solution.

3. They have ‘hill climbing’ property, that is, they occasionally accept
uphill (bad) moves.

10
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4. They are easy to implement. All that is required is to have a suitable
solution representation, a cost function, and a mechanism to traverse
the search space.

5. They are all ‘general’. Practically they can be applied to solve any
combinatorial optimization problem.

6. They all strive to exploit domain specific heuristic knowledge to bias
the search toward “good” solution subspace. The quality of subspace
searched depends to a large extent on the amount of heuristic knowl-
edge used.

7. Although they asymptotically converge to an optimal solution, the rate
of convergence is heavily dependent on the adequate choice of several
parameters.

The last two properties are the hidden bone in the five combinatorial
optimization strategies. Our main goal in this book is to address this as-
pect by compiling in a single source the extensive research work related to
the problem of intelligently setting the required parameters of these five
heuristics.

Most books on computer algorithms mainly address deterministic
heuristics. Recently, due to the increase in size and complexity of a large
number of combinatorial optimization problems, there has been a growing
interest in general iterative non-deterministic algorithms. There are several
books dedicated to one particular iterative algorithm. For example, there
are at least three books that introduce the theory and concepts of simu-
lated annealing. They are rigorous in mathematics and go far beyond the
level of concepts required by engineers (and scientists). There is at least
one excellent text book that introduces the theory and concepts of genetic
algorithms. The field of genetic algorithms is relatively new and the tech-
nique has only been recently attempted to solve several NP-hard problem.
Other non-deterministic techniques such as tabu search, simulated evolu-
tion, and stochastic evolution are now gaining ground and applications of
such techniques have begun to appear in scientific literature. Tabu search
has recently been the subject of an excellent book by F. Glover (Kluwer
Publishers, 1997). Currently, to our knowledge there are no books that ad-
dress the last two techniques. And, no book is available that contains an
integrated and up-to-date description of all the above techniques, with case
studies and examples.

All five heuristics described in this book constitute very general and
effective optimization techniques. Recently, SA, GA, and TS has been des-
ignated by the Committee of the Next Decade of Operations Research as
‘extremely promising’ for the future treatment of practical applicationsy. It

t F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Annals of
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is our belief that Simulated Evolution and Stochastic Evolution are equally
promising techniques to a wide array of combinatorial optimization prob-
lems.

ORGANIZATION OF THE BOOK

The book is organized into 7 chapters. The introductory chapter moti-
vates the student towards a study of iterative algorithms. The definition of
NP-hard and NP-complete is introduced, and some “hard” problems are
illustrated with examples.

To make the book self contained, a brief review of Markov processes
and chains is also provided in Chapter 1. Chapters 2 through 6 examine the
five iterative algorithms, namely, Simulated Annealing, Genetic Algorithm,
Tabu Search, Simulated Evolution, and Stochastic Evolution.

In order to achieve a uniformity in treatment, each of these topics is ex-
amined in the following light. The introductory section intuitively presents
the reader with the essence of the heuristic. Then the required mathemat-
ical notation is introduced. Basic Algorithm presents the heuristic with
details on how to implement it on a digital computer. Next, the mathemat-
ical model needed to study the convergence properties of the heuristic and
how to set its parameters is presented. Case studies follow which illustrate
the application of the technique to well known combinatorial optimization
problems. All steps, from formulation of cost function to final results are
illustrated with examples.

All five iterative algorithms are very greedy with respect to execution
time no matter how well tuned the parameters are. The proliferation of
a large number of parallel computers has forced extensive research on the
parallelization of these algorithms. For each technique, a section is dedi-
cated to this issue of parallelization. A bibliography is provided at the end
of each chapter, followed by ezercises. In Chapter 7 we provide a compara-
tive analysis of the five algorithms such as similarities, differences, solution
qualities, and look into hybridization aspects. We also provide a brief in-
troduction to fuzzy logic and neural networks, and show how fuzzy logic
can help ease the formulation of multi-criteria optimization problems.

This book is intended as a text for senior undergraduates and first-
year graduate students in Computer Engineering, Computer Science, Sys-
tems/Industrial Engineering, and Electrical Engineering. It is also a good
reference book for researchers and practitioners in combinatorial optimiza-
tion.

Operations Research, 41:3-28, 1993.
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How to use this book?

The book can serve as a text for one semester first year graduate course
on non-deterministic approximation algorithms. It should be possible to
cover all material in detail in the fifteen weeks of the semester. One week is
required to motivate the students to the need for such algorithms (Chap-
ter 1). Approximately two weeks each are spent on Chapters 2 to 7. As
an undergraduate text, the depth and pace of coverage will be different.
Advanced material such as convergence and parallelization aspects would
be omitted.
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CHAPTER

ONE

INTRODUCTION

1.1 COMBINATORIAL OPTIMIZATION

Combinatorial optimization constitutes one specific class of problems. The
word combinatorial is derived from the word combinatorics, which is a
branch of mathematics concerned with the study of arrangement and se-
lection of discrete objects. In combinatorics one is usually concerned with
finding answers to questions such as “does a particular arrangement ez-
15t2”, or, “how many arrangements of some set of discrete objects exist?”.
Finding the number of orderings of some set of discrete objects usually
consists of deriving a mathematical formula or relation which, when eval-
uated for the parameters of the problem leads to the answer. On the other
hand, combinatorial optimization is not concerned with whether a partic-
ular arrangement or ordering exists but rather, it is concerned with the
determination of an optimal arrangement or order 276,

In most general terms, a problem is a question whose answer is a func-
tion of several parameters. Usually the problem is stated by articulating
the properties that must be satisfied by its solution. A particular instance
of the problem 1s obtained by fixing the values of all its parameters. Let’s
take a simple example.
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example 1 The Shortest Path Problem.

Problem: Given a connected grapht G = (V, E), where V is a set
of n vertices and E is a set of edges. Let D = [d; ;] be a distance
matrix, where d; ; is the distance between vertices v; and v; (weight
or length of the edge (vi,v;) € E). For convenience, we assume
d; j =d;; >0,d;; =0, Vv;, v; € V,and d; ; = oo if there is no
edge between v; and v;.

Objective: Find the shortest path from some source node v; to some
target node v;. A path 7(v;, v;) from v; to v; is a sequence of the
form [v;, vi,, viy, ..., Vi, vj], such that (vi,v;,) € B, (vi,,vi,,,) €
E, 1<k<!l-1, and (v;,,v;) € E. The length of the path is the
sum of the length of its constituent edges. That is

1
length(ﬂ(vi,vj)) = di,il'i' dik,ik+1 + dilyj
k=1

A particular instance of the above problem is defined when one fixes the
graph, the distance measure, and decides the source and target vertices.
For example, Figure 1.1 is one instance of the shortest path problem.

20

10

Figure 1.1 An instance of the shortest path problem: The shortest a-to-d path is
w(a,d) = [a,e, f,d] and length(7(a,d)) = dae + de g +dp g = 104+ 20+ 10 = 40.

A solution (optimal or not) to a combinatorial optimization problem
usually requires that one comes up with a suitable algorithm, which when
applied to an instance of the problem produces the desired solution.

t for definition of terms from graph theory the reader is referred to the text Algo-
rithmic Graph Theory by Alan Gibbons, Cambridge University Press, 1985.



An algorithm is a finite step-by-step procedure for solving a problem
or to achieve a required result. The word algorithm 1s named after the
ninth century scholar Abu-Jaafar Muhammad Ibn Musa Al-Khowarizmi
who authored among other things a book on mathematics.

Combinatorial optimization problems are encountered everywhere, in
science, engineering, operation research, economics, etc. The general area
of combinatorial optimization came to the fore with the advent of the dig-
ital computer. Algorithmic solutions to typical combinatorial optimization
problems involve an extremely large number of computational steps and
are impossible to execute by hand. The last thirty years have witnessed
the development of numerous algorithms for almost any imaginable combi-
natorial optimization problem. Such algorithmic solutions were unthinkable
before the advent of the era of modern computing.

Let us consider three examples of combinatorial problems.

example 2 Sorting.

Problem: Given an array of n real numbers A[l:n].

Objective: Sort the elements of A in ascending order of their values.

There are n! possible arrangements of the elements of A. In case all
elements are distinct only one such arrangement is the answer to the
problem. Several algorithms have been designed to sort n elements.
One such algorithm is the Bubble-Sort algorithm.

Algorithm BubbleSort (A[l:n]);
Begin /* Sort array A[l:n] in ascending order */
var integer i,J;
For :=1Ton—-1Do
For j=:+4+1 To n Do
If A[i] > A[j] Then
swap (A[1],A[j]);
EndFor;
EndFor;
End Algorithm,;

example 3  Mazimum Set Bipartitioning.
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Problem: Given a set of n positive integers 1, 22, ..., &, (n even).

Objective: Partition the set X into two subsets Y and Z such that,
(L) Y[=12] =3,
(2) YUZ = X, and
(3) the difference between the sums of the two subsets is maxi-
mized.

There are Z possible bipartitions of the set X. To find the required

2
bipartition, we can follow the steps of the following algorithm.

Algorithm MaxBipartition (X[1:n]);
Begin
BubbleSort(X[1:n]) /* Sort array X[1:n] in ascending order */
Put the £ smaller integers in Y;
Put the Z larger integers in Z;
Return (Y, 7)
End Algorithm,;

LSS

example 4 Minimum Set Bipartitioning.

Problem: Given a set of n positive integers #1, o, ..., &, (n even).

Objective: Partition the set X into two subsets Y and Z such that,
(L) Y[=12] =3,
(2) YUZ = X, and
(3) the difference between the sums of the two subsets is mini-
mized.

The two problems of set bipartitioning appear to be very similar; only
one word has changed (maximized became minimized). However the mini-
mum set bipartition problem is much more difficult to solve. Actually, the
two problems belong to two different classes of problems: maximum set
bipartitioning belongs to the class of easy problems for which there are
several efficient algorithms, whereas minimum set bipartitioning belongs to
the class of hard problems with no known efficient algorithm (typically only
full enumeration will guarantee finding an optimal solution).



Before we clarify the distinction between easy and hard problems, we
first need to define the notions of ¢ime and space complexity of algorithms
and how we measure them.

1.1.1 Complexity of Algorithms

Two important ways to characterize the effectiveness of an algorithm are
its space complexity and time complexity. Time complexity of an algorithm
concerns determining an expression of the number of steps needed as a
function of the problem size. Since the step count measure is somewhat
coarse, one does not aim at obtaining an exact step count. Instead, one
attempts only to get asymptotic bounds on the step count SB8°. Asymptotic
analysis makes use of the Big-Oh notation.

Big-Oh Notation

We say that f(n) = O(g(n)) if there exist positive constants ng and ¢ such
that for all n > ng, we have f(n) < ¢-g(n). Alternately, we say that f(n) is
upper bounded by g(n). The Big-Oh notation is used to describe the space
and time complexity of algorithms.

example 5 Consider the ‘bubble sort’ algorithm to sort n real num-
bers (Page 4). The procedure ‘BubbleSort’ requires O(n) storage (for
the array A) and O(n?) running time (two nested for loops). The above
statement should be taken to mean that the BubbleSort procedure re-
quires no more than linear amount of storage and no more than a
quadratic number of steps to solve the sorting problem. In this sense,
the following statement is also equally true: the procedure BubbleSort
takes O(n?) storage and O(n?®) running time! This is because the Big-
Oh notation only captures the concept of ‘upper bound.” However, in
order to be informative, it is customary to choose g(n) to be as small
a function of n as one can come up with, such that f(n) = O(g(n)).
Hence, if f(n) = a - n + b, we will state that f(n) = O(n) and not
O(n*), k> 1.

Big-Q? and Big © Notation

The Big-Oh notation is one of several convenient notations used by com-
puter scientists in the analysis of algorithms. Two other notational con-
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structs are frequently used: the Big € (Big-Omega) and Big © (Big-Theta)
notation.

The Big-Oh notation is easier to derive. Typically, we prove that an
algorithm is O(f(n)) and try to see whether it is also Q(f(n)).

Definition 1 Big-Omega Notation.

We say that f(n) = Q(g(n)) if there exist positive constants ng and ¢
such that for all n > ng, we have f(n) > ¢ g(n). Alternately, we say
that f(n) is lower bounded by g(n).

Definition 2 Big-Theta Notation.
We say that f(n) = ©(g(n)) if there exist positive constants ¢y, ¢a, and
ng such that for all n > ng, we have ¢ - g(n) < f(n) < ca-g(n).

The © notation 1s used to state an exact bound on the time complexity
of a given algorithm. For example, the time complexity of BubbleSort is

O(n?), Q(n?), as well as O(n?).

How useful are these complexity functions? For example, can we use
them to find out how much time the algorithm would run? Asymptotic
analysis does not tell us the execution time of an algorithm on a particular
problem instance, it barely characterizes the growth rate of the algorithm
runtime as a function of the problem size. For example, if the sorting of
1000 real numbers with the BubbleSort algorithm takes 1 millisecond on
a particular computer, then we expect the sorting of 5000 numbers by the
same algorithm will require 25 milliseconds on the same computer. The
complexity functions are also used to compare algorithms. For example, if
algorithm A; has time complexity ©(nlogn) and algorithm A; has time
complexity ©(n?), then A; is a better algorithm (more efficient or superior

to Az)

In many situations, the runtime of the algorithm is data dependent.
In that case, one talks of the best case, the worst case, and average time
complexity.

1.1.2 Hard Problems versus Easy Problems

An algorithm is said to be a polynomial-time algorithm if its time com-
plexity is O(p(n)), where n is the problem size and p(n) is a polynomial
function of n. The BubbleSort algorithm of Example 2 is a polynomial-
time algorithm. The function p(n) is a polynomial of degree & if p(n) can



be expressed as follows:

k

p(n): apn” + ... + aini + ... + ain + ag

where a; > 0 and a; > 0, 1 <7 <k — 1. In that case, the time complexity
function of the corresponding algorithm is said to be O(n*).

In contrast, algorithms whose time complexity cannot be bounded by
polynomial functions are called exponential time algorithms. To be more
accurate, an ezponential-time algorithm is one whose time complexity is
O(c"), where ¢ is a real constant larger than 1. A problem is said to be
tractable (or easy) if there exists a polynomial-time algorithm to solve the
problem. From Example 2 above, we may conclude that the sorting of real
numbers is tractable, since the BubbleSort algorithm given on Page 4 solves
it in O(n?) time. Similarly, maximum set bipartitioning is tractable since
the algorithm given on Page 5 solves it in O(n?) time.

Unfortunately, there are problems of great practical importance that
are not computationally easy. In other words, polynomial-time algorithms
have not been discovered to solve these problems. The bad news 1is, it is
unlikely that a polynomial-time algorithm will ever be discovered to solve
any of these problems. Such problems are also known as ‘hard problems’
or ‘intractable problems.” For example, the minimum set bipartitioning
introduced on Page 5 is intractable since finding an optimum partition

requires the exploration of (Z) bipartitions, which is a function that grows
2

as an exponential function of nf.

Below, we recall several representative hard problems which find nu-
merous applications in various areas of science and engineering. We shall
be using these and other problems throughout the book. Readers interested
in a thorough discussion of the subject of NP-Completeness are referred to
the classic work of Garey and Johnson /79

example 6 The Traveling Salesman Problem (TSP).

Problem: Given a complete graph G(V, E) with n vertices. Let d, ,
be the length of the edge (u,v) € E and dy, = dyu. A path
starting at some vertex v € V| visiting every other vertex exactly
once, and returning to vertex v 1s called a tour.

Objective: Find a tour of minimum length, where the length of a tour
is equal to the sum of lengths of its defining edges.

t By Stirling’s formula we can show that (Z) 2 2. The proof is left as an exercise
2

(see Exercise 1).
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example 7 Hamiltonian Cycle Problem (HCP).

Problem: Given a graph G(V, F') with n vertices.
A Hamiltonian cycle is a simple cycle which includes all the n
vertices in V. A graph containing at least one Hamaltonian cycle
is called a Hamultonian graph. A complete graph on n vertices
contains n! Hamiltonian cycles.

Objective: Find a Hamiltonian cycle on the n vertices of the graph.

example 8 The Vehicle Routing Problem (VRP).

Problem: Given an unspecified number of identical vehicles, having
a fixed carrying capacity Q, we have to deliver from a single depot
quantities ¢; (i = 1, ..., n) of goods to n cities. A distance matrix
D = [d;;] is given, where d;; is the distance between cities 7 and j
(i, 7= 1, ..., n,and city 0 is the depot).

Objective: Find tours for the vehicles (a vehicle tour starts and ter-
minates at the depot) such that,

1. the total distance traveled by the vehicles is minimized,

2. every city is serviced by a unique vehicle, and

3. the quantity carried by any vehicle during any single delivery

does not exceed Q.

There are several other variations of the VRP problem. For example,
the distances may be Euclidean or non-Euclidean, there may be several
depots, the vehicles may be different, and the goods may be delivered
as well as picked up. Furthermore, there may be timing constraints
for each delivery, i.e., each customer at a particular (city) has a time
window for service. A delivery outside its time window may be ac-

ceptable but incurs a penalty, or it may be unacceptable altogether
Tai03, GPR94, BGABS3, DLSS88

example 9 The Graph Bisection Problem (GBP).

Problem: Given a graph G(V, E) where, V' is the set of vertices, £ the
set of edges, and |V| = 2n. Partition the graph into two subgraphs
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Gl(Vl,El) and GQ(VQ,EQ) SUCh that, (1) |V1| = |V2| =n, (2) V1 N
V2 = @, and (3) V1 UV2 = V.

Objective: Minimize the number of edges with vertices in both

V1 and VQ.

example 10 Quadratic Assignment Problem (QAP).

Problem: Given a set M of | M | modules and a set L of | L | loca-
tions, | L |>| M |. Let ¢; ; be the number of connections between
elements ¢ and j, and dj, ; be the distance between locations & and .

Objective: Assign each module to a distinct location so as to mini-
mize the wire length needed to interconnect the modules.

example 11 Minsmum Set Partitioning Problem.

Problem: Given a set of n positive integers X = {x1, #2, ..., 2, }.

Objective: Partition the set into two subsets Y of size k and Z of
size n —k (1 < k < %) such that the difference between the sums
of the two subsets is minimized.

example 12 Vertex Cover Problem.

Problem: Given a graph G(V, E).
A verter cover of a graph G(V, E) is a subset V. C V such that,
for each edge (7, ) € E, at least one of ¢ or j € V.

Objective: Find a vertex cover of minimum cardinality.

All of the above problems are NP-Hard S77°. The only way to deal

with NP-hard problems is to be satisfied with an approximate solution to
the problem. Such an approximate solution must satisfy the constraints,
but may not necessarily possess the best cost.
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1.2 OPTIMIZATION METHODS

There are two general categories of combinatorial optimization algorithms:
(1) exact algorithmsi and (2) approzimation algorithms. Most well known
among the first category are linear programming, dynamic programming,
branch-and-bound, backtracking, etc., #5834,

Linear programming approach formulates the problem as the mini-
mization of a linear function subject to a set of linear constraints. The
linear constraints define a convex polytope. The vertices of the polytope
correspond to feasible solutions of the original problem. The number of
vertices in the polytope is very large. For example, an n x n assignment
problem would require 2n linear inequalities, together with non-negativity
constraints on n? variables, which describe a convex polytope with n! ver-
tices, corresponding to the extreme points of the feasible region of the
assignment problem aW76,

Dynamic programming is a stage-wise search method suitable for op-
timization problems whose solutions may be viewed as the result of a se-
quence of decisions. During the search for a solution, dynamic programming
avoids full enumeration by pruning early partial decision sequences that
cannot possibly lead to optimal sequences. In many practical situations,
dynamic programming hits the optimal sequence in a polynomial sequence
of decision steps. However, in the worst case, such a strategy may end up
performing full enumeration.

Branch-and-bound search methods explore the state space search tree
in either a depth-first or breadth-first manner. Bounding functions are used
to prune subtrees that do not contain the required optimal state.

Many of the significant optimization problems encountered in practice
are NP-Hard. For relatively large instances of such problems, it is not pos-
sible to resort to optimal enumerative techniques; instead, we must resort
to approzimation algorithms. Approximation algorithms are also known as
heuristic methods. Insight into the problem through some observations,
when properly exploited, usually enables the development of a reasonable
heuristic that will quickly find an “acceptable” solution. A heuristic al-
gorithm will only search inside a subspace of the total search space for
a “good” rather than the best solution which satisfies design constraints.
Therefore, the time requirement of a heuristic is small compared to that
of full enumerative algorithms. A number of heuristics have been devel-
oped for various problems. Examples of approximation algorithms are the
constructiwe greedy method, local search, and the modern general iterative

t Several exact algorithms tend to be enumerative.
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algorithms such as Simulated Annealing, Genetic Algorithms, Tabu Search,
Simulated Fvolution, and Stochastic Evolution.

The greedy method constructs a good feasible solution in stages. It
starts from a seed input. Then other inputs are selected in succeeding steps
and added to the partial solution until a complete solution is obtained. The
selection procedure is based on some optimization measure strongly corre-
lated with the objective function. At each stage, the inputs that optimize
the selection measure are added to the partial solution, hence the name
greedy.

A common feature of all of the aforementioned search algorithms
(whether exact or approximate) is that they constitute general solution
methods for combinatorial optimization.

This book is concerned with iterative approximation algorithms. Solu-
tion techniques such as linear programming, dynamic programming, and

branch-and-bound have been the subject of several other books (see for
example Fous84, HS84, Hu82, Pssz).

One of the oldest iterative approximation algorithms is the local search
heuristic. All other more modern iterative heuristics such as simulated an-
nealing, tabu search, or genetic algorithms are generalizations of local search.
Before we describe local search, we need to explain several important con-
cepts that are customarily encountered in combinatorial optimization.

1.3 STATES, MOVES, AND OPTIMALITY

In most general terms, combinatorial optimization is concerned with finding
the best solution to a given problem. The class of problems we are concerned
with in this book are those with finite discrete state space and which can
be stated in an unambiguous mathematical notation.

Combinatorial optimization algorithms seek to find the extremum of
a given objective function Cost. Without any loss of generality we shall
assume that we are dealing with a minimization problem.

Definition 3 An instance of a combinatorial optimization problem is
a pair (§2, Cost), where Q is the finite set of feasible solutions to the
problem and Cost is a cost function, which 1s a mapping of the form,

Cost: @ — R

The cost function is also referred to as objective or utility function. The
function Clost assigns to every solution S € € a (real) number Cost(S)
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indicating its worth.

Definition 4 A feasible solution S of an instance of a combinatorial
optimization problem (2, C'ost) is also called a state (S € Q). The set
of feasible solutions Q 1s called the state space.

The function Cost allows us to establish an ordering relation. Let S;
and Sy be two solutions to the problem. S is judged better than or of
equal value to Sy if Cost(S1) < Cost(S2).

Solution configurations in the neighborhood of a solution S € Q can
always be generated by performing small perturbations to S. Such local
perturbations are called moves. For example, for the quadratic assignment
problem (Example 10 on Page 10), a move may consist of the swapping of
the locations of two modules.

Definition 5 A neighborhood R(S) of solution S is the set of solu-
tions obtained by performing a simple move m € M, where M is the
set of simple moves that are allowed on solution S.

A property of most combinatorial optimization problems is that they
possess noisy objective functions, i.e., the function Cost has several minima
over the the state space €.

Definition 6 S € Q is a local minimum with respect to R(S) if S has
a lower cost than any of its neighboring solutions, 1.e.,

Cost(S) < Cost(Sm), ¥V Sm € R(S), ¥Yme M

Definition 7 S* € Q is a global minimum iff,
Cost(S*) < Cost(S), YSeQ

The objective of combinatorial search algorithms is to identify such a
global optimum state S*.

1.4 LOCAL SEARCH

The local search heuristic is one of the oldest and easiest optimization
methods. Although the algorithm is very simple, it has been very successful
with a variety of hard combinatorial optimization problems. The algorithm
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starts at some initial feasible solution Sy € €2 and uses a subroutine I'mprove
to search for a better solution in the neighborhood of Sy. If a better solution
S € R(Sp) is found, then the search continues in the neighborhood R(S) of
the new solution. The algorithm stops when it hits a local optimum. The
subroutine Improve behaves as follows,

any T € R(S) s.t. Cost(T) < Cost(S)

nil otherwise

Improve(S) = {
An outline of the general local search algorithm is given below.

Algorithm LocalSearch(Sp);

Begin
Sy = So;
Repeat
S1 = Sa;

Sa = Improve(Sy)
Until S; = nil;
Return (S;)

End /* of LocalSearch */

To use the local search heuristic one has to address several issues, vis:
(1) how to construct the initial solution, (ii) how to choose a good neigh-
borhood for the problem at hand, and (iii) the manner in which the neigh-
borhood is searched, i.e., the Improve subroutine.

(a) Initial solution: Should one start from a good solution obtained by
a constructive algorithm or from a randomly generated solution? Another
possibility is to make several runs of local search starting from different
initial solutions and to select the best among the obtained final solutions.
These alternatives have varying computational requirements and would
usually result in final solutions of varying quality.

(b) Choice of neighborhood: Here one has to select the appropriate
perturbation function to explore a good neighborhood around current solu-
tion. Very elaborate perturbations (moves) are more complex to implement,
require more time to execute, and usually result in large neighborhoods.
In contrast, simple perturbation functions are easier to implement, require
less time to execute, and would result in smaller neighborhoods. Hence,
one can see a clear tradeoff here: a larger neighborhood would require more
time to search but holds the promise of reaching a good local minimum
while a smaller neighborhood can be quickly explored but would lead to
a premature convergence to a poor local minima. This issue can best be
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resolved through experimentation.

We should note here that if one decides to work with a small neigh-
borhood then one has to start from a good initial solution; otherwise the
search will end in a poor quality local minima. In contrast, if one opts for
a large neighborhood, then the initial solution would not have as much
effect on the quality of final solution. In that case, starting from a quickly
generated random solution or from a good initial solution would result in
final solutions of similar quality.

(¢) The subroutine “Improve”: The Improve subroutine can follow one
of the following two strategies: (i) first-improvement strategy, where the
first favorable cost change is accepted, or (ii) the steepest descent strategy,
where the entire neighborhood is searched, and then a solution with lowest
cost is selected. The first strategy may converge sooner to a poorer local
minima. However, the decision as to which strategy to use may best be
made empirically.

1.4.1 Deterministic and Stochastic Algorithms

Combinatorial optimization algorithms can be broadly classified into de-
terministic and stochastic algorithms. A deterministic algorithm progresses
toward the solution by making deterministic decisions. For example, local
search is a deterministic algorithm. On the other hand stochastic algorithms
make random decisions in their search for a solution. Therefore determin-
istic algorithms produce the same solution for a given problem instance
while this i1s not the case for stochastic algorithms.

Heuristic algorithms can also be classified as constructive and iterative
algorithms. A constructive heuristic starts from a seed component (or sev-
eral seeds). Then, other components are selected and added to the partial
solution until a complete solution is obtained. Once a component is se-
lected, it is never moved during future steps of the procedure. Constructive
algorithms are also known as successive augmentation algorithms.

An iterative heuristic such as local search receives two things as inputs,
one, the description of the problem instance, and two, an initial solution to
the problem. The iterative heuristic attempts to modify the given solution
so as to improve the cost function; if improvement cannot be attained by
the algorithm, it returns a “NO”, otherwise it returns an improved solu-
tion. It is customary to apply the iterative procedure repeatedly until no
cost improvement is possible. Frequently, one applies an iterative improve-
ment algorithm to refine a solution generated by a reasonable constructive
heuristic. To come up with the best constructive algorithm requires far
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more insight into the problem and much more efforts than to set up an it-
erative improvement scheme of the aforementioned type. Nevertheless, one
may argue that, it is always certain that if any iterative technique fares
well on a problem, then a good constructive/deterministic heuristic has
been overlooked. However, the elaboration of such good heuristics i1s not
always possible for many practical problems.

Alternately, one could generate an initial solution randomly and pass it
as input to the iterative heuristic. Random solutions are of course generated
quickly; but the iterative algorithm may take a large number of iterations to
converge to either a local or global optimum solution. On the other hand, a
constructive heuristic takes up time; nevertheless the iterative improvement
phase converges rapidly if started off with a constructive solution.

Problem instance

Constructive heuristic

Iterative heuristic

Stopping
criteria
met ?

Stop; Output
best solution
encountered so far,

Figure 1.2 General structure combining constructive and iterative heuristics.

Figure 1.2 gives the flow chart of a constructive heuristic followed by
an iterative heuristic. The ‘stopping criteria met’ varies depending on the
type of heuristic applied. In case of deterministic heuristics, the stopping
criterion could be the first failure in improving the present solution. While
in the case of non-deterministic heuristics the stopping criterion could be
the run time available, or, k consecutive failures in improving the present
solution.
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Typically, constructive algorithms are deterministic while iterative al-
gorithms may be deterministic or stochastic.

Justification of Iterative Improvement Approach

Constructive procedures have the advantage of being faster than iterative
procedures such as those described in this book. However, at each decision
step, due to its greedy nature, a constructive procedure has only a local
view. Therefore, the procedure might reach the point where design con-
straints are not met. This will require several iterations to attempt various
modifications to the solution to bring it to a feasible state. For practical
problems, it 1s unthinkable to manually perform these modifications.

Automatic iterative improvement procedures which combine quality of
constructive algorithms and iterative improvement procedures constitute
very effective approaches to produce feasible solutions with the desired
performance. However, in order to speed up the search, care must be taken
so that the iterative procedure is tuned to quickly converge to a solution
satisfying all design constraints.

1.5 OPTIMAL VERSUS FINAL SOLUTION

When is a problem solved? A key requirement of a combinatorial opti-
mization algorithm is that it should produce a solution in a reasonably
small number of computational steps. The approximation algorithms de-
scribed 1n this book are recommended for hard combinatorial optimization
problems. It will be unwise to use any of these iterative heuristics to solve
problems with known efficient algorithms. For example, one should not use
local search or simulated annealing (Chapter 2) to find the shortest path in
a graph; we must instead use one of the known polynomial time algorithms
such as Dijkstra’s algorithm Pi59

Exact algorithms for hard problems require in the worst case an ex-
ponential (and sometimes a factorial) number of steps to find the optimal
solution. For example, suppose that for a given hard problem, a computer
is programmed to perform a brute force search for an optimal solution and
that the computer is capable of examining one billion solutions per second.
Assume that the search space consists of 27 solutions. Then for n = 20
the optimal solution will be found in about 1 millisecond. For n = 100,
the computer will need over 40,000 centuries! The situation would be much
worse if we had a problem whose search space consisted of n! solutions. Ob-
viously, a combinatorial optimization problem will not be considered solved
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if one does not live to see the answer! Hence, a fundamental requirement of
any reasonable optimization algorithm is that it should produce an answer
to the problem (not necessarily the best) in a reasonably small amount of
time. The words reasonable and small are fuzzy and usually are interpreted
differently by different people (depending on the problem, what the answer
is needed for, and how soon).

The approximation algorithms described in this book are all iterative,
non-deterministic, and keep on searching the solution space until some
stopping criteria are met. Examples of stopping criteria are: (1) the last &
iterations did not identify a better solution; (2) a runtime limit has been ex-
ceeded; (3) some parameter of the iterative algorithm has reached a thresh-
old limit; etc. Once the algorithm stops, it outputs the best solution found.
For most practical applications, the runtime of such algorithms may be a
few hours. Furthermore, none of these iterative algorithms guarantee find-
ing the optimal solution (if such a solution exists) in a finite amount of
time.

1.6 SINGLE VERSUS MULTI-CRITERIA
CONSTRAINED OPTIMIZATION

Constrained optimization consists of finding a solution which satisfies a
specified set of constraints and optimizes an analytically defined objective
function. A solution which satisfies the problem constraints is a feastble so-
lution. If it also optimizes the stated objective function then it is an optimal
solution. The objective function is to be computed for each combination
of the input variables. Values of the input variables change as the search
moves from one solution to another. The solution with an optimal value of
the objective function is an optimal solution.

A single objective constrained optimization problem consists of the min-
imization/maximization of a utility function Cost over the set of feasible
solutions 2. For example, for a minimization problem we have something
of the following form,

IglEISI]lCOSt(S) (1.1)

If Cost is linear and €2 is defined by linear constraints, the problem is
a single objective linear programming problem. If in addition the problem
variables are restricted to be integers, then the problem becomes an inte-
ger programming problem. In case either the utility function or any of the
constraints are nonlinear the problem becomes a single objective nonlinear
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optimization problem.

In most practical cases, optimization problems are multiple objective
problems. In such situations, one is typically confronted with several con-

flicting utility functions C'osty, ..., Cost;, ..., Costy, i.e.,
min Cost; (S) 1<i<n (1.2)
SeQ - -

Unlike single objective optimization problems, no concept of optimal
solution 1s universally accepted for multi-objective optimization. In practi-
cal cases, the rating of individual objectives reflects the preference of the
decision-maker. At best, a compromise between competing objectives can
be expected.

A commonly used approach to transform a multi-objective optimiza-
tion problem into a single objective optimization problem is to define an-
other utility function as a weighted sum of the individual criteria, i.e.,

Cost(S) = Z w; Cost;
i=1

The w;’s are positive weights that reflect the relative importance of crite-
ria or goals in the eyes of the decision maker. More important criteria are
assigned higher weights. Usually, the weight coefficients sum to one. Fur-
thermore, prior to computing the weighted utility function, the individual
criteria are normalized to fall in the same range.

Another approach to tackle multi-criteria optimization problems is to
rely on the ranking of the individual objectives. In this approach one does
not attempt to seek a solution that is minimum with respect to all objec-
tives, since anyhow, in most cases such a solution does not exist; rather the
objective function is seen as a vector function. Without loss of generality
let us assume that Cost; is more important than Cost;1q, 1 <t <n —1.
Then a preference relation < is defined over the solution space €2 as follows,

VS e, v eQ: §<5 if and only if
34, 1 <i<n, such that Cost;(S) < Cost;(S'), and
Vj<i, Cost;(S) = Cost;(5)

The above preference relation is a partially ordering relation and defines a
partial order on the elements of the state space of feasible solutions 2.

In many cases, it is not clear how one can balance different objec-
tives by a weight function especially when the various objectives are de-
fined over different domains. Also, it is not always possible to have a crisp
ranking of the individual objectives. Another difficulty is that the out-
come of such ranking is not always predictable especially when some of
the criteria are correlated. Fuzzy logic provides a convenient framework for
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solving this problem %2465, 2ad75, Zad73, Zim91 1t 4]lows one to map values
of different criteria into linguistic values, which characterize the level of
satisfaction of the designer with the numerical values of objectives. Each
linguistic value i1s then defined by a membership functions which maps
numerical values of the corresponding objective criterion into the inter-
val [0,1]. The desires of the decision maker are conveniently expressed in
terms of fuzzy logic rules and fuzzy preference rules. The execution/firing
of such rules produces numerical values that are used to decide a solu-
tion goodness. In practice, this approach has been proven very powerful
for finding compromise solutions in different areas of science and engi-
neering KLS94, LS92, Ped89, RG90, TS85, Wan94, Zim91, Zim87. We shall address
in more detail the subject of using fuzzy logic for multi-criteria optimization
in Chapter 7.

The algorithms described in this book are general optimization tech-
niques suitable for single as well as multiple objective problems. However,
for the sake of simplicity, we shall confine ourselves to single-objective op-
timization problems. Interested readers in the general subject of multi-

criteria optimization may consult the book by Steuer 5t¢86,

1.7 CONVERGENCE ANALYSIS OF ITERATIVE
ALGORITHMS

Unlike constructive algorithms, which produce a solution only at the end
of the design process, iterative algorithms operate with design solutions
defined at each iteration. A value of the objective function is used to com-
pare results of consecutive iterations and to select a solution based on the
maximal (minimal) value of the objective function.

1.7.1 Configuration Graph

The state space being searched can be represented as a directed graph
called the configuration graph. Let Q be the set of feasible configurations
(states) for some instance of a discrete minimization problem. € can be
considered as the set of vertices of a directed configuration graph Cg 1%,

Definition: A directed graph Cg=(Q2, F) is called a configuration graph
where S € Q, and R(S) = {T € Q|(S,T) € E}; 2 is the set of legal con-
figurations and E={(S,T)|S € ,T € Q and T € R(S)}. An edge between

two states indicates that they are neighbors. A state S is called a “local
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minimum” if Cost(S) < Cost(T) for all T € R(S). In addition, if S is an
optimal solution then it is called a “global minimum”.

3/4 1/8

Figure 1.3 An example of a configuration graph.

example 13 An example of a configuration graph with eight states
is given in Figure 1.3. For the moment we will concentrate only on the
structure and the values in the circles and ignore the labels on the edges.
The numbers in the circles indicate the cost of the configurations. For
example, the circle with label 3 represents a state with cost equal to 3.
State 3 is a local minimum because it has no neighbors with a lower
cost. State 1 is a global minimum because it is a local minimum with
the lowest cost, and is the optimal solution. It is not possible to go from
state 3 to state 1 without going through states with cost greater than
3, that is, through states with costs 4 and 7, or through 5 (climbing
the hill). On the other hand, starting in state 8 we can apply a greedy
heuristic that will take us to state 1 (that is, through states 5 and 2,
or through state 6).

A “search” from configuration S € Q is a directed path in Cg that
starts at S and ends in the solution the search has found. The search is
said to be “greedy” if the costs of successive vertices along the search path
are decreasing.
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The goal of the search is to find a solution that is as close as possible
to the optimum. As illustrated in Figure 1.3, greedy heuristics such as
local search usually lead to local optima and not global optima. The reason
i1s that they provide no mechanism for the search to escape from a local
optimum. Two possibilities exist that can avoid getting trapped in a local
optimum.

1. Accommodate non-greedy search moves, that is, moves in which the
cost increases.
2. Increase the number of edges in the configuration graph.

As for the first possibility, care must be taken to see that such moves are
not too frequent. There are probabilistic and deterministic ways of doing
S0.

In the second possibility, for a configuration graph with many edges
and a large neighborhood there are less chances to hit a local optimum.
In addition, for a given initial configuration, shorter search paths to the
“global optimum” may exist. An extreme case 18 when Cg is a fully con-
nected directed graph. In that case, every local optimum is also a global
optimum and a single step is enough to go from any state to the global op-
timum. However, the denser the configuration graph is, the more inefficient
the search step will be. This is because in each search step we optimize over
the neighborhood of the current configuration, and the larger the neigh-
borhood is, the more time we need to find a good configuration to move to,
from where the search can proceed. Therefore, it is important to keep the
neighborhood small and not add too many edges to C'q. Researchers have
been looking at such issues with mathematical rigor. The mathematical
framework used to study the convergence properties of iterative approxi-
mation algorithms is the theory of Markov chains.

1.8 MARKOV CHAINS

A randomized local search technique operates on a state space. As men-
tioned above, the search proceeds step by step, by moving from a cer-
tain configuration (state) S; to its neighbor S;, with a certain probability
Prob(S;, S;) denoted by p;;. At the end of each step the new state reached
represents a new configuration. The states in X(S;) = {5; € Q|(5:,5;) € E}
are sald to be connected to S; by a single move. We can assume that choices
of all neighbors out of S; are independent. The corresponding mathematical
structure is a labeled configuration graph with edge labels corresponding
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to transition probabilities. Such a configuration graph is a “Markov chain”
(see Figure 1.3).

1.8.1 Time-Homogeneous Markov Chains

Let Cg= (2, ) be a directed graph with Q@ = {S1,52,...,5;,...,5}
the set of all possible states, and, Cost : € — X, be a function which
assigns a real number Cost; to each state S; € €2, and p: £ — [0, 1] be an
edge-weighting function such that

Y. pj=1 VSieQ (1.3)
S;EN(S;)

(Ca,p) is a finite time-homogeneous Markov chain. In our case Cost; de-
notes the cost of configuration S;, and p;; represents the transition probabi-
lity from state S; to S;. The restriction on p, the edge-weighting function,
is that the sum of transition probabilities of edges leaving a vertex add
up to unity (p is a probability distribution). Also, in a time-homogeneous
Markov chain the transition probabilities are constant and independent of
past transitions. The configuration graph C'g given in Figure 1.3 represents
a time-homogeneous Markov chain.

Two numbers are associated with each pair of states. One is called the
selection probability or the perturbation probability, denoted by p;;, and the
other is the acceptance probability A;;.

1.8.2 Perturbation Probability

The number associated with each pair of states (edge label denoted by
pi;) 1s called the perturbation probability. This number actually gives the
probability of generating a configuration .S; from .5;.

Let R(S;) be the configuration subspace for state S; which is defined
as the space of all configurations that can be reached from S; by a single
perturbation. For pairs of states connected by at least a single move the
perturbation probability p;; is never zero. The probability p;; depends on
the structure of the configuration graph, and in the simplest case it is
defined as follows:

m if Sj S N(SZ)
Pij = (1.4)
0 it S; € R(S;)

This is a uniform probability distribution for all configurations in the
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subspace. The probabilities p;; can also be represented using a matrix
P known as the generation matriz or perturbation matriz. Matrix P is a
stochastic matrixf.

1.8.3 Ergodic Markov Chains

A Markov chain is called ergodic if and only if it is,

1. irreducible, that is, all states are reachable from all other states;

2. aperiodic, that is, for each state, the probability of returning to that
state is positive for all steps;

3. recurrent, that is, for each state of the chain, the probability to return
to that state at some time in the future is equal to one; and

4. non null, that is, the expected number of steps to return to a state 1s
finite.

Let 7(t) = (m1(t), m2(t), ..., m(t),...,mn(t)) be the probability state
vector, where ;(t) is the probability of being in state S; at time ¢ (iteration
t).

The probability transition matrix P is used to describe how the process

evolves from state to state. If at step ¢, the probability state vector is 7 (¢),
then the probability state vector one step later is given by

Tt +1) = x(t) - P (1.5)

Hence, the probability m;(t + 1) of being in state S; at step ¢ + 1, is given
by
mt+1) = m(t) - pyi (1.6)

j=1

For an ergodic Markov chain, the state probability vector changes at
each step and is guaranteed to converge to a limit probability vector 7 =
(my,- -+, mi, ), le, limioo m(t) = m. The probability state vector ,
which no longer depends on the time step, is the steady state distribution
of the search process.

t A square matrix whose entries are non-negative, and whose row sums are equal
to unity, is called a stochastic matrix. Sometimes, an additional condition is, that the
column sums are also not zero.
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A fundamental theorem on Markov chains states that an ergodic
Markov chain has a unique stationary distribution 7 which is solution to
the following equation®€75,

T=nx-P (1.7)

The stationary distribution can also be obtained by finding the sta-
tionary matrix Pg given by

Ps = lim P* (1.8)

k—oco

where P* is the k-fold matrix product of P with itself. If the Markov chain
is ergodic, then Pg will have the characteristic that all its rows are identical.
We say that the Markov chain has converged to its stationary distribution.

If we start the Markov chain in any state S;, it will converge to the
distribution given by limg_ oo I; - Pk, where T; is the " unit vector (1 in
the i** position and 0 elsewhere). Since I; - Pg is equal to 1; - Pg for all ¢, 7,
at steady state, the probability of being in any state is independent of the
initial state. We will now 1illustrate the above concepts with examples.

example 14 Figure 1.3 is an example of an ergodic Markov chain.
The labels on the edges connecting two states .S; and S; indicate the
transition probability from state S; to state S;. The corresponding
transition matrix is given below.

O Owlat O O Ooolurk|w
Owl—= Ok O O ol—|—
Wik O© Ol Onjunl— O
Owli= O Ol Ol O

O O OhIRbEo- O O
O WXk Ok O O
W= O wl— Ol O Ol
W ORI O O© O O

Let us raise the matrix P to a large power, say 100. Using Mathemat-
ica, Wel1 this can be achieved by the command

Q=MatrixPower[P,100];
Print [MatrixForm[N[Q]]]
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which produces the following output.

0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488
0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488

PlOO —

From the above example we note that starting from any initial state,
say state 3, denoted by the unit vector I3 = [0,0,1,0,0,0,0,0], the probabi-
lity of being in any state after 100 state transitions (or moves) is given by
Is - P10 that is, the 3"¢ row of the matrix P!°°. The probability of being
in state 1 after 100 moves is 0.5334, of being in state 2 is 0.1106, and so
on. Note that in this case the value 100 can be defined as large. Sometimes
the matrix will have to be raised to a larger power to get the stationary
distribution.

Observe that since all rows are identical, irrespective of which row we
start our search, we will always get the same probability of being in any
state. We can also verify Equation 1.6. For example, when i = 4,

8

7T4:Z7Tj'Pj4:7T3'p34+7T4'p44+7T6'p64+7T7'P74
j=1

o, 00385 00562 01028 00313
tT g 2 8 3

which is the same as column 4 of our matrix P'°° which gives the value of
74, the steady state probability of being in state S.

= (0.0562

example 15 For the same ergodic Markov chain of the previous ex-
ample, the stationary distribution can be accurately obtained by solv-
ing the set of linear equations @ = 7 - P, and the equation 2?21 m = 1.
Again, using Mathematica, this can be obtained as follows.

solution 1 Solve

[{

P[[1,1]1]1p1+P[[2,1]1]1p2+P[[3,1]11p3+P[[4,1]1]1p4+P[[5,1]1]1p5
+P[[6,1]11p6+P[[7,1]1]1p7+P[[8,1]1]1p8==p1,

P[[1,2]1]1p1+P[[2,2]]1p2+P[[3,2]11p3+P[[4,2]1]1p4+P[[5,2]1]1p5
+P[[6,2]1]1p6+P[[7,2]1p7+P[[8,2]]1p8==p2,
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P[[1,3]11p1+P[[2,3]1p2+P[[3,3]1p3+P[[4,3]11p4+PL[[5,3]11p5
+P[[6,3]1]1p6+P[[7,3]]1p7+P[[8,3]]1p8==p3,
P[[1,4]1]1p1+P[[2,4]1]1p2+P[[3,4]11p3+P[[4,4]1]1p4+P[[5,4]1]1p5
+P[[6,4]11p6+P[[7,411p7+P[[8,4]1]1p8==p4,
P[[1,5]1]1p1+P[[2,5]]1p2+P[[3,5]11p3+P[[4,51]1p4+P[[5,5]]1p5
+P[[6,5]]1p6+P[[7,5]1p7+P[[8,5]]1p8==p5,
P[[1,6]1]1p1+P[[2,6]]1p2+P[[3,6]11p3+P[[4,6]1]1p4+P[[5,6]1]1p5
+P[[6,68]]1p6+P[[7,6]1p7+P[[8,6]1]1p8==p86,
PL[1,7]1]1p1+P[[2,7]1]1p2+P[[3,7]1]1p3+P[[4,71]1p4+P[[5,7]1]1p5
+P[[6,711p6+P[[7,711p7+P[[8,7]1]1p8==p7,
P[[1,8]]1p1+P[[2,8]1p2+P[[3,8]11p3+P[[4,8]1]1p4+P[[5,8]]1p5
+P[[6,8]]1p6+P[[7,8]1p7+P[[8,8]]1p8==p8,
p1+p2+p3+p4+pb+p6+p7+p8==1},{p1,p2,p3,p4,p5,p6,p7,p8}]1;
Simplify[%]

Here PL[i,j1] represents p;; the elements of matrix P, and p: repre-
sents m; (i=1,2,...,8). The distribution thus obtained is:

(3020 626 218 318 445 582 177 276 )

= 5662 5662 5662 5662 5662 5662 5662 5662

That is,

7= (0.5334 0.1106 0.0385 0.0562 0.0786 0.1028 0.0313 0.0488)

Note that this is identical to one of the rows of our matrix P'°°.

1.8.4 Acceptance Probability

In many cases, the transition probabilities of a random process depend on a
control parameter T" which is a function of time. The probabilities now take
the form f(Cost;, Cost;, T), where T is a parameter that depends on the
step number of the Markov chain, and Cost; and Cost; are the costs of the
current and next states, respectively. The corresponding Markov chains are
called time-inhomogeneous Markov chains. Let ACost;; = Cost; — Clost;.
Then the acceptance probability A;; may be defined as:

f(Cost;, Cost;, T) if ACost;; >0

Aij(T) = (1.9)
1 if ACOStij S 0
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Thus the probability that the generated new state will be the next
state depends on its cost, the cost of the previous state, and the value of the
control parameter T'. We always accept cost-improving moves. A move that
deteriorates the cost will be accepted with a probability f(Cost;, Cost;, T).
The sequence of states thus generated corresponds to a teme-inhomogeneous
Markov chain. We have a Markov chain because of the important property
that the next state depends only on where we are now and does not depend
on the states that have preceded the current state. Therefore, for this time-
inhomogeneous Markov chain, given S; as the current state, the probability
0;;(T) to transit to state S; is defined as follows.

o Aij (T)pij if i o
i (1) = 1.10
L =2 nati Ain (T)pin ifi=y

where p;; is the perturbation probability, that is, the probability of gen-
erating a configuration S; from configuration S; (usually independent of
T); Ai;(T) is the acceptance probability, (see Equation 1.9), that is, the
probability of accepting configuration S; if the system is in configuration
Si; and T is the control parameter.

The transition probabilities for a certain value of 7' can be conve-
niently represented by a matrix ©(7'), called the transition matrix. The
probabilities A;;(7) can also be represented using a matrix A(T) (accep-
tance matriz). Like the perturbation matrix P, the transition matrix © is
also stochastic. The acceptance matrix A(T') however, is not stochastic.

1.8.5 Transition Probability

Let ©;;(T) be the transition probability from state S; to state S; for a
particular value of the control parameter T', that is, ©;;(T") = pi; - Ai; (T).
At a particular value of the parameter T, the transition matrix ©(7) is
constant and thus corresponds to a homogeneous Markov chain.

Under the assumption that all states of current neighborhood R(S;)
are equally likely, p;; is equal to the following,

P = RS

Therefore, in summary, we have the following expressions for the probabil-



INTRODUCTION 29

ities eij (T),

HEDI if ACost;; <0 S; € R(S;)

o0, (1) — w5y f(Costi, Cost;, T) if ACost;; >0 S; € N(Si)(l.n)
L= noti PinAik (T) if i =j S; € R(SH)
0 Sj & R(Si)

As we shall see; in the following chapter in the case of the simulated
annealing algorithm, a steady state distribution m(7) exists for each value
of the parameter T', provided T' is maintained constant for a large enough
number of iterations. The steady state probability vector m(T) satisfies the
following equation

Furthermore, following an adequate updating schedule of the parameter
T, the process will converge to the steady state whose stationary distribu-
tion 7 (also called optimizing distribution) satisfies the following equality,

T=7w-0

1.9 PARALLEL PROCESSING

In this section, we introduce the necessary terminology that will be used
in the discussion of the parallel implementations of the various iterative
algorithms that are described in this book.

Need for Parallel Processing

Exact as well as approximate iterative algorithms for hard problems have
large runtime requirements. There is ever increasing interest in the use of
parallel processing to obtain greater execution speed. Parallel computation
offers a great opportunity for sizable improvement in the solution of large
and hard problems that would otherwise have been impractical to tackle on
a sequential computer. A general problem with parallel computers is that
they are harder to program. Every computer scientist knows how to design
and implement algorithms that run on sequential computers. In contrast,
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only relatively few have the skill of designing and implementing parallel
algorithmic solutions.

A parallel computer is one that consists of a collection of processors,
which can be programmed to cooperate together to solve a particular prob-
lem. In order to achieve any improvement in performance, the processors
must be programmed so that they work concurrently on the problem. The
goal, of course, 1s usually to reach, in much less time, a solution of similar
quality to that obtained from running a sequential algorithm. Actually, the
ratio of the sequential runtime to parallel runtime is an important perfor-
mance measure called the speed-up. Sometimes, parallel search 1s used to
find a better solution in the same time required by the sequential algorithm
rather than to reach a similar quality solution in shorter time.

Parallel Algorithm Evaluation Measures

Let A; and A, respectively be a sequential algorithm and a parallel al-
gorithm for p processors to solve the same problem. The goodness of the
parallel algorithm is usually characterized by several measures, such as:

1. The time t, taken to run A,.

2. The space s, required to run A,.

3. Speed-up: how much did we gain in speed by using p processors. If ¢ is
the runtime of the sequential algorithm, then the speed-up S, is defined
as follows:

S, = =+ (1.12)

Normally, 0 < 8§, < p. However, this is not always the case. For in-
stance, assume that we would like to look for a particular node in a
tree using the depth-first search algorithm. Assume that the tree has
N nodes. Then the maximum time that will be taken by the sequential
depth-first algorithm will be £, = N 4 1. This happens in case the tree
is imbalanced with all the N — 1 nodes in the left subtree and being at
the second level (root at level 0), and the node we are looking for is the
only node in the right subtree (see Figure 1.4). Suppose we have two
processors and that each processor takes a subtree and expands it. In
that case t5 = 2. Therefore the speed-up is S, = %, which is greater
than 2, the number of processors. One might wonder why this is hap-
pening? The answer 1s simply because in the first place one should not
have used depth-first search to locate a particular node in a tree, i.e.,
one must use the best possible sequential algorithm for the problem
at hand. Neither should the parallel algorithm mimic the sequential
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Level 0

e
Level 1 X
Element we are looking for

Level 2 oo

<— N-1 Leaves —>»

Figure 1.4 Imbalanced tree. Sequential depth first for element e would require N+1
operations. If the search is split among two processors, each looking in a subtree, then
element e will be returned in two steps.

algorithm nor should the sequential algorithm be a simple serialization
of the parallel algorithm.

The above definition of speed-up applies to deterministic algorithms
only. For a non-deterministic iterative algorithm such as simulated an-
nealing, speed-up is defined in a different manner. It is equal to the
number of parallel tasks into which each move is divided FE86. Some-
times, the number of processors that are concurrently working is taken
as a measure of the speed-up achieved.

Another suggested definition PRENST hears closer resemblance to
the definition of speed-up for deterministic algorithms. Speed-up is de-
fined as the ratio of the execution time of the serial algorithm to that
of the parallel implementation of the algorithm, averaged over several
runs and various final values of the cost function.

4. Effictency FE,p: this performance measure indicates how well we are
using the p processors.

S
E, = ?P (1.13)

Under normal conditions, 0 < £, < 1.

5. Isoefficiency iep: this measure is an estimate of the efficiency of the
algorithm as we change the number of processors, while maintaining
the problem instance fixed. It is desirable to have parallel algorithms
with ie, close to p (linear in p). Hence, we guarantee no processor
starvation as we increase the number of processors.

Amdahl’s Law

Amdahl’s law was introduced to convince the computing community that
parallelism is not good after all.

Let f be the fraction parallelized in the algorithm. Then, with p pro-
cessors, the best possible parallel algorithm would require the following
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runtime given by

t, = (1-Ht1 + %tl (1.14)
Therefore, the maximum speed-up in this case would be,
1
S, = —M— (1.15)
Toa-n+f

P

For example, for f = 0.5, according to Amdahl’s law, the speed-up cannot
exceed 2 even if an infinite number of processors are made available! This
is indeed a very disturbing conclusion to both the manufacturers of parallel
machines, as well as researchers in parallel algorithms. Fortunately, a closer
examination of Amdahl’s law uncovers a major flaw. The main problem
with Amdahl’s law is that it does not capture how much time the algorithm
spends in the parallelized fraction of the code. If for example 90% of the
time is spent in the parallelized piece of code, then the speed-up can be as
high as 0.9p. Hence, parallelism can be very good indeed!

Parallel Computer Models and Properties

There are several ways one can classify computers. A possible classification
1s that of multiprocessor versus multicomputer. A multiprocessor machine
is a computer with several processors that are tightly coupled, i.e., they
either have a shared memory or a shared memory address space. When
programming a multiprocessor machine one does not have to explicitly
indicate from which processor (s)he wants the data. An example of such a
machine is the Butterfly -2,

A multicomputer also consists of several processors; however, the pro-
cessors have no shared memory or shared address space. When pro-
gramming a multicomputer, one has to explicitly request/send data
from/to a given processor. An example of a multicomputer machine is
the NCUBE 192 In practice, we may find combinations that fit in both
categories. Both classes of parallel computer models are illustrated in Fig-
ure 1.5.

A classification of parallel machine models due to Flynn F¥%¢ distin-
guishes between the parallel machine models on the basis of the number
of instructions and data streams concurrently accepted by the machine.
Flynn identified four classes of parallel machine models:

1. SISD - Single Instruction Single Data Stream.
Here one instruction at a time 1s executed on one data set at a time.
The classical sequential Von Neumann machines fall into this class.
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Interconnection Network

@

Interconnection Network

(b)

Figure 1.5 Models of parallel computers: (a) tightly coupled multiprocessor; (b) loosely
coupled multicomputer.
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+
+ b a+b
at a, b
a, b o d c+d
(a) SISD (b) SIMD
o — +
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+
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1 C, —
(c) MISD (d) MIMD

Figure 1.6 Classification of parallel machine models: (a) SISD - Single Instruction
Single Data Stream; (b) SIMD - Single Instruction Multiple Data Stream; (c) MISD -
Multiple Instructions Single Data Stream; (d) MIMD - Multiple Instructions Multiple
Data Stream.

2. SIMD - Single Instruction Multiple Data Stream.
For this class, one instruction at a time is executed concurrently on
several data sets. Examples of machines that fall into this class are
vector computers and array processors.

3. MISD - Multiple Instructions Single Data Stream.
These machines are capable of executing concurrently several instruc-
tions at a time on one data set.

4. MIMD - Multiple Instructions Multiple Data Stream.

Multiple instructions at a time are concurrently executed on multiple
data sets. MIMD machines can be either synchronous or asynchronous.
The processors of a synchronous MIMD machine are synchronized on a
global clock, thus forcing the execution of each successive group of in-
structions simultaneously. For asynchronous MIMD machines the pro-
cessors execute the instructions independently of each other. Typical
examples of MIMD machines are hypercube computers (such as the

NCUBE) Lei92,

The four machine models are illustrated in Figure 1.6. The reader should
note however that machines that perform some lower level of parallelism,
such as pipelining, do not fit into Flynn’s classification.
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1.10 SUMMARY AND ORGANIZATION OF THE
BOOK

This chapter has introduced basic concepts of combinatorial optimization
and algorithm complexity. There are two general categories of algorithms
for combinatorial optimization: (1) exact or full-enumeration algorithms,
and (2) approximation algorithms also known as heuristics. In this book,
we are concerned with hard problems. For such class of problems, exact
algorithms are impractical as they have prohibitive runtime requirements.
Approximation algorithms constitute the only practical alternative solution
method.

Approximation algorithms can further be classified into problem-
specific heuristics and general heuristics. As their names indicate, problem-
specific algorithms are tailored to one particular problem. A heuristic de-
signed for one particular problem would not work for a different problem.
General heuristics on the other hand can be easily tailored to solve (rea-
sonably well) any combinatorial optimization problem. There has been in-
creasing interest in such heuristic search algorithms.

In the following chapters the reader will find detailed descriptions
of five well thought general iterative approximation algorithms, namely
Simulated Annealing, Genetic Algorithms, Tabu Search, Simulated Evolu-
tion, and Stochastic Evolution. Simulated Annealing mimics the thermody-
namic process of annealing. Genetic Algorithms, Simulated Evolution and
Stochastic Evolution simulate biological processes according to the Dar-
winian theory of evolution. Tabu Search attempts to imitate intelligent
search processes through the use of a memory component in order to learn
from its (long or short term) past, thus making better search decisions.

This is the only book that describes these five heuristics in a single
volume. Two of these heuristics have been the subject of several books
AKSY, Azeo2, Davol, Gol89, OvG8Y The Tabu Search algorithm has been widely
used in the literature 9597 Ree95  However, the remaining two heuristics,
simulated evolution and stochastic evolution, have not witnessed yet similar
success. We believe that Simulated Evolution and Stochastic Evolution are
very effective general combinatorial optimization techniques that deserve
much more attention than they have received. The objective of this book
is to provide a uniform treatment of all these techniques.

The book has seven chapters organized around these five iterative
heuristics. The purpose of this introductory chapter has been to motivate
the student to study and use the general iterative approximate algorithms.
The chapter also introduced the basic terminology needed in the remaining
chapters.
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The following five chapters are dedicated to the five selected heuristics.
For each search heuristic, we start by providing a historical account of the
search method. We then describe the basic algorithm and its parameters
and operators. This will be followed by addressing the convergence aspects
of the algorithm. Examples are included to illustrate the operation of the
heuristic on a number of practical problems. Parallelization strategies of
the algorithm will also be presented. In each chapter, the final section
“Conclusion and Recent Work” discusses several other relevant variations
of the described techniques (recent or otherwise).

Finally, in Chapter 7, we shall touch upon some work that has been
reported in the area of hybridization. This area concerns combining key
features of various heuristics to design new effective search techniques. In
this chapter we also discuss multi-objective optimization, and give a brief
overview of how fuzzy logic is used to represent multi-objective cost func-
tions. Optimization using neural networks, and other relevant issues such
as solution quality, measure of performance, etc., are also covered.

The body of available literature on some of the techniques, namely
simulated annealing and genetic algorithms is enormous. Therefore, it 1s
impossible to describe and discuss every single reported work. Rather, we
concentrate on describing those works we are most familiar with and which
we feel are the most significant.



BIBLIOGRAPHY

AKS89 Emile Aarts and Jan Korst. Simulated Annealing and Boltzmann Machines: A
Stochastic Approach to Combinatorial Optimization and Neural Computing. John
Wiley & Sons, 1989.

Aze92 R. Azencott, editor. Simulated Annealing Parallelization Techniques. John
Wiley & Sons, 1992.

BGABS&3 L. Bodin, L. Goldin, A. Assad, and M. Ball. Routing and scheduling of
vehicles and crews: The state of art. Computers & Operations Research,
10:63-211, 1983.

Dav9l L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
NY, 1991.

Dij59 E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269-271, 1959.

DLSS88 M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, and F. Soumis. Vehicle
routing with time windows: Optimization and approximation. In B. L. Goldin and
A. A. Assad, editors, Vehicle Routing: Methods and Studies, Ed. by B. L. Goldin
and A. A. Assad, North Holland, Amsterdam, pages 65—84. North Holland,
Amsterdam, 1988.

DRKNS&7 F. Darema-Rogers, S. Kirkpatrick, and V. A. Norton. Parallel algorithms for
chip placement by simulated annealing. IBM Journ. of Research and
Development, 31:391-402, May 1987.

Fly66 M. J. Flynn. Very high-speed computing systems. Proceedings of IEFE,
54:1901-1909, 1966.

Fou&4 L. R. Foulds. Combinatorial Optimization for Undergraduates.
Springer-Verlag, 1984.

GJ79 M. Garey and D. Johnson. Computer and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman, San Francisco, 1979.

GL97 F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, MA,
1997.

Gol&9 D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Inc., 1989.

37



38

GPR94

HS84

Hu82
Kle75

KLS94

Law76

Lei92

Len90

LS92

NSS89

OvG&9

Ped89

PS82

Ree95

RG90

RK86

Sah&1

SB80

Ste86

Taig3

TS85

Wan94

Wol91

Zad65
Zad73

Bruno-Laurent Garica, Jean-Yves Potvin, and Jean-Marc Rousseau. A parallel
implementation of the tabu search heuristic for vehicle routing problems with
time window constraints. Computers & Operations Research, 21(9):1025-1033,
November 1994.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer
Science Press, Rockville, MD., 1984.

T. C. Hu. Combinatorial Algorithms. Addison Wesley, 1982.

L. Kleinrock. Queueing Systems, Volume I: Theory. Wiley-Interscience, New
York,, 1975.

E. Kang, R. Lin, and E. Shragowitz. Fuzzy logic approach to VLSI placement.
IEEFE Transactions on VLSI Systems, 2:489-501, Dec 1994.

Fugene L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, 1976.

F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures:
Arrays - Trees - Hypercubes. Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1992.

T. Lengauer. Combinatorial algorithms for integrated circuit layout. B.G.
Teubner & John Wiley and Sons, 1990.

R. Lin and E. Shragowitz. Fuzzy logic approach to placement problem. In Proc.
of the ACM/IEEE 29th Design Automation Conference, pages 153-158, 1992.

S. Nahar, S. Sahni, and E. Shragowitz. Simulated annealing and combinatorial
optimization. Journal of Computer-Aided Design, 1:1-23, 1989.

R.H.J.M. Otten and L.P.P.P. van Ginneken. The Annealing Algorithm.
Kluwer Academic Publishers, MA, 1989.

W. Pedrycz. Fuzzy Control and Fuzzy Systems. Wiley & Sons, Inc., New York,
1989.

C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complezity. Prentice-Hall, 1982.

C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Optimization Problems. McGraw-Hill Book Co., Europe, 1995.

M. Razaz and J. Gan. Fuzzy set based initial placement for IC layout. In Proc.
of the European Design Automation Conference, pages 655—659, 1990.

Rob A. Rutenbar and Saul A. Kravitz. Layout by simulated annealing in a
parallel environment. Proceedings of International Conference on Computer
Design: VLSI in Computers & Processors, ICCD-86, pages 434-437, 1986.

S. Sahni. Concepts in Discrete Mathematics. The Camelot Publishing
Company, Minnesota, 1981.

S. Sahni and A. Bhatt. The complexity of design automation problems. In Proc.
of the Design Automation Conference, pages 402—410, 1980.

Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computation, and
Application. John Wiley & Sons, 1986.

E. Taillard. Parallel iterative search methods for the vehicle routing problem.
Networks, 23:661-673, 1993.

T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to
modeling and control. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-15(1), Jan 1985.

L.-X. Wang. Adaptive Fuzzy Systems and Control. Prentice Hall., 1994.

S. Wolfram. Mathematica— A System for Doing Mathematics by Computer.
Addison-Wesley Publishing Company, Inc., 1991.

L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.

L. A. Zadeh. Outline of a new approach to the analysis of complex systems and
decisions processes. IEEE Transactions on Systems, Man, and Cybernetics,



Zad75

Zim87

Zim91

INTRODUCTION 39

SMC-3(1):28-44, Jan 1973,

L. A. Zadeh. The concept of a linguistic variable and its application to
approximate reasoning. Information Sciences, 8:199-249, 1975.

H. J. Zimmermann. Fuzzy Sets, Decision Making, and Ezpert Systems. 2nd
Edition, Kluwer Academic Publishers, 1987.

H. J. Zimmermann. Fuzzy Set Theory and Its Applications. 2nd Edition,
Kluwer Academic Publishers, 1991.

EXERCISES
exercise 1
Stirling approximation of the factorial function is as follows 5#h81
n! a0 VIR 4 -
e 12n

Using the above approximation, show that for large n,

n
(n) ~ 27
2
exerclse 2

Given a set of n distinct positive integers X = {ay, @y, ..., «,}. The
objective is to partition the set into two subsets Y of size k and Z of
size n—k (1 < k < %) such that the difference between the sums of the
two subsets is minimized. This problem is known as the set partitioning
problem.

1. For a fixed k, how many partitions exist?

2. How many partitions are there for all possible values of k.

3. Assume that & = 3. One possible heuristic algorithm for this prob-

lem is the following.

Algorithm SetPartition(X, Y, 7);
Begin
Sort Array X[1:n] in descending order;
For ¢ =1 To n Do
Begin
Assign X[i] to the set which has currently the smaller sum;
EndFor;
Return (Y, 7)
End Algorithm,;

(a) Find the time complexity of the above algorithm.
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(b) Tmplement the above heuristic and experiment with it on sev-
eral randomly generated problem instances.

(¢) Generalize the above heuristic to partition the set X for any
value of k£ < 5.

exerclse 3

1.

Experiment with the local search heuristic (Page 13) on a number
of randomly generated instances of the set partitioning problem.
Compare quality of solutions obtained with those of the greedy
heuristic outlined in Exercise 2.

. The Improve subroutine can follow one of two strategies: (a) first-

tmprovement strategy where the first favorable cost change is ac-
cepted, or (b) the steepest descent strategy where the entire neigh-
borhood is searched, and then a solution with lowest cost 1s se-
lected. Discuss the merits and demerits of both strategies.

. Experiment with both strategies and report the effect of each strat-

egy on quality of solution, runtime, etc.

exercise 4
Given a graph G(V, F) with n nodes and m edges. Show that there are
at most:

S W N =

2™ subsets of E that might be edge coverings.
2™ possible cuts.

2™ possible paths.

(2m)! possible tours.

n"~? possible spanning trees.

exercise 5
For an n x n quadratic assignment problem, show that there are at
most n! feasible solutions.

exercise 6

Write a program to generate a random connected graph. The inputs
to the program are the number of nodes, (an even number) and, the
range of degree of the nodes (for example, between 2 and 5). In a
graph G(V, E), the degree d; of a node ¢ € V is defined as the number
of (other) nodes ¢ is connected to.

exerclse T



INTRODUCTION 41

1. Given a graph of 2 - n elements, show that the number of balanced
two-way partitions is P(2n) = %

2. Use Stirling’s approximation for n! to simplify the expression for
P(2n). Express P(2n) using the Big-Oh notation.

3. A brute force algorithm for the two-way partition problem enumer-
ates all the P(2n) solutions and selects the best. Write a computer
program which implements such a brute force algorithm . What is
the time complexity of your program?

4. Plot the running time of the brute force partition program for
n = 1,...,10. If the maximum permitted execution time for the
program is 24 hours, what is the maximum value of n for which
your program can run to completion?

exercise 8
Suppose we are given a graph with 2n nodes, and a matrix C' that
specifies the connectivity information between nodes; for example, ¢;;
gives the number of connections between elements ¢ and j. Let A and B
represent a balanced partition of the graph, i.e., |A| = |B| = n. Use the
local search algorithm to divide the graph into a balanced partition such
that the cost of edges cut is minimum. Experiment with the following
neighbor functions.
1. Pairwise exchange. Here two elements, one from each partition are
swapped to disturb the current solution.
2. Swap a subset of elements selected from each partition.
3. Select for swap those elements whose contribution to the external
cost i1s high, or those that are internally connected to the least
number of vertices.

exerclise 9

1. Repeat Exercise 8 using instead the random walk search heuristic
given below.

Algorithm RandomWalk(.Sp);
Begin
S = Sp; BestS = S
BestCost = Cost(Sp);
Repeat
S = Perturb(S); /* Generate another random feasible solution */
CostS = Cost(S)
If CostS < BestCost Then
BestCost = ClostS,
BestS = S
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EndIf
Until time-to-stop;
Return (BestS)
End Algorithm,;

2. Compare the local-search and random-walk heuristics.

exercise 10

A variation of the random-walk heuristic is to adapt a steepest descent
strategy. That is, a new feasible solution is accepted only if it improves
the cost. A random search of this type is known as random-sampling.

Algorithm RandomSampling(.Sp);
Begin
S = Sp; BestS = S
CostS = Cost(Sy);
BestCost = Cost(Sp);
Repeat

NewS = Perturb(S); /* Generate another random feasible solution */

NewCost = Cost(NewS);
If NewCost < CostS Then
BestCost = NewCost,
CostS = NewCost,
S = NewS
EndIf
Until time-to-stop;
Return (BestS)
End Algorithm,;

Using the problem instances and perturbation functions suggested in
Exercise 8 do the following:
1. Experiment with random-sampling and compare it with random-

walk.

2. Compare random-sampling with local-search.

exercise 11

Another iterative search heuristic is known as sequence-heuristic Y5589,
In this heuristic a new solution with a higher cost (uphill move) is
accepted if the last k& perturbations on current solution S failed to
generate a NewS with Cost(NewS) < Cost(S). The sequence-heuristic

algorithm is given below.
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Algorithm SequenceHeuristic(Sy, Lg);
/* Sp is initial solution and Lg is initial sequence length. */
Begin

S = Sp; BestS = S

CostS = Cost(Sy);

BestCost = Cost(Sp);

L= Lo /* initial sequence length */

Repeat
length = 0; /* current length of bad perturbations */
Repeat

NewS = Perturb(S);
NewCost = Cost(NewS);
If NewCost < CostS Then
CostS = NewCost,
S = NewS;
If NewCost < BestCost Then
BestCost = NewCost,
BestS = NewS
EndIf
Else length = length + 1
EndIf
Until length > L;
L = UpdateLength(L)
Until time-to-stop;
Return (BestS)
End Algorithm,;

The function UpdatelLength could perform an additive increase
(L = L+ 3 for some § > 0) or geometric increase (L = g x L
for some 8 > 1).

Experiment with sequence-heuristic and compare it with random-
walk, local-search, and random-sampling heuristics. Use the problem
instances and perturbation functions suggested in Exercise 8.

exercise 12
Construct an example of a graph with 10 nodes, such that the nodes
have a large degree, say 5 to 10.
1. Assume that all the nodes have unit sizes. Apply the local-search
algorithm to obtain a two-way balanced partition of the graph.
2. Randomly assign weights to nodes say between 1 and 10 and gener-
ate an almost balanced partition with a minimum weighted cutset
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using local-search. Since nodes have different sizes, a pair-wise swap
may not be the best move to generate the neighbor function. One
possibility is to select a random partition (A or B), and to move
the node to the other partition. Use the following cost function:

Cost(A, B) = W, x Cutset Weight(A, B) + W, x Imbalance(A, B)
Where,
Imbalance(A, B) = Size of A— Size of B

= Z s(v) — Z s(v)

vEA vEB

s(v) is the size of vertex (or node) v. W, and W, are constants in
the range of [0,1] which indicate the relative importance of balance
and minimization of cutset, respectively.

3. Experiment with different values of W, and W;. Does increasing
the value of W, (W) necessarily reduce the value of cut set (im-
balance)?

exerclse 13

1. Repeat Exercise 12 using the random walk search heuristic.

2. Repeat Exercise 12 using the random sampling search heuristic.

3. Compare the three heuristics with respect to runtime, quality of
solution, and quality of solution subspace explored.

exerclse 14

1. Construct a connected graph with 10 nodes and 25 edges. Starting
from a random partition, apply both the greedy pairwise exchange
and the local search algorithm to this graph and generate balanced
two-way partitions.

2. Starting from the solution obtained from the greedy pairwise tech-
nique, apply the local search algorithm. Comment on any noticeable
improvement in quality of solution and runtime.

exercise 15
Given n modules to be placed in a row, show that there are ”7' unique
linear placements of n modules. When n is large, show that the number
of placements 1s exponential in n.
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exercise 16
Write a procedure CALC-LEN to evaluate the total connection length
of a given assignment. The inputs to the procedure are:

1. The number of modules n,

2. the connectivity matrix C'; C' is an n X n matrix of non-negative
integers, where ¢;; indicates the number of connections between
modules ¢ and j,

3. The assignment surface is a uniform grid of dimensions M x N.
The array P[1...M,1...N] is used to represent the placement
information. P[i, j] contains the number of the module placed in
row ¢ and column j.

You may assume that M - N = n. What is the complexity of your
procedure?

exercise 17
Suppose that n modules are placed in a row. The placement informa-

tion is represented by array p[l, ..., n], where p[i] indicates the module
placed in the ¢th location. If the modules are numbered 1,...,n, then
p is simply a permutation of 1,..., n.

Write a procedure DELTA-LEN to compute the change in total
wirelength when two modules in p are swapped. Assume that the con-
nectivity information is represented by a connectivity matrix C' as in
Exercise 16.

exercise 18

Implement a placement algorithm based on local-search. Assume that
there are 210 modules to be placed on a 15 x 14 mesh. There are two
types of modules, functional blocks and 1/O pads. The I/O pads must
be placed only on the periphery of the mesh, whereas a functional
block may be placed in any empty slot. Assume 28 1/O pads and 182
functional blocks.

Generate a random initial placement which satisfies the pad posi-
tion constraint. Experiment with various perturbation functions. The
perturb function must respect the pad position constraint. Use the
DELTA-LEN procedure of Exercise 17 to evaluate the change in cost
function Ac.

1. Test your program for the sample circuit shown in Figure 1.7. In
other words, synthesize the connectivity matrix for the circuit and
give it as input to your program.

2. Run your program for several random initial placements. Does the
initial solution influence the final solution?
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Figure 1.7 210 cell mesh for Exercise 18.

Figure 1.8 Configuration graph for Exercise 19.
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exercise 19
Consider the configuration graph of Figure 1.8 labeled with probabili-
ties that are composed of uniform probabilities over each neighborhood

and the acceptance function given by Len90

Costy .mCost;j—Cost; : .
Costr T Y if ACost;; >0

f(Cost;, Cost;, T) = (1.16)
1 if ACOStij S 0

The transition matrix ©(T) is given below.

T5

T T
1-— T ? . 0 03 = 05 0
1 3 _Tr- _ T 0 0 r— 0 . 0
1 77 710 14 . 10 14
0 0 1-T-Z % = 0 0 0
1 3_ T T3 T2 T3
0 0 T it 0 o T = 23
1 1 15 5
(1) i i (1) ? o2 1 03 72 ° 337%2
r (1) 0 ? 0 27 16 ? 16
0 3 0 3 0 0 3 0
1 1 1
0 0 0 0 5 5 0 5

1. Show that the stationary distribution at 7T is,

1) = 9520 1680 T 840 T2 840 T3 672T* 560 T° 360 T° 315 T7
TE\'N TN "N "N "N " N "N N

where

N = 2520416807 +8407T°+840T3+672T*+560T°+360T°+315T7

2. Verify that the generating chain is time reversible. For a reversible
Markov chain, the transition probabilities of the forward and re-
versed chains are identical (6;; = 6;;). That is, a time reversible
Markov chain is identical to itself when viewed in reverse time.

3. Show that the stationary distribution converges to an optimizing
distribution given by:

lim=(T) = (1,0,0,0,0,0,0,0)

T—0

exercise 20
Consider the configuration graph of Figure 1.9 labeled with probabil-
ities, and the acceptance function of Exercise 19. The corresponding
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Figure 1.9 Configuration graph for Exercise 20.

transition matrix is given below. Answer the following questions.

(a)
(b)
(c)

T T T T4
1_E1_ﬁ 2 gT4 ’ ’ 5 7(”)“
1 2 T 0 0 0 —
0 ol arm z z 0
o(T) = 1773 i 3 )
0 0 1 2 _ 27T 0 27T
1 0 :i; 3 0 9 1 5T 59T
4 1 4 1 DRI
0 3 0 3 3 3

Verify the transition matrix representing the configuration graph
in Figure 1.9.

What is the stationary distribution (7(7)) and the optimizing dis-
tribution (7 = limp_,om(7T))?

To the configuration graph of Figure 1.9 add an additional edge
between states 2 and 3, rewrite the transition matrix, and find the
stationary distribution. Should the distribution be different from
the one obtained in part (b) of this question. Justify your answer?
In the configuration graph obtained in part (c) above, delete edges
between nodes 5 & 6 and between nodes 2 & 3, and add edges
between nodes 2 & 5 and between nodes 3 & 6 and compute the
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stationary distribution. Is the stationary distribution obtained the
same as in part (b) of this question? Why?

1- 2T - (3

1-@VT) - (3
e

Figure 1.10 Configuration graph for Exercise 21.

exercise 21

Consider the configuration graph given in Figure 1.10. The cost of the
five states is as follows: Cost; = 1, Costy = 2, Costz = 3, Costy = 4,
Costs = 1, Cost,, represents the cost of state S,. If the acceptance
criterion used is as given in Equation 1.17 below,

e~ =T if ACosti; > 0
f(Cost;, Cost;, T) = (1.17)

1 lf ACOStij S 0

determine the transition matrix and find the stationary distribution.

exercise 22
For the Markov chain given in Exercise 21, find the optimizing distri-
bution.



CHAPTER

TWO

SIMULATED ANNEALING (SA)

2.1 INTRODUCTION

In this chapter we present simulated annealing, one of the most well devel-
oped and widely used iterative techniques for solving optimization prob-
lems.

Simulated annealing is a general adaptive heuristic and belongs to the
class of non-deterministic algorithms N589 It has been applied to sev-
eral combinatorial optimization problems from various fields of science and
engineering. These problems include TSP (traveling salesman problem),
graph partitioning, quadratic assignment, matching, linear arrangement,
and scheduling. In the area of engineering, simulated annealing has been
applied to VLSIT design (placement, routing, logic minimization, testing),
image processing, code design, facilities layout A8 network topology de-
sign P93 ete.

One typical feature of simulated annealing is that, besides accepting
solutions with improved cost, it also, to a limited extent, accepts solution
with deteriorated cost. It is this feature that gives the heuristic the hill
climbing capability. Initially the probability of accepting inferior solutions
(those with larger costs) is large; but as the search progresses, only smaller
deteriorations are accepted, and finally only good solutions are accepted. A
strong feature of the simulated annealing heuristic is that it is both effective
and robust. Regardless of the choice of the initial configuration it produces
high quality solutions. It is also relatively easy to implement.

50
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We begin this chapter by first introducing annealing from an intuitive
point of view. In Section 2.2 we present the operation of the simulated an-
nealing algorithm. We then build the necessary mathematical background
and the terminology required to discuss convergence related issues (Section
2.3). Aspects related to the parameters of the algorithm, also known as the
‘cooling schedule’ are discussed in Section 2.4. Requirements for implemen-
tation of SA on a digital computer are presented in Section 2.5. Case studies
and examples that illustrate the implementation aspects of this powerful
iterative technique are presented in Section 2.6.

Simulated annealing, like all other iterative techniques, is very greedy
with respect to run time. The acceleration of simulated annealing has been
an extensive area of research since the introduction of the algorithm. Among
the widely researched acceleration techniques is parallelization. The various
parallelization strategies of simulated annealing are also discussed in this
chapter (Section 2.7).

2.1.1 Background

The term annealing refers to heating a solid to a very high temperature
(whereby the atoms gain enough energy to break the chemical bonds and
become free to move), and then slowly cooling the molten material in a
controlled manner until it crystallizes. By cooling the metal at a proper
rate, atoms will have an increased chance to regain proper crystal structure
with perfect lattices. During this annealing procedure the free energy of the
solid is minimized.

As early as 1953, Metropolis and his colleagues introduced a simple
algorithm to simulate the evolution of a solid in a heat bath to its ther-
mal equilibrium M*%3, Their simulation algorithm is based on Monte Carlo
techniques and generates a sequence of states of the solid as follows. Given
a current state S; of the solid with energy FE;, a subsequent state S; with
energy F; is generated by applying a perturbation mechanism. This pertur-
bation transforms the current state into a next state with slight distortion.
For instance a new state can be constructed by randomly selecting a par-
ticle and displacing 1t by some random amount. If the energy associated
with the new state is lower than the energy of the current state, that is,
AFE = F;—F; <0, then the displacement is accepted, and the current state
becomes the new state. However, if the energy of the new state is higher
(the energy difference greater than zero), then the state S is accepted with
a certain probability, which is given by

Prob(accept) = e~ () (2.1)

where Kp is the Boltzmann constant and 7' denotes temperature. The
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acceptance rule described above is repeated a very large number of times.
The acceptance criterion is known as the Metropolis step, named after its
inventor, and the procedure is known as the Metropolis algorithm.

In the early eighties, thirty years after the idea of the Metropolis loop
was introduced, a correspondence between annealing and combinatorial op-
timization was established, first by Kirkpatrick, Gelatt and Vecchi KRCGVe3
in 1983, and independently by éerny Cer85 in 1985. These scientists ob-
served that there is a correspondence between, on one hand, a solution to
the optimization problem and a physical state of the material, and between
the cost of a solution of the combinatorial optimization problem and free
energy in the molten metal. As a result of this analogy they introduced a
solution method in the field of combinatorial optimization. This method is
thus based on the simulation of the physical annealing process, and hence

the name simulated annealing KCEV33, Cer85,

As explained by Kirkpatrick et al. and éerny, a solution in combina-
torial optimization is equivalent to a state in the physical system and the
cost of the solution is analogous to the energy of that state. If we compare
optimization to the annealing process, the attainment of global optimum
is analogous to the attainment of a perfect crystal structure (a minimum
energy state for the material), and attainment of a structure with imper-
fections will correspond to getting trapped in a local optimum.

As discussed in Chapter 1, every combinatorial optimization problem
may be discussed in terms of a state space. A state is simply a configuration
of the combinatorial objects involved. For example, consider the problem
of partitioning a graph of 2n nodes into two equal sized subgraphs such
that the number of edges with vertices in both subgraphs is minimized.
In this problem, any division of 2n nodes into two equal sized blocks is a
configuration. There is a large number of such configurations (see Exercise 7
on Page 40). Only some of these correspond to global optima, i.e., states
with optimum cost.

An iterative improvement scheme starts with some given state, and
examines a local netghborhood of the state for better solutions. A local
neighborhood of a state S, denoted by R(S5), is the set of all states which
can be reached from S by making a small change to S. For instance, if S
represents a two-way partition of a graph, the set of all partitions which
are generated by swapping two nodes across the partition represents a
local neighborhood (see Exercise 8). The iterative improvement algorithm
moves from the current state to a state in the local neighborhood if the
latter has a better cost. If all the local neighbors have larger costs, the
algorithm is said to have converged to a local optimum. This is illustrated
in Figure 2.1. Here, the states are shown along the z-axis, and it is assumed
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S
Cost
L /\/
G

States

Figure 2.1 Local versus global optima.

that two consecutive states are local neighbors. It is further assumed that
we are discussing a minimization problem. The cost curve is non-convez,
i.e., 1t has multiple minima. A greedy iterative improvement algorithm may
start off with an initial solution such as S in Figure 2.1, then slide along
the curve and find a local minimum such as L. There is no way such an
algorithm can find the global minimum G of Figure 2.1, unless it “climbs
the hill” at the local minimum L. In other words, an algorithm which
occasionally accepts inferior solutions can escape from getting trapped in
a local optimum. Simulated annealing is such a hill-climbing algorithm.

During annealing, a metal is maintained at a certain temperature T
for a pre-computed amount of time, before reducing the temperature in a
controlled manner. The atoms have a greater degree of freedom to move at
higher temperatures than at lower temperatures. The movement of atoms
1s analogous to the generation of new neighborhood states in an optimiza-
tion process. In order to simulate the annealing process, much flexibility is
allowed in neighborhood generation at higher “temperatures”, i.e., many
‘uphill’ moves are permitted at higher temperatures. The temperature pa-
rameter is lowered gradually as the algorithm proceeds. As the temperature
is lowered, fewer and fewer uphill moves are permitted. In fact, at abso-
lute zero, the simulated annealing algorithm turns greedy, allowing only
downhill moves.

example 16 We can visualize simulated annealing by considering the
analogy of a ball placed in a hilly terrain, as shown in Figure 2.2.
The hilly terrain is nothing but the variation of the cost function over
the configuration space, as shown by Figure 2.1. If a ball is placed at
point S, it will roll down into a pit such as L, which represents a local
minimum. In order to move the ball from the local minimum to the
global minimum G we do the following. We enclose the hilly terrain
in a box and place the box in a water bath. When the water bath is
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Figure 2.2 Design space analogous to a hilly terrain.

heated, the box begins to shake, and the ball has a chance to climb out
of the local minimum L.

If we are to apply simulated annealing to this problem, we would
initially heat the water bath to a high temperature, making the box
wobble violently. At such high temperatures, the ball moves rapidly
into and out of local minima. As time proceeds, we cool the water bath
gradually. The lower the temperature, the gentler the movement of the
box, and lesser the likelihood of the ball jumping out of a minimum.
The search for a local minimum is more or less random at high tem-
peratures; the search becomes more greedy as temperature falls. At
absolute zero, the box is perfectly still, and the ball rolls down into a
minimum, which, hopefully, is the global minimum G.

2.2 SIMULATED ANNEALING ALGORITHM

The simulated annealing algorithm is shown in Figure 2.3. The core of
the algorithm is the Metropolis procedure, which simulates the annealing
process at a given temperature 7' (Figure 2.4) M+53. The Metropolis proce-
dure receives as input the current temperature 7', and the current solution
CurS which it improves through local search. Finally, Metropolis must also
be provided with the value M, which is the amount of time for which anneal-
ing must be applied at temperature 7. The procedure Simulated_annealing
simply invokes Metropolis at decreasing temperatures. Temperature is ini-
tialized to a value Ty at the beginning of the procedure, and is reduced in
a controlled manner (typically in a geometric progression); the parameter
a 1s used to achieve this cooling. The amount of time spent in annealing
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Algorithm Simulated annealing(Sy, Ty, o, 8, M, Maztime);
(*So is the initial solution *)

(*BestS is the best solution *)

(*To is the initial temperature *)

(*o is the cooling rate *)

(*B a constant *)

(*Mawxtime is the total allowed time for the annealing process *)

(*M represents the time until the next parameter update *)

Begin
T ="To;
CurS=5Sp;
BestS=CurS;/* BestS is the best solution seen so far */
CurCost=Cost(CurS);
BestCost=Cost(BestS);
Time = 0;
Repeat
Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Time = Time + M;
T =aT;
M=BM
Until (Time > MazTime);
Return (BestS)
End. (*of Simulated_annealing®)

Figure 2.3 Procedure for simulated annealing algorithm.

Algorithm Metropolis(CurS, CurCost, BestS, BestCost, T, M);
Begin
Repeat
NewS= Neighbor(CurS); /* Return a neighbor from aleph(CurS) */
NewCost=Cost(NewS);
A Cost=(NewCost—CurCost);
If (ACost< 0) Then
CurS=NewS;
If NewCost< BestCost Then
BestS= NewS
EndIf
Else
If (RANDOM < e=2C05t/T) Then
CurS=NewS;
EndIf
EndIf
M=M-1
Until (M = 0)
End. (*of Metropolis®)

Figure 2.4 The Metropolis procedure.
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at a temperature is gradually ncreased as temperature is lowered. This is
done using the parameter 3 > 1. The variable Tuime keeps track of the time
being expended in each call to the Metropolis. The annealing procedure
halts when Time exceeds the allowed time.

The Metropolis procedure 1s shown in Figure 2.4. It uses the procedure
Neighbor to generate a local neighbor NewS of any given solution S. The
function Cost returns the cost of a given solution S. If the cost of the new
solution NewS' is better than the cost of the current solution C'urS, then
the new solution is accepted, and we do so by setting CurS=NewS. If the
cost of the new solution is better than the best solution (BestS) seen thus
far, then we also replace BestS by NewS. If the new solution has a higher
cost in comparison to the original solution C'urS, Metropolis will accept
the new solution on a probabilistic basis. A random number is generated in
the range 0 to 1. If this random number is smaller than e=2¢**/T  where
A Cost is the difference in costs, (A Cost= Cost(NewS) — Cost(CurS)), and
T'is the current temperature, the uphill solution is accepted. This criterion
for accepting the new solution is known as the Metropolis criterion. The
Metropolis procedure generates and examines M solutions.

The probability that an inferior solution is accepted by the Metropolis
is given by P(RANDOM < e=2¢25t/T) The random number generation is
assumed to follow a uniform distribution. Remember that A Cost > 0 since
we have assumed that NewS is uphill from CurS. At very high temper-
atures, (when T — 00), e=8Cost/T ~ 1 and hence the above probability
approaches 1. On the contrary, when 7" — 0, the probability e=20st/T
falls to 0.

In order to implement simulated annealing on a digital computer we
need to formulate a suitable cost function for the problem being solved. In
addition, as in the case of local search techniques we assume the existence
of a neighborhood structure, and need perturb operation or Neighbor func-
tion to generate new states (neighborhood states) from current states. And
finally, we need a control parameter to play the role of temperature and
a random number generator. The actions of simulated annealing are best
illustrated with the help of an example.

example 17 Circuit Partitioning using SA

A logic circuit can be represented using sets of nets. For example,
Ny ={C4, Cp, C¢, Cy} denotes that cells C, Cy, Ct, and Cy, all have
a common terminal point labeled N,. All the cells in the set N, have
terminals with the same label N, and all the terminals with the same
label are connected together by a wire. If all the cells of a particular
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Figure 2.5 Circuit for Example 17.

Net Weight
N1 :{01702704705} wp; = 1
N2 = {02703705} woy = 1
N3 ={C3,0¢,C10,Ca} ws = 2
N4 = {04708703707} Wy = 1
N5 = {05707701706} wy = 3
N6 = {06704707702} W = 3
Ny = {07709705} wy =2
Ng = {08702} wg = 3
Ng ={C9,C10,C5} wy = 2
Nio = {C10,Cs} wig = 4

Table 2.1 Netlist for Example 17.

net N; are in the same partition (A or B), then no external wiring is
required to connect across partitions. We then say that the net is not
cut by the partition. Let w,, be the weight of net n, or the cost of the
net if cut. And let C'utSet represent the set of nets that are cut, that
is, those with terminals (or cells) in both A and B (see Exercise 29).

The circuit in Figure 2.5 contains 10 cells and 10 nets. Assume
that all cells are of the same size. The nets of the circuit are indicated
along with their weights in Table 2.1. Using the information below, it
is required to use SA to divide the circuit of Figure 2.5 into two equal
partitions A and B with the objective of minimizing the weighted sum
of the nets cut.

Initial Solution: Randomly assign cells C, - -+, C5 to block A;
Neighbor Function: Pairwise exchange, i.e., exchange a cell a € A with
acell b € B;

Initial Temperature: Ty=10 (this is high enough for this particular ex-
ample);

Constants: M=10; a =0.9; 8 =1.0;
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Termination Criterion: T reduces to 30% of its initial value.

solution 2 The objective function can be represented as:

Cost(A, B) = Z Wy,

neCutSet

Table 2.2 shows results for some iterations, where (Cj, C;) represents
the two cells selected for swapping, one from each partition. Only the
accepted moves are listed. For example, when count = 9, the tem-
perature is equal to 10, the cells selected for pairwise interchange are
(3,8), the cost of current solution S is Cost(S) = 13, and the cost of
the new solution is Cost(NewS) = 10. Therefore the interchange is
automatically accepted. For the next iteration at the same tempera-
ture, count = 10, the cells selected are (1,4), the cost of new solution
Cost(NewS) = 13, which is larger than the cost of the current solu-
tion (Cost(S) = 10). In this case a random number is generated. Since
the value of this number is 0.11618 which is less than e=2Cost/T=
e~3/19=0.74082, the move is accepted.

Figure 2.6 is a plot of the cost versus iterations for both a greedy al-
gorithm and for simulated annealing. When greedy pairwise exchange is
applied only good moves are accepted, and uphill moves rejected. Note
that for this example, using simulated annealing, the cost reduces to 10
in the 9% iteration. This is due to the acceptance of some previous bad
moves. The plot of greedy pairwise exchange shows plateaus or a de-
crease and converges to 10 after 50 iterations. For this example, the final
partition obtained by both deterministic pairwise exchange and simu-
lated annealing procedures is the same, with A={C4, C4, Cs, C7, Cs}
and B={C4,Cs,C5,Cq,Cio}. The cost of this partition is 10.

2.3 SA CONVERGENCE ASPECTS

The convergence aspects of the simulated annealing algorithm have been
the subject of extensive studies. Here we present a detailed summary of
these studies. For a more thorough discussion of simulated annealing con-

vergence we refer the reader to

AKS89, AL85, OvG89

The convergence analysis presented here follows the Markovian analysis

developed in Section 1.8 of Chapter 1.
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count axT (Ci,C5) RANDOM Cost(S) Cost(NewS) e=ACost/T
1 (1,6) 0.73222 20 21 0.90484
2 (1,2) 21 19
3 (2,3) 0.13798 19 21 0.81873
4 (2,7) 21 16
5 10.000 (1,3) 0.64633 16 19 0.74082
6 (2,3) 0.46965 19 19 1.00000
8 (3,5) 19 13
9 (3,8) 13
10 (1,4) 0.11618 10 13 0.74082
11 (2,4) 0.47759 13 15 0.80074
12 (3,4) 0.19017 15 16 0.89484
13 (4,6) 16 15
14 (4,9) 0.26558 15 18 0.71653
15 9.000 (1,5) 0.19988 18 20 0.80074
16 (2,5) 20 15
17 (3,5) 0.28000 15 15 1.00000
18 (4,5) 0.90985 15 15 1.00000
19 (5,7) 0.06332 15 19 0.64118
20 (5,10) 19 16
21 (2,6) 0.15599 16 21 0.53941
22 (3,6) 21 19
23 (4,6) 0.36448 19 21 0.78121
24 (5,6) 21 13
25 8.100 (6,8) 0.53256 13 13 1.00000
26 (3,7) 13 11
27 (4,7) 0.18104 11 13 0.78121
28 (5,7) 0.51371 13 18 0.53941
29 (7,8) 0.37249 18 21 0.69048
30 (7,9) 0.57933 21 21 1.00000
31 (1,8) 21 18
32 (4,8) 0.10814 18 21 0.66264
33 7.290 (5,8) 21 12
37 (1,9) 12 11
39 (3,9) 0.14080 11 15 0.57770
41 (6,9) 15 11
44 (2,10) 0.21728 11 19 0.29543
45 6.561 (3,10) 19 14
49 (1,2) 14 11
50 (1,3) 0.84921 11 11 1.00000
52 5.905 (1,7) 11 10
53 (1,8) 0.54613 10 13 0.60167

Table 2.2 Table of execution run of Example 17.
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Figure 2.6 Variation of cost in Example 17.

Recall from Chapter 1, that for pairs of states connected by at least a
single move the perturbation probability p;; is never zero. The probability
p;; depends on the structure of the configuration graph and may be defined
as follows:

m if Sj S N(SZ)
Pij = (2.2)
0 it S; € R(S;)

Recall also that the acceptance probability A;; of accepting a move from
state S; to state S; has the following general expression,

f(Cost;, Cost;, T) if ACost;; >0
Aij(T) = (2.3)
1 if ACOSLLZ']' S 0

where ACost;; = Cost; — Cost;. In case of SA, downhill moves (A Cost;; <
0) are accepted with probability 1 while uphill moves (ACost;; > 0) are
accepted according to the Metropolis function. Hence,

aCost,;
e-— 1 if ACost;; >0
Aij = (2.4)

1 lf ACOSLLZ']' S 0
That 1s, the probability that the generated new state will be the next state

depends on its cost, the cost of the previous state, and the value of the
temperature 7. The sequence of states thus generated corresponds to a
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time-inhomogeneous Markov chain. This is because of the important pro-
perty that the next state does not depend on the states that have preceded
the current state. Therefore, for this time-inhomogeneous Markov chain,
given S; as the current state, the probability ©;;(T) of transit to state S;
is defined as follows:

o A (T)pig ifi4j s
Ou(T) = 2.5
L=k i Aik (T)pi ifi=j

where p;; is the perturbation probability, that is, the probability of gen-
erating a configuration S; from configuration S; (which is independent of
T); Ai;(T) is the acceptance probability (see Equation 2.4), that is the
probability of accepting configuration S; if the system is in configuration
Si; and T is the control parameter.

Transition Probability

Let ©;;(T") be the transition probability from state S; to state S; at temper-
ature T', that is, ©;;(T') = p;; - Ai;(T). These probabilities can be combined
into a matrix ©(7), called the transition matrix. The transition matrix of
the Metropolis loop does not change from step to step (T does not change
inside the loop). Markov chains with constant transition matrices are called
homogeneous. The Metropolis loop can therefore be correctly modeled by
a homogeneous Markov chain, characterized by the following transition
probabilities.

S if ACost;; <0 S5 € R(S;)
1200ty if ACost;; >0 S; € R(S;)
HEDIN ’ 1 . ! i

035(1) = 0
1=k ki PirAin (1)) ifi=j % € R(%:)

Each time the body of the Metropolis loop is completed we say that the
chain has completed a step. If the temperature 7' 1s lowered carefully, the
solid can reach thermal equilibrium. Thermal equilibrium can be reached
by generating a large number of transitions at a given temperature and
applying the Metropolis acceptance criterion (Equation 2.1). The thermal
equilibrium is then characterized by the Boltzmann distribution “¥8°. This
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distribution gives the probability of the solid being in state S; with energy
FE;, at temperature 7', and 1is equal to,

1 e_(KE?) (2.7)

where Kp is the Boltzmann constant, S; is a variable denoting the current
state of the solid and Z(T) is a normalizing function defined by

21y =3 e (Fab) (2.8)

7

where the summation is over all possible states.
SA for combinatorial optimization uses the following Metropolis accep-
tance probability:

aCost,; .
e (=) if ACost;; >0
Aij = (2.9)

1 if ACOSLLZ']' S 0

Using a suitable neighborhood structure and applying the above accep-
tance probability, simulated annealing algorithm will have in the limit the

following stationary state probability distribution 4¥89:
P(S Lo 2.10
A T
( Z) No (T) ( . )
where N,(T) is a normalizing function defined by
Cost;
N(T)y= Y e 77 (2.11)

S;€8

The above conjecture states that, given enough time to run and an
appropriate perturbation function, simulated annealing should hit a global
optimum with a probability greater than zero “K8° Generation proba-
bilities are chosen independent of 7', and uniformly over the neighborhood
N(S;). It is assumed that all neighborhoods are of equal size, that is, |[R(.S;)]
is the same for all S; € Q AKS?,

From the theory of Markov chains it follows that there exists a station-
ary distribution 7(7T) € [0,1]" that satisfies

lim €;0(T) = n(T) (2.12)
L—oo
where e; 1s the i unit vector in [0,1]", T is the temperature, and n is the

number of states. If we start from any state S;, and perform L perturba-
tions, with L — oo, then the probability of ending up in state .S; is given by
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the component 7;(T') of the stationary distribution 7. Thus, the stationary
distribution m(T) gives the probability distribution for the occurrence of
each state at equilibrium. The optimizing distribution can be obtained by
finding the stationary distribution and then applying the limit 7" — 0.

For the values of P and A;;(T) given in Equations 2.2 and 2.4 we have,

ACost,Dj)
T

i (T) = mo(T)e (2.13)

where S, is the optimal configuration, Costs, = Cost;, is the cost of the

optimal configuration, and mo(7') is a normalization factor given by 4K89

1

mo (1) (2.14)

aCost

Sy e

Furthermore,

lim 70 (6,0(7)); = limn;(7)

L—oo T—0
i S, €
0 ifSi, ¢ Qo

where €2p is the set of optimal configurations; that is, 2y = {5; € Q|Cost; =
Cost;, }. Thus, if SA is given unlimited time the algorithm will achieve one
of the optimal configurations with equal probabilities (uniform probability
distribution) and the probability of achieving a sub-optimal configuration
is zero.

example 18 Consider the configuration graph corresponding to the
Markov chain given in Figure 2.7. The cost of the four states is as
follows: Cost; = 1, Costy = 2, Costs = 3, and Costy = 4, where
Clost,, represents the cost of state S,,. The acceptance function is given
by the Metropolis criterion f(Cost;, Cost;, T) = 6_%. Verify that
the transition matrix for the Markov chain is as given below and obtain
the stationary distribution.

e=2T  o=3T
3 3

o—2/T  =3/T

1—

3
o= 1/T 2T YT -E/T

wl—wle O
Lol

O wl—w
W= Ow
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Figure 2.7 Configuration graph for Example 18.

solution 3 In the above matrix, the elements are ©;; = A;; - pi;. Let
us verify the entry ©3 3. Note that there exists an arc between states
2 and 3, and the transition is to a state with higher cost. We therefore
apply Equation 2.6 with the condition ACost;; > 0.

(3=2) 1

Oy3 = Ay g - paa; where Ay 3 = f(Costy, Costs, T) = e~ T = e T,

and ps 3 = @, where X(S2) = number of neighbors of state 2, which

1
e T

is equal to 3 (Equation 2.2). Therefore, @23 = 5

As discussed earlier, m = (7y, w2, -+, 7, -+, Ty ) denotes the stationary
distribution, that is, m; represents the probability of being in state 2.
The probability transition matrix © above describes how the process
evolves from state to state. An ergodic Markov chain is guaranteed
to reach a steady state, where the probability state vector no longer
depends on the time step. Thus, at steady state we have

T=m-0 (2.15)

To obtain the stationary distribution, we solve the equation 7 = 7 - ©
using Mathematica as illustrated below.

Solve
[{Thetal[1,1]]pi+Thetal[[2,1]]1p2+Thetal[3,1]1p3+
Thetal[4,1]1]1p4==p1,
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Thetal[[1,2]]1p1+Thetal[2,2]]1p2+Thetal[3,2]]p3+
Thetal[[4,2]]1p4==p2,

Thetal[[1,3]]1pi+Thetal[2,3]1]1p2+Thetal[3,3]]p3+
Thetal[[4,3]]1p4==p3,

Thetal[[1,4]]1p1+Thetal[2,4]1]1p2+Thetal[3,4]]p3+
Thetal[[4,4]]p4==p4,

pl+p2+p3+p4==1},{p1,p2,p3,p4}+]1;

Simplify[%]

Here Theta[[4, j]] represents ©;; and pi represents ;. Solving the equa-
tions to obtain the stationary distribution of the above Markov chain
we get:

( 6_% 6_% e_% e—% )
Tr = ) ) )
No(T)" No(T)" No(T)" No(T)
where
NO(T) _ Ze_ CoTst,
i=1
that 1s

Cost,
em T

T = 2 Cost

dim €T T l

Since in this example we have Cost; = i,
i
e~ T
4 — i
D= €T

This is consistent with Equation 2.10.

=

example 19 For the Markov chain given in Example 18, find the
optimizing distribution.

solution 4 The optimizing distribution can be obtained by finding
the stationary distribution and then applying the limit 7" — 0. For this
example, we have the stationary distribution given by:

1 2
e T [ [
o

No(T) N, (T)’

4
e~ T

N1

N

=

3
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1- (e-l/T) - (e-Z/T)
T3 _ 3

3

Figure 2.8 Configuration graph for Example 20.

where

No(T) = Ze_% = 6%1(1+6_% te 7T —1—6_%)

i=1

If we apply the limit T" — 0, we get
Thi%ﬂ'(T) =(1,0,0,0)

That is, the probability of achieving the optimal solution with lowest
cost, C'ost; = 1, is unity, and the probability of achieving a suboptimal
solution is zero.

In order to clarify further, let us use an example of a configuration
graph with 2 optimal states. In the example below we find the stationary
and optimizing distributions to verify Equation 2.15.

example 20 Consider the configuration graph given in Figure 2.8.
The cost of the five states is as follows: Cost; = 1, Costs = 2, Costs =
1, Costy = 4, Cost; = 3, Cost, represents the cost of state S,. If
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the acceptance criterion used is Metropolis, determine the transition
matrix and find the stationary distribution.

solution 5 FEquation 2.6 is used to obtain the transition matrix. Let
us define ¢ = e~ 7. Then the transition matrix © is given by

o+
N}

3 3 3 0 0
— t t t t
0= 0 s 1-5-5 5 0
0 0 3 5 .3
1 2
3 0 0 3 375

As before, we can solve the equations for the stationary distribution
(r = 7 - ©) using Mathematica as follows.

Solve
[{Thetall1,1]1]p1+Thetal[2,1]]1p2+Thetal[3,1]1]1p3+
Thetal[[4,1]1]p4+Thetal[5,1]1]p5==p1,
Thetal[[1,2]]1p1+Thetal[2,2]]1p2+Thetal[3,2]]p3+
Thetal[[4,2]]1p4+Thetal[5,2]]p5==p2,
Thetal[[1,3]]1pi+Thetal[2,3]1]1p2+Thetal[3,3]]p3+
Thetal[[4,3]]1p4+Thetal[5,3]1]p5==p3,
Thetal[[1,4]]1p1+Thetal[2,4]1]1p2+Thetal[3,4]]p3+
Thetal[[4,4]1]1p4+Thetal[5,4]1]p5==p4,
Thetal[[1,5]]1p1+Thetal[2,5]1]1p2+Thetal[3,5]]p3+
Thetal[[4,5]1]1p4+Thetal[5,5]1]p5==p5,
pl+p2+p3+p4+ps==1},{p1,p2,p3,p4,p5}];
Simplify[%]

Where, Thetal[i,j]] represents ©;; and p: represents m;. Solving the

equations to obtain the stationary distribution of the above Markov
chain we get:

T = (FlaFZaF3a7T4aﬂ5) == (N_a N_a N_a N_a N_)

where

N,=2+¢+t2+43

example 21 For the Markov chain given in Example 20, find the
optimizing distribution.
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solution 6 The optimizing distribution can be obtained by applying
the limit to the stationary distribution. For this example, we have the
stationary distribution given by: m = (my, a2, 73, T4, 75), where (see
Example 20)

— 1
™ = 357 +e°
o = t

2= e
- 1

3 = g s
t3

T4 = sy
t2

5 = aqite24t5

and t = e T, AsT — 0, we have t — 0. And,

1 1
lim#(T) = (=,0, o

T—0 2’
Note that since there are two optimal states, the probability of reaching
either of them is half, and the probabilities of reaching an optimal state
add up to unity, whereas the probability of reaching a suboptimal state
18 zero.

0,0)

2.4 PARAMETERS OF THE SA ALGORITHM

In the previous paragraphs we demonstrated that, if simulated annealing
is allowed to run for an infinitely long time, starting with a high value of
T, and allowing 7" — 0, then it will find a desired optimal configuration.
In practice, however, simulated annealing is only run for a finite amount
of time. A finite time implementation can be realized by generating ho-
mogeneous Markov chains of finite lengths for a sequence of decreasing
values of temperature. To achieve this, a set of parameters that govern the
convergence of the algorithm must be specified. This set of parameters is
commonly referred to as the “cooling schedule” AK89, OvG89, KCGVE3

The Metropolis procedure receives as input the current temperature 7',
the current solution CurS, and a value M, which is the amount of time
for which annealing must be applied at temperature 7'. Temperature is
initialized to a value Ty at the beginning of the procedure, and is slowly
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reduced in a geometric progression; the parameter « is used to achieve this
cooling. The amount of time spent in annealing at a given temperature
i1s gradually increased as temperature is lowered. This is done using the
parameter 8 > 1. The variable Tume keeps track of the time being expended
in each call to the Metropolis. The annealing procedure halts when Time
exceeds the allowed time. The cooling schedule specifies the following:

1. A finite sequence of values of temperature which are given by the initial
value Ty, a decrement factor («), and the final value which is specified
by the stopping criterion.

2. A finite number of transitions (denoted by SM) at each value of the
temperature which corresponds to the finite length of each homoge-
neous Markov chain.

Therefore, a cooling schedule is completely specified by setting the val-
ues of parameters a, 3, M, Ty, and Téme. It 1s customary to determine
the schedule by trial and error. However, some researchers have proposed
cooling schedules that rely on some mathematical rigor.

2.4.1 A Simple Cooling Schedule

The cooling schedule discussed in this section was presented by Kirkpatrick
et al. KCEV83 Tt i5 based on the idea that the initial temperature Tj must
be large to virtually accept all transitions and that the changes in the tem-
perature at each invocation of the Metropolis loop are small. The scheme
provides guidelines to the choice of Tj, the rate of decrements of 7', the ter-
mination criterion and finally the length of the Markov chain at a particular
temperature KCGVS3,

Initial Temperature Ty: The initial temperature must be chosen so that al-
most all transitions are accepted initially. That is, the initial acceptance
ratio x(7p) must be close to unity, where

Number of moves accepted at Tj

x(To) (2.16)

" Total number of moves attempted at Tp
To determine Ty we start off with a small value of initial tempera-
ture given by Tj. Then, x(7}) is computed. If x(7}) is not close to
unity, then T} is increased by multiplying it by a constant factor larger
than one. The above procedure is repeated until the value of x(7Y)
approaches unity. The value of Tj is then the required value of Tj. In-
creasing the value of T} by small amounts until x(7}) approximates to
unity 1s analogous to heating the material until all atoms are randomly
arranged in the molten phase.
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Decrement of T': A decrement function is proposed to reduce the temper-
ature in a geometric progression, and is given by

Thpr = aTs, k=01, (2.17)

where « 1s a positive constant less than one, since successive tempera-
tures are decreasing. Further, since small changes are desired, the value
of « is chosen very close to unity, typically 0.8 < o < 0.99.

Final T: The algorithm is terminated if the cost of the solution obtained
in the last trial of a Markov chain remains unchanged for a number of
consecutive chains.

Length of Markov chain M : This i1s equivalent to the number of times the
Metropolis loop is executed at a given temperature.

If the optimization process begins with a high value of Tg, the
distribution of relative frequencies of states will be very close to the
stationary distribution. In such a case, the process is said to be in quasi
equilibrium 2%, The number M is based on the requirement that at
each value of T quasi equilibrium is restored 413°.

From an intuitive point of view it can be argued that quasi equilib-
rium will be restored after acceptance of at least some fixed number of
transitions. Since at decreasing temperatures uphill transitions are ac-
cepted with decreasing probabilities; one has to increase the number of
iterations of the Metropolis loop with decreasing T (so that the Markov
chain at that particular temperature will remain irreducible and with
all states being non null). A factor 8 may be used (8 > 1) which, in a
geometric progression, increases the value of M. That is, each time the
Metropolis loop is called, T is reduced to a1, M is increased to M.

2.4.2 A Statistical Polynomial Time Cooling Schedule

Based on statistical analysis a problem independent cooling schedule can
be devised. That is, one which can be applied to different problems without
tuning. A whole book by Otten and Van Ginneken is devoted to developing
such a schedule control ©V989 In this section we summarize the cooling
schedules proposed by Aarts et al. AK8% ALS5 where a statistical analysis
of the problem is used and the schedule i1s adjusted so as to make the
execution time polynomial.
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Initial Temperature Ty: The requirement for Ty 1s the same as before, that
1s, 1t must be chosen so that almost all proposed transitions are ac-
cepted at this temperature. This means that the temperature must be
chosen to achieve a certain desired initial acceptance ratio xg. Let m™
be the number of moves with cost decrease and m™* the number of
moves with cost increase. A good estimate of the number of accepted

uphill moves is:
ACostt

Myp =mt x e” (57 (2.18)

where AC'ostt is the average change in cost over all uphill moves, that

18,

_
ACostt = — X Z (Cost; — Cost;) (2.19)
m S;,5;€Q:Cost;>Cost,

Then the total number of configurations accepted is

My =m~ + mt x e~ (55F5) (2.20)
The acceptance probability y is given by
M,
= 2.21
X=77 (2.21)
where M = m~ 4+ m™T. Solving the above for the temperature T we
obtain,
T— (ACost™) 999
(=)} (222)

Having derived the expression for 7', we now proceed to calculate
the required initial value Ty. To do this, initially Tp is set to a very
small value, then a sequence of My trial moves are generated, where
My =m~ + mt. After each trial, a new value of 1" is calculated using
Equation 2.22, where y 1s set to yg. That is, starting with 7y = 0,
after each perturbation a new value of T} 1s calculated from the above
expression. The above process 1s repeated until x as defined in Equation
2.21 approximates to unity.

The final value of Tj obtained is taken as the initial temperature of
the control parameter for the annealing algorithm. Experiments con-
ducted indicate a fast convergence of the above procedure to a final
value of Tj.

Decrement of T': Most schemes use predetermined temperature decre-
ments, which are not optimal for all configurations.
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For small steps in the reduction of temperature the subsequent
distributions of the homogeneous Markov chains will be close to each
other. As a consequence of this, after decreasing Ty to Tj41, a small
number of transitions may be sufficient for restoring quasi equilibrium
at Ti41. To achieve quasi equilibrium, Aarts and van Laarhoven impose
the condition AM85

V>0 ||7(Tk) — 7(Tr1)|| < € (2.23)

where

|7 () = 7(Teq)ll = Y 1milTh) = mi(Tegr)] (2.24)

Equation 2.23 is equivalent to imposing the following condition 4185,

1 FZ(Tk)
144 Fi(Tk_H)

4 and ¢ are some small real positive numbers. J is a measure of how close

VS; €Q:

<146 (2.25)

the equilibrium vectors of two successive iterations are to each other.
Aart et al. show that if 7n(7}) is the stationary distribution for the
homogeneous Markov chain associated with the simulated annealing
algorithm as described above, and T} and Tj41 are two consecutive
values of temperature with 7T} 11 < T}, then the inequalities of Equation
2.25 are satisfied if the following condition holds:

ACost

6_( Tklu’l)
VS €Q: —gmmm— <144, k=0,1,--, (2.26)
e )

ACost;,; = Costs, — Costg, , where Costs, = Costg,,, is the cost
of an optimal state. For proof of the above equation see 2% The
above equation can be rewritten to give the following condition on two

subsequent values of temperature:

T
Ty ln(1+6)
Cost;—Costopt

VS €Q: Thyr > k=01, (2.27)

If we assume that the values of the cost function are normally dis-
tributed for a given value of 7', then the ACost;, ; are normally dis-
tributed with mean C(T") — Cost;, and standard deviation o7, (o7, is
the standard deviation of the cost function up to the temperature 7Tj).
Hence

Prob{ACost;, ; < C(T) — Cost;, + 3o, } = 0.99 (2.28)

We therefore replace the condition in Equation 2.27 by the following
condition
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T}

Thy1 > T T In(143) (2.29)
6(T)—Cost,0+30Tk
and obtain the expression for Tj41 as
Ty In(1 + 4) }—1
Tho1 =T <14+ = 2.30
i F { C(T) — Cost;y + 3o, ( )

For most optimization problems however Cost;, and hence 6(T) —
Cost;, are not known, and therefore, we approximate C'(T)— Cost;,+
3o, by 3o, to obtain the following final expression for the decrement

-1
Thr = T {1 + Bl (2.31)

Final T: The stopping criterion suggested is based on the relative reduc-
tion during the optimization process of the running average of the cost
function AL85. Let Costs(T) be the smoothed average cost over all
states visited at a fixed temperature T'. The search is stopped when
the following condition is satisfied

dCostS T T <

T o < s (2.32)

where ¢ is a small positive number called the stopping parameter,
U(To) is the average value of the cost function at 7. This condition is
based on extrapolating the smoothed average cost Cost,(T") obtained
during the optimization process. This average 1s computed over a num-

ber of Markov chains in order to reduce the fluctuations of Cost(T5).

Length of Markov chain M : If quasi-equilibrium is maintained during the
optimization process, the chain length can be kept small. However, for
larger problems, obtaining stationarity will take longer time than for
small problems. Furthermore, the system should have the possibility
of investigating all configurations belonging to the neighborhood of a
given configuration. A good value of the chain length therefore is given
by the maximum size of the configuration sub-space ®(S;), that is,

M = max [R(S; )] (2.33)
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Running-time complexity: With the cooling schedule presented above the
run time of the cooling algorithm is proportional to

grllgém(&ﬂ -In |©2] (2.34)

where the term maxg,ecq |R(S;)| originates from the length of the
Markov chain and the term In || is the upper bound on the num-
ber of temperature steps. The perturbation mechanism can always be
carefully selected so that the size of the configuration subspace is poly-
nomial in the number of variables of the problem. Further, In |Q] can
be shown to be a polynomial function. Consequently, the simulated
annealing algorithm can always be designed to be of polynomial time
complexity.

2.4.3 An Efficient General Cooling Schedule

Approaches that use the above type of statistical analysis to derive cooling
schedules are termed adaptive simulated annealing algorithms. In adap-
tive annealing approaches,; the schedule can be adapted for each problem
being solved. Results similar to those presented in the above have also
been reported by Huang, et al. TRSV86 who use: (1) a dynamic tempera-
ture decrement control to avoid quenching, (2) a dynamic adjustment of
the Markov Chain length to assure the establishment of equilibrium, and
(3) reliable detection of the frozen condition. Below we summarize some
important results.

Initial Temperature Ty: The condition proposed by White Wh34 ig used

to determine the starting temperature. The system is considered hot
enough when 7" >> o, where ¢ is the standard deviation of the cost
function. Hence Ty = ko, where k is computed assuming a normal cost
distribution and selecting a temperature high enough to accept with
a given probability P a configuration whose cost is 3¢ worse than the
present one. This assumption leads to:
3
k= P (2.35)
A typical value of k i1s 20 for P=0.9. First the configuration space is
explored to determine o (the standard deviation) of the cost function,
and then the starting temperature is calculated.

Decrement of T': The annealing curve, which 1s the curve of average cost
versus the logarithm of the temperature is used to guide the tempera-
ture decrease. The idea is to control the temperature so that the average
cost decreases in a uniform manner. The slope of the annealing curve
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1s
d<C> _ d<C>
d In(T) dT
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(2.36)

Using the result in
to 02 /T? leads to:

and equating the slope of the annealing curve

TkACost>

Tk+1 = Tk(i( o2 (237)

To maintain quasi-equilibrium, the decrease in cost must be less than
the standard deviation of the cost. For instance ACost = —Ao, A < 1,

Tp

Tk+1 = Tk6_<7> (238)

Typical value of A is 0.7. In actual implementations the ratio T;—:l 18
not allowed to go below a certain lower bound (typically 0.5) in order to
prevent a drastic reduction in temperature caused by the flat annealing

curve at high temperatures.

Stopping Criterion: When equilibrium 1s established, the difference be-
tween the maximum and minimum costs among the accepted states
at that temperature is compared with the maximum change in cost in
any accepted move during that temperature. If they are the same, it
means that all the states accessed are of comparable costs, and there is
no need to use simulated annealing. When the above occurs, the tem-
perature is set to zero and the algorithm becomes a standard “greedy”
random selection algorithm.

The above adaptive heuristic has been tested on the TSP and 2-D standard
cell placement problems. For the TSP problem, a uniform speed up of
more than 5 times was reported. For the 2-D placement, the heuristic has
also been tested on circuits of size 183-800 cells resulting in a 16%-57%
saving in CPU time compared to TimberWolf3.2 (see Section 2.6.1) for
approximately the same quality of solution. For more details on the above

heuristic and details on how the quasi-equilibrium is established see Huang
ot a] HRSVSE

2.5 SA REQUIREMENTS

In order to use simulated annealing to solve a particular problem, a se-
quence of Markov chains is to be generated at descending values of tem-
perature. As seen earlier, the inner loop of the annealing algorithm is a
homogeneous Markov chain, and T" does not change within the loop. Such
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Markov chains are generated by transforming a current solution to an-
other one by applying a generation mechanism (perturbance or neighbor
function) and using an acceptance function which is usually the Metropo-
lis function. Application of the annealing algorithm therefore requires the
following.

1. A concise representation of the state space, where each state represents
a configuration, and a cost function that represents the cost effective-
ness of the solutions with respect to the optimization objectives. It
1s important that the solution representation be easy to manipulate.
Furthermore, the cost function should be given by a simple expression
that is easy to evaluate. This requirement is important because the
manipulation of current configurations to generate new neighborhood
states and the evaluation of the cost of that solution are done a large
number of times.

2. A mechanism for transforming the current solution into a subsequent
one to which the search should move. This will involve two steps.

(a) First, the neighbor function is applied to generate a new solution.
As seen earlier, to guarantee asymptotic convergence to the set
of optimal solutions the neighborhood structure must be properly
chosen so that the corresponding generation mechanism induces an
irreducible and aperiodic Markov chain.

(b) Second, the cost of this new solution, and hence the difference
in cost ACost is computed. Then, a decision is made whether to
accept or reject this new generated solution.

These two steps are the most time consuming and should be executed

in a time efficient manner. Therefore, in practice, the neighbor func-

tions are generally simple. For permutation problems such as the cell

placement or QAP (see Page 10), one simple neighbor function is a

pairwise interchange where two slots are chosen at random and their

contents swapped.

The computation of the new cost must be done incrementally, tak-
ing into account only the differences due to local disturbances (see
Exercise 17).

The decision to accept new solutions is based on the acceptance
criterion. If we use the Metropolis criterion then we are actually simu-
lating the annealing process. That is

e~ =T if ACosty; > 0
f(Cost;, Cost;, T) = (2.39)

1 lf ACOStij S 0

Where ACost;; = (Cost; — Cost;) and Cost; and Cost; are the old

and new costs respectively.
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However, in order to obtain an optimizing distribution, the re-
quirements on f(Cost;, Cost;, T) are met not only by the Metropolis
function, but also by other functions (see Exercise 19) such as the one
given below Len90,

gg—j;; ST Costi—Costi if ACost;; >0
f(Cost;, Cost;, T) = (2.40)
1 if ACOStij S 0

Nahar et al. NS85 experimented with 20 different probabilistic accep-
tance functions and temperature schedules. The list of functions, and
the results of experimentation on a 1-D cell placement problem are
summarized in SM91,

3. Finally, the success of a simulated annealing algorithm depends on the
choice of a proper cooling schedule, that is , on the initial value of
temperature, the decrement function, the length of the Markov chain
and a suitable stopping criterion.

2.6 SA APPLICATIONS

Annealing is generally easy to implement. All that is required is an ade-
quate problem representation, a move set, and a cost function. Since its
introduction, simulated annealing has been applied to several problems.

The first applications of simulated annealing was on placement K¢S V83,

Furthermore, the largest number of application of simulated annealing was
on digital design automation problems. We begin this section by describing
the application of simulated annealing to solve the VLSI placement prob-
lem 5Y9%. This choice is biased by the background of the authors. Also,
it is our own way of giving tribute to this very important VLSI physical
design problem which was the first application of SA in engineering. This
work triggered many more applications on several other hard optimization
problems.

2.6.1 VLSI placement & TimberWolf3.2

Placement is the process of arranging the circuit components on a layout
surface. The placement problem is a generalization of the quadratic assign-
ment problem, which is NP-complete 77 As an example, consider the
circuit of Figure 2.9(a); suppose that we need to place the gates on a two-
dimensional surface. Figure 2.9(b) shows one such placement (the same
placement is shown in a symbolic form in Figure 2.9(c)). The symbolic
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Figure 2.9 (a) A tree circuit. (b) A 2-D placement of gates. (c) A 2-D symbolic place-
ment requiring 10 units of wiring. (d) A 2-D placement requiring 12 units of wiring. ()
A 1-D placement requiring 10 units of wiring.

placement shows gates as black boxes and nets as lines. Note that the ac-
tual details of routing (or interconnection) are omitted from the symbolic
placement. However, from a symbolic placement, it is possible to get an
estimate of the routing requirements. In estimating the total wirelength, it
is realistic to assume that routing uses Manhattan geometry, i.e., routing
tracks are either horizontal or vertical (after Manhattan, NY, where the
streets run either North-South or East-West). In Figure 2.9(d), we show
another symbolic placement for which the total wirelength w is 12. Finally,
Figure 2.9(e) shows a one-dimensional placement of the circuit. The 1-D



SIMULATED ANNEALING (SA) 79

placement also requires 10 units of wiring. The area of a layout consists
of two parts — the functional area (the sum of the areas of the functional
cells) and the wiring area. The functional area remains unchanged for all
placements. It is the wiring area which changes with the placement. This
1s because of minimum separation that must be maintained between two
wires and between a wire and a functional cell.

A placement which requires a large amount of wiring space must neces-
sarily involve long wires and hence a large value of total wirelength. Thus
total wirelength w 1s a good measure of the area of the layout. The ad-
vantage of using w as a measure is that it is easy to compute. The overall
wirelength of a given placement configuration P is defined as follows:

L(P) =Y wy-dy (2.41)

Nets

where

d,=estimated length of net n;
wyp=weight of net n.

In this equation, since placement is performed before routing, the length
of each net is just an estimate of the actual length. One popular approach
to estimate the length is the semi-perimeter method. In this approach,
the length of the net is estimated as half the perimeter of the smallest
box enclosing all the pins of the net. Having briefly introduced the VLSI
cell placement problem, we now proceed to describe a package that uses
simulated annealing for placement.

TimberWolf3.2

A popular package that uses simulated annealing for VLSI standard-cell
placement and routing is the TimberWolf3.2 package 55V8¢. A standard-
cell is a logic block that performs a standard function. Examples of
standard-cells are two-input NAND gate, two-input XOR, gate, D flip-flop,
two-input multiplexer, and so on. A cell library is a collection of infor-
mation pertaining to standard-cells. The relevant information about a cell
consists of the name of the cell, 1ts functionality, its pin structure, and a
layout for the cell in a particular technology. Cells in the same library have
standardized layouts, that is, all cells are constrained to have the same
height (but different widths) so that they can be arranged in rows (see
Figure 2.10). The space between two adjacent cell rows is used for routing
(interconnecting the cells).
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Figure 2.10 Limiter window centered around a cell.

In the following paragraphs, we explain some of the features of the
package and the algorithms employed by it.

The Algorithm

Based on the input data and parameters supplied by the user, Timber-
Wolf3.2 constructs a standard-cell circuit topology. These parameters, in
conjunction with the total width of standard-cells to be placed, enable
TimberWolf3.2 to compute the initial position and the target lengths of
the rows. Following initial placement, the algorithm then performs place-
ment and routing in three distinct stages. In the following discussion, we
will be primarily concerned with the first stage which performs placement
by simulated annealing

The purpose of the first stage is to find a placement of the standard-cells
such that the total estimated interconnect cost is minimized. A neighbor
function called generate is used to produce new states by making a random
selection from one of three possible perturb functions.

Perturb Functions

(1) Move a single cell to a new location, for example to a different row.
(2) Swap two cells.
(3) Mirror a cell about the z-axis.

TimberWolf3.2 uses cell mirroring less frequently than cell displacement or
pairwise cell swapping. In particular, mirroring is attempted in 10% of the
cases only (where cell movement is rejected).

Perturbations are limited to a region within a window of height Hp and
width Wrp. For example, if a cell must be displaced, the target location is
found within a limiting window centered around the cell (see Figure 2.10).
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Therefore, two cells @ and b, centered at (24, yq) and (s, yp) are selected
for interchange only if |z, — x| < Wr and |y, — ys| < Hr. The dimensions
of the window are decreasing functions of the temperature 7. If current
temperature is 71 and next temperature is 75, the window width and height
are decreased as follows:

W (T) = W(Tl)iigj; (2.42)
() = () A (2.43)

Cost Function The cost function used by the TimberWolf3.2 algorithm
is the sum of three components

Y=71+72+73 (2.44)

~1 18 a measure of the total estimated wirelength. For any net 7, if the
horizontal and vertical spans are given by X; and Y;, then the estimated
length of the net ¢ is (X; +Y;). This must be multiplied by the weight w; of
the net. Further sophistication may be achieved by associating two weights

with a net — a horizontal component w# and a vertical component w) .
Thus,
n= Y [ Xi+w Vi (2.45)
i€ENets

where the summation is taken over all nets. The weight of a net is useful in
indicating how critical the net is. If we want a particular net to be short
we can increase its weight to achieve this goal. Independent horizontal and
vertical weights give the user the flexibility to favor connections in one
direction over the other.

When a cell is displaced or when two cells are swapped, it is possible
that there is an overlap between two or more cells. Let O;; indicate the
area of overlap between two cells ¢ and j. Clearly, overlaps are undesirable
and must be minimized. The second component of the cost function, 72, is
a penalty measure of overlaps.

Y2 = sz[OiJ]Z (2.46)

i
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Figure 2.11 Uneven row lengths in standard-cell design.

In the above equation ws is the weight for penalty. The reason for squaring
the overlap is to provide much larger penalties for larger overlaps.

Due to cell displacements and pairwise exchanges of cells, the length of
a row may become larger or smaller (see Figure 2.11). The third component
of the cost function represents a penalty for the length of a row R exceeding
(or falling short of) the expected length L.

ys=ws»  |Lr—Lg| (2.47)

rows

where ws is the weight of unevenness. Uneven distribution of row lengths
results in wastage of chip area. There is also experimental evidence indi-
cating a dependence of both the total wirelength and the routability of the
chip on the evenness of row lengths.

Annealing Schedule Temperature is reduced as follows,
Tiv1 = o(T})T; (2.48)

where a(T') is the cooling rate parameter which is determined experimen-
tally. The annealing process is started at a very high initial temperature
say 4 x 10°. Initially, the temperature is reduced rapidly [«(7T) ~ 0.8]. In
the medium range, the temperature is reduced slowly [« (7)) & 0.95]. Most
processing is done in this range. In the low temperature range, the temper-
ature is reduced rapidly again [a(7T) ~ 0.8]. The algorithm is terminated
when T < 1.

Inner Loop Criterion: At each temperature, a fixed number of moves
are attempted. The optimal number of moves depends on the size of the
circuit. From experiments, for a 200-cell circuit, 100 moves per cell are
recommended, which calls for the evaluation of 2.34 x 10° configurations
in about 125 temperature steps. For a 3000-cell circuit, 700 moves per cell
are recommended, which translates to a total of 247.5 x 10° attempts.
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2.6.2 A Brief Overview of Other Applications

In addition to placement, there are several other problems to which SA has
been applied successfully. These include classical problems such as the TSP
KCGV83 " graph partitioning, matching problem, Steiner problems PoWol
linear arrangement Y5589 clustering problem S4591  quadratic assignment
Cond0 “yarious scheduling problems P89 9590 "oraph coloring “HIWST etc,
In the area of engineering SA has been applied extensively to solve var-
ious hard VLSI physical design automation problems SY%%. In addition,
it has been applied with success in other areas such as topology design
of computer networks FP93 image processing 998 test pattern genera-
tion, code design, etc. A comprehensive list of bibliography of some of
the above applications and some details of their implementation such as

cost function formulation, move set design, parameters, etc., is available in
AK89, Dow95, CEGSS, Egloo

2.7 PARALLELIZATION OF SA

In previous sections, several aspects of simulated annealing were discussed.
By now, it should be obvious to the reader that, overall, simulated an-
nealing is a very sound approximation algorithm. It is a general algorithm
that 1s relatively easy to apply to almost any combinatorial optimization
problem. However, simulated annealing requires some ingenuity on the part
of the designer to cleverly anneal the problem in question, that is (a) the
adoption of a good problem representation, so that the generation, execu-
tion, and evaluation of moves will be fast, (b) the choice of a good cost
function so as to accurately characterize the goodness of solutions, and (c)
the use of an adequate cooling schedule so as to have a high convergence
rate. Nevertheless, simulated annealing is a very greedy algorithm with
respect to runtime, no matter how well tuned the algorithm is to the par-
ticular problem. The acceleration of the annealing algorithm has been an
important area of research since the invention of the simulated annealing
algorithm itself. Several accelerations techniques have been reported, which
can be classified into three general categories 4K89 HRSV8G,

1. design of faster serial annealing namely:

(a) by using faster cooling schedule SH87, G886, LAST, CDV8S, 54

(b) use of clever move sets SSV86 approximate cost computation T8¢

or changes in cost functions that reduce the chances of generating
next states that may be rejected G536

2. hardware acceleration which consists of implementing time consuming
parts in hardware B33,
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3. parallel acceleration, where execution of the algorithm is partitioned
on several concurrently running processors WR87, DRKNS7, DKNS7

The most extensively studied approach is parallel acceleration. Parallel
computation offers a great opportunity for sizable improvement in the solu-
tion of large and hard problems that would have otherwise been impractical
to tackle on a sequential computer.

In this section we shall describe the basic techniques to parallelize sim-
ulated annealing. We will limit ourselves to the work we are most familiar
with, and which we believe would be sufficient to indicate how to design a
parallel version of the simulated annealing algorithm.

2.7.1 Parallel Annealing

The recent wide availability of parallel computing hardware attracted lots
of research into the parallelization of simulated annealing in order to reduce
its runtime requirements.

Recall that a mowve or trial in simulated annealing consists of the fol-
lowing tasks:

(1) perform a perturbation of the current solution to create a new solution;

(2) compute the difference in the cost between the new and current solu-
tion;

(3) decide whether to accept or reject the new solution;

(4) if the new solution is accepted, then replace the current solution by the
new solution;

(5) if the new solution is the best encountered so far, then replace the
current best solution by the new solution.

A straightforward parallelization approach of simulated annealing could be
as follows. Each processor is assigned a particular initial solution. Then
each of the processors would be running sequential simulated annealing
starting from its assigned initial solution. This simple approach would be
very good if the search subspaces of the various processors do not overlap
(or have minimal overlap). In this case all processors would be concurrently
searching distinct parts of the solution space. However, this would require
that one has enough knowledge about the search space in order to partition
it among the individual processors. In most cases this is a very unrealistic
assumption, and usually very little is known about the search space. On the
other hand, the subspace corresponding to the neighborhood of a partic-
ular solution is usually controlled by the algorithm designer (perturbation
function), and can easily be searched in parallel by the available proces-
sors, with minimal overlap. It is for this reason that most of the suggested
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parallelization strategies force the various processors to always be working
with the same current solution.

A close examination of the five tasks of a simulated annealing trial re-
veals that the first three tasks do not have any effect on the current solution
and therefore, as long as the new solution is not accepted, the various pro-
cessors can be concurrently evaluating distinct trials without affecting the
correctness of the algorithm. However, the execution of the fourth and fifth
tasks may change the global state of the problem. Thus, the parallel execu-
tion of tasks four and five would be a source of several problems. Assume
that one processor rejects the new move, another accepts the new solution
but does not update the current best, while a third processor accepts the
new solution and updates both the current solution and the current best.
The three processors would then have inaccurate information about the
global state of the search. As we shall see later in this section, such prob-
lems can be avoided by providing some form of synchronization between
the processors.

There are two general approaches that have been applied to parallelize
simulated annealing: (1) move acceleration, also known as single-trial par-

allelism, and (2) parallel moves, also known as multiple-trials parallelism
Dur89, AK89.

In move acceleration, a trial is generated and evaluated faster by dis-
tributing the various tasks on several processors working in parallel. For
parallel moves, several trials are generated and evaluated in parallel, where
each trial is executed by a single processor. The difference between the two
approaches 1s illustrated in Figure 2.12.

The speed-up that can be achieved by single-trial parallelism approach
depends to a large extent on the problem instancej. For problems where
a simulated annealing trial consists of CPU-intensive tasks, such as floor-
planning and placement in VLSI design or vehicle routing problem, sizable
speed-up can be achieved when the various tasks of a trial are distributed
among concurrently running processors SR8T AK89 However, we believe
that this approach does not have good isoefficiency, that is, speed-up does
not grow much with increasing number of processors. Furthermore, single-
trial parallelism approaches must always be tailored to the particular prob-
lem instance.

Most work on the parallelization of simulated annealing have targeted
the multiple-trials parallelism approach or a combination of the single- and
multiple-trials approaches. In the remainder of this section, we shall confine

t See page 31 for definition of speed-up in the case of non-deterministic algorithm
such as simulated annealing.
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Figure 2.12 Parallelization of simulated annealing: (a) serial simulated annealing;
(b) simulated annealing with move acceleration; (c) simulated annealing with parallel

moves.

ourselves to this class of approaches.

2.7.2 Multiple-trials Parallelism

The multiple-trials parallelization approach of simulated annealing is very
general and can be tailored to any particular problem instance. In this strat-
egy, several trials (moves) are generated and evaluated in parallel, where
each trial is executed by a single processor. The processors are forced to
concurrently search for an acceptable solution in the neighborhood of the
same current solution (see Figure 2.13). In order to ensure that all proces-
sors are always working with the same current solution configuration, one
has to force them to communicate and synchronize their actions whenever
at least one of the trials is successful (accepted move).

Figure 2.14 is a possible parallel simulated annealing algorithm follow-
ing this multiple-trials parallelism approach.

In Figure 2.14, it is assumed that one master processor is ordering
the concurrent execution of p trials, where p is the number of processors.
The master evaluates the outcome from all trials. In case of no success,
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Figure 2.13 Multiple trial parallel search of the neighborhood X(S) of current solu-
tion S.

the master then orders the parallel evaluation of p new trials; otherwise,
it selects the best new current solution among the accepted solutions, and
updates the state of all processors. This process repeats until it is time to
stop. Also at the end of each p new trials, the master processor checks to
see whether equilibrium has been reached at current temperature. If yes,
the algorithm parameters are updated.

A close examination of the algorithm in Figure 2.14 reveals that it is
not a clever parallelization. The reason is that it is somehow a synchronous
parallelization where the processors are forced to communicate and syn-
chronize after each trial.

However, since the current solution will get updated only when a pro-
cessor makes a successful trial, the various processors should be allowed to
proceed asynchronously with their trials. Therefore, one can markedly im-
prove the parallel algorithm of Figure 2.14 by making the following change.
Synchronization is forced only when one of the processors performs a suc-
cessful trial. In this new variation communication is minimal. Furthermore,
it is a more efficient parallelization since no processor is forced to remain
idle waiting for other processors with more elaborate trials to finish.

Both variations of this parallel algorithm can be implemented to run on
a multicomputer or a multiprocessor machine. The parallel model assumed
is a MISD or a MIMD machine. For both algorithms, it is assumed that
each processor must be able to set a common variable to True whenever it
accepts a move; then the solution accepted by the processor is communi-
cated to a master processor which will force all other processors to halt and
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Algorithm Parallel SA;
(*So is the initial solution *)
Begin
Initialize parameters;
BestS = Sop;
CurS = Sp;
Repeat
Repeat
Communicate CurS to all processors;
ParFor each processor ¢
Perturb(CurS, NewS;);
A; = Accept(CurS, NewS;) (* A; is true if NewS; is accepted *)
EndParFor
If Success Then
(* Success = (\/f:1 A; = True) *)
Select(NewS);
If Cost(NewS) < Cost(BestS) Then BestS = NewS;
EndIf
Until Time to update parameters;
Until Time to stop;
Output Best solution found
End. (*Parallel_SA*)

Figure 2.14 General parallel simulated annealing algorithm where synchronization is
forced after each trial.

to properly update the current solution. Here, there are two possibilities. If
the processors do not halt immediately, but rather are allowed to complete
the trials that were in progress when the request to stop was received, then
there could be more than one solution accepted, and therefore the master
processor has to arbitrate between them, select the best, and pass a copy
to each processor. The other possibility is when a processor is supposed to
abort whatever activity in progress as soon as it receives a request to stop.
In that case the first solution accepted by any of the processors would be
the new solution of all the processors.

We believe that the first possibility would exhibit superior behavior.
This is based on the following intuitive argument. Different trials usually
have different time requirements. Trials that disturb the current solution
more would usually require more time to complete. Although one cannot
claim the existence of any correlation between the per-trial computing time
and the probability of improving the current solution, the magnitude of
improvement is positively correlated with the number of accepted trialsf.
Therefore, by letting all processors complete their current trials, it is ex-
pected to have a larger number of accepted moves, and by the same token
a better chance of further improving the current solution.

t This observation deserves more rigorous analysis and some experimental evidence.
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As we have seen, in the early regime (high temperature), the simulated
annealing algorithm behaves close to a random search algorithm, where
almost every move is accepted. This means that for the multiple-trials
approach, the speed-up will be low (almost 1) at high temperatures since
the processors will be forced to communicate after each trial. On the other
hand, as the temperature is lowered, less and less moves are accepted,
reducing by the same token the need for communication, thus allowing the
p processors to concurrently be working most of the time. Therefore, in the
cold regime, the speed-up will be approaching the number of processors
(see Figure 2.15).

This peculiar behavior of the simulated annealing algorithm has af-
fected to a large extent most of the proposed parallel versions of annealing.
A number of researchers have dealt with this problem by eliminating or
minimizing communication between the processors “RSV87, DRKNS7, AKS9

In one approach, the processors are allowed to proceed concurrently
with their search and to concurrently accept moves, with no interaction
whatsoever. Algorithms following this strategy are known as error algo-
rithms. The word error is used to highlight the fact that the processors
have incorrect knowledge about the state of the parallel search. The major
objection to this approach is the fact that the convergence properties of sim-
ulated annealing are affected. Experimental evidence revealed oscillation of
the search when such strategy is adopted. Some authors gave intuitive ex-
planations as to why error algorithms exhibit such behavior®R87, AK89 'hy4,
so far, no mathematical proof has been reported on the convergence or
non-convergence of error algorithms. Few studies have indicated, that by
limiting the number of concurrent moves or by ensuring that the moves
are always non-interacting, error 1s minimized and convergence is main-
tained UKHS3, IKB83, KR8T “Aoain no mathematical proof of such claim has
been provided. Furthermore, it is not always clear how one can go about
restricting the moves to be of a particular type.

KR87 {5 {0 re-

Another approach suggested by Kravitz and Rutenbar
strict the set of concurrent moves to be serializable. A serializable set is a
set of moves that would produce the same reject/accept decisions whether
executed in parallel or in some serial order. For example, any set of rejected
moves is a serializable set. Also, moves that are completely non-interacting
are serializable too. In general, the identification of the largest possible seri-
alizable subset of moves (to maximize speed-up) is a very difficult problem.
Kravitz and Rutenbar suggested instead a subclass of serializable move-
sets that are easy to identify. They refer to this move-set as the simplest
serializable set. A simplest serializable set is formed by taking a number of
rejected moves and appending to them an accepted move. Such move-set is
always serializable. The expected size of the serializable move-set is a good
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Figure 2.15 Achievable efficiency (E, = STP) in the hot and cold regimes for the
multiple-trials approach; p = 4.

estimation of the speed-up, since it is a measure of the average number of
trials that are evaluated concurrently. The problem with this approach is
that the size of the simplest serializable set 1s controlled by the temperature
parameter. In the hot regime, the size of this set is very small (close to 1
always) leading to unacceptably low speed-up (near 1). As a consequence
of this behavior, different parallelization strategies are adopted at differ-
ent regimes. In the following subsection, we shall describe this adaptive
strategy.

Adaptive Multiple-Trials Parallel Simulated Annealing

Because the temperature control parameter has a marked effect on the be-
havior of simulated annealing, namely on the acceptance ratio of attempted
moves, a number of researchers suggested adaptive strategies, which apply
different parallel approaches at different regimes KR87, AKS9

One of the first adaptive strategies was suggested by Kravitz and
Rutenbar KR87 The authors observed that the performance of the move
acceleration 1s independent of temperature, while that of the parallel moves
approach is sensitive to the temperature parameter. With the move acceler-
ation approach, a 50% efficiency (E, &~ 0.5) was attained on a four processor
shared memory computer. That is, with P = 4, the speed-up was near 2
(Sp ~ 2) at all temperatures. On the other hand, with the parallel moves
approach the speed-up was very near 1 at high temperature and very near
4 (for P = 4) at very cold temperatures. Furthermore, it was observed that
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at some temperature 7%, for which the move acceptance ratio a(7*) & 0.45,
the speed-up obtained with the parallel moves strategy became higher than
that obtained with the move acceleration strategy. Kravitz and Rutenbar
were also able to come up with an accurate estimation of the expected size
of the smallest serializable move-set as a function of a(7') and the number of
parallel moves p, and the following adaptive strategy was adopted. At high
temperature the move acceleration approach is used, that is, each move
is decomposed into a number of fine grain tasks executed concurrently by
the available processors. Temperature 1s decreased whenever equilibrium is
reached. As temperature is lowered, the fraction of accepted moves a(7T)
at every temperature value T is constantly monitored. Then a(T') is used
to estimate the expected size of the smallest serializable move-set. When
the expected size of this set reaches approximately half of the number of
processorst, the algorithm dynamically switches to the parallel moves ap-
proach. The authors reported significant improvement over using either of
the two static approaches®®87.

Next, we shall briefly summarize the steps taken by Kravitz and Ruten-
bar to accurately estimate the size of the smallest serializable move-set.

Expected size of the smallest serializable move-set

The outcome of the p parallel trials can be represented by p independent
and identically distributed random variables, m;, ¢ = 1,2,...,p. Each m;
is assumed to follow a Bernoulli distribution with parameter a(7), where T
is the current value of the temperature. Hence, Prob[m; = accept] = a(T)
and Prob[m; = reject] =1 — a(T).

Similarly, let ¢;, ¢ = 1,2,...,p, be p independent and identically dis-
tributed random variables representing the completion times of the p trials.
For simplicity, time is assumed to be normalized so that each ¢; is uniformly
distributed on [0, 1].

Let R be the random variable representing the number of rejected
moves. R takes on values in the interval [0,p]. R = p represents the
case when all p trials are rejected. Such event happens with the follow-
ing probability,

Prob(R=p) =[1—a(T)]* (2.49)

In that case, the size of the serializable move-set 1s equal to p.

T g is the maximum observed speed-up with the move acceleration approach when
P = 4. It remains to be proven whether this will hold for P > 4.
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Before we find a general expression for Prob[R = 7],0 < r < p, it is
important to point out that, in the multiple trial implementation of Kravitz
and Rutenbar, the first processor to accept a trial forces all remaining
processors that have not yet completed their trials to stop. Therefore, none
of the incomplete trials will be part of the serializable move-set.

Let 7 be the time to get the first accepted trial. The event R = r,
r < p, implies that at least one trial has been accepted and has finished
first at time 7 among all accepted moves. Furthermore, there are exactly
r rejected trials which finish on or before 7, and p — r — 1 trials which do
not finish by time 7 and whose status do not concern us (since they will be
forced to abort). Therefore, Prob[R = ] can be expressed as follows,

Prob(R = r) = (11’) a(T)- (p - 1) ~[1—a(T)]’"~/01 7 (1=7)P="=1dr (2.50)

r

One can easily show that the above equation can be simplified to the fol-
lowing,

Prob(R=7r)=a(T)[1 —a(T)]", 0<r <p (2.51)

Let S be the random variable representing the size of the smallest
serializable move-set. Then,

_JR4+1 f0<R<p
S = {p ifR=p (2.52)
Therefore, the expected value of S can be expressed as follows
p—1
E[S] = pla(T)(1 = a(T)"™" + (1= a(T)"]+ D r-a(T)[1 - a(T)]" ™
r=1
(2.53)

The above expression for E[S] can be simplified to the following closed
form.
_1-[—a@mPt
B a(T)

E[S] — 1= a(T) (2.54)

Kravitz and Rutenbar reported that the above equations overestimate
by about 10% the value of a(T) at which the multiple trials approach
becomes superior to the move acceleration approach. As they indicated,
the reason 1s that their statistical model does not account for any overhead
due to the multiple trials approach.
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2.8 CONCLUSIONS AND RECENT WORK

SA is a general purpose optimization technique for combinatorial opti-
mization problems. Theoretical studies have shown that the algorithm find
global optimum provided a set of conditions on the annealing schedule are
satisfied. For many hard problems, SA has produced excellent results but
requires massive computing resources.

In addition to parallelization, various other approaches have been pro-
posed to speed up SA. These approaches may be sub-divided into two
categories. One category is based on mowve-setl design; they differ from the
classical SA mainly in the perturbation mechanism that generates the next
solution Y297 Reported work in this category include fast SA SH37 very
fast SA 17839 4 new SA Y2995 etc. Most approaches based on move-set
design are problem dependent; for example the move-set used in Timber-
Wolf3.2 is based on range-limiting and is specific to the VLSI standard cell
placement problem 55V8 . Other techniques to speed up annealing based
on changes to the cost function have also been reported Gro86, GS86,

The second category is based on cooling schedule improvement
AL85, HRSV86 Most annealing processes in the literature use predefined ini-
tial values of parameters such a initial temperature, predefined value of «, a
fixed method to detect the equilibrium condition, and a pre-defined frozen
condition. An annealing schedule is adaptive if the decrements of temper-
ature and possibly the number of moves at each value of T" are determined
by the characteristic of the problem instance at hand. In this chapter we
presented two problem-independent general annealing approaches whose pa-
rameters are determined automatically from measures of statistical quan-
tities related to the problem being solved. The cooling schedule due to
Aarts et al. 2I'%5 runs in polynomial time. Aarts et al. also proposed two
parallel formulations (systolic, and a clustered algorithm) of the statistical
cooling algorithm and showed that parallel algorithms can be executed in
polynomial time. Both parallel algorithms are based on the requirement
that quasi-equilibrium is preserved throughout the optimization process
AdBHL86 For more on cooling schedules, adaptive annealing, parallel an-
nealing, and results concerning optimal convergence see the work due to

Otten et al. OvGE90, OVG8Y “the edited book of Azencott 47¢°2  and Hajek
Haj88

There 1s general agreement that the simulated annealing algorithm is
very difficult to parallelize because of its highly sequential nature. Each
iteration depends on the outcome of the previous iteration. Some of the
parallelization strategies described in this chapter allow the annealing pro-
cess to proceed concurrently on all processors without forcing any syn-
chronization among the processors. Such asynchronous parallel algorithms,
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which are referred to as the error algorithms, violate the serial decision
sequence of simulated annealing. The main concern with this approach is
that the convergence properties of simulated annealing are affected. Ex-
perimental evidence revealed oscillation of the search when such strategy
is adopted. KR87, AK89 " (ther parallelization approaches are synchronous
and enforce that all processors be working with the same current solution.
These synchronous approaches exploit parallelism within the phases of the
simulated annealing algorithm. However, the amount of parallelism that
can be exploited within the phases is both limited and problem specific.
In recent years, few researchers departed from these conventional paral-
lelization strategies and followed the concurrency technique of speculative
computation to parallelize the simulated annealing algorithm. This parallel
realization of annealing is problem independent. In this approach, concur-
rency is achieved by speculating the acceptance of each generated move
before the move is actually made. Following this prediction, subsequent
moves are made. To eliminate any decision errors, all moves subsequent
to a wrong prediction are discarded. Statistics on previous moves are used
to improve the prediction process. Speculative parallel annealing has been
shown to result in significant speedups, much higher than speedups ob-
tained with conventional strategies WCF9L, SWJ93, SWJ94, WC96 e gpec-
ulative parallel implementation reported in WCF*! is referred to as binary
speculative computation, where the processors are organized in a binary
tree. Each node speculates on the computation of its parent node. If it is
the left child it speculates that the result from the parent is an accept,
otherwise 1t speculates that the result is a reject. The reject node assumes
the parent processor will retain its current solution and thus expects the
current solution from its parent. On the other hand the accept processor ex-
pects the new solution after modification (after the move) from its parent.
Communication among the processors is interleaved with the computation.
The binary speculative computation approach suffers from the limitation
that the maximum achievable speedup is in the order of log, P on P pro-
cessors. The work reported in SW793, SWI94 j5 o generalization of the binary
speculative parallel annealing. The processors are no longer restricted to
a binary tree organization. Instead, one of the processors is designated as
the master (processor 0), the remaining P processors are slaves. At the
beginning, all processors have the same initial solution. At the start, the
master process transmits the current loop index to all slaves. The master
then starts working on the evaluation and decision steps of the annealing
algorithm. Each slave processor makes its own evaluation and decision and
passes the result to the master processor. If more than one slave processor
has reached an accept decision, the master processor accepts the decision
of the processor with the lowest ID and rejects the accept decisions of the
other slaves. The master updates the loop index, sends it with appropriate
information to all slave processors, and modifies its own data structures.
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As soon as all slaves finish the updating step, the second round of parallel
speculative annealing starts. Experimental results showed that generalized

speculative parallel annealing can result in speedups of as much as P on P
processors SWI93, SWI94.

The work reported in W% also employed speculative computation to

parallelize the annealing algorithm. The authors introduced an effective
prediction mechanism which relies on past moves to improve the accuracy
of the speculative decision process. The authors also performed a thor-
ough study of the various aspects of speculative computation which affect
speedup. Interested readers should consult W&,

Although simulated annealing has been applied to several problems
with success, there are some situations where it has not performed very
well. For example, application of annealing to the TSP has been con-
sidered by many researchers. This is one hard problem where heuristics
have consistently outperformed simulated annealing K¢GV83, OVG89 oy
ever, for many applications such as in VLSI physical design automation,
image processing, etc., where no good heuristics exist, simulated annealing

has produced excellent results S5V86,

Finally, the performance of simulated annealing very much depends
on the skill and effort put in the implementation of the algorithm. This
includes the choice of an appropriate neighborhood structure, choice of
cooling schedule and its parameters, the data structures use to represent
and manipulate solutions, etc. All these have an effect on the run time

complexity and the quality of solutions produced 4¥8°,
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EXERCISES

exerclse 23

1. Why is simulated annealing called a non-deterministic algorithm?
2. Why 1s 1t called an adaptive algorithm?
3. Explain the term “cooling schedule” as applied to simulated an-
nealing.
4. In implementing simulated annealing for your application, explain
how you will choose the initial temperature and other parameters.
5. What is the significance of the comparison below in the simulated
annealing
(random < e_Ah/T)
where Ah=(Cost(NewS) — Cost(S5)).
6. If you are to replace the exponential function (e=2*/T) by a (piece-
wise) linear function, what characteristic must this linear function
have? (Tllustrate with a figure).

exercise 24
Compare and contrast the simulated annealing algorithm with the local
search iterative procedure discussed in Chapter 1.

exercise 25

Does the quality of initial solution have any effect on the various param-
eters of the simulated annealing algorithm, such as initial temperature
and the cooling rate? Explain.

exercise 26

Propose a heuristic approach to estimate the number of iterations of
the inner loop of the annealing algorithm (number of iterations in the
Metropolis loop) as a function of the size of the neighborhood and the
current temperature.

exercise 27
Compare and contrast the various cooling schedules discussed in the
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text with respect to run time complexity.

exercise 28
Construct an example of a graph with 10 nodes, such that the nodes
have a large degree, say 5 to 10 (see Exercise 6, Page 40).

1.

Assume that all the nodes have unit sizes. Apply the simulated
annealing algorithm to obtain a two-way balanced partition of the
graph. The objective is to minimize weight of the cutset. Use pair-
wise swap as a move strategy.

. Randomly assign weights to nodes say between 1 and 10 and gener-

ate an almost balanced partition with a minimum weighted cutset
using simulated annealing. Since nodes have different sizes, a pair-
wise swap may not be the best move to generate the neighbor
function. Use the neighbor and cost function suggested Exercise
12, Page 43. Experiment with different values of W, and W;. Does
increasing the value of W, (W) necessarily reduce the value of cut
set (imbalance)?

exercise 29

A logic circuit can be represented by a set of nets as described in
Example 17. Assume that all nets have a unit weight and all the nodes
are of the same size. Write a program using SA to partition the circuit
to reduce the number of nets cut. Every time you run the program you
get a different result. Why?

Nets:

N1 ={C4,05,Ce} Ne ={C4,C7,Co} N1 ={C2,C6,C7}
Ny ={C4,Cs,C12} Ny ={C5,Cs,C10} Niz = {C10,C12}
N3 ={C2,C4} Ng ={C1,C7} Niz ={C4,C7,Co}
Ny ={C5,07,Cs} Ny ={C3,C5,C9} N1y ={C3,Cy,C11}
N5 ={C2,C3,C¢} Nio =1{C6,C3,C11}

exerclise 30

1.

Construct a connected graph with 10 nodes and 25 edges. Starting
from a random partition apply both the greedy pairwise exchange
and the simulated annealing algorithm to this graph and generate
balanced two-way partitions.

. Starting from the solution obtained from the greedy pairwise tech-

nique, apply simulated annealing. Comment on any noticeable im-
provement in quality of solution and runtime.
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exercise 31

Given the following netlist with 9 modules mq, ---, mg, and 13 nets
Ny, -+, Ni3. Assume that all cells are of the same size and that the
layout surface is a checker board with 3 rows and 3 columns (9 slots).
Write a placement program using the SA algorithm in order to assign
each cell to one of the 9 slots, while minimizing the total Manhattan
routing length. Use the semi— perimeter method to estimate the wire-
length SY9°.

Nets

N1 = {mq,ms5,me } Ny = {mq,ma} N3 = {ma,mq}
Ny ={ma,m7,ms} N5 = {mz,ma, me} Ne = {maq,m7r,mg}
N7 = {mz,ms} Ng = {mi,mr} Ny = {mz,ms, mg}
Nio = {me,msg} Ni1 = {ma,me,m7} Niz = {mq,m7z,mo}

Niz = {m3z,mo}

(a) Apply sequential pairwise exchange as the perturb function. In se-
quential pairwise exchange, the cell in slot 7 is trial-exchanged in
sequence with the cellsinslotsi+1,--- ;n—1,n,for1 <:<n-—1.
Use the following annealing schedule:

Initial temperature: Tp=10;

Constants: M=20; «=0.9; 5=1.0.

Stopping Criterion:  halt the program if no improvement
at 2 consecutive temperatures.

(b) Suppress the condition that probabilistically accepts bad moves.
This transforms the annealing to a deterministic greedy pair-wise
algorithm. Compare the results with those obtained in (a).

(c) Repeat parts (a) and (b) with random pair-wise exchange. Tabulate
the output as given in Table 2.2 and and compare the results.

exercise 32

Modify the terminating condition of the simulated annealing algorithm
so that the final annealing temperature is 7. Estimate the time com-
plexity of the simulated annealing procedure in terms of M, Ty, a, 3
and Ty. (Hint : First estimate the number of temperatures during the
annealing process).

exercise 33

Consider the configuration graph given in Figure 2.16. The cost of the
five states is as follows: Cost; = 1, Costy = 2, Costz = 3, Costy = 4,
Costs = 1, Cost,, represents the cost of state S,. If the acceptance



102

1- (e-Z/T) - (e-SIT)
3

w

3ol -2
4 4 2

Figure 2.16 Configuration graph for Exercise 33.

criterion used is Metropolis, determine the transition matrix and find
the stationary distribution.

exercise 34
For the Markov chain given in Exercise 33, find the optimizing distri-
bution.

exercise 35

Implement a placement algorithm based on simulated annealing. As-
sume that there are 210 modules to be placed on a 15 x 14 mesh.
There are two types of modules, functional blocks and 1/O pads. The
I/0O pads must be placed only on the periphery of the mesh, whereas
a functional block may be placed in any empty slot. Assume 28 1/0
pads and 182 functional blocks.

Generate a random initial placement which satisfies the pad po-
sition constraint. Use the following annealing schedule. 7, = 10.0,
a=109 08=10, 1T, = 0.1, M = 200. The perturb function must
allow a circular shuffling of modules in A slots, where A is a user-
specified constant. To test your program, you may set A = 2 or A = 3.
The perturb function must respect the pad position constraint. Use the
DELTA-LEN procedure of Exercise 17 to evaluate the change in cost
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Figure 2.17 210 cell mesh for Exercise 35.

function ACost.

1. Test your program for the sample circuit shown in Figure 2.17. In
other words, synthesize the connectivity matrix for the circuit and
give it as input to your program.

2. Run your program for several random initial placements. Does the
initial solution influence the final solution?

3. Study the influence of the A parameter on the quality of the final
solution. Vary A in the range 2 to 5. Does the run time depend on
A?

4. In this book, we have been using the Metropolis function
(e_AC‘m/T) as the acceptance criterion. Can you suggest an alter-
nate function for this purpose? Experiment with your alternative
and compare the results.

exercise 36

Consider the annealing schedule used in the TimberWolf3.2 placement
algorithm. The initial temperature is 77, the mid-range temperature
starts at T, the low-range temperature starts at 75, and T4 is the final
temperature. The cooling rate in the high, middle; and low tempera-
ture ranges are a1, as, and ag respectively. At each temperature, M
moves are made per cell. Calculate the number of moves attempted by
the algorithm if there are n cells in the circuit.
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Compute the number of moves using your formula when 77 = 105,
T, =100,753 =10,74 = 0.1, a1 = 0.8, o = 0.95, a3 = 0.8, M = 1000,
n = 100.

exercise 37
Consider the vehicle routing problem (see Chapter 1, Page 9) Propose
a simulated annealing formulation for this problem.

exercise 38

Flowshop scheduling Problem:

Flowshop scheduling with the objective of minimizing the makespan is
one of the well known problem in the general area of scheduling. (see
also Chapter 4). Jobs are to be processed on multiple stages sequen-
tially. There is one machine at each stage and machines are available
continuously. There are n jobs and m machines. A job is processed on
one machine at a time and a machine processes no more than one job
at a time. Each job 7 requires ¢; ; time units of processing on machine
Jyt; > 0,1 <i<nand 1l < j < m. The objective is to assign
jobs to machines so as to minimize the makespan, that is, the finish
time of the processing required by all the jobs. A general description of
the problem is given by Taillard 7%, For a more detailed description,
see also P92 MI94 propose a simulated annealing formulation for this
problem.

exercise 39

Terminal Assignment Problem:

Given n workstations and m hubs, the cost of assigning station ¢ to hub
J is ¢;;. Each station consumes w; units of hub capacity. The capacity
of hub j is u;. The objective is to find an assignment of minimum cost.
Each station is to be assigned to exactly one hub. Let z;; be a Boolean
variable indicating whether station ¢ is assigned to hub j (x;; = 1) or
not (z;; = 0). This problem can be stated formally as follows.

Minimize Z o= Xy Cixi
Yiljwiyy = 1 t=1,2,....n
E?leil‘ij S Uuj _] = 1, 2, ..,
z; = 0,1 t=1,2,...,nand j= 1, 2,...,m

1. Provide English interpretation for each of the above constraints.

2. Develop a constructive greedy heuristic that will quickly find a
feasible solution to this problem.

3. Develop a simulated annealing algorithm for this problem.



SIMULATED ANNEALING (SA) 105

4. Implement the developed algorithms and test them on sample
problem instances.

exercise 40

Concentrator Location Problem:

Given a set of terminal locations ¢, 1 <7 < n, and a set of potential con-
centrator locations j, 1 < j < m. The number of locations is assumed
equal to the number of concentrators. The cost of connecting terminal
¢ to location j is ¢;;. Each terminal ¢ requires w; of concentrator capac-
ity. For simplicity, assume that all concentrators are of the same type
and have a weight capacity of K. The cost of placing a concentrator
at location j is d;. Let z;; be a Boolean variable indicating whether
terminal 7 is connected to location j (2;; = 1) or not (x;; = 0), and
y; be such that y; = 1 if a concentrator has been placed at location j
and y; = 0 otherwise. This problem can be stated formally as follows.

Minimize Z = Ei,jcij$ij + Ejdjyj
ey =1 i=1,2...n

E?leil‘ij S[(yj j: 1, 2,...,777,
zij, y; €40, 1} 4=12,...,nandj=1 2,...,m

bl

1. Provide English interpretation for each of the above constraints.

2. Develop a constructive greedy heuristic that will quickly find a
feasible solution to this problem.

3. Develop a simulated annealing algorithm for this problem.

4. Implement the developed algorithms and test them on sample
problem instances.

exercise 41
Constrained Minimum Spanning Tree Problem (CMST):
The objective is to connect a number of nodes (area hubs) to a central
node (master hub) according to a spanning tree topology. Let ¢;; be the
cost of putting a link between nodes ¢ and j. Assume that the master
hub 1s node number 0, and the area hubs are numbered 1, 2, ..., n.
The flow from area hub 7 to the master hub 1s w; units. The flow on
any link must not exceed a given bound ¢. Find a feasible minimum
spanning tree interconnecting all the nodes, that is, a tree of minimum
cost and where the flow on any of the links does not exceed the bound c.
1. Use Esau-William algorithm to solve the above problem (see ¥er93
for a description of this algorithm).
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2. Design a simulated annealing algorithm to solve the above CMST
problem.

3. Compare your implementations on a number of randomly gener-
ated test problems.

exercise 42

Mesh Topology Design problem:

Given n routers numbered 1, 2, ..., n. Traffic flows between every
pair of routers are given in the form of a traffic matrix I' = [v; ;]
where 4; ; is the number of data units that are generated per unit of
time from router ¢ to router j. Let ¢;; be the cost of putting a link
between routers ¢ and j. Links can be of two types: (a) a higher grade
link where the transmission time of a data unit takes only 0.5 unit of
time, and (2) a lower grade link where the transmission time of a data
unit takes 1 unit of time. The cost of a higher grade line is 1.5 times
that of a lower grade line. Hence, the cost of putting a lower grade link
between routers ¢ and j is ¢;;, and the cost is 1.5¢;; if the link is of a
higher grade. Further, we assume that there is capacity constraint on
the traffic volume transmitted over every link. A lower grade link can
handle no more than . data units per unit of time while an upper grade
link has twice that limit. Assume that the routers forward traffic along
the path with the least transmission delays, and in case of a tie, the
least cost path is preferred. The objective is to find a feasible topology
of lowest possible cost and that which will incur minimum delays.

A possible solution to this problem is to start from a feasible topol-
ogy such as a minimum spanning tree or a complete mesh (where every
router is connected to every other router), and then to keep modifying
it by either adding or dropping links, while optimizing a figure of merit.
For the unfamiliar reader, consult the book by Kershenbaum %3,

1. Suggest criteria that can be used to select links for dropping or
adding.

2. Design a simulated annealing algorithm to solve this problem.

3. Implement the developed algorithm and test it on sample problem
instances.

exercise 43
Weighted Matching/Semi-matching problem:

1. Let W = (wi;) b an m x n nonnegative matrix. The objective
is to select a maximum weight subset of elements subject to the
constraint that no two elements are from the same row of the ma-
trix. This problem is known as the wetghted semimatching problem.
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Propose an optimal greedy algorithm for this problem.

2. Consider now the weighted matching problem, where we have the
additional constraint that no two elements are to be chosen from
the same column.

(a) Show by example that the greedy algorithm proposed for the
weighted semimatching problem is not an optimal algorithm
for the weighted matching problem.

(b) Design a simulated annealing algorithm for the weighted
matching problem.

(¢) Tmplement the developed algorithm and test it on sample prob-
lem instances.

exercise 44

Plant Location problem
Let Site;, 1 < ¢ < n, be n possible sites at which plants may be
located. At most one plant can be accommodated at each site. The
cost of setting up a plant at Site; i1s F; and its maximum capacity is
Cj;. There are m destinations, D;, 1 < j < m to which products have to
be shipped. The demand at D; is d; and the per unit cost of shipping
a product from Site; to destination D; is ¢;;. A destination may be
supplied from many plants. Define y; = 0 if no plant is located at Site;
and y; = 1 otherwise. Let z;; be the number of units of the product
shipped from Stte; to destination D;. The objective is to assign plants
to locations so as to minimize the cost of shipping required product

HS78,

quantities from sites to destinations. This can be expressed formally as
follows:

Minimize Z =3 Fiyi+ 202 ¢ijij
doitij =dj 1<j<m

> xij < Ciyi I<i<n

x5 >0, yy e{0,1} 1<i<n,1<j<m

1. Provide English interpretation for each of the above constraints.

2. Develop a constructive greedy heuristic that will quickly find a
feasible solution to this problem.

3. Develop a simulated annealing algorithm for this problem.

4. Implement the developed algorithms and test them on sample
problem instances.

exercise 45
Discuss and compare the single-trial and multiple-trial parallelization
approaches.
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exercise 46

In multiple-trial parallelization approach two possibilities were sug-
gested in the text: (1) all processors are allowed to complete their trials
and the best solution produced is adopted as the current solution, and
(2) the first processor to accept new current solution forces all other
processors to abort.

1. Discuss the merits and demerits of each possibility.

2. Does the value of temperature makes one possibility more suitable
than the other?

3. Suggest with justifications other conditions to force processor syn-
chronization.

exerclse 47

1. Prove the result of Equation 2.50.
2. Show that Equation 2.53 simplifies to the expression of Equation
2.54.

exercise 48

Equation 2.54 applies when all incomplete trials are aborted once a
processor accepts a move. Derive a similar expression for the case when
all p processors are allowed to complete their trials and the serializable
move-set 1s made of all rejected moves and the best accepted move.



CHAPTER

THREE

GENETIC ALGORITHMS (GAS)

3.1 INTRODUCTION

In this chapter we present Genetic Algorithm (GA), a powerful, domain-
independent, search technique that was inspired by Darwinian theory. It
emulates the natural process of evolution to perform an efficient and sys-
tematic search of the solution space to progress toward the optimum. It
1s based on the theory of natural selection that assumes that individuals
with certain characteristics are more able to survive, and hence pass their
characteristics to their offsprings.

Genetic algorithm is an adaptive learning heuristic. Similar to simu-
lated annealing, it also belongs to the class of general non-deterministic
algorithms. Several variations of the basic algorithm (modified to adapt to
the problem at hand) exist. We will henceforth refer to this set as genetic
algorithms (in plural).

Genetic algorithms (GAs) operate on a population (or set) of individu-
als (or solutions) encoded as strings. These strings represent points in the
search space. In each iteration, referred to as a generation, a new set of
strings that represent solutions (called offsprings) is created by crossing
some of the strings of the current generation “°!8%¢. QOccasionally new char-
acteristics are injected to add diversity. GAs combine information exchange
along with survival of the fittest among individuals to conduct the search.

109
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Since their appearance, GAs have been applied to solve several combi-
natorial optimization problems from various fields of science, engineering
and business (see Section 3.7).

We begin this chapter by a brief introduction to background and termi-
nology (Section 3.1.1), and subsequently present the basic genetic algorithm
(Section 3.2). We then look at the fundamental theorem of GAs known as
the Schema Theorem (Section 3.3) and discuss some convergence-related
issues (Section 3.4). Following this, in Sections 3.5 and 3.6 we present some
practical issues pertaining to implementation of GA on a digital computer.
These include the various types of operators, schemes and suggestions for
the choice of parameters, etc. In Section 3.7 we present a brief survey of
some engineering applications, with case studies and examples, that further
illustrate the implementation aspects of this powerful iterative technique.
The various strategies proposed for parallel implementation are covered in
Section 3.8. Other related issues and recent development in the area of GAs
are covered in Section 3.9.

3.1.1 GA Basics

In living organisms, as members of the population mate, they produce
offsprings that have a significant chance of retaining the desirable charac-
teristics of their parents, and sometimes even combine or inherit the ‘best’
characteristics of both parents. By establishing a correspondence between,
on one hand, a solution to the optimization problem and the element of the
population (represented by the chromosome), and between the cost of a so-
lution and the fitness of an individual in the population, a solution method
in the field of combinatorial optimization is introduced. The method thus
simulates the process of natural evolution based on Darwinian principles,
and hence the name Genetic Algorithm@°189¢ Hol7s,

Genetic algorithms (GAs) were invented by John Holland and his col-
leagues 1175 in the early 1970s. Holland incorporated features of natural
evolution to propose a robust, computationally simple, and yet powerful
technique for solving difficult optimization problems.

When employing GAs to solve a combinatorial optimization problem
one has to find an efficient representation of the solution in the form of
a chromosome (encoded string). Associated with each chromosome is its
fitness value. If we simulate the process of natural reproduction, combined
with the biological principle of survival of the fittest, then, as each genera-
tion progresses, better and better individuals (solutions) with higher fitness
values are expected to be produced.
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Robustness

The real world of search is filled with discontinuities and large multimodal
noisy search spaces. Calculus-based methods and simple hill climbing are
not robust, since they are local in scope and the optima they seek are the
best in a neighborhood of the current point. Genetic algorithms, on the
other hand, are both effective and robust P#v°1, Gol8%¢ Tpdependent of the
choice of the initial configurations GAs always produce high quality solu-
tions. They have proved to be effective because of their ability to exploit
favorable characteristics of previous solution attempts to construct better
solutions. Their power lies in the fact that as members of the population
mate, they produce offsprings that have a significant chance of inheriting
the best characteristics of both parents. Furthermore, GAs are computa-
tionally simple and easy to implement.

GAs are very different from other search algorithms. It is well known
that techniques such as calculus-based methods, random search, and enu-
merative schemes (dynamic programming) are inefficient and perform
poorly on some practical problems of moderate to large sizes. The main
characteristics of GAs that make them different from other search heuris-
tics are listed below.

They work with coding of parameters: GAs work with a coding of
the parameter set, not the parameters themselves. Therefore, one re-
quirement when employing GAs to solve a combinatorial optimization
problem is to find an efficient representation of the solution in the form
of a chromosome (encoded string).

They search from a set of points: In other optimization methods
such as simulated annealing (Chapter 2) or tabu search (Chapter 4) we
move from a single point in the search space, using some transition rule,
to the next point. This type of point to point movement most often
causes trapping in local optima. In contrast, GAs simultaneously work
from a rich collection of points (a population of solutions). Therefore,
the probability of getting trapped in false valleys (in case of minimiza-
tion problem) is reduced.

They only require objective function values: GAs are not limited
by assumptions about the search space (such as continuity, existence of
derivatives, etc.,), and they do not need or use any auxiliary informa-
tion. To perform an effective search for better and better structures,
they only require objective (cost) function values.

They are non-deterministic: GAs use probabilistic transition rules,
not deterministic rules. Mechanism for choice of parents to produce
offsprings, or for combining of genes in various chromosomes are prob-
abilistic.
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They are blind: They are blind in the sense that they do not know when
they hit the optimum, and therefore they must be told when to stop.

3.1.2 GA Terminology

In this subsection, we introduce the necessary terminology and illustrate
some important concepts with examples.

Chromosome, Genes, and Alleles

The structure that encodes how the organism is to be constructed is called
a chromosome. One or more chromosomes may be associated with each
member of the population. The complete set of chromosomes is called a
genotype and the resulting organism is called a phenotype. Similarly, the
representation of a solution to the optimization problem in the form of an
encoded string is termed as a chromosome. In most combinatorial opti-
mization problems a single chromosome is generally sufficient to represent
a solution, that is, the genotype and the chromosome are the same.

The symbols that make up a chromosome are known as genes. The
different values a gene can take are called alleles.

example 22 As an example, consider the problem of maximizing the
function

flz) = 2* 0<z<63

We shall assume that this function measures the fitness of an individual
phenotype x. The phenotype is a numerical value which we decode from
the chromosome.

Let us encode the decision variables of the above problem as a
string of finite-length. For this example we can use chromosomes with
binary alleles. A chromosome can be conveniently represented as a
6-digit binary unsigned integer. For example, the string 1 0 01 00
1s a possible chromosome. Also note that for the above problem we
can guess the value of the chromosome that will maximize the given
function. It is a string with all 1’s. But in real problems, of course,
there is no such advance knowledge G089 Fre94 (see Exercise 54).

example 23 As another example, consider an instance of the “sche-
duling problem”. The problem consists of assigning and scheduling
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nodes (that correspond to tasks) of a task graph to a set of connected
processors. Let the Cost of computation be the time to completion of
the computation represented by the task graph. It is required to find
an assignment and schedule that will reduce the total completion time
(Cost).

For the graph shown in Figure 3.1(a), each node represents a task
and the time required to execute it. Any of the five tasks may be
assigned to one of the three connected processors (Figure 3.1(b)). The
values on the edges between nodes represent the time that must elapse
after the completion of the first task, before the next task begins, if it
is assigned to another processor. However, if the next task is assigned
to the same processor as its predecessor task, then the time that must
elapse 1s zero.

In our problem, each assignment can be encoded as a string con-
taining n genes, where n is the number of tasks. The encoding di-
vides each gene (g) into two fields T; and py. If n is the number of
tasks in the task graph, and m the number of processors, then field
pr (1 < k < m) specifies the processing element number and field
T; (1 < j < n) specifies the task that is assigned to it. For exam-
ple, for our first assignment in Figure 3.1(c) we have the encoding
[(Ty,p1), (T2, p2), (T3, p3), (T4, p3), (Ts, p1)]. Note that for this assign-
ment, task 75 begins 2 units after the completion of task 75 since they
are assigned to different processors (that is, 75 to p; and T3 to ps).
However, in the second assignment of Figure 3.1(c), task T begins ex-
ecution immediately after the completion of task T3 since both T3 and
T; are assigned to the same processor (ps).

Since we have associated every task with its processor, any permu-
tation of these genes represents the same assignment. It is convenient
to keep the elements of the string sorted in the order of task indices.
If we keep the alleles sorted on the task indices, then it is no longer
required to store the indices, and the string [p1, p2, ps, ps, p1] is suffi-
cient to represent our assignment (or solution). Or more simply the
string [1 2 3 3 1] is a sufficient representation of the first assignment
and schedule. Similarly the second assignment and schedule can be
represented by the string [1 2 3 1 3].

Note that any string of n genes whose alleles are indices of proces-
sors (between 1 and m) is a possible assignment, and a representation
of our solution. Clearly there are m™ possible solutions or assignments
of our task graph of n tasks to m processors. For example, with m = 8
and n = 20 we have 1.15 x 10'® different solutions.

The above chromosomal representation gives us only the assign-
ment of tasks to processors, and does not give the schedule. That is,
the order of execution of tasks on the processors is not known. We
can always order tasks on each processor differently and have different
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(©)

Figure 3.1 (a) Task graph. (b) Processing elements topology. (c) Two possible sched-
ules.

completion times. For example, if we switch the order of tasks 75 and
T4 in the first schedule of Figure 3.1(c), the chromosomal representa-
tion will not change, but the completion time will increase. Clearly, in
trying to have a simple chromosomal representation some important
information is lost (see Exercise 55).

Fitness

The fitness value of an individual (genotype or a chromosome) is a positive
number that is a measure of its goodness. When the chromosome represents
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a solution to the combinatorial optimization problem, the fitness value
indicates the cost of the solution. In the case of a minimization problem,
solutions with lower cost correspond to individuals that are more fit.

example 24 For the chromosome representation of Example 22, since
we would like to maximize the function f(z) = x?, the square of the
decimal value of the binary string is a measure of its fitness. For exam-
ple, the fitness of the chromosome [1 0 0 1 0 0] is 36% = 1296. Since we
are dealing with only unsigned integers, the integer value of z is also a
possible measure of the fitness of the chromosome.

In the problem of Example 23, the objective is to find an assignment
that will reduce the time to completion. Therefore, this is a minimiza-
tion problem. Since genetic algorithms aim at maximizing the fitness,
one trivial way to translate the completion time of a schedule (cost
function in a minimization problem) to fitness is to consider fitness
as the reciprocal of the completion time. Hence, the chromosome that
represents the smallest elapsed execution time corresponds to the most
fit individual in the population.

Fitness, denoted by ¢, can therefore be expressed as the reciprocal
of the maximum of the sum of the time required to execute all the
tasks assigned to a given processor, plus its idle time. That is,

-1

o= jrgﬁﬁ(TZE: Time(T;) + idle(j)) (3.1)
€Dy

Applying the above definition, the fitness of schedule 1 in Fig-
ure 3.1(c) is -+ and that of schedule 2 in the same figure is . In
the computation of fitness using Equation 3.1 above we have assumed
that tasks ordering on processors (that is scheduling) is on their index
values.

This is not the only way in which one can map costs to fitness
values. There are other effective schemes which we discuss later in

Section 3.5.2.

Initial Population

Since GAs work on a population of solutions, an initial population construc-
tor is required to generate a certain predefined number of solutions. The
quality of the final solution produced by a genetic algorithm depends on the
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size of the population and how the initial population i1s constructed. The
initial population generally comprises random solutions. Later we elaborate
on other schemes to construct the initial population (see Section 3.6.1).

example 25 Construct a population of 4 individuals to solve the
problems in Example 22 and 23 using the genetic algorithm.

solution 7 Let us assume that we have a random number generator
that we use to generate binary patterns of 6-bits. Then a possible set
of chromosomes for the problem in Example 22 is: 53 =[0 1 1 0 0 1];
s =[101100];s3=[110101];s4=[111000].

Similarly, for the assignment /scheduling problem in Example 23, a
set of chromosomes that represent possible solutions to our optimiza-
tion problem are: s; = [23312];s2=[21123];s3=[32112];
sa=[31211].

Parents, Genetic Operators and Offsprings

GAs work on chromosomes or pairs of chromosomes to produce new solu-
tions called offsprings. Common genetic operators are crossover (x) and
mutation. They are derived by analogy from the biological process of evo-
lution. Crossover operator is applied to pairs of chromosomes. The two
individuals selected for crossover are called parents. Mutation is another
genetic operator that is applied to a single chromosome. The resulting in-
dividuals produced when genetic operators are applied on the parents are
termed as offsprings.

Choice of Parents

The choice of parents for crossover from the set of individuals that comprise
the population is probabilistic. In keeping with the ideas of natural selec-
tion, we assume that stronger individuals, that is those with higher fitness
values, are more likely to mate than the weaker ones. One way to simulate
this is to select parents with a probability that is directly proportional to
their fitness values. That is, the larger the fitness of a certain chromosome,
the greater is its chance of being selected as one of the parents for crossover.

To accomplish this type of selection we may use the roulette-wheel
method. In this method a wheel is constructed on which each member of the
population is given a sector whose size is proportional to the relative fitness
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of that individual. To select a parent the wheel is spun, and whichever
individual comes up becomes the selected parent. Therefore, in this method,
individuals with lower fitness values also have a finite but lower probability
of being selected for crossover 8% Figure 3.2 illustrates the roulette-
wheel for the population of Example 25 whose fitness values and their
percentages are given below:

s = [011001)= 252 = 625= 7.35%
so = [101100]= 442 = 1936= 22.76%
s3 = [110101]= 532 = 2809= 33.02%
sy = [111000]= 562 = 3136= 36.87%

i)

Figure 3.2 A roulette-wheel for population of Example 25.

Crossover (x)

Crossover 1s the main genetic operator. It provides a mechanism for the
offspring to inherit the characteristics of both the parents. It operates on
two parents (P; and Ps) to generate offspring(s).

There are several crossover operators that have been proposed in the
literature. Depending on the combinatorial optimization problem being
solved some are more effective than others. One popular crossover that
will also help illustrate the concept is the simple crossover. It performs the
“cut-catenate” operation. It consists of choosing a random cut point and
dividing each of the two chromosomes into two parts. The offspring is then
generated by catenating the segment of one parent to the left of the cut
point with the segment of the second parent to the right of the cut point.



118

example 26 For the following two parent chromosomes from our pre-
vious example, s =[1 0 1 1 0 0Olands; =[1 1 1 0 0 0], perform
the simple crossover to generate an offspring.

solution 8 Let P = s4 and P, = s5. If the crossover point is chosen
after the 2nd gene from the left, then the offspring produced will con-
tain the genes from the left of crossover point of parent P; and those
from the right of crossover point of parent P;. The offspring chromo-
some resulting from this operationis [I 1 |1 1 0 0]. (‘] indicates
the randomly chosen cut point). The fitness of this chromosome is
602 = 3600, which is larger than the fitness values of individual parent
chromosomes! Such a chromosome has a good chance of being included
into the population of next generation.

Mutation (u)

Mutation produces incremental random changes in the offspring by ran-
domly changing allele values of some genes. In case of binary chromosomes
it corresponds to changing single bit positions. It is not applied to all mem-
bers of the population, but is applied probabilistically only to some. Muta-
tion has the effect of perturbing a certain chromosome in order to introduce
new characteristics not present in any element of the parent population.
For example, in case of binary chromosomes, toggling some selected bit
produces the desired effect.

example 27 Consider our population of chromosomes below.

s = [011001)]= 252 = 625= 7.35%

so = [101100]= 442 = 1936= 22.76%

ss = [110101]= 532 = 2809= 33.02%

sy = [111000] = 562 = 3136= 36.87%
/l\

The allele in the fifth position in the entire population is ‘0’. There-
fore, independently of the choice of cut point, and the choice of par-
ents for crossover, this value will never become ‘1’ in any offspring. In
other words, if the parent chromosomes do not have a certain charac-
teristic, then that characteristic cannot appear in the offsprings. The
only way this gene can change its value 1s by mutation. That is, to
have a mechanism where genes are chosen randomly, and their values
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changed probabilistically. By providing such a mechanism, there is a
finite chance that those genes which are locked to a certain allele value
will change, thus introducing new characteristics into the population.

Is it guaranteed that the offsprings will inherit only the good charac-
teristics? What would be the result in Example 26 if strings for P, and
P; were swapped. Further, in our example to illustrate crossover (Exam-
ple 26) we intentionally chose parents with high fitness values. Chromo-
somes with lower fitness values also have a finite non-zero probability of
being selected as parents for crossover. And these may produce good or
inferior offsprings. As will be evident shortly, if the new offsprings that are
produced by crossover and mutated perform well (have large fitness), then
they are retained and their characteristics spread throughout the entire
population. If they do not perform well, then they have a smaller chance
of survival.

Generation and Selection

A generation is an iteration of GA where individuals in the current pop-
ulation are selected for crossover and offsprings are created. Due to the
addition of offsprings, the size of population increases. In order to keep the
number of members in a population fixed, a constant number of individuals
are selected from this set which consists of both the individuals of the ini-
tial population, and the generated offsprings. If M is the size of the initial
population and N, is the number of offsprings created in each generation,
then, before the beginning of next generation, we select M new parents
from M + N, individuals. A greedy selection mechanism is to choose the
best M individuals from the total of M + N,.

We will now summarize the main aspects of the basic genetic algorithm.

3.2 GENETIC ALGORITHM

In order to implement the genetic algorithm on a digital computer, one of
the most important steps is to encode the solution of the combinatorial
optimization as a string of symbols, also known as chromosome. This en-
coding must be amenable to genetic operations. In addition to this, unlike
in other search techniques, GAs do not operate on one solution but a col-
lection of solutions termed population. An initial population constructor is
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Procedure (Genetic_Algorithm)

M= Population size. (*# Of possible solutions at any instance.*)
Ng= Number of generations. (*# Of iterations.*)
No= Number of offsprings. (*To be generated by crossover.*)
P,,= Mutation probability. (*Also called mutation rate M;.*)
P+ =Z(M) (*Construct initial population P. Z is population constructor.*)
For j =1to M (*Evaluate fitnesses of all individuals.*)
Evaluate f(P[j]) (*Evaluate fitness of P.*)

EndFor
For ¢« = 1 to Ny
For 7 =1to N,

(z,y) + ¢(P) (*Select two parents z and y from current population.®)
offspring[j] + x(z,y) (*Generate offsprings by crossover of parents x and y.*)
Evaluate f(offspring[j]) (*Evaluate fitness of each offsprings.*)

EndFor

For j = 1to N, (*With probability P,, apply mutation.*)

mutated[s] + u(y)
Evaluate f(mutated[j])

EndFor
P «+ Select(P, offsprings) (*Select best M solutions from parents & offsprings.™)
EndFor
Return highest scoring configuration in P.

End

Figure 3.3 Structure of a simple genetic algorithm.

required to generate a certain predefined number of solutions. The quality
of final solution depends upon the size of the population and how the initial
population is constructed. The population comprises random solutions, or,
a combination of random solutions and those produced using known con-
structive heuristics. We also need a mechanism to generate offsprings from
parent solutions.

During each generation of the genetic algorithm a set of offsprings are
produced by the application of the crossover operator. The crossover op-
erator ensures that the offsprings generated have a mixture of parental
properties. In order to introduce new alleles into the chromosome, with a
certain probability, mutation is also applied. Following this, from the entire
pool comprising both the parents and their offsprings, a fixed number of in-
dividuals are chosen that form the population of the new generation. If the
M best individuals are chosen from this pool, then the fitness of the best
individual, will be the same or better than the fitness of the best individual
of the previous generation. Similarly, the average fitness of the population
will be the same or higher than the average fitness of the previous gener-
ation. Thus the fitness of the entire population and the fitness of the best
individual increase in each generation. The structure of the simple genetic
algorithm is given in Figure 3.3.
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3.3 SCHEMA THEOREM AND IMPLICIT
PARALLELISM

In the previous sections we saw the operation of the basic genetic algorithm.
We observed that crossover distinguishes GAs from all other optimization
algorithms. In this section we throw more light on what is processed by
GAs and show how this processing will lead to optimal results in our opti-
mization problems. We will see how crossover, the critical accelerator of the

search process combines parts of good solutions from diverse chromosomes
Gol89¢, Hol75

To study the what and how of GAs performance, we resort to the notion
of schema. A schema is a set of genes that make up a partial solution to
our optimization problem. Schemata (plural) can be thought of as defining
subsets of similar chromosomes, or as hyperplanes in an n-dimensional
space, where n is the number of genes per individual. Schemata are only
used to illustrate certain properties of GAs and are not explicitly processed.
That is, when we implement the genetic algorithm, we do not have any
strings in our population that represent partial solutions. All strings or
chromosomes represent complete solutions.

If we are dealing with binary strings, a schema, also known as a building
block, is a template made up of the ternary alphabet {0,1,*}, where the ‘*’
is a meta symbol representing a don’t care. We say that a chromosome
has a building block if it matches the 1’s and 0’s on the schema exactly.

Consider the population given below: G089

s = [011001]= 252 = 625= 7.35%
so = [101100] = 442 = 1936= 22.76%
[110101]= 532 = 2809= 33.02%
[111000]= 562 = 3136= 36.87%

S3 =

S4

Let Hy, Hs, Hs and H4 be four schemata represented by the following
strings: Hy= [1 1 ¥ % * ¥ Ho= [1 * * * * (], Hy= [1 * * * * *] and
H,= [0 * * * * 1]. From the above we observe that schema H; matches
two strings of our population, namely s3 and s4 since both these have
a ‘1’ in the first two positions. Similarly schema Hs with a ‘1’ in first
position and a ‘0’ in the last position matches strings s» and s4. Schema
Hj3 matches three strings s;, s3 and ss. And finally, schema Hs matches
only string s;. Associated with any schema are its order and its defining
length. The order of a schema I, denoted by o(H), is the number of non-*
symbols it contains. Tts defining length, denoted by §(H), is the distance
from the first non-* symbol position to the last non-* position. As an
example, the order of the schema *1*011 is four and its defining length § is
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four (6-2). Clearly, for binary strings (of length n), if the number of meta
symbols in a schema is k (k = n—o(H)), then such a schema represents 2*
different chromosomes, and some of these may exist in our population. Also
associated with each schema is its average fitness denoted by f(H), which is
equal to the average fitness of the schema representative in the population.
For example, since H; matches two strings sz and sq, f(Hy) is given by

f(ss)+f(s4) _ 280943136 _ s __ 1936+4+2809+43136 __
3 = ? =2973. Similarly, f(Hz) = =522 =2627.

During crossover, a schema may be cut. A schema is said to be cut if
the crossover point is selected within its defining length. When a schema
1s cut we say that it is disrupted. The probability of disruption depends
on its order o(H) and its defining length §(H ). For example, consider the
two schemata Hy= [1 1 * * * *] and Ho= [1 * * * * 0]. H; is likely to
be disrupted by crossover, but most probably H; will be left undisturbed.
That is, the larger the value of 4, the greater is the chance of disruption.
From the above we can say that schemata of short defining lengths are
most probably left undisturbed by crossover. Also, since the selection for
crossover is proportional to fitness, if the average fitness of a schema is
high then there is a good chance that chromosomes represented by it will
be selected for crossover. What is the effect of mutation on the schema?
Since usually the mutation rate (M, ) is very low, generally schemata are
not disrupted by mutation. Using the above observations we can infer the
following G°189¢, Hol™5 Highly fit, short-defining-length schemata most likely
remain undisturbed and are propagated from generation to generation.

Let us mathematically look into the details of the above observations,
which will lead us to the fundamental theorem of GAs called the Schema
Theorem Hol75,

3.3.1 Schema Theorem

Schemata and their properties, in addition to helping in classifying string
similarities, also provide a means for analyzing the effect of reproduction
and genetic operations on building blocks. In this section we analyze the
growth and decay of schemata contained in a population denoted by P(t),
(population P at generation or time t), and consider the effect of reproduc-
tion and genetic operators on building blocks contained within the popu-
lation G089,

Effect of Reproduction

Let the M individual strings of the population be denoted by P[j], with
fitness values f;, j = 1,2,---M. A generation of GA begins with repro-
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duction, that is, the creation of the mating pool. Suppose during a given
generation (or time step) ¢ there are m chromosomes of a particular schema
H contained within the population P(¢). Let these samples be denoted by
m(H,t). During reproduction, a string from the current population is se-
lected according to its fitness. That is; a string P[] gets selected with a

probability p; = Zflf'. If we do so then we expect to have m(H,t + 1)

representatives of schema H in the population at time (¢ + 1) given by

f(H)
Zj i
where f(H), as defined earlier, is the average fitness of strings represented

by schema H at time ¢, and M is the population size. If the average fitness
of the entire population is denoted by f, then,

Zj fj
M

m(H,t+1)=m(H,t) - M- (3.2)

= (3.3)

and

m(H,t+1):m(H,t)~@ (3.4)

From the above equation we observe the following. “In each generation,
a particular schema grows as the ratio of the average fitness f(H) of the
schema to the average fitness f of the population.” In other words, if the
average fitness of a schema is higher than the average of the population,
the number of copies this schema will receive in the next generation is high
(since f(H) > f implies m(H,t+ 1) > m(H,t)). Similarly, schemata with
fitness values below the population average will receive a lower number of
samples.

_Suppose that a particular schema H remains above average by a value
¢ - f, where ¢ is a positive constant, then, f(H) = f 4 ¢+ f. Equation 3.4
then simplifies to:

m(H,t+1)=m(H,t)- (1+¢) (3.5)
Starting from ¢ = 0, and assuming a stationary value of ¢, we have
m(H,t) = m(H,0) - (1+¢)" (3.6)

The effect of reproduction is now clear, it allocates an exponentially in-
creasing (decreasing) number of trials to above (below) average schemata.
This behavior of above average schema getting more copies and below av-
erage getting lesser copies is carried out with every schema H contained in
a population P in parallel. All schemata grow or decay according to their
schema averages under the operation of reproduction alone.
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Effect of Crossover

Reproduction as discussed only allocates increasing (decreasing) number
of schemata to future generations in parallel. It does nothing to explore
new regions of the search space (since we only copy new structures into
the mating pool without change). Tt is crossover that creates new struc-
tures with a minimum of disruption to the allocation strategy dictated by
reproduction.

We discussed earlier that the survival or destruction of a schema is
a function of its defining length. Consider the schema Hy= [1 1 * * * *]
of length 6 with defining length d(H1)=1. If we assume a simple crossover
then the cut point (crossover site) can occur at any one of the five positions.
If it occurs between the first and second positions then it will disrupt the
schema, else the schema remains intact. Since only one of these five posi-
tions will disrupt schema Hq, the probability of disruption of H; denoted
by pg is given by % Tlie probability of survival p;(H;) of that schema is

equal to 1 —pa(Hy) = 3.

As another example consider the following schema Ho= [1 * * * 0 *]
whose §(Hgz)=4. There are four positions (1 to 4) where a cross point can
cut the schema and disrupt it, and one point (after position 5) that will
keep the schema intact. Hence p;(H3) is % and the probability of disruption
is %. We can therefore say, that for a schema of length n, the probability
of survival p, (H) is given by

(3.7)

That is, a schema 1s disrupted whenever a crossover site 1s selected within
its defining length from n — 1 possible sites (n being the length of the
chromosome).

If crossover is itself performed probabilistically, say with a probability
Pe, then, assuming independence between crossover and reproduction, the
survival probability of a schema may be given by the expression G°18%¢

§(H)

JH)>1—pe -
ps(H) 21 =pe- ——

(3.8)

Effect of Crossover & Reproduction

Assuming independence between reproduction and crossover, the estimate
of the number of a particular type of schema H expected in the next gen-
eration due to the combined effect of reproduction and crossover is given
by the product of Equations 3.4 and 3.8, and substituting for m(H,t) from
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Equation 3.6, we get,

H S(H
m(H,t—I—l)2m(H,0)~(1+c)t~%~[1—pc~n( )1] (3.9)
From the above expression we observe that those schemata with both

above average fitness and short defining lengths are going to be sampled
at exponentially increasing rates Go189¢, Reeo5b,

Effect of Mutation

Mutation introduces random changes to single bit positions. Recall that
every schema has o(H) fixed bit positions and those represented by *’ are
don’t cares. For a schema to survive, none of the o( ) specified bit positions
must be disturbed by mutation. If p,, is the probability of mutating a
certain bit position, then the survival probability of that bit position is
1 — pm. Since mutation of an individual bit is statistically independent of
other bits, a particular schema survives if each of the fixed o(I) positions
survives.

Thus, the probability of a schema H surviving mutation (or not los-
ing its identity) denoted by ps,,(H) is given by multiplying the survival
probability (1 — py,) of one bit by itself o( H) times, that is,

psm(H) = (1 _pm)o(H) ~1- O(H) *Pm (pm << 1) (3.10)

Effect of Crossover, Mutation & Reproduction

From the above discussion we conclude that a particular schema H, due
to reproduction, crossover, and mutation receives an expected number of
copies in the next generation given by

m(H,t+1)Zm(H,O).(Hc)W@. |:1—pc~%:| 1= o(H) - pm]

o(H) pmpe-d(H)

e is negligible, the above expression can be

Assuming that
approximated to

H S(H
1) 2 m(a,0)- (14 0 LD o S o)

n—

The conclusions drawn from the above expression leads to the fundamental
theorem of genetic algorithms called the Schema Theorem which can be
stated as follows:
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Theorem 1 Highly fit, short-defining-length schemata are most likely
undisturbed and are propagated from generation to generation. These
schemata receive exponentially increasing number of trials in subse-
quent generationstee9oP, Gol89c,

3.3.2 Implicit Parallelism

The genetic operators create a new generation of configurations by com-
bining the schemata or sub-assignments of parents selected from the cur-
rent generation. Due to the stochastic selection process, the fitter parents,
which are expected to contain some good sub-assignments are likely to
produce more offsprings, and the bad parents, which contain some bad
sub-assignments, are likely to produce less offsprings. Thus in the next
generation, the number of good sub-solutions (or high fitness schemata)
tend to increase, and the bad sub-solutions (or low fitness schemata) tend
to decrease.

For binary representations of chromosomes, each string of length n is
an instance of 27 distinct schemata. Clearly, when we evaluate the fitness
of a given chromosome, we are actually gathering information about the
average fitness of each of the schemata of which it is an instance. Therefore,
a population of M chromosomes can contain as many as M - 2" schemata.
Surely not all of these schemata are equally represented, and some may
not have any representatives at all. Now, by explicitly processing M chro-
mosomes, we are implicitly processing a much larger number of schemata
(as large as M - 2"). That is, we are testing a large number of possibilities
by means of few trials— this is the property of GAs which Holland called

implicit parallelism (or intrinsic parallelism) Hol75,

Despite disruptions of long high order schemata by crossover and mu-
tation, GAs implicitly process a large number of schemata while processing
a relatively small number of strings. It has been shown that in a population
of size M, the algorithm effectively exploits some multiple of M? schema
combinations. Therefore, for a population larger than a few individuals,
this number, M?, is far greater than the total number of alleles in the pop-
ulation. Due to the property of implicit parallelism there is a simultaneous
allocation of search effort to many regions resulting in speedup in the rate
of search Ree95b,
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3.4 GA CONVERGENCE ASPECTS

One of the desirable properties that a stochastic iterative algorithm should
possess 1s the convergence property, i.e., the guarantee of converging to
one of the global optima if given enough time. In this section, we examine
the convergence properties of the GA heuristic. Convergence aspects of
GA using Markovian analysis has been addressed by several researchers
GS87a, NV93, EAHO0, DP91, DP93, Maho3, Rudd4  Fooe] Fog95 hrovides a concise

treatment of the main GA convergence results.

For convenience, GA convergence results reported in the literature as-
sume that the solutions (chromosomes) are encoded as bit strings (the genes
are 0’s and 1’s). In this section, we also assume binary encoding.

Let n be the number of solutions in the population, and | be the chro-
mosome length. As GA proceeds from generation to generation, each pop-
ulation represents a state. Each such state depends on the previous state
only. A state is a global optimum if at least one of its n chromosomes corre-
sponds to a global optimum solution. Though there may be a large number
of states, they are finite in number. Thus, the GA walk through the state
space 1s a finite Markov chain. Furthermore, since the algorithm param-
eters are kept constant, the Markov chain is time homogeneous. Hence,
Markovian analysis can be used to study the convergence aspects of GA
algorithms.

Recall that a Markov chain 1s fully specified by a matrix of transition
probabilities indicating how the chain moves from state to state in a single
transition. For a homogeneous chain this matrix stays constant from gen-
eration to generation (state to state). The transition matrix raised to the
power k yields a matrix whose entries represent probabilities of transiting
in exactly k steps from a particular starting state to a particular ending
state. For GA | the state space is usually extremely large. For a population
of n strings of length [ each, there are (T;T;!)!, where z = 2/ —1 (for proof see
Exercise 59). For example, for ten strings, each 10 bits long, there are over
3 x 1073 states. Hence, it is unthinkable to compute the transition matrix
of a Markov chain of such proportions.

A Markov chain is regular when all the entries of its transition matrix
elevated to some power are positive. The chain is absorbing if, (1) it has at
least one absorbing state and, (2) it is possible to transit (possibly in more
than one transition) from each nonabsorbing state to an absorbing state.
Recall that an absorbing state is one where, once there, it is impossible
to move to another state. Absorbing Markov chains always drift to one of
their absorbing states.
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3.4.1 GA without Mutation or Inversion

The Markov chain corresponding to GA with only crossover and selection
is an absorbing Markov chain. The density of absorbing states is equal to
21(%1). For example, for a genetic population of 2 individuals encoded as
3-bit strings (I = 3 and n = 2), there will be 23%2 = 64 states, which
are:

(000, 000) (000, 001) (000, 010) (000, 011) (000, 100) (000, 101) (000, 110) (000, 111)
(001, 000) (001, 001) (001, 010) (001, 011) (001, 100) (001, 101) (001, 110) (001, 111)

(111, 000) (111, 001) (111, 010) (111, 011) (111, 100) (111, 101) (111, 110) (111, 111)

Among the above states, there are exactly 25 = 8 absorbing states,
which are:

(000, 000) (001, 001) (010, 010) (011, 011) (100, 100) (101, 101) (110, 110) (111, 111)

In this example, the density of absorbing states is 23% = 2%, that

is, 12.5%. Notice that the density of absorbing states decreases exponen-
tially with the length of the chromosome. Hence, if all state transitions are
equally likely, the probability of hitting an absorbing state will be exponen-
tially decreasing with increasing length of the chromosome. Furthermore,
the likelihood that one of the absorbing states is a global optimum is also
exponentially decreasing with chromosome length. Note also, that the ab-
sorbing states may not even be locally optimum.

The behavior of GA progress can be represented formally as follows.
Each GA iteration forces a transition to either (1) an absorbing state, (2) a
state from which it is possible to move in a single transition to an absorbing
state, or (3) a state from which it is impossible to move in a single step to
an absorbing state. Through careful indexing of the states, the matrix of
transition probabilities can be written as follows Fog95:

P = ﬁ% 8] (3.11)

where I, is an a x a identity matrix representing transitions among absorb-
ing states of the Markov chain, @ is a ¢ x ¢ matrix describing transitions



GENETIC ALGORITHMS (GAS) 129

among transient states, R is a submatrix of transitions from transient states
to absorbing states, and () is an a x ¢ submatrix of zeros representing the
impossibility of transiting out of any of the a absorbing states.

The n-step transition matrix P" satisfies the following F&%%:

pr o= [N{?R 8] (3.12)

where N, = L+Q+Q*+...+Q" 1, and I, is the ¢ x ¢ identity matrix. As
n tends to infinity, the limit of P" exists and satisfies the following,4°°%8

- on Ia O
HILHSOP = [(It—Q)_lR O] (3.13)
and the matrix (I; — Q)~! is guaranteed to exist“°°®8. Therefore, given
enough time, the chain is guaranteed to settle in an absorbing state. How-
ever, there is no guarantee that this state is a global optimum or even a
local optimum. Hence, if the global optimum is one of the transient states,
there 1s a large probability that the algorithm misses it.

3.4.2 GA with Crossover and Mutation

Mutation is introduced to help GA explore search subspaces that are un-
reachable with crossover alone. The use of the mutation operator elimi-
nates all absorbing states. With crossover and mutation, the behavior of
GA corresponds to a homogeneous ergodic markov chain.

Definition 8 PAHO Let P, be the set of individuals of GA popu-
lation at the n’” time step (generation), and f(s) be the fitness of an
individual s € P,,. The GA evolution is monotone if,

Yn>0: i < mi
SR R A

Definition 9  FAH0 Let Q be the set of all possible populations. The
set suce(X) of possible successors of a population X is the set of all
populations that are accessible from X in n generations, n > 0. That

18,

suce(X) = {Y €Q|In>0: Prob[P, =Y] > 0}

Let S,,: be the set of optimal individuals, that is Spp; =

{s € S|f(s) = minges f(x)} Then the following theorems hold (for proofs,
see ABHS9)



130

Theorem 2 FAHY ot X € Q and let the following conditions be
true:

(a) The GA evolution from X, denoted as {P, : n > 0}, is mono-
tone,

(b) ¥ny > 0 and e, € [0,1] are such that ny — oo (k = oo) and
[Ticoexr = 0, and

Yk >0, VY €suce(X): Prob[Pn, NSyt = 0] Xn, =Y] < &
Then, {P, : n > 0} almost surely reaches an optimum, that is

Prob| li_}rn PrNSope 0] = 1.

Theorem 3 FAHY Tet X € Sopt be such that the following condi-
tions hold:

(a) {Pn: n >0}y, the GA evolution from X, is monotone and homo-
geneous.

(b) For every YV € succ(X), there exists at least one accessible opti-
mum.

Then, {P, : n > 0}y almost surely reaches an optimum, that is

Prob| li_}rn PrNSope 0] = 1.

Next, we look at the conditions that will make the GA evolution reach

an optimum.

Recall that GA has three basic steps: (1) a choice step where parents

are picked for mating, (2) a production step where crossover operators are

applied to produce offspring, and (3) a selection step where individuals of

next generation are selected from the individuals of previous generation
and their offspring.

Definition 10  PAH®0 The selection function is conservative if it al-
ways keeps one of the fittest individuals of any population.

Hence, the evolution of a conservative GA is monotone.

Definition 11  PAH%0 The neighborhood structure is connective if the
neighbor to neighbor transitions allow the search to reach any given
individual from any other individual of the solution space.
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Definition 12 PAH90 The choice, production, and selection steps of
GA are called generous if they give a chance to every individual to
become a parent, to be born, and to survive, respectively.

The reader should be able to observe that the generousness of the
choice and selection functions implies that mutation is used.

Theorem 4 FAH0 A GA algorithm with homogeneous operators, a
conservative selection, generous choice, production and selection func-
tions, and connective neighborhood will find an optimum solution with
probability one, regardless of the initial population. That is,

Prob| li_}rn PrNSope 0] = 1.

What the above theorem states is that, running GA for a large enough
number of generations, the algorithm will find one of the global optimum
solutions. Since we are assuming a conservative GA, at least one of the
global optimum solutions found during the search will be in the final pop-
ulation when GA stops. It will be the fittest individual.

3.5 GA IN PRACTICE

In the previous sections we presented a simple version of the genetic algo-
rithm and saw how schema(ta) theory is used as a mathematical formalism
to 1llustrate the implicit parallelism of GAs. Before we look into more ex-
amples and case studies of GAs in the field of science and engineering, we
present some additional details pertaining to GA operators. Variations of
the basic genetic algorithm, and other genetic operators, along with imple-
mentation specific details, are presented in this section. Other issues such as
mapping cost function values to fitness, scaling of fitness values to prevent
premature convergence, various schemes to select parents for new genera-
tion, etc., are also presented. We begin with the example of our classical
module assignment problem.

example 28 Consider the graph of Figure 3.4(a). The 9 vertices rep-
resent modules and the numbers on the edges represent their weighted
interconnection. Express the solution to the assignment of nodes to
slots as a string of symbols}. Generate a population of 4 chromosomes

t see Example 10 in Chapter 1, Page 10
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Figure 3.4 (a) Graph whose nodes are to be assigned. (b) Position definition (labels of
slots). (c) One possible assignment.

and compute their fitnesses using the reciprocal of weighted Manhattan
distancet as a measure of fitness (see also Page 367).

solution 9 The nine modules can be assigned to the nine slots as
labeled in Figure 3.4(b). One possible solution is shown in Figure 3.4(c).
Let us use a string to represent the solution as follows. Let the leftmost
index (position 1) of the string correspond to slot ‘1” of Figure 3.4(b)
and the rightmost to slot 9. Then the solution of Figure 3.4(c) can be

represented by the string | aghcbidef (%) The number in parenthesis

represents the fitness value and is obtained as follows. Consider the two
modules g and f. They are connected by an edge of weight equal to 7.
In the assignment they are 3 Manhattan units apart (2 vertically, and
one horizontally). The cost to connect these two modules is therefore
7x 3 = 21. Performing the above computation on the given assignment,
for all edges in the graph, we get a total cost of 85. The reciprocal of
the total weighted cost based on the Manhattan measure 1s the fitness
of the solution.

If the lower left corner of the grid in Figure 3.4(b) is treated as the
origin, then it is easy to compute the Cartesian locations of any module.
For example the index of module 7 in the string is 6. Its Cartesian
coordinates are given by # = ((6 — 1) mod 3) =2, and y = [£6g—1lj =
1.

Any string (of length 9) containing characters [a, b, ¢, d, e, f,
g, h, 1] represents a possible solution. There are 9! solutions equal
to the number of permutations of length 9. Other possible solutions

chromosomes) are | bdefigcha | (=), | ihagbfced | (Z), and | bidefaghc
110 95

(81_6) (see Exercise 64).

1 Given two slots whose coordinates are (z1,y1) and (z2, y2 ), the Manhattan distance
between them is given by di2 = |1 — 2| + |y1 — ¥2]|
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example 29 From our previous example (Example 28) consider the

two parents | bidefaghc | (&), and |bdefigcha | (). If the cut point
86 10

i1s randomly chosen after position 5, then the offspring produced is
bidef|gcha| Verify that the weighted wirelength of the offspring is

reduced to 63 and therefore the fitness of the offspring is (increased to)
1
@.

3.5.1 Genetic Operators

In the example above (Example 29), the elements to the left of the crossover
point in one parent did not appear on the right of the second parent. If
they had, then some of the symbols in the solution string would be re-
peated. In cell assignment or in any other problem that uses a permutation
representation for its solution, repetition of symbols (corresponding to con-
flicts due to two elements taking the same slot) do not represent a legal
solution. There are crossovers that avoid the above problem, and are more
suitable for permutation representations of solutions. Well known amongst
these are (a) Partially Mapped Crossover (PMX), G185 Gol8% (b} Opder
crossover (OX), Pavésa, Davdl “and (c) Cycle crossover (CX), 9SH87 and
their variations. Below, we discuss the details of these crossover operators
and illustrate them with examples.

The Partially Mapped Crossover (PMX)

With the PMX crossover, the offspring generated contains ordering infor-
mation partially determined by its parents. The operation of this crossover
is as follows. A random cut point is chosen in both the parents P, and Ps.
The segment to the right of the cut point in both the strings acts as a par-
tial mapping of the cells to be exchanged in P; to generate the offspring.
To implement this crossover, following the selection of the cut point, a pair
of cells in a certain location of both the segments are chosen. These pairs of
cells are then exchanged in the first parent. This process 1s repeated for all
the cells in the segment. Thus a cell in the segment of the first parent, and
a cell in the same location in the second parent will define which cells in
the first parent have to be exchanged to generate the offspring G185 SM91,

example 30 Consider the two parents | dbcaelfghi | and | efghi|dcba |

Let the random cut point chosen be after position 5. The pairs of
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alleles after the cut point situated in the same locations are (f,d),
(g,c), (h,b), and (i,a). That is alleles f and d are situated in location 6
in both parents, alleles g and c in locations 7, and so on. These alleles
are swapped in Pp, that is, allele f at location 6 in P; is swapped with
d at location 1 in P;. Similarly, the remaining three pairs of alleles are
swapped 1n the first parent. The string resulting from these swaps in

the first parent is |thgiedcba |, which is the required offspring.

The PMX crossover can also be alternately implemented as follows
(see Exercise 68). Select two parents (P; and Pa) and choose a random cut
point. As in the case of simple crossover, the entire right substring of P» is
copied to the offspring (let us refer to this as partial offspring). Next, the
left substring of P; is scanned from the left, gene by gene, to the point of
the cut. If a gene does not exist in the partial offspring then it is copied to
it. However if it already exists in the partial offspring, then its position in
the partial offspring is determined and the gene from P; in the determined
position is copied.

The Order Crossover (OX)

This crossover 1s similar to the PMX crossover, except that PMX respects
absolute allele positions whereas the Order crossover tends to respect rela-
tive allele positions. The order crossover is implemented as follows. Select
two parents and choose a random cut point. Then the entire left substring
of one parent (say Py) is copied to the offspring. Next, the second parent P,
is scanned from the left, gene by gene, from the beginning to the end. The
remaining portion of the offspring is filled by taking those elements that
were left out of Pi, but in order of their appearance in P,P?av85b, Davsba
The example below illustrates these operations.

example 31 Consider the two parents |bidcfgeha| and |aghcbidef |

Let the parents crossover position be after 4. Then the partial offspring
resulting from copying the left substring of P is . The el-

ements left out of this partial offspring are {fgeha}. The order in which
these elements appear in the second parent is [aghef]. The complete off-
spring obtained as a result of order crossover therefore is the catenation

of [ bidc | and | aghef | resulting in | bidcaghef |
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The Cycle Crossover (CX)

This crossover also helps eliminate the conflicts that normally appear when
permutation representations are used for chromosomes. Every allele in the
offspring generated by this crossover is in the same location as in one of
the parents. A cycle contains a common subset of alleles in the two parents
that occupy a common subset of positions.

The operation of cycle crossover i1s as follows. We start with the cell
in location 1 of P, and copy it to location 1 of the offspring. What will
happen to the cell in location 1 of P»? The offspring cannot inherit this cell
from Ps, since location 1 in the offspring is already filled. So this cell must
be located in P; and passed to the offspring from there. Suppose this cell is
located in P; at location @, then it is passed to the offspring at location .
But then the cell in location  in P> cannot be passed to the offspring, so
that cell is also passed from P;. This process continues until we complete
a cycle and reach a cell that has already been passed. Now we repeat the
same process as above, but this time starting from a cell in P,. We alternate
between parents until the offspring is complete.

Thus in alternate cycles the offspring inherits cells from alternate par-
ents, and the elements are placed in the same location as they were in the
parents from which they where inherited. ©SH87, SM91

example 32 As an example of cycle crossover consider the two par-
ents cbaedf|, and|adfbec|.
We will form the offspring by starting from P; and passing element

c to the offspring in position 1. Since this position in Ps is occupied
by element a, it too has to be copied from P; and this 1s done in posi-
tion 3. Similarly P» in position 3 has element f, and therefore this too
has to be copied into the offspring from P, (from position 6). Finally,
position 6 of P has element ¢ which is already in the offspring, there-
fore this completes the cycle. The partial offspring formed therefore is

. The cycle formed is cwa—f—c. In other words, elements
{c,a,f} are in positions {1,3,6} in both P; and Ps.

Now we move to P, and start another cycle from any unplaced
gene. Let us start from the element in second position (since this is
the first element not appearing in the offspring), which is d. Repeating
the procedure as above, the cycle created is d—b—e—d. The final off-
spring created is . Observe that in the offspring, elements
of the first cycle are in the same position as in P; and elements of
the second cycle are in the same position as in P,. If the second cy-
cle is completed without all elements copied to the offspring, then we
alternate back to P; and continue to search for another cycle.
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Multi-point crossovers and other variations

What we have seen so far are some important crossovers that are popularly
used. There is no hard and fast rule that they must be applied as discussed.
The only requirement is that they must ensure that the offsprings will in-
herit parental properties. There are other variations of the same operators.
For instance, we selected two parents and generated an offspring. We could
actually generate two offsprings by treating the chromosome for P» as P
and vice versa. It was suggested that parents be selected based on their
fitness values. Generally one parent is selected based on fitness and the
other at random.

We also performed the simple crossover by generating a single cut point
in both parents. We could also generate two cut points in each parent, and
swap the cut segments. For example, for the two parent chromosomes P; =
[I]011]01]and Po=1[1]|110]10],if the two cut points are chosen
after the first and fourth positions, then the two offsprings generated for
the two parents are Oy = [1 |1 10]01]and O =[1|011]10].
Sometimes, the two-point crossover has some advantages over the single
point crossover. Consider the two schemata H,= [* * 1 0 1 *] and Hp=[1
kKK X 0] Let us assume that both are important in the sense that they
contain characteristics required in our optimal solution. Clearly the single
point crossover will disrupt one or both the strings. With the two-point
crossover the chances of offsprings inheriting the goodness of the schemata
are higher.

Other examples of multi-point crossover have also appeared in the liter-
ature. In general, the number of crossover points (CP) can be a parameter
of the algorithm. With CP=1 the generalized crossover reduces to simple
crossover. With values of CP >1 alternate segments are chosen from each
of the parents to create offsprings o775 GoI89¢ That is, segments 1, 3 etc.,
from P, and segments 2, 4, etc., from Ps. It has been shown that multi-
point crossover with CP>2 has a poor performance because less structure
and therefore fewer important schemata are preserved. In addition, run-
time is also affected since more random numbers have to be generated and
more time is involved in creating new strings.

Multipoint operations have also been applied to other advanced permu-
tation crossovers. For example, the partially mapped crossover (also known
as partially matched crossover) can also be a two-point operation. In this
two-point crossover, first, two crossing sites are picked at random and these
define the matching section (the middle section). This matching section is
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used to effect a cross through position-by-position exchange operations as
illustrated in the example below.

example 33 As an example of the PMX two-point crossover, consider

the two parents Py= |bid | efg | cha|and Po= |agh | cbi | def| First,

two crossing sites are picked uniformly at random. Let these be after
positions 3 and 6. These two positions define our matching section.

Pairs of alleles in the matching section in the corresponding loca-
tion are picked. These alleles in our example are (e, ¢), (f, b) and (g,17)
in positions 4, 5, and 6 respectively. We first map parent P» to parent
P;. This is done by exchanging places of our chosen pairs (e, ¢), (f,b)

and (g,¢) in Py resulting in the string OS;= |fgd | cbi | eha [ Simi-
larly, mapping parent P; to parent P, alleles (e, ¢e), (b, f) and (i, 9)
exchange places in Py resulting in OS;= |aih | efg | dcb | Note that

each offspring contains ordering information partially determined by
each of 1ts parents.

There are cases where the simple one/two-point crossover fails to in-
herit parental characteristics. Syswerda Y589 described an operator which
he called the uniform crossover. In this crossover a binary string tem-
plate is randomly generated. Then, for each bit position on the two selected
parents, the value of the bit in the template will indicate which of the two
parents will contribute its value in that position to the offspring. For exam-
ple, if the template is the string [1 0 1 0 0 1] then the first bit, third bit, and
the last bit of the offspring come from parent 1 and the remaining three
bits from parent 2. A second offspring is similarly created by reversing P
and P;. As you might have guessed, the main advantage of this crossover
is that ‘building blocks’ no longer have to be encoded as short schemata in
order to survive. The survival of schemata in this case does not depend on
its defining length, and all schemata of a given order have the same chance
of being disrupted (or preserved).

The above uniform crossover of course does not work for strings with
permutation representations. A generalization under the name of ‘uniform
order-based crossover’ which is a combination of the uniform crossover
and order crossover was proposed by Davis P?¥°1 Tt is similar to the uniform
crossover, where the 1’s in the template define elements copied from the
first parent, while the other elements are copied from the second parent in
the order they appear in the chromosome. A second offspring is similarly
generated.
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example 34 As an example of the uniform order based crossover,
consider the two parents Pi= and Py= m. Let
the defining template be [1 0 0 1 1 0]. Selecting elements of the first off-
spring O; from those positions in P, that have 1s in the template, and
for O, from those positions in P, that have Os in template, the partial
offsprings generated are: O1= and Oy= . The
missing elements in Oy are {b ¢ f}. The order they appear in Ps is {f
b c}. Filling these missing elements in the above order results in the

offsprings O1=|a { b d e c| Similarly the second offspring O is given

by|cdbefal

Mutation

Mutation 1s a secondary genetic operator similar to the perturb function of
simulated annealing (see Chapter 2). Unlike crossover, it does not produce
any offsprings, but it produces random changes in the offsprings that are
generated by the crossover. Mutation is important because crossover alone
will not guarantee to obtain a good solution. Crossover is only an inher-
itance mechanism. The mutation operator generates ‘new’ characteristics
thus assuring that crossover will have the complete range of all possible
allele values to explore. Mutation also increases the variability in the pop-
ulation.

Following the selection of individuals for a new generationf, each gene
position of each chromosome in the new population undergoes a random
change with a small probability equal to the mutation rate denoted by M,
(also referred to as the mutation probability p,). Parameter M, controls
the rate at which new genes are introduced into the population. In order
not to cause too much disruption to schemata, typical recommended values
for M, are generally very low (1%-5%).

In a population of size M, where each individual has n genes, approxi-
mately M, x M x n mutations occur per generation. A low level of mutation
serves to prevent any given gene from remaining forever converged to a sin-
gle allele value in the entire population. However, if mutation rate is very
low then infusion of new genes is also very low, and many genes that would
have been good would never be tried out. If mutation rate is high then
there will be too much random disturbance, causing the offsprings to lose

t In some implementations this is done after crossover and before the selection of
individuals for the new generation.
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resemblance to their parents and the algorithm will lose its ability to learn
from the history of the search SM91, WSF89 " A very high level of mutation
essentially yields a random search. In some implementations mutation rate
is varied as a function of population diversity (see Exercise 70).

In case of chromosomes represented by binary alleles a simple bit inver-
sion mutates the chromosomes. This will not work for chromosomes that
use permutation representations. In this case, generally two elements are
chosen randomly and their positions are exchanged #¢¢°°®. Or, two elements
are chosen and one is moved to a position just before the other (similar to
the insert move on Page 235). A scramble sublist mutation was proposed
by Pav91 where two points are chosen on a string and the elements in the
segment between them are randomly permuted. Obviously, in this case it
is recommended to limit the length of the scrambled portion since it has a
larger tendency to disrupt the schema.

Inversion

Inversion is the third operator of GA and like mutation 1t also operates on
a single chromosome. Its basic function is to laterally invert the order of
alleles between two randomly chosen points on a chromosome. Its opera-
tion is as follows. Two points are randomly chosen along the length of the
chromosome, and the string between the two points is inverted. For exam-

ple, the string | bid | efgch | a| (cut after positions 3 and 8) will become
bid | hegfe | a | after inversion.

3.5.2 Scoring/Fitness function

Genetic algorithms work naturally on the maximization of fitness. In most
optimization problems the objective is to minimize the cost. Therefore, it is
required that the cost function is mapped to a fitness function. The fitness
function assigns a positive value to each individual. In GAs, it is required
that all fitness values must be positive.

In the subsequent paragraphs we will see several schemes that have
been proposed to map Cost to fitness values. We will also see proposals to
rank /scale fitness values to avoid premature convergence, which is a major
problem in GAs.
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Mapping Cost Function to Fitness

In earlier sections we proposed treating the fitness of an individual as the
reciprocal of the cost. Another possibility is to multiply the costs by mi-
nus one. But this results in non-negative fitnesses. Generally, in GAs, the
following transform is used:

fi =

Costmax — Cost;  when Cost; < Costipnax
otherwise

where Costyax may be the maximum cost in the current population and
Clost; 1s the cost of individual solutions. Other possible choices of Costax
are the largest value of cost observed until the current iteration, or the
largest observed in some last & generations.

When the objective function is not cost but profit or a utility function
(u), u; denoting the value of each individual solution, we still may have
to transform it to avoid negative values. To accomplish this the following
transform is proposed:

= {uZ + Costmin  when w; + Costmin > 0

0 otherwise

where C'ostyiy 18 generally the absolute value of the the worst u; in the
current generation. Similar to the case of choosing Costy .y, a possible
choice of Costnin 1s the absolute value of the worst u; observed in some
last k& generations.

3.5.3 Scaling

The selection of parents is a very important step in GA as it affects the
population in the new generation. If selection is based on raw fitness values
it may lead to premature convergence. This is because a few extraordinary
individuals in the population would take over a large proportion of the
finite population in a single generation. Further, in later runs, there may
be some diversity within the population, but most of the fitness values will
be close to each other (that is, the average fitness may be close to the
population best fitness). If this situation is left as is, then the average and
best members will get the same number of copies. To avoid this situation,
fitness values are scaled or ranked.

Several scaling methods have been proposed in the literature. One
method is linear scaling. In this method, given a fitness f; of individual
t, the scaled fitness value f; is calculated as follows.

fi=ax fi+b (3.14)
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where a and b are chosen such that the averages of raw fitness and scaled
fitness are equal.

Linear scaling runs into problems in later runs of GA when most of
the fitness values are close to each other and some members have very low
fitness values. This leads to negative fitness values which are unacceptable.
To avoid this situation sigma truncation was proposed T3 In this method
all the fitness values are pre-processed to calculate modified fitness values

fl»” as follows.

fi” =fi— (fan — Kpult ¥ 0’) (3~15)

where o is the standard deviation of the population and K i 1s a mul-
tiplying constant generally chosen to be between 1 and 3. The negative
values (fZ” < 0 ) are set to zero. After this truncation, linear scaling can
proceed without the danger of negative results as follows.

fi=axf +b (3.16)

Fitness scaling attempts to maintain the variation in the population which
is necessary for further exploration of the search space. Once the population
consists of the same type of individuals the GA looses its ability to explore
the search space until the population gains some variation by the slow
process of mutation. Yet another method of scaling has been suggested in
the literature and is called power law scaling 85 In this method the scaled
fitness 1s some specified power of the raw fitness given by

fi=r (3.17)

The value of k is problem dependent and may be required to change during
a GA run to stretch/shrink the range as needed.

3.5.4 Selection of Parents

Each generation of a GA begins with the creation of a mating pool from
which offsprings are generated by probabilistically applying crossover on
pairs of parents. This is followed by mutationf.

Stochastic Sampling: Earlier we saw the roulette wheel method for se-
lecting parents for crossover. This method is also known as stochastic sam-
pling with replacement. For each application of crossover one or two off-
springs are generated. Once a certain number of offsprings are generated,

t It is recommended that mutation follows selection otherwise the effect of mutation
maybe severely decreased.
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they are mutated and are used to replace some parents, thus becoming
possible parents for the next generation.

Another scheme is to choose parents based on an expected value (e;)
determined using string fitnesses. This method was designed 7" to reduce
the stochastic errors that are associated with the roulette wheel method of
selection. Tt can use raw fitness or scaled fitness values (see Section 3.5.3).
The value e; determines the expected number of times an individual 1s to
be selected as a parent, and 1s computed as follows.

i

/i
i

where M is the population size. A sample space is defined based on the

e; = X M

above e; values. It is an array of records with two fields, a member iden-
tification number field, and a probability field. For example, if e; = 2.6,
then individual j will receive three slots (4, 1.0), (4, 1.0), and (j, 0.6) in the
sample space. Note that the first field in a slot is the individual’s 1dentifi-
cation and the second field is the probability with which the slot should be
accepted.

1 2 3 4 5 6 k
€; €; €;
1 1 0.6

Assume that there are a total of k slots in the sample space. To select a
parent, a random number is generated between 1 and &, and the individual
corresponding to the slot is selected as a parent with the probability of
that slot. Since fitter individuals will get more slots in the sample space,
they will have a higher chance of being selected. Diversity is maintained
because the selection i1s random over the sample space. The parents are
thus selected randomly from the sample space and with consideration to
the probability of the slot.

Another method of constructing the array is to assign a number of
copies to it equal to the integer value of e;. Then, the fractional parts of
the expected number values are treated as probabilities. For each individ-
ual, Bernoulli trials are carried out using the fractional parts as success
probabilities. This operation is repeated until the array is full. For exam-
ple, if the expected number of copies of an individual ¢ 1s 1.4, then this
individual will receive a single copy surely in the array, and another with
probability 0.4 7775 Following this pre-select procedure, the parent selec-
tion procedure operates on the array. Each time a parent is needed for a
crossover, it 18 randomly selected from the array. Then, the selected parent
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is removed from the list. This method of using expected values to build the
array and select the parent is also known as stochastic remainder without
replacement.

Ranking: Selection methods such as roulette wheel, that use raw or scaled
fitness values to select parents for new population and crossover can be
problematic and work only on positive fitness values. As seen, the scaling
methods proposed are ad-hoc. Some researchers argue that a key to good
GA performance 1s to maintain an adequate selective pressure on all the in-
dividuals by means of an appropriate relative fitness measure V>S9, Baks5
This can be accomplished by dissociating the fitness function from the un-
derlying objective function using a method called Ranking. In ranking, the
selection depends on the relative goodness of individuals and not the actual
fitness values. Individuals are sorted in ascending order of their fitnesses.
Then, depending on the rank, a function is used to assign a count to each
chromosome Bak85

Ranking has been used to obtain improved results. For example, for
the flowshop sequencing problem Be¢952 4 selection procedure based on
the probability distribution given below was used.

2k
)= — 2%
P(lk) M(M + 1)
where [k] is the kth chromosome in the ascending order. The best chromo-

some (k = M) then has a chance of ML-H of being selected and the median

a chance of ﬁ Ree9ba, Yao97.

Tournament Selection: Finally, we present a mechanism that combines
both selection and ranking mechanisms. It can be thought of as a noisy form
of ranking and is known as tournament selection S°°0 Whi%4 Tt consists of
the comparison (competition) of all individuals within a subgroup of the
population.

This scheme treats the population as a permuted list of M chromo-
somes. The population is divided into sub-groups of G chromosomes each
(G > 2). The chromosomes with the highest fitness in each subgroup are
then selected and chosen as parents. Then, the list is permuted and the en-
tire procedure is repeated until M parents have been chosen. Each parent
1s then mated with another chosen randomly. As an example, consider the
population of 6 individuals, with indices 1 to 6. Let the index value also
be its fitness. If the random permutation (of chromosomes) is [25 3 6 1
4], and the value of G chosen is 3, then, from the first three individuals,
chromosome 5 wins, and from the next three chromosome 6. Now the list
is permuted again. Let the permuted list be [1 24 6 3 5]. Then the par-
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ents selected are 4 and 6 respectively. The list is permuted one last time to
select the final two parents. Let the permuted list be [6 54 3 2 1 ]. Then
the parents selected are 6 and 3 respectively. Therefore the 6 chromosomes
selected are b, 6,4, 6, 6, and, 3. Observe that in this method, the best chro-
mosome gets selected G times, the worst is never selected, and individuals

with fitness below average still have a chance to “win” (to be selected as
parents). GD91, Gol90, Reedsb, FW3

3.6 GA PARAMETERS

Determining the parameters to be used in a GA can be quiet difficult.
Parameters to be set include: the size of the initial population (M), the
probabilities used for crossover (P.) and mutation (P, or M,), etc. The
performance of a GA depends on the above parameters which are very dif-
ficult to tune. The tuning of GA to a particular problem requires extensive
experimentation. In the following paragraphs we elaborate on some of the
ad-hoc methods that have been proposed or adopted by GA practitioners.

3.6.1 Population

In this section we present some issues concerning initial population and its
construction, and choice of population size.

Initial Population: The choice of initial population affects both the qual-
ity of the solution and the number of generations needed to reach a good
solution. This is because it is the characteristics of the elements of the
initial population that are inherited by the offsprings produced in subse-
quent generations. And one of these offsprings is to be our desired solution.
There are two issues that concern the initial population: (1) how should
the individuals of the initial population be selected? and (2) what should
be the size of the population? Generally the population size is maintained
constant for the entire run of GA. In Section 3.9 we look at the effect of
dynamically reducing the size of the population.

Construction: The initial population is generally constructed randomly.
Sometimes certain elements of the initial population may be solutions of
some well known constructive heuristics. This method of including solutions
of other known methods is called seeding. The initial population may also
contain elements used as initial solution by other heuristics. Seeding has
been reported Pavol, ReedSb ¢4 help obtain a better solution faster.
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Population Size (M): As discussed earlier, the number of schemata pro-
cessed 1s a function of the population size M. In addition, the value M
affects the runtime, the convergence rate, as well as the solution quality of
the algorithm. That is, it has a direct effect on both the ultimate perfor-
mance and the efficiency of GAs. GAs do poorly with smaller populations
because a small population provides insufficient sample size for most hy-
perplanes. On the other hand, a large value of M is more likely to contain
representatives from a large number of hyperplanes, and therefore GAs can
perform a more informed search. As a result, large M discourages prema-
ture convergence to sub-optimal solutions but requires more evaluations

per generation, and may result in an unacceptable slow rate of convergence
GDC92

Goldberg G918 presented a heuristic to determine the optimal value
of M. The expression obtained grows exponentially with the length of the
chromosome (!) and is given by

M = 1.65 x 2°2 (3.18)

The value of M obtained this way is impractical, as it exceeds the capa-
bilities of today’s machines. For example, with a value of [ = 200, the
population size is 7.3 x 1012 HMS89,

Based on experimental work, a value between [ and 2/ has been sug-
gested by Alander 41292 (where [ =length of the chromosome). In HGL92,
for the traveling salesman problem (TSP) of N cities, a population size
M = p x N was proposed, 2 < p < 20. Typical values of M, for most GA
applications range between 10 and 50, although some applications have
used values as large as 200.

3.6.2 Generation Gap

The percentage of the population to be replaced during each generation is
controlled by a parameter called generation gap denoted by G (0 < G < 1).
In each generation, M x G offsprings are generated and, using one of the
several policies described below, some or all of them replace the parents
to form the population of the next generation. Therefore, M x (1 — G)
individuals of the current population are chosen to survive intact in the
population for the next generation.

A value of G=1.0 means that the entire population is replaced during
each generation. This indicates that there is no overlapping of population
since no parents of the current generation survive into the next. Experi-
mental evidence indicates that GAs perform better when non-overlapping
populations are used.
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A value of % < G < 1.0 means that M x G offsprings are generated
and are inserted into the population. There are several ways to do so. One
trivial way is to randomly select M x G individuals from the population
and replace them with the offsprings. Another possibility is to replace indi-
viduals with low fitness values. Or, a replacement based on a combination,
where a certain percentage of those replaced are selected randomly, and
the remaining based on their fitness values.

The third possibility is when G = % In this case each offspring is
inserted into the population as it gets generated. One of the elements in
the existing population is randomly selected with probability % and 1s re-
placed by the created offspring. This step is repeated as many times as re-
quired. This type of GA in which only one crossover operation is performed
per generation is called incremental or steady state GA. It corresponds to
incremental replacement and has advantages in terms of implementation.
(see also Page 350). Several other proposals have been suggested to replace
an element of the current population with a new offspring. One of course
is to randomly choose a member of the population and replace it. An-
other method 1s known as termination with prejudice. In this method, the
offspring replaces a randomly selected parent from those which currently
have a certain below-average fitness 487

In some of the above presented strategies, there is a possibility of the
best structure in the current population disappearing due to sampling er-
ror, crossover, or mutation. An elitist strategy was suggested 77 in which
the current best solution is forced to survive, and is included in the pop-
ulation for the next generation. GAs that keep the current best solution
throughout the optimization process are referred to as elitist GAs. Recall
from Section 3.4 (Page 127) that elitist GA has monotonicity property

which is a necessary property for convergence.

3.6.3 Operator Probabilities

Implementation of most GAs assume a fixed rate of using the genetic op-
erators (crossover or mutation). Generally mutation is applied with a very
low probability (less than 1%) and crossover is always applied, that is, the
probability of crossover is 1. Probabilities lower than 1 have also been used
for crossovers.

As has been mentioned earlier, the population diversity decreases in
every generation. In order to alleviate the problem of premature conver-
gence that results due to the decrease in population diversity, the mutation
rate can be made to vary inversely with the population diversity #¢¢95" (see

Exercise 70). Another suggestion 39! reported is to apply in each gener-
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ation either crossover or mutation but not both. Thus, at each step, the
algorithm chooses between operators on the basis of a probability which
1s known as operator fitness. For example, if the crossover has a fitness
of 90% and mutation 10% then crossover is applied 9 times more often
than mutation. A modification to this idea is to change the operator fitness
values as the algorithm proceeds P21 More weight is given to crossover
when population diversity increases, and more weight to mutation as the
solutions start converging Ree95P,

Sometimes more than one crossover operator is available. In such case,
during each generation, one of the available crossovers is chosen based on
a probability distribution. In Y*°% a multi-objective function is optimized
using GA. In order to satisfy different objectives, different characteristics
need to be inherited, and for each, a different crossover is proposed. Simi-
larly, in 51°5 several mutation operators are proposed, and one of them is
chosen in a generation on the basis of its probability.

Is there a theoretical optimal value for the mutation rate? In 725 a

mutation rate equal to n~! (where n is the string length) has been rec-
ommended. And in 5+%°, based on experimentation, the optimal rate was
estimated to be proportional to 1/M" 931804535 Byt most GA practition-

ers ignore string length in their choice of mutation probabilities Bee95P,

3.6.4 Other Issues

The runtime efficiency of a GA can be greatly improved by giving careful
consideration to some issues. One important issue is the design of chro-
mosome. For example, the chromosome may be efficiently designed so as
to ensure inheritance of good characteristics. However the same represen-
tation may not be good for computing the solution (chromosome) fitness.
Consider the example of assigning tasks to processors in Example 23. The
chromosome representation is elegant, a simple string. But each time a new
offspring is generated, the fitness cannot be known until the entire schedule
is constructed. The expression given in Equation 3.1 seems simple, but it is
not easy to incrementally determine the change in the finish time (new fit-
ness value) as a result of crossover. Other researchers have solved the same
scheduling problem with a different chromosome representation, and more
efficient implementation 414 As o rule of thumb, the computational re-
quirements for both, the genetic operations and the fitness calculation must
be kept very low.

The data structure used to store the chromosome must also be efficient.
It must be easily accessible, and easy to manipulate. An inefficient data
structure results in waste of time and memory usage. Sometimes, one has
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to tradeoff between storage efficiency and manipulation time.

The type of chromosome encoding adopted is also important. Binary
encoding may not always be the best. Even if non-binary encoding is em-
ployed, whenever possible, any available knowledge of the problem or the
search space must be incorporated to help obtain optimal solutions quickly.
One dimensional strings are not the only chromosomal representation that
can be used. For some applications, researchers have found 2-D chromo-
somes HGL92 6 be more amenable to genetic operations, and useful in
inheriting parental characteristics. In the next section (Section 3.7), we use
two examples to further illustrate both these points.

Another issue is the design/usage of genetic operators. Consider the
crossover operator. Since crossover is applied several hundred times, it must
not consume too much time. Generation of random numbers is very time
consuming. Time is also wasted if crossover is not guaranteed to generate
legal offsprings. On the other hand, restricting the crossover to produce
only legal solutions may bias the search toward particular directions.

There are several variations to the simple genetic algorithm that have
been used to enhance the search. Implementations with several crossovers,
adaptively varying mutation/crossover probabilities;, dynamically varying
population sizes, etc., have been reported. We shall touch upon these as-
pects in some detail in a later section (Section 3.9).

Finally, as in other iterative algorithms of this type, the stopping crite-
rion in GA can also be a function of solution quality, the available runtime,
the number of generations, no improvement in solution quality for the last
k generations, etc. In most engineering problems, the objective is to ob-
tain a reasonable solution that satisfies all constraints. In that case, the
termination condition will depend on the solution obtained.

3.7 GA APPLICATIONS

In addition to their application to classical optimization problems such
as the knapsack problem SPi® TSP WSEF8S9, T+94  Gteiner tree problem
HMS89 " get covering problem ASHN96 N_queens problem"TA92  clustering
problem?SK96 " graph partitioning PR%  etc., GAs have also been applied
to several engineering problems. Some examples of these applications in-
clude job shop and multiprocessor scheduling WSF89, HAHO4, BS94 = qiscoy-
ery of maximal distance codes for data communications P79? bin-packing
FD92 " design of telecommunication (mesh) networks X497 test sequence
generation for digital system testing BPSN%4 VLST design (cell placement
CP8T, SM9L, SM90, SY95 " flgorplanning 51°% routing H1+9), pattern match-
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ing ACH90 technology mapping P93 PCB assembly planning "W792 and

high-level synthesis of digital systems 45894 RS9 The books by Goldberg
(1989) “el8% Davis (1991) Pav9L recent conference proceedings on evolu-
tionary computation, and on applications of genetic algorithms discuss in
detail the various applications of GAs in science and engineering. These
range from optimization of pipeline systems and medical imaging to ap-

plications such as ‘robot trajectory generation’ and ‘parametric design of
aircraft’ Gol89c, Dav9l

In the previous sections, we illustrated the basic operations of the al-
gorithm with the help of two problems, namely, finding the maxima of a
function, and the problem of scheduling tasks to processors. We also illus-
trated how GAs can be used to solve the classical assignment problem (or its
variations, such as cell placement in VLSI). In the following sections we will
discuss the applications of GAs to some of the problems mentioned in the
previous paragraph. In detail, we present the application of this technique
to two problems: (1) the traveling salesman problem (TSP) and (2) the
module placement problem. We will also briefly touch upon several of the
above problems, by presenting the size of the search space (complexity),
chromosomal representation, and the fitness functions employed.

3.7.1 Traveling Salesman Problem

The TSP problem (a well known NP-hard problem) involves finding the
shortest Hamiltonian path or cycle in a complete graph of N nodes, each
node representing a city (see Page 9). All known methods of finding exact
solution involve searching the entire solution space that grows exponentially
with the number of cities. Formally, the traveling salesman problem can be
defined as follows.

Definition 13 Let N be the number of cities and D = [d;;] be the
distance matrix whose elements d;; denote the distances between cities
¢ and j. The problem is to find the shortest tour visiting all cities
exactly once.

The solution space €2 can be represented by the set of all cyclic per-
mutations © = (my, -+, m;, -, 7n), where m, ¢ = 1,---, N, denotes the
successor city of city ¢ in the tour represented by n. Let 77 denote the
predecessor of city ¢. The cost function, to be minimized can be expressed
as

Cost(r) = dinx, (3.19)



150

Classic Technique

In order to apply GAs to solve this problem we have to represent the
solution as a chromosome. One obvious way is to represent the cities (nodes
in the graph) as a list of length V. The order of cities indicates the sequence
in which they are visited. Each list is then treated as a genotype (or a
chromosome) to which the genetic operators are applied 4185,

Chromosomes (representing tours) are simply crossed to produce off-
spring tours. Simple crossover will generate illegal tours, where, some cities
are visited twice and some others are skipped. These can be later corrected
and duplicated cities replaced by omitted ones. The procedure is referred
to as “cross and correct”.

Since we use a permutation representation for the solution, in order to
avoid the generation of illegal tours, we can also use one of the crossovers
suggested in Section 3.5.1, that is, cycle crossover (CX), Order crossover
(OX) or PMX. Oliver et al, suggested the use of “cycle crossover opera-
tor” to solve the TSP problem 93H37 A cycle contains a common subset
of cities in the two parent tours that occupy a common subset of positions.
This operator always produces legal solutions. As an example, consider the
tours [E D C B A ] and [E B A D C]. These tours contain two cycles:
(1) “E-C-A-" and “E-A-C-?, and (2) “D-B-” and “B-D-". The cycles
“-E-C-A-” and “-E-A-C-” both contain the cities A, C, and E in the po-
sitions 1, 3, and 5 in the parent tours. Note that the order of cities in a
cycle is not important. What i1s important is that cycles can be exchanged
between parents without introducing any city duplicates (or omissions).
The offsprings in this example are [E B C D A ] and [E D A B C]. The
resulting offspring is guaranteed to inherit all of its city positions from one
of the two parents.

Genetic operators such as Cycle, Order and PMX crossovers are very
useful for problems where positions in the sequence are critical. In the TSP
problem, the positions of the cities is not important. And preserving city
positions has the tendency to destroy critical links that existed between
cities in the parent structures. Therefore, the above operators do not do
well because what is inherited from parents is not sub-tours. For example,
in the cycle crossover, cycles do not necessarily correspond to sub-tours.

For the TSP problem, Whitely et al. WSF89 experimented with the
above crossovers. Studies on a limited set of problems by Oliver et al. ©SH87
showed that the Cycle crossover actually destroys more edges than the
“cross and correct” operator. The Order crossover Pav85P, Davil nrodyced
best results (since it breaks fewer links than other crossovers), followed by

PMX crossover of Goldberg 185,
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Inversion

Instead of crossover, we can also use inversion. In this case new solutions
can be generated by choosing two arbitrary cities p and ¢, and reversing
the sequence in which the cities between them are traversed. That 1s, in the
tour, the sublist between p and ¢ is laterally inverted. One good thing about
using inversion is that it is a known genetic operator and is expected to
produce good results. Also, it does not produce illegal tours. The difference
in cost due to reversal of tour sublist between p and ¢ can be calculated
incrementally from the following expression (see Exercise 71).

ACost = dp,nq‘ +dr,q—dpr, — (3.20)

Tg g
However, similar to mutation, inversion works on only one parent and there-
fore there is no recombination of genetic information from two parents.

Experiments with inversion have produced results better than “cross
and correct” operator VSF8? There can be extensions to this operator too.
For example, one can select three or more break points and invert the
sublists, swap the sublists, etc. Again, since the operations are performed
on only one parent, the resulting list always represents a legal tour. In case
we swap substrings, then, every time a substring i1s swapped, edges are
broken and new edges are introduced.

Edge Recombination Operator

In this section we present a new technique suggested by Whitley et al.,
(1991) to solve the TSP problem. Their work was motivated by the fact
that all proposed crossovers for permutation representations preserve city
positions, and this has the tendency to destroy edges that existed in par-
ents. An operator that preserves edges will exploit a maximal amount of
information from the parent structures. Since the goodness of an individual
tour is a direct consequence of the number of good subtours (or edges), op-
erators that break links introduce unwanted mutation. This mutation can
be thought of as a “leak” in the search process due to random loss of edges.
Therefore, since it is the edges that reflect the goodness of a solution, Whit-
ley at al. propose a crossover (called edge-recombination crossover) that
inherits edges. That is, it produces an offspring tour that exclusively con-
tains links present in one of the two parent structures WS¥89 We illustrate
with the help of an example the application of the “edge-recombination
crossover” operator.

example 35 Consider two parent tours: Pi.= [DE F A B C] and P»=
[B D C A E F]. The link information in the above two tours is “DE
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EF FA AB BC DC” and “BD DC CA AE EF FB”| respectively. The
tours are circular and the journey finishes in the initial city forming a
Hamiltonian cycle. Also note that edge “CD” has the same value as

((DC??

The edge recombination operator uses an “edge map” to construct
an offspring. This edge map stores all the connections from the two
parents that lead into and out of a city. There will be at least two and
at most four edges associated with each city in the parent tours. For
the above two parent tours the edge map is as follows.

City Has Edges To

FBCE
ACDF
BDA
CEB
DFA
AEB

HEOOE e

That is, city A has edges to cities F and B in the first tour and to C
and E in the second.

The recombination process works as follows. First, a new child tour
is initialized with one of the two initial cities from its parents. It does
not matter which city is chosen to initialize the tour, since the tours are
circular. In the above case D and B are two initial cities (D in P; and
B in P;). City D has three edges and B has four edges. As explained
later, it is preferable to choose those cities which currently have the
fewest number of unused edges. The algorithm therefore chooses city
D. The candidates for the next city are C, E and B.

City Has Edges To
A BFCE

B ACF

C BA

E F A

F AEB

In the above table, entry for city D is removed. From the set of cities
{C, E, B} which city should be chosen as the next one? Cities C and
E have 2 edges, and city B has 3 edges, so we randomly choose one
between C and E, say C. Now C has edges to A and B.
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City Has Edges To

A BFE
B AF
E FA
F AEB

Next, we have to choose between A and B. B is chosen, since it has
fewer edges.

City Has Edges To

A FE
E FA
F AE

B has edges to F and A, both of which have two edges each. Randomly
we choose A.

City Has Edges To

E F
F E

City F has edge to A and E, so we can choose A, and finally E. The
resulting tour is the sequence in which cities were chosen from the edge
map, that is, [D C B A E F]. Verify that this tour is composed entirely
of edges taken from the two parents.

One problem that occurs with edge recombination is that cities are
often left without a continuing edge. Thus they may become isolated, so a
new edge has to be reintroduced. This is the reason why higher priority is
given to choosing those cities which currently have the fewest number of
unused edges.

Whitley’s experiments indicate that a thousand trial recombination on
a 30 city problem resulted in only 278 new edges being introduced out of
the 30,000 edges manipulated. This is an effective mutation rate of less
than 1%. The same test when run on a 50 city problem introduced 753
new edges, (mutation rate this time being 1.5%). Reported edge transfer
rates for Hamiltonian tours/cycles was higher than 96%.
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3.7.2 Module Placement

Our second example of the application of GAs is module placement. This
problem is similar to the assignment problem discussed in Section 3.5 (and
formally defined on Page 10). Depending on the application, the cost func-
tion used may vary. Our objective here is to show a different chromosomal
representation and different crossovers that have been suggested for inher-
itance and creation of next generation individuals. The problem can be
defined as follows:

Definition 14 Given are, a set M of circuit elements or modules, M =

{e1,...,em}, and a set A of n signals or nets, N = {s1,s2,...,5,},
where a net is a set of modules to be interconnected. Also given are
a set of [ locations or slots, L = {e1,¢2,...,¢1}, I > m. The slots are

organized as a matrix with » rows and ¢ columns. The objective is
to assign each module to a slot such that interconnection lengths are
reduced, while satisfying some constraints.

We restrict our discussion in this section to the chromosomal repre-
sentation and crossovers that have been used by Cohoon and Paris in Ge-

nte, a genetic placement system for placing modules on a rectangular grid
CP87, Y495

2-D Chromosome

The chromosomal representation must be amenable to genetic operations.
The solution to the problem can also be represented as a 1-D string as ex-
plained in Example 28. Since we are talking about the problem of assigning
modules to slots in a 2-D matrix, another way to represent the solution is
in the form of a 2-D array. In the following paragraphs we illustrate two
crossover operators used in Genie for the placement problem ©P87% Y+95

Crossover 1

The first crossover operator selects a random module e, and brings its four
neighbors in parent 1 (P;) to the location of the corresponding neighboring
slots in Ps. Then, the modules that earlier occupied the neighboring loca-
tions in P5 are shifted outward one location at a time in a chain move in
the direction of the old locations of the four moved modules until a vacant
location is found. This is shown in Figure 3.5(b). The result obviously is
that a patch containing e; and its four neighbors is copied from P; to P,
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dwm

seq

a r

c b
C

(a) (b)

Figure 3.5 (a) A random module and its neighbors. (b) The neighbors in (a) of P;
replace neighboring modules in Ps.

.X‘_>
def
gﬁi Agma| ™

@ (b)

Figure 3.6 (a) A square is selected in P;. (b) Modules of square in P; are copied to
P> and duplicate modules are moved out.

and that other modules are shifted by at most one position.

Crossover 2

The second crossover operator selects a square consisting of k& x k& modules
from P; and copies it to Ps, k is a random number with some mean and
variance (say 3 and 1 respectively). Clearly, this method tends to duplicate
some modules and leave out others. For example, referring to Figure 3.6,
if modules in the square of P; are copied to the square of Ps, then those
modules in the square of P; and not in the square of P, are duplicated.
This problem is overcome as follows. Let SPs — SP; be the set of modules
in the square of Py but not in the square of Py (SPy—SP;, = {x,w,p, m}).
Similarly SP; — S P is the set of modules in square of P; but not in square
of Po (SPL — SP> = {e,d, e, f}). Each module in SP; — SP; is moved to a
slot currently occupied by a module in SP; — SP,. That is, in P, modules
{@,w,p, m} are moved to slots currently occupied by modules {¢,d, e, f}.
Then all the remaining modules in the square of P; are copied into the
square of P» to yield a new offspring.
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Experiments conducted by Cohoon and Paris indicate that both opera-
tors performed well, with Crossover 2 consistently better than Crossover 1.

The above two examples illustrate the variations that are available in
applying GAs to solve practical engineering problems. It i1s not always re-
quired to represent the solution as a binary string. In fact, a representation
that intuitively ensures inheritance and is closer to the actual problem most
often leads to better results. However, in the absence of any information
about the problem, one must resort to blind application of the classical
genetic algorithm ©P87 Y+95

2-D chromosomes have also been used for other problems such as TSP.
Homaifar et al.; used a binary matrix to represent edges. For an N city
problem, the size of the matrixis N x N. A 1 at any position of the matrix
denotes the existence of an edge between the two cities. Homaifar et al.,
defined a new crossover called Matrix Crossover (MX) which is an exten-
sion of the 1-point or 2-point crossover and manipulates edges. It deals
with column positions rather than bit positions. Using their representa-
tion, MX crossover and an inversion operator (2-opt) WS89 they obtained
results competitive with the best known techniques. In their implementa-
tion, inversion, that is, cutting a string and reversing the order of cities in
the sub-string is accepted only if the operation produces good results. They

also presented schema and complexity analysis for their proposed technique
HGL92

3.7.3 Applications of GAs to Other Problems

In this section we briefly look at some more applications of GA. We present
only the definition of the problem, its application in engineering, the chro-
mosomal representation, and the fitness measure suggested.

Steiner Tree Problem

The problem of finding an optimal Steiner tree appears in the design of
telecommunication networks, power distribution, design of oil pipelines,
and in layouts of PCBs and VLSI chips.

Given n nodes, a minimum spanning tree connecting the n nodes can
be constructed in O(nlogn) time. A minimum Steiner tree is a tree of
smaller length than a minimum spanning tree, and is found if additional
nodes are introduced, called Steiner points (see Figure 3.7).

Therefore, to find a Steiner tree, one has to identify the number of
Steiner points and their positions in the plane. This problem has been
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() (b)
Figure 3.7 (a) A minimum spanning tree. (b) Steiner tree.

shown to be NP_complete SG76.

Hesser et al., applied the GA for the construction of a minimal Steiner
tree (MStT) HMS89 They represented each Steiner tree by a string (chromo-
some) of length [; each chromosome being an assembly of x, y-positions of a
fixed number of Steiner points. For example, if a Steiner tree problem with
20 candidate Steiner points is to be solved, and b bits are used to represent
z- and y-coordinates, the chromosome length [ will be 2 x b x 20 =40 x b
bits (240 bits for b = 6). Each chromosome represents one Steiner tree.
The fitness of the individual belonging to the chromosome corresponds to
the length of the MStT that can be constructed by using the original fixed
points and the encoded Steiner points. Obviously, the length of the Steiner
tree is a function of the positions of the Steiner points as specified by the
chromosome HMS89 Hegser et al, experimented with the GA heuristic, sim-
ulated annealing, and other constructive techniques and found the results
comparable.

Discovery of Maximal Distance Codes

The problem of discovering communication codes with properties useful for
error corrections was presented by Dontas and De Jong (1990) DJ90 A code
is represented by (n,M,d) where n denotes the code length (the number of
bits in one code word), M the size of the code, that is, the number of
distinct vectors in the code, and d is the Hamming distance of the code.
The Hamming distance of a code i1s the number of bit positions in which
any two vectors of the code differ. A good code has a small n (denoting less
redundancy), a large M (large vocabulary) and large d (greater tolerance
to error). Search spaces for these codes are very large, for example, for a
(7,16,3) code the size of the search space is at least 102°.

The solution method used by Dontas and De Jong was to represent
the codes by a fixed length binary strings. For example, for the (7,16,3)
code, the binary string of 7 x 16 = 112 bits was used to represent the
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code. Since the performance of the code is dependent on the collective
composition of the words and is independent of the order in which the words
are represented, the codes are sorted in decreasing order of the words. This
sorting helps in reducing all equivalent codes to a single representation,
thereby reducing the search space and the number of possible solutions by
a large factor. For the (7,16,3) code, this factor is 16!~ 20 x 1012

Dontas and De Jong experimented with two fitness functions f;(C')

and f2(C) given below:

1
> _i=1 min(dij)

M

RO=Y Y

=1 j=1j#i

where d;; represents the Hamming distance between words ¢ and j in the
code C. The above problem can also be visualized as that of placing M in-
dividuals in the corners of an n-dimensional hypercube so as to maximize
the mutual distance between them. This situation is analogous to particles
of equal charge trying to position themselves in the minimum energy con-
figuration in a bounded space. f2(C) given in the above equation captures
this idea and results in significantly better performance than f;(C').

N-Queens Problem

This is another very complex combinatorial optimization problem that
served as a benchmark to test Al search techniques. The problem con-
sists of placing N-queens on an N x N chessboard so that no two queens
can capture each other. This means, no two queens can be placed in the
same row, same column, or the same diagonal. There are (1\5) possibilities.
Homaifar et al, applied GAs to solve this problem and presented results
for N < 200 HT492 The chromosome encoding consists of a permutation
of N distinct numbers. For example, [8 6 1 4 3 5 7 2] is a chromosome for
N = 8. The interpretation of this representation is as follows. Each column
position in the string corresponds to a row number in which a queen is
placed. That is, the first queen in column 1 is placed in row 8, the second
queen in column 2 in row 6, etc. Using this representation, no two queens
can appear in the same row or the same column.

For each chromosome, its fitness value 1s a function of how many queens
are being attacked. Since no two queens are placed in the same row or same
column, we have to check only the diagonals. Let the two diagonals, one
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that goes up-right and down-left, and the other, that goes up-left and down-
right, be called the positive and negative diagonals, respectively. Then, for
each queen in every column, if 1t is not attacked by another queen on its
positive diagonal, its fitness value is increased by ﬁ A similar value 1s
added if no queen 1s found on the negative diagonal.

Consider another string [35 1 7 8 4 6 2]. First the positive diagonal is
checked for additional queens, and a queen is found in the 3rd position of
the string. Since there is an additional queen on this diagonal, the fitness
value does not receive any type of reward. Next, the negative diagonal is
examined. There are no additional queens, and thus the fitness value is
increased by a factor ﬁ. The procedure is repeated until the diagonals of
each queen have been checked. A solution is feasible when its fitness value
is one.

The initial population is generated at random. Experiments with edge
recombination, inversion, uniform order-based crossover, and mutation op-
erators were conducted. The application of the edge recombination operator
requires an edge map. The edge map stores all the adjacencies of a queen
that are in the row above and below it. Inversion is applied, and if im-
provement occurs then the move is accepted, else the substring is returned
to its initial position. The uniform order-based crossover (Page 137) was
also used. Best performance occurred with the genetic edge recombination
operator (see Section 3.7.1, Page 151) WSI'89,

3.8 PARALLELIZATION OF GA

The Genetic Algorithm is highly parallel. This is a direct consequence of
the parallel nature of the genetic reproductive processes. Most GA par-
allelization techniques exploit the fact that GA works with a population
of chromosomes (solutions) and proceed as follows. The population is par-
titioned into subpopulations which evolve independently using sequential
GA. Interaction among the smaller communities is occasionally allowed.
This strategy exposes the explicit parallelism of GA and makes it a very
suitable approach for running on a multi-processor machine. This paral-
lelization approach has been shown to converge faster to desirable solutions.
This parallel execution model is a more realistic simulation of natural evo-
lution in which communities are isolated but, occasionally interact through
migration or cross communities matings.

The reported parallelization strategies fall into three general categories:
(1) the island model, (2) the stepping stone model, and (3) the neighborhood
model, also called the cellular model.
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Algorithm (Parallel GA)
Every processor will have one subpopulation of size p.
Initialize.
For 7 =1 to E Do
ParFor
Run GA for a fixed number of iterations;
Send a subset of local subpopulation to neighbors;
Add the received subsets to local subpopulation;
Select p elements from local subpopulation
EndParFor
EndFor;
Return highest scoring element

End
Figure 3.8 Parallel GA using the stepping stone model.

3.8.1 Island model

In this variant, the population is divided among the available processors.
Each processor runs sequential GA on its local subpopulation. Periodi-
cally, subsets of elements are migrated among subpopulations. Migration is
allowed between all subpopulations. Examples of implementations of this
model are reported in SWM9L Tan89  The jsland parallelization model is
suitable for multiprocessor machines with a relatively small number of pro-
Cessors.

3.8.2 Stepping stone model

This strategy i1s similar to the island model except that communication
is restricted to neighboring populations only“3°!. This model is inspired
by the theory of punctuated equilibria which has been suggested to solve
certain paleontological dilemmas in the geological record®47? Fld85 The
theory says that species tend to stay stable as long as the environment
is steady but, when there is an environmental change, species undergo a
rapid evolution to adapt to the new condition. In GA terminology, the
model defines fitness of individuals relative to other individuals in the lo-
cal subpopulation. This corresponds to having a steady environment. Each
local community will stabilize after a number of generations. Then, by in-
troducing new elements (new competitors) from neighboring communities,
a change in the environment is simulated. The subpopulation elements will
rapidly evolve to adapt to this new change. This parallelization approach
is summarized in the algorithm of Figure 3.8. Examples of parallel imple-
mentations of this variant are reported in CHMRS7, CHMRS1, GS91
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Algorithm (Parallel GA)
Initialize.
For 7 =1 to E Do
ParForeach processor
Send cost of element to all neighbors;
Select the neighbor with lowest cost;
Perform crossover between local element and selected element;
Replace local element with offspring according to some strategy
EndParFor
EndFor;
Return highest scoring element

End
Figure 3.9 Parallel GA using the neighborhood model.

3.8.3 Neighborhood or cellular model

Although the above two models are reasonable parallel implementations,
they are not suitable enough for massively parallel systems. Cellular ge-
netic algorithms are designed to take advantage of massively parallel
machines®W94 In this model, we throw away the local subpopulations
boundaries and assume that communities are continuous. That is, every
individual has its own neighborhood defined by some diameter. This model
1s more suitable for massively parallel systems, where each processor is as-
signed one element. The basic operations performed by each processor are
summarized in the algorithm of Figure 3.9.

To reduce communication overhead, cellular GAs usually restrict mat-
ing based on distance. This form of restriction leads to what is called
isolation-by-distance“5%°.

3.9 OTHER ISSUES AND RECENT WORK

There are several additional GA issues that have not been mentioned or
elaborated. In this section we briefly touch upon some of them. For details
and other issues we refer the reader to the various references at the end of
this chapter, especially G0189¢, Davol, Reedsb,

3.9.1 Performance Measurement

Our first concern in this section is the measurement of performance of
the GA heuristic. Two commonly used performance measures were sug-
gested by De Jong ’°"75. One measure was devised to gauge the conver-
gence (termed off-line) and the other to gauge the on-going performance,
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termed on-line. Let the objective function value corresponding to the chro-
mosome generated at step ¢ be f(¢), and the best value found up to time
t be f*(t). Then after T iterations (function evaluations) the on-line and
off-line performances are defined as follows.

1 T
x = TZ £(t) (3.21)

where z is the on-line performance measure and relates to the average
fitness of all strings generated. The off-line measure defined as z* relates to
the performance of the GA converging to the optimum and is defined as:

1 T
x* = TZ () (3.22)

where f*(t) = best {f(1), f(2),---, f(t)}. That is, the off-line performance

is a running average of the best performance values up to a particular time
Gol89c

Other performance measures that have been used are best-so-far, and
the number of iterations required to reach the global optimum (if known).

3.9.2 Gray vs Binary Encoding

Most GA implementations use simple binary encoding. Is the binary en-
coding always the best? A problem that occurs when binary encoding is
employed is that values which are close in the original space may be far
apart in the binary mapped space. This results in adjacent genotypes hav-
ing distant phenotypes, and vice versa. For example, in our optimization
problem of Example 22 the optimum occurs at value 63 and the binary
mapped valueis 1 1 1 1 1 1. The binary number 0 1 1 1 1 1 with only one
bit different represents a numerical value that is half the optimum, a large
distance away in the original space. This led some researchers ©588 ECS89
to advocate the use of Gray code mapping. The general characteristic of
Gray code 1is that adjacent binary integers differ only in a single bit position
(a Hamming distance of 1).

3.9.3 Niches, Crowding and Speciation

In previous sections we discussed several selection methods. We also men-
tioned that the result of crossover of two chromosomes does not necessarily
yield a better offspring. The offspring may be worse than either parent.
This is generally observed when we try to optimize multi-modal functions.
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The result from the crossover of two chromosomes which are close to dif-
ferent optima may be much worse than either. Degraded performance of
previous selection mechanisms, especially on multi-modal functions, com-
pelled the introduction of new reproductive plans. Ideas of pre-selection,
crowding, and speciation, were introduced which, to some extent, overcome
these problems.

Consider a multi-modal function, that is, one which has several optima.
For a randomly chosen initial population, we start with a relatively even
spread of points across the function domain. If we run our simple genetic
algorithm then the search converges to one of the peaks (assuming maxi-
mization) in the function, that is, most of the strings are distributed near
the top of one of the hills. This ultimate convergence to one of the peaks
i1s caused by what is known as genetic drift — stochastic errors in sam-
pling caused by small population sizes. Somehow we would like to reduce
the effect of these errors and enable stable sub-populations to form around
each peak. In case of multi-modal problems where the peaks are of varying
magnitudes, we may like to allocate sub-populations to peaks in proportion

to their magnitude. Inducement of niches and species will help achieve this
Gol89c, Mah94.

Niches and Species: A niche can be viewed as an ecological role of an
organism in a community, and species as a class of organisms with com-
mon characteristics. What is the role of inducement of niches and species in
genetic search? In nature, similar individuals tend to occupy the same en-
vironmental niches. Competition for limited resources among similar mem-
bers of a natural population results in what is known as crowding. On the
other hand, dissimilar members occupy different environmental niches and
therefore do not typically compete for resources. Increased competition for
limited resources also decreases life expectancy and birth-rates, whereas less
crowded niches experience less pressure and achieve higher life expectancy
and birth-rates Mah94,

Crowding: One of the first studies to induce niche-like behavior in GA
search was due to Cavicchio ©®7°, He introduced a mechanism called pre-
selection, where an offspring replaced the inferior of its parent. This was
done only if the fitness of the offspring exceeded that of the replaced parent.
In this way diversity was maintained in the population because strings tend
to replace strings similar to themselves.

Motivated by the analogy of competition for limited resources among
similar members (and poor results of simple GA on multimodal functions)
De Jong proposed his “crowding factor (CF) model” 7°"7>. In this model,
in the hope of maintaining more diversity in the population, De Jong forced
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newly generated offsprings to replace similar older adults M#"%4 De Jong’s
crowding kills off a fixed percentage of the population at each generation.
When an individual is born, one is selected to die. The dying individual is
selected from a subset of CF members chosen at random from the popula-
tion. In order to maintain diversity, the dying member chosen is one that
closely resembles the new offspring.

For binary strings, resemblance may be measured in terms of Hamming
distance. However, as mentioned earlier, numbers which are actually close
may be mapped to string patterns which are far apart. Therefore, it is
preferable to use actual values of parameters, that is, phenotype distances
rather than genotype distances.

GAs which form and maintain niches by replacing population elements
with like individuals, are called crowding methods. This definition also
includes GAs which replace closely resembling parents with offsprings.

Speciation: There have been several attempts to replicate the existence
of species in nature. A scheme due to Goldberg and Richardson “R87 relies
on a sharing function to penalize or derate the fitness of similar chromo-
somes thereby limiting the uncontrolled growth of one species. The sharing
function may take several forms. As an example, consider the following

linear function
d
{1 -5 d<D

d) =
@ =1y d>D

(3.23)

where d is the distance between chromosomes in the population (not nec-
essarily Hamming distance), and D is a parameter. In this scheme, first the
sharing function denoted by s(d(z;, x;)) is evaluated for each pair (z;, z;) of
chromosomes in the population. Then the sum denoted by ¢; is computed

o; = Z;zl s(d(zi, z;)) j#£i (3.24)

The distance measure is such that the closer an individual z; is to another
individual ;, the lower is its d(z;, z;) value, and the larger is the share
value s(d(x;, x;)). After accumulating the total number of shares in this
manner, the fitness of chromosomes is adjusted (reduced) by taking the
fitness and dividing it by the accumulated number of shares:

fs(zg) = M (3.25)

T

Thus, when many individuals are in the same neighborhood, they con-
tribute to one another’s share count, thereby reducing one another’s fit-
ness values. As a result, this mechanism limits the uncontrolled growth of
particular species within a population.
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3.9.4 Constant vs Dynamically Decreasing Population

Run time requirements of genetic algorithms are larger than those of other
iterative techniques described in this book. The size of population has a
great effect on the total runtime of the algorithm. The smaller the pop-
ulation size, the smaller the runtime will be. Experiments conducted in
Y495 indicated that the population fitness improves very rapidly during
the early generations. The change in the population fitness is less rapid
as the number of generations increases, until it becomes insignificant. The
reason 1is that the improvements in the population are caused by crossovers
and mutations involving high scoring individuals. Therefore, toward the
middle and later generations, the role of low scoring individuals becomes
insignificant as a source of new fit individuals for the next generations.
Hence, it seems reasonable to allow the population size to progressively
decrease (in a controlled manner) with the number of generations. Such a
decrease will cause a sizable reduction in runtime without any noticeable
change in solution quality.

To view the effect of this idea, experiments were conducted using two
strategies Y195 In the first strategy, the population size was fixed to 30
individuals. For the second strategy, the population was allowed to pro-
gressively decrease using the following reduction procedure. The perfor-
mance of the best solution is checked periodically every Reduction_Period.
If solution quality is found not to improve by at least 3% during the last
Reduction_Period, the population size is reduced by 20%. This reduction
is allowed as long as the population size does not become less than half
of the initial population size. The Reduction_Period parameter is also
dynamically decreased. Initially it is assigned a large value. Then each
time the population size is checked, the Reduction_Period is reduced by a
Period_Factor. This is performed because the convergence rate in the early
generations is higher than in the later ones. Thus, the reduction procedure
monitors the performance after shorter periods in those generations where
the improvement is too slow. Typical values for a 300,000 generation run
were: Reduction_Period equal to 5000 generations and the Period_Factor
is equal to 5%.

This idea bears some similarity with the cooling schedule of simulated
annealing. Whereas in simulated annealing the cooling schedule does not
have much influence on the runtime of the procedure, for the genetic algo-
rithm a smaller Reduction_Period increases the rate at which the popula-
tion size is reduced, thus leading to a much smaller runtime. In Y195 it was
shown that the total runtime decreased by 46% when the population size
was dynamically reduced. The quality of the results in both cases, that is
with fixed and dynamically decreasing populations, was comparable.
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3.9.5 Multi-Objective Optimization with GAs

What we have seen so far is the application of GAs to single objective
optimization problems. In case of single objective optimization we seek
the best solution that maximizes (or minimizes) cost function. Most opti-
mization problems have multiple objectives. In order to use GAs to solve
multi-objective problems, the objective function should be combined into a
scalar fitness function. The various techniques used to solve multi-objective
problems include the use of ad-hoc weights for each objective, the notion
of Pareto optimality HN994 and goal directed search PK9®. Fuzzy logic
can also be incorporated with genetic algorithms to produce an effective
search heuristic that combines the parallel and robust search properties of
GA with the expressive power of fuzzy logic 22455 One possibility is to
evaluate the fitness of individuals based on fuzzy logic rules expressed on
linguistic variables modeling the desired objective criteria of the problem
domain. The features that characterize good solutions can be expressed us-
ing fuzzy logic. Therefore, instead of rating solutions of a population on the
basis of a scalar function of questionable origins, they can be ranked based
on their degree of membership in the fuzzy subset good solutions. More
details on use of fuzzy logic with GAs for multi-objective optimization are
given in (Chapter 7) Section 7.4.

3.9.6 Other Related Material

There are several other concepts in the vast field of genetic algorithms that
we consider beyond the scope of this book. Without any details, we shall
refer to some of these.

The simple GA considers chromosomes as single stranded or haploids.
Whereas in nature, at each locus there is a pair of genes. One of them is
termed as dominant, and is always expressed. The other, known as reces-
sive, and is expressed only when paired with another recessive gene 5992,
The redundant memory of diploidy enables multiple solutions to be car-
ried along, thus preserving useful information, which in the case of haploids
may be lost forever. Although several attempts have been made to simulate
this natural diploidy, and apply 1t to combinatorial optimization problems
G887 a5 yet it has not been found to be of much importance.

Recently, Walsh functions have been used in the analysis of GAs Bet81,

They have been used in the introduction of what are known as deceptive
problemsg PHG93, Gol89a, Gol89b a1 d to derive the variance of schema fit-
ness PR92. Deceptive problems are those where building block hypothesis
(implicit parallelism property) fails Bet8l, Gol8o%b, Whi92 " Blind application
of simple GAs to deceptive problems leads to poor results. These problems
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have led to another type of GAs called mGAs (messy genetic algorithms)
GKD89, GDK90_

In earlier sections we have seen how a schema defines subsets of chro-
mosomes which have the same alleles at a specified locus. A forma also
defines a subset of chromosomes, but in a more general way 72491 With
the concept of forma, it is possible to design operators which have certain
properties. For example, in the case of the TSP problem, what is required
is the inheritance of edges. Then, the defining characteristics of a forma
may be that the chromosome possesses a certain edge Rad?1, Reedsb, HGLO2

While with schema analysis it is possible to explain why the simple
crossover works, with forma it i1s possible to a priori design operators that
have certain properties R2d91, Ree95b Radcliffe defines two properties which
he calls respect and proper assortment. Respect is defined as follows: When
parents share a particular characteristic, their offspring should always in-
herit it. Proper assortment, on the other hand implies that where parents
have different characteristics, their offsprings should contain both the char-
acteristics.

Another type of GA called Problem Space Genetic Algorithm was first
proposed by Storer et al. SWV92 They realized that infeasible solutions
occurred during the evolution process in each generation for conventional
genetic algorithms. The infeasible solutions must be either corrected by a
repairing mechanism or be discarded. They proposed an alternative way
to handle the occurrence of infeasible solutions by perturbing the problem
space instead of the solution space. A fast heuristic algorithm is then used
to map the problem space into the solution space, which guarantees that the
solutions are always feasible. This approach was first adopted by Dhodhi
et al. P95 to optimize the datapath in a high-level synthesis environment.

G As may suffer from the problem of premature convergence. Their ef-
fectiveness can be increased by including some features of other heuristics.
For example, GAs are combined with simulated annealing to introduce
more diversity into the population thereby preventing premature conver-
gence. A complete section in Chapter 7 (Section 7.3) is dedicated to this
issue, where we discuss combination of GAs with other heuristics (such as
tabu search and simulated annealing) discussed in this book.

3.10 CONCLUSIONS

In this chapter we presented the basics of genetic algorithms. These algo-
rithms emulate the natural process of evolution. Unlike other search heuris-
tics, they conduct the search by operating on a set of solutions called the
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population. They work with chromosomal representations (encoded strings)
of solutions, require only objective function values, and search from a set
of points. The basic idea is to combine solutions called parents to produce
new solutions called offsprings, with the objective that the offsprings will
inherit some parental characteristics. To accomplish this, crossover is used.
It is the crossover operator that distinguishes GAs from other optimization
algorithms. We discussed several crossover operators. Mutation is another
operator that is used to inject new characteristics in the individuals.

In this chapter, we also shed some light on the fundamental theorem
of genetic algorithms, the schema theorem.

Several variations of the basic technique, convergence related issues,
and practical considerations for implementation of GAs on a digital com-
puter, were discussed. Implementation aspects of this powerful iterative
heuristics were presented with applications and case studies. A brief sur-
vey of various problems to which GAs have been successfully applied was
presented. We also touched upon techniques for parallelizing GAs, and
summarized several recent related issues.
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EXERCISES

exercise 49 Enumerate and briefly discuss the main features of GAs
that distinguish them from other combinatorial optimization algo-
rithms.

exercise 50
With respect to GAs, briefly answer the following questions.

1. What do you understand by the term ‘survival of the fittest” and
how and where 1s it applied?

2. What is the main purpose of the crossover operator?

3. What are the various points in the algorithm where non-
determinism is introduced (give at least three)?

exercise 51 If we choose to adopt “survival of the fittest” strategy,
that is, the new population i1s made of the best individuals chosen from
the current population and new offsprings, would GA still be able to
climb out of local minima? Justify your answer.

exercise 52
In the context of genetic algorithms, explain briefly what you under-
stand by the following terms:

Generation Gap

Elitist GA

Steady State GA
Operator Probabilities
Scramble List Mutation
Uniform Crossovers

=~ O Ol = W N

Crowding

exerclse 53

1. Provide an intuitive description of the effect of PMX crossover,
Order crossover and Cycle crossover.

2. Compare these crossovers with respect to (a) their inheritance
properties of good genes, and (b) their disruptions of the popu-
lation schemata.
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exercise 54
Consider the function given below.

f(z) = 22° — 2402% + 7200z + 2000 0<z<63

It is required to find the value of z that maximizes f(x). Represent x as
a 6-bit binary string. Let f(z) itself represent the fitness value. You are
required to implement a genetic algorithm to find the maximum value
of . Choose a population size of 6, the probability of crossover p. = 1.0,
and the probability of mutation p, = 0.03. Implement the roulette
wheel method for parent selection (see Exercise 56). Choose the best
strings from offsprings and parents to survive for the next generation.
Use the simple cut-catenate operator for crossover and complementing
of a bit for mutation. Run the program for 10 generations and observe
the following.

1. That the average fitness of the entire population increases with
every generation.

2. The fitness value of the best individual increases in every genera-
tion.

3. Verify that f(z) has a maximum at ¥ = 20 and a minimum at
z = 60. This can be done by equating the first derivative to zero
and finding the roots. Since the value of z that maximizes the
function is =20, the number of copies of schema 0 1 0 % % *
must therefore increase from generation to generation. Similarly,
since the value of x that minimizes the function is 60, the number
of copies of the schema 1 1 % % % % must decrease with number
of generations. How many copies of each of the two schemata are
found in your population after 10 generations?

4. Repeat for a larger number of generations (greater than 100) and
plot for each generation the best and the average fitness. Compare
the results for (a) different mutation probabilities; (b) different
selection schemes (including ranking).

exercise 55

Suggest a chromosomal representation to the scheduling problem of
Example 23 which includes both the assignment of tasks to processors,
and their order of execution on each processor.

exercise 56

Write a program to implement the procedure below that emulates the
selection of individuals based on the roulette-wheel method. The steps
are:
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1. Construct a list of the fitness values of all individuals that comprise
the population.

2. Create another list by replacing each fitness value by adding to it
the fitness values of all elements prior to it in the list (that is, the
running total of fitness values).

3. Generate a uniformly distributed random number between 0 and
the total of all of the fitnesses in the population.

4. Return the first individual from the list whose fitness value is equal
to or greater than the random number generated.

Run your program for the population in Example 25 (Page 116),
where the list of the fitness values of individuals that comprise the
population is [625, 1936, 2809, 3136] and the new list of running
totals is [625, 2561, 5370, 8506]. Note that in this list, the total of

all fitnesses 1s the last element.

Chromosome 1 2 3 4

Fitness 625 1936 2809 3136
Running total of Fitness 625 2561 5370 8506

(a). In Example 25, to select a parent, a random number should be
generated between what range?

(b). If we generated the random number 3371, then which individual
from the population of four will be selected?

exercise 57

For the problem in Exercise 54, let Hy, Hs and Hj3 be three schemata
represented by the following strings: Hi=[1L * 1 ** *], H,=1[00 1 * * *],
and Hz=[1 * 0 * 1 *]. Let the population in a certain generation be
given by: sy =[001001],s, =[101100],s5 =[110101],
s =[111000],s5 =[100010],and s¢ =[110111]. Answer
the following:

How many strings in the population does each schema match?
What is the order and defining length of each schema?

How many chromosome does each schema represent?

What is the average fitness f(H) of each schema?

What is the probability of survival and destruction of each schema?
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exerclse 58

1. Determine the expected number of offsprings generated in terms
of the probability of crossover and population size.

2. Determine the expected number of individuals mutated in terms
of mutation probability P,.

3. What is the probability that a gene never gets mutated?

exerclse 59

Show that, for a population of n strings of length [ each, the state space
has (ntz)!

1 states, where z = 21,

exerclse 60

1. In case of problems that use permutation representation for their
solutions, for what type of applications will the Order crossover be
more suitable than the Cycle crossover?

2. List one advantage and one disadvantage of the Cycle crossover.

3. A pairwise swap is a common mutation strategy. Another strat-
egy could be to select two elements and move the second in the
position before the first. With what crossover operator will this
mutation strategy fit well? What are the disadvantages of this mu-
tation strategy in terms of computing the fitness of the mutated
chromosome and the amount of new characteristics introduced?

exercise 61

Devise an experiment to study the various selection strategies discussed
in this chapter (see Page 141). Compare the selection procedures with
Ranking in terms of quality of solution, ease of implementation, run
time, etc.

exercise 62

You are required to obtain a balanced bi-partition of an un-directed
graph containing 2n nodes. The weight of the node represents its size.
Generate random graphs as explained in Exercise 6. Assume that all
the nodes have equal weight. Explain how you will do the following?

(a). Design a suitable solution encoding (chromosomal representation).
(b). The basic operations one performs to generate new offsprings are
crossover and mutation. Suggest at least two crossovers (that will
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ensure inheritance) and two mutation operations that will always
result in valid solutions.

. Write a program to implement the GA, and plot the best cost

and average cost versus generation number (iteration). Use simple
crossover and mutation operators. Use suitable values for proba-
bilities of crossover and mutation, size of population, number of
generations, etc. For cost of the solution use the number of edges
cut.

. Propose a suitable technique to convert cost values to fitness values

(see Section 3.5.2).

. What will be the encoding of your chromosome, if you are to obtain

a balanced partition of a graph where nodes have varying weights
(or sizes).

exercise 63

For the problem in Exercise 62, if the graph contains elements of the
same size, and if you are required to partition a circuit into two unequal
halves, one containing at least n; nodes and the other at most ny nodes
(n X 2 =n1 4+ na, n1 < ny), how will your crossover ensure that this
requirement 1s not violated.

exercise 64

Nodes of the graph given in Figure 3.10 are to be placed in the 12 slots
of a 3 x 4 grid. Genetic algorithm is to be used for placement. The
different slots can be labeled as shown in Figure 3.10(b).

911011 |12
D0 [l
112 (3|4

(@) (b)

Figure 3.10 Graph for Exercise 64.

A placement (or assignment) of nodes of the graph to the given grid
can be represented in the form of a string using the encoding scheme
explained in Example 28. For example, in the string given below

ceagbhdkfjli
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node ¢ is assigned to slot 1 of Figure 3.10(b), node e to slot 2, node a
to slot 3, and so-on.

Answer the following questions:

1. What is the cost of the above assignment in terms of wirelength
if ‘Manhattan measure’ (see Page 367 for definition of Manhattan
measure) is used for wire length estimation?

2. Assuming the point of crossover to be after the 5 gene, what will
be the resulting placement if the initial configuration is crossed
with the configuration (second parent) below using the PMX
CTOSSOver.

ijlcgakbfdeh

3. Repeat the above for Order and Cycle crossovers.

exercise 65

For the placement problem of Exercise 64, write a function that will
take the chromosome and return the cost of the placement. Use the
expression given in Section 3.5.2 to translate cost to fitness.

exercise 66

Write a program to implement the GA for placement. Use the graph
of Exercise 64 as input. Use the function designed in Exercise 65 to
compute the cost. Convert cost to fitness using one of the strategies
explained in Section 3.5.2. Plot the best cost and average cost versus
generation number (iteration). Use PMX crossover, pairwise exchange
for mutation, p. = 0.9, p, = 0.05 and population size of 10.

What is the effect of scaling on the quality of solution (see Section
3.5.3)7

exercise 67
Repeat Exercise 66 by replacing the PMX crossover by (a) Order
crossover; (b) Cycle crossover.

exercise 68
An alternate implementation of PMX is given on Page 134. For the two

parents P;=[badefgchi | and P;=|aghcbidef| apply the procedure as-
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suming the crossover position to be after 5 and show that the offspring

obtained is | bachg]idef |.

exercise 69
Compare the performance of the three permutation crossovers, PMX,
OX, and CX, for the 1-D and 2-D placement problems in terms of
solution quality and run-time. You will have to repeat the same ex-
periments in Exercises 66 and 67 on larger graphs for comparison (see
Exercise 6).

exercise 70

Suggest a mechanism to prevent premature convergence of GA by mak-
ing the mutation probability a function of population diversity. How
will you determine the population diversity? What ranges of mutation
probabilities can be allowed?

exercise 71
Verify expression 3.20.

exercise 72
Write a program to solve the TSP problem using GAs.

1. Suggest a suitable encoding that uses edge information to store the
tours (you can use a 2-D matrix to represent your solution).

2. Propose a suitable crossover operator that will ensure inheritance,
and a suitable mutation operator.

3. Compare your implementation with the representation that stores
a tour as a string of cities. Use as input test cases whose optimal
solution 1s known.

exerclse 73

1. How important is it to select a suitable populations size? How
is the performance of GA influenced by the choice of the size of
population?

2. What data or information would you use in selecting the size of
the population?

3. In the classical GA, the size of the population is fixed for all gen-
erations. Population size can be made dynamic by starting with
a fairly large number of individuals and then reducing the size by
discarding useless individuals as the search progresses. What are
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the benefits and disadvantages of starting with a large population
and decreasing it in later generations?

4. Suggest a scheme to dynamically reduce the size of the population
with generations. What criteria will you use to determine when to
apply reduction, and by how much?

exercise 74
Consider the Vehicle Routing problem described in Chapter 1, Page 9.

1. Devise an efficient chromosomal encoding for this problem.

2. Design and implement a genetic algorithm for the wvehicle routing
problem.

3. Derive an equation expressing the relationship between the algo-
rithm time complexity, the problem size, the complexity of the
fitness function, and the complexity of the genetic operators such
as crossover and mutation.

exercise 75
Repeat the previous exercise (Exercise 74) considering the Flowshop
Scheduling problem described in Chapter 2 (Exercise 38).

exercise 76
Repeat Exercise 74 for the Terminal Assignment problem described in
Chapter 2 (Exercise 39).

exercise 77
Repeat Exercise 74 for the Concentrator Location problem described in
Chapter 2 (Exercise 40).

exercise 78
Repeat Exercise 74 for the Constrained Minimum Spanning Tree prob-
lem described in Chapter 2 (Exercise 41).

exercise 79
Repeat Exercise 74 for the Mesh Topology design problem described in
Chapter 2 (Exercise 42).

exercise 80
Repeat Exercise 74 for the Weighted Matching problem described in
Chapter 2 (Exercise 43).



182

exercise 81
Repeat Exercise 74 for the Plant Location problem described in Chap-
ter 2 (Exercise 44).

exercise 82
Repeat Exercise 74 for the Bandwidth Packing problem described in
Chapter 4 (Section 4.7.2).

exercise 83 What schemes will you use to evaluate GAs performance
for a certain combinatorial optimization problem? On your GA im-
plementations apply the two performance measures mentioned in this
chapter and comment on your observations.

exercise 84

For problems given in Exercises 74 to 82, and the various combina-
torial optimization problems discussed in Chapter 1 (pages 8 to 10),
experiment with the following and comment on the change in solution
quality, ease of implementation, convergence, and runtime:

Single point versus multipoint crossover.

Different selection strategies.

Change in mutation probability.

Ranking versus non-ranking based implementation.

The various scaling procedure described to prevent premature con-
vergence.

Static versus dynamically decreasing population.

7. Various schemes that translate cost to fitness.

O QO N —
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exercise 85
Compared to other iterative heuristics discussed in this book, is GA
more suitable for solving multiobjective optimization problems? Justify
your answer.

exercise 86 Programming Exercise:

A GA formulation to solve the Steiner tree problem is given in this
chapter. How would you quickly estimate the fitness of the offsprings?
What is your opinion about the chromosomal representation presented?
Can it be improved? What type of crossovers can you use for the given
chromosomes to ensure inheritance? Suggest a suitable mutation strat-

egy”?



CHAPTER

FOUR

TABU SEARCH (TS)

4.1 INTRODUCTION

In the previous chapters we discussed simulated annealing, which was in-
spired by the cooling of metals, and genetic algorithms, which imitate
the biological phenomena of evolutionary reproduction. In this chapter we
present a more recent optimization method called Tabu Search (TS) which
is based on selected concepts of artificial intelligence (AT).

Tabu search was introduced by Fred Glover G1089b, Glo90b, GTAW93, GL97

as a general iterative heuristic for solving combinatorial optimization prob-
lems. Initial ideas of the technique were also proposed by Hansen 286 in
his steepest ascent mildest descent heuristic.

Tabu search 1s conceptually simple and elegant. It is a form of local
neighborhood search. Each solution S € Q has an associated set of neigh-
bors ®(S) C Q. A solution S” € X(S) can be reached from S by an operation
called a move to S’. Normally, the neighborhood relation is assumed sym-
metric. That is, if S’ is a neighbor of S then S is a neighbor of 5.

Tabu search is a generalization of local search (see Chapter 1, Page
13). At each step, the local neighborhood of the current solution is explored
and the best solution in that neighborhood is selected as the new current
solution. Unlike local search which stops when no improved new solution
is found in the current neighborhood, tabu search continues the search
from the best solution in the neighborhood even if it is worse than the

183
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current solution. To prevent cycling, information pertaining to the most
recently visited solutions are inserted in a list called tabu list. Moves to
tabu solutions are not allowed. The tabu status of a solution is overridden
when certain criteria (aspiration criteria) are satisfied. One example of an
aspiration criterion is when the cost of the selected solution is better than
the best seen so far, which is an indication that the search is actually not
cycling back, but rather moving to a new solution not encountered before.

Tabu search is a metaheuristic, which can be used not only to guide
search in complex solution spaces, but also to direct the operations of other
heuristic procedures. It can be superimposed on any heuristic whose oper-
ations are characterized as performing a sequence of mowves that lead the
procedure from one trial solution to another. In addition to several other
characteristics, the attractiveness of tabu search comes from its ability to
escape local optima.

Tabu search differs from simulated annealing (Chapter 2) or genetic
algorithm (Chapter3) which are “memoryless”, and also from branch-and-
bound, A* search, etc., which are rigid memory approaches. One of its
features is its systematic use of adaptive (flexible) memory. It is based

on very simple ideas with a clever combination of components, namely
Glo90a, SM93.

1. a short-term memory component; this component is the core of the
tabu search algorithm,

2. an intermediate-term memory component; this component i1s used for
regionally intensifying the search, and,

3. a long-term memory component; this component 1s used for globally
diversifying the search.

As will be elaborated in this chapter, the central idea underlying tabu
search 1s the exploitation of the above three memory components. Using
the short-term memory, a selective history H of the states encountered is
maintained to guide the search process. Neighborhood R(S) is replaced by a
modified neighborhood which is a function of the history H, and is denoted
by R(H, S). History determines which solutions may be reached by a move
from S, since the next state S is selected from R(H, S). The short-term
memory component is implemented through a set of tabu conditions and
the associated aspiration criterion.

The major idea of the short-term memory component i1s to classify
certain search directions as tabu (or forbidden). By doing so we avoid re-
turning to previously visited solutions. Search is therefore forced away from
recently visited solutions, with the help of a memory known as tabu list T.
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This memory contains attributes of some k most recent moves. The size of
the tabu list denoted by k is the number of iterations for which a move
containing that attribute 1s forbidden after it has been made. The tabu list
can be visualized as a window on accepted moves as shown in Figure 4.1.
The moves which tend to undo previous moves within this window are

forbidden.

>
©0 0000000000009

<« Previously accepted moves —>» < Recently Accepted Moves in Tabu List 3>
no longer in Tabu List

Figure 4.1 The tabu list can be visualized as a window over accepted moves.

Cycling back to previously visited solutions is prevented by the tabu
list(s). However, since only move attributes (not complete solutions) are
stored in tabu lists, these tabu moves may also prevent the consideration
of some solutions which were not visited earlier. To relax the actions of tabu
lists, aspiration criteria are introduced. Then, solutions that are the result
of moves having attributes found in the tabu list are also considered if they
satisfy the aspiration criteria. A flow chart illustrating the basic short-term
memory tabu search algorithm is given in Figure 4.2. Intermediate-term
and long-term memory processes are used to intensify and diversify the
search respectively, and have been found to be very effective in increasing
both quality and efficiency 1095, G196, DVO3,

In this chapter, we first introduce the basic tabu search algorithm based
on the short-term memory component (Section 4.2). Then we will build
the necessary background and the required terminology. Following this we
present some practical issues of the tabu search algorithm for implementa-
tion on a digital computer (Section 4.3). Limitations of short-term memory,
uses of intermediate and long-term memories, and strategies for diversify-
ing the search are explained in Sections 4.4 and 4.5. Convergence related
issues are discussed in Section 4.6. In Section 4.7 we discuss some engineer-
ing applications, with case studies and examples, that further illustrate the
implementation aspects of this powerful iterative technique. Parallelization
related issues are discussed in Section 4.8. Other important and neglected
issues such as target analysis, candidate list strategies, strategic oscillation,
path relinking, etc., are discussed in Section 4.9.
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Figure 4.2 Flow chart of the tabu search algorithm.

4.2 TABU SEARCH ALGORITHM

An algorithmic description of a simple implementation of the tabu search
is given in Figure 4.3. The procedure starts from an initial feasible solution
S (current solution) in the search space 2. A neighborhood R(S) is defined
for each S. A sample of neighbor solutions V™ C R(S) is generated. An
extreme case is to generate the entire neighborhood, that is to take V* =
N(S). Since this is generally impractical (computationally expensive), a
small sample of neighbors (V* C R(S)) is generated called ¢rial solutions
(IV*] = n <« |R(S)]). From these trial solutions the best solution, say
S* € V* is chosen for consideration as the next solution. The move to S*
is considered even if S* is worse than S, that is, Cost(S*) > Cost(S). A
move from S to S* is made provided certain conditions are satisfied.

Selecting the best move in V* is based on the assumption that good
moves are more likely to reach optimal or near-optimal solutions. As men-
tioned above, the best candidate solution S* € V* may or may not improve
the current solution, but is still considered. It is this feature that enables
escaping from local optima. However, even with this strategy, it is possible
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Q : Set of feasible solutions.
S : Current solution.
S* :  Best admissible solution.
Cost : Objective function.
®(S) : Neighborhoodof S € Q.
\ % : Sample of neighborhood solutions.
T : Tabu list.
AL :  Aspiration Level.
Begin
1. Start with an initial feasible solution S € 2.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V* C R(S).
5. Find best S* € V*.
6. If move S to S* isnotin T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S*) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor

End.

Figure 4.3 Algorithmic description of short-term Tabu Search (TS).

to reach a local optimum, ascend (in case of a minimization problem) since
moves with C'ost(S*) > Cost(S) are accepted, and then in a later iteration
return back to the same local optimum. That is, there is a possibility of
cycling by returning back to previously visited solutions. This may cause
the search to go through the same subset of solutions for ever.

A tabu list is maintained to prevent returning to previously visited
solutions. This list contains information that to some extent forbids the
search from returning to a previously visited solution. It 1s not a list of
solutions, since storing previously visited solutions, even a small number
of them, and comparing them with newly generated ones would be expen-
sive both in terms of computation time and memory requirement. Instead,
selected move attributes are stored in the tabu list. Tabu restrictions there-
fore may also forbid moves to attractive unwvisited solutions. For example,
if a move 1s made tabu in iteration ¢ and its reversal comes in iteration j,
where j =741 and 1 < | < |T|, then it is possible that the reverse move,
although tabu, may take the search into a new region because of the effects



188

of [ —1 intermediate (previous) moves. It is therefore necessary to relax the
actions of the tabu list and overrule the tabu status of moves in certain
situations. This 1s done with the help of the notion of aspiration criterion.

Aspiration criterion is a device used to override the tabu status of
moves whenever appropriate. It temporarily overrides the tabu status if
the move is sufficiently good. The aspiration criterion must make sure that
the reversal of a recently made move (i.e., a move in the tabu list) leads
the search to an unvisited solution, generally a better one.

Several aspiration criteria have been suggested and used in the liter-
ature. The customary one, also the simplest and most commonly used,
overrides the tabu status if the reversal of a move in the tabu list produces
a solution better than the best obtained thus far during the search. This
is also known as best solution aspiration criterion. Other aspiration criteria
will be discussed later (see Section 4.3.4).

Refering again to the algorithmic description in Figure 4.3, initially
the current solution is the best solution. Copies of the current solution are
perturbed with moves to get a set of new solutions. The best among these
is selected and if it is not tabu then it becomes the current solution. If the
move is tabu its aspiration criterion is checked. If it passes the aspiration
criterion then it becomes the current solution. If the move to the next
solution is accepted, then the move or some of its attributes are stored in
the tabu list. Otherwise moves are regenerated to get another set of new
solutions. If the current solution is better than the best seen thus far, then
the best solution is updated. Whenever a move is accepted the iteration
number is incremented. The procedure continues for a fixed number of
iterations, or until some pre-specified stopping criterion is satisfied.

Tabu restrictions and aspiration criterion have a symmetric role. The
order of checking for tabu status and aspiration criterion may be reversed,
though most applications check if a move i1s tabu before checking for aspi-

ration criterion Glo9%¢

Below we explain some phrases and terms frequently used in this chap-
ter. We will illustrate the working of the basic tabu search algorithm with
the help of an example. Following this, we discuss various implementation
related issues.

Definitions

Trial solution: A solution generated from current solution S as a result
of a move (denoted by St“al).

Tabu restriction: A device to avoid cycling back to previously visited
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solutions by making selected attributes of moves tabu (forbidden).
They allow the search to go beyond the points of local optimality.

Aspiration criterion: A device used to override the tabu status of a
move whenever possible.

Candidate list: The list containing the subset of neighborhood moves
examined.

A dmissible neighborhood solutions: Those neighborhood solutions
that are either non-tabu or pass the aspiration criterion.

Attribute of a move: Any aspect (feature or component of a solution)
that changes as a result of a move from S to St™2! can be an attribute
of that move. A single move can have several attributes.

Recency based memory: A memory structure used to show how re-
cently solutions have been visited, or how recently attributes of moves
have changed. Generally a queue (FIFO) or an array is used.

Tabu tenure: The duration for which a move containing the particular
tabu attribute is forbidden.

Move Evaluator: A composite function of cost and history of the search
that is used to determine the ‘goodness’ of a move.

Move_value: ‘Move_value’ is the decrease in the cost function, or, more
generally, a decrease in the move evaluator function.

example 36 Consider the graph of 5 nodes and 8 edges (e to es)
given in Figure 4.4. The problem is to find a minimal spanning tree
subject to the following two constraints: (1) only one of the three edges
es, €7, Oor eg can appear in the tree, and (2) edge eg can appear in the
tree only if edge eg appears in the tree. Since we have five nodes, the
minimum cost tree will have exactly four edges. The edge names can
be assigned 0-1 variables, z;,7 =1, ..., 8, with the following meaning,

v — 1 if edge e; is in the tree
J 0 if edge e; is not in the tree

Then the constraints on the tree edges can be simply expressed as
r3+ o7+ xs < 1 and rg < xg

The cost of each edge is given below.

Edges e1 e es eq es eg er eg

ot [ 7o 1] [w]w] 7]

To allow evaluations of trees that violate constraints, use an arbitrary
penalty of 100 for each violation. Use standard ‘edge swap’ move to
transform the current tree to a new tree. For tabu restriction, prevent
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the dropping of three most recently added edges. Override this tabu
restriction (aspiration criterion) if the move produces a solution better
than the best seen. Choose the size of the candidate list [V*| = 4 and
tabu tenure k£ = |T| = 3.

Figure 4.4 Graph for Problem in Example 36. Cost of tree = 94+143+7+2x100=220.

solution 10

Initially the tabu list is empty. Let the current solution consist of edges
es, €4, €5, and eg (as shown by thick lines in Figure 4.4). The tree can
be represented in a tabular form as shown below. Blank entries corre-
spond to missing edges, non blank entries are the costs of edges in the
tree.

Current Solution

€1 €2 €3 €4 es €6 er €g Cost=220
Best Cost=220

9 1 3 7

In this tree both constraints are violated, that is, edges e3 and eg exist
in the tree when only one of them can appear (constraint 1), and, es
has appeared without eg (constraint 2). The cost of this tree therefore
is 220 (sum of cost of edges + cost of two violations).

Iteration #1: Each iteration begins by generating a set V* of neigh-
boring solutions. Four neighboring solutions, called trial solutions, of
the initial configuration are generated. They correspond to the follow-
ing four trial swaps: (es,e5), (es,es), (€7,es), and (e1,e4). Each of these
swaps corresponds to adding a missing edge and removing an existing
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edge to produce a new spanning tree. No move that creates a cycle
in the graph is allowed. As shown in the table below, from the list of
candidates, the swap (eg,es) marked with an “<&” corresponds to the
best move, and is therefore chosen as the move to new solution.

4 Neighbors of
Current Solution

Add Drop New Cost

Tabu Queue
€6 €5 136 | o | 5 5 |
eg eg 32 <
e7 es 123
el €4 232
Current Solution
€1 €2 €3 €4 €5 3 €7 €8 Cost=32
9 1 3 19 Best Cost=32

The new solution produced by the accepted move is given in the table
above. Since the tabu restriction is to prevent the dropping of the re-
cently added edges, edge eg is added to the tabu list. We use a queue
data structure to store the tabu attribute which consists in this case
of the edge added. The cost of the current solution is 32.

Iteration #2: As in the previous case, once again 4 new neighbors are
generated by swapping edges (e1,e5), (e7,e4), (es,e4), and (es,es5). Since
our move attribute that is to be assigned a tabu status is the edge that
has been added, that is edge e, and none of our swaps in the candidate
list consist of dropping this tabu edge, none of the generated moves are
tabu.

4 Neighbors of
Current Solution

Add Drop New Cost

Tabu Queue
€1 €5 42 <
ENENEN
€7 €4 141
€8 €4 138
€8 €5 136




192

Current Solution

€1 €2 €3 €4 €s €6 er €g Cost=42
Best Cost=32

13 9 1 19

The best neighboring move is the swap (ey,es), consisting of the in-
clusion of edge e; and the removal of edge e5. This move increases the
cost to 42 (an uphill move). Edge e; is now added to the tabu queue,
and edge eg is shifted in by one position.

Iteration #3: The 4 moves of the next iteration and the cost of the
corresponding new solution are shown below. Once again none of the
moves in the candidate list is tabu.

4 Neighbors of
Current Solution

Add Drop New Cost

Tabu Queue
(£33 €3 40
| €5 | €1 €e |
€2 €4 48
€5 €3 36 <
€5 €4 44
Current Solution
€1 €2 €3 €4 €5 €6 er €g Cost=36

13 1 3 19 Best Cost=32

As before, the best move is accepted, edge e5 1s inserted into the tabu
queue, and the cost is updated to 36.

Iteration #4: The same steps as above are repeated. A new situ-
ation is seen in this iteration. Observe in the table below that the best
neighbor move consists of swap (e7,es), that is, adding of edge ez and
dropping of edge eg. But dropping edge eg is forbidden (tabu), since it
is still in the tabu queue. However, the cost of the solution generated
as a result of this move is only 27, better than the best cost seen until
now. Since this move satisfies our aspiration criterion, the tabu status
is overruled, and the move is accepted. Note that the swap (e7,es) is
better than the other tabu move (es,e1), which also satisfies the aspi-
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ration criterion.

4 Neighbors of
Current Solution

Add Drop New Cost

Tabu Queue
€3 €4 44
| e7 | €5 €1 |

er eg 27 TK

€2 €1 30 T

(£33 €4 42

Current Solution

€1 €2 €3 €4 €5 €6 er €g Cost=27
13 1 3 10 Best Cost=27

The new solution is shown above. The cost is 27, and the tabu queue is
updated by inserting edge e7. Since the size of the tabu queue is only
3, edge eg is thrown out and therefore is no longer tabu.

Iteration #5: A situation similar to that encountered in the pre-
vious iteration is seen once again. A tabu move takes us to a solution
with a new best cost of 21.

4 Neighbors of
Current Solution

Add Drop New Cost

o o 45 Tabu Queue
e e 21 T< | 2 | A |
€3 €4 135
€3 €5 133 T
Current Solution
€1 €2 €3 €4 €5 3 €7 €8 Cost=21
” 1 3 10 Best Cost=21

The new set of moves 1s shown above. Observe, that a new best so-
lution (with Cost=21) is generated by the swap (e2,e1). Although this
swap is tabu, the aspiration criteria is once again satisfied. The move is
accepted, and the above procedure continues for a given fixed number
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of iterations, or until any specified stopping criterion is met.

4.3 IMPLEMENTATION RELATED ISSUES

In the previous example we illustrated some basic characteristics of the
short-term tabu search heuristic. There are several variations of the above
method that can be incorporated. Below we give a flavor of some of these
variations which are related to moves and their attributes, tabu lists and
their sizes, possible data structures, aspiration criteria, etc. 9%

4.3.1 Move Attributes

To prevent the reversal of moves, we may store the move, the reverse move,
or some attributes of the move. Any aspect that changes as a result of the
move from S to S™2l can be an attribute of that move. If the reversal of
the move is stored then it is prevented, but if only the move attributes
are stored then all moves with those attributes are prevented (if made
within the next k iterations). Different attributes restrict the search of the
state space differently. A move can be thought of as consisting of several
components. In our previous example, we used a swap of edges to move
from one solution to another. This move consists of at least two attributes,
an added edge and a dropped edge. Other possible attributes could be, the
change in cost, the change in a function (independent of cost) that depends
on the search strategy, etc.

In many combinatorial optimization problems we can encode our solu-
tion S as a bit vector. For example, the initial solution to the MST problem
in Example 36 can be represented by the following 8-bit vector [0 0 1 1 1
0 0 1]; a 1/0 corresponds to the presence/absence of edge in the tree, the
left-most bit corresponds to index 1 or edge e, and the right-most bit (bit
8) corresponds to edge es.

If we assume a binary encoding of solutions, some possible attributes
that can be stored in the tabu memory are “195:

(1) Changing a selected variable z; from 0 to 1 (corresponds to the added
edge e;).

(2) Changing a selected variable #;, from 1 to 0 (corresponds to the dropped
edge ey).
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(3) Both of the above, that is, the change of z; from 0 to 1, and of #;, from
1 to 0, 1s another attribute.

(4) Another aspect that changes as a result of the move and can be used as
a move attribute is the change in cost or the objective function value
from Cost(S) to Clost(Strial),

(5) Instead of relying on the cost, a function say G(S) that depends on
the problem formulation or the search strategy may be used. Then the
attribute stored could be the change of the function G(S5) to Q(Strial),
or the change represented by the difference G(S) — Q(Strial). The func-
tion G(S) chosen may be independent of the objective function. For
example, it may be a measure of the difference between the solution .S
and some reference solution. An example of a reference solution may
be the best solution seen so far (BestS).

(6) Any combination of the above may also be used as an attribute of the
move.

4.3.2 Tabu List and Tabu Restrictions

Move attributes are used to impose tabu restrictions to prevent reversal of
changes represented by these attributes. A tabu restriction is imposed only
when the attributes satisfy certain thresholds of recency (or sometimes
frequency). Generally, if a move contains attribute m, then the reverse
attribute 7 1s stored in the tabu list.

Sometimes, the entire move (or the reverse move) is stored. For ex-
ample, in the swap move, an ordered pair of elements that are swapped is
stored. Using ordered pairs of combinations in tabu restrictions does not
prevent cycling. For example, a sequence of two or more swaps can result
in a cycle. To avoid this, the ordered pairs are broken into from_attributes
and to_attributes. For example, the swap (ez,e3) (e2 added to the tree and
ez deleted) can be thought of as s changing from 0 to 1, and 3 chang-
ing from 1 to 0. Then, the attribute that corresponds to preventing an
added edge from being deleted will be changing x2 from 1 to 0, or simply
from[z2] = 0. That is, for the move attribute from[xzs] = 0 the correspon-
ding tabu attribute will be to[z2] = 0. Now if we impose the condition that
the to_attribute of a current move is not a from_attribute of a previous
move, cycling can be avoided 9193 DV93,

In addition to preventing cycling, clearly, tabu restrictions also play
the role of inducing vigor in the search. It should also be mentioned here,
that cycle avoidance is not the ultimate goal of the search process since
sometimes i1t may be better to backtrack to previously visited solutions
and start again in another direction. Below we enumerate some examples

of tabu restrictions. A move is tabu if “L95:



196

(1) A variable z; changes from 0 to 1 (assuming that earlier this value
changed from 1 to 0).

(2) A variable zy changes from 1 to 0 (assuming that earlier this value
changed from 0 to 1).

(3) At least one of the above restrictions in (1) and (2) occurs (this makes
more moves tabu).

(4) Both of the above restrictions in (1) and (2) occur (this makes fewer
moves tabu).

(5) A function H(S) receives a value v that it received in a previous iter-
ation, that is, v = H(S") for some previously visited solution S’. H(S)
changes from v" to v/ where #(S) changed from ¢’ to v" on a previ-
ous iteration. That is, v/ = H(S") and v = H(S") for some pair of
solutions S” and S previously visited in sequence.

Tabu-list Size

One of the parameters of the algorithm is the size of the tabu list. In our
example we used a tabu list of fixed size (3). Generally tabu list size is
small. This corresponds to the short-term memory tabu search.

Early experiments on practical problems reported good performance
with list sizes varying between 5 and 12. Magic number 7 is also used
in many applications. Results of recent experiments show that tabu list
size must be a function of the search/solution space, and the type of tabu
restrictions used “1°°0¢. As a general rule, the more stringent the tabu
restriction is the smaller should be the size of the tabu list S5 The
size can be determined by experimental runs, watching for occurrence of
cycling when the size is too small, and the deterioration of solution quality
when the size is too large “TIW93_ Several rules have been proposed in the
literature to determine this value. For static tabu lists, suggested values
of k include 7, VN, N, etc., (where N is related to the problem size, for
example, number of modules to be assigned in the QAP, or, the number of
cities to be visited in TSP, etc) Glo86, Osm93

In Example 36 (see Page 189) we had only one tabu restriction, and
we used a single tabu list. Multiple tabu lists, one for each attribute are
recommended and have also been used, where the size of each list depends
on the tabu restriction “1°°%¢, In addition to different tabu tenures used for
different attributes, a variety of aspiration criteria may also be associated
with each tabu list.

example 37 In Example 36, the tabu restriction was to prevent the
dropping of a recently added edge. Another tabu restriction could be
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the reverse of this, that is, ‘to prevent adding of a recently dropped
edge’. In this case our move attribute will be to store the dropped edge
in the FIFO tabu list. In applications where the number of elements to
be dropped from a solution are fewer than those to be added, a tabu
restriction that prevents previously dropped edges from being added
back to the solution allows a greater degree of flexibility in search.
A general recommendation is to select those attributes whose tabu
status imposes lesser restriction on the choice (or number) of available
moves 91990¢ For example, in the problem of finding the minimal cost
spanning tree, preventing the addition of recently dropped edges gives
more flexibility than preventing the dropping of added ones. This is
because for a graph with n vertices, there are approximately O(n)
edges (n — 1 precisely in our case) from which one should be chosen to
be dropped while there are approximately O(n?) edges from which one
can be chosen to be added.

Dynamic Lists

A small tabu list size is preferred for exploring the solution near a local
optimum, and a larger tabu list size is preferable for breaking free of the
vicinity of a local minimum. Varying the tabu list size during the search
process provides one way to take advantage of this effect.

Dynamic rules have been found to be more robust than static rules
GLOS, GTAWO3, Glootb, DVO3, LG93a (gee Section 4.7.2). When using a dy-
namic tabu list, its size will be varied between some bounds t,,;, and tyax,
for example 5 ({min) and and 12 (tpax)-

In the solution of the quadratic assignment problem (QAP) using tabu
search 121 the size of the tabu list is selected randomly from an interval
ranging from tmi, = [0.9N ] to the value tpax = [1.1N] where N is the
dimension of the problem (see Page 196). The size of the list is changed
approximately every 2 x k iterations from its current value to one that is
randomly selected between the minimum and maximum allowed size. Other
variations of dynamic tabu lists have also been reported. Some of these will
be discussed in Section 4.7 related to case studies.

Based on the problem characteristics, an appropriate size of the tabu
list can also be estimated. For the vehicle routing @93 problem (see Chap-
ter 1, Page 9) where the parameters are n, v, and p, (n the number of
customers, v the number of vehicles, and p = % is the ratio of the required
demands ¢;, and the available vehicle capacities @) experimental data had
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been used to estimate a good size (k) for tabu list values. Regression is em-
ployed on data from experimental runs with various problem sizes (that is,
values, of n, v, p, etc). For one particular heuristic, the size k was estimated
to be Osm93

k=84 (0.078—0.076 x p) x n x v (4.1)

For another heuristic to solve the same problem, ©°™3 the value of k& was
estimated to be

k=max{7,—404+ 9.6 x In(n x v)} (4.2)

Since k is statistically estimated, an error might occur. Therefore, its value
is varied to take in a systematic order each of the three values 0.9%, k, and,
1.1k. The size of the tabu list is changed every 2 x k iterations.

4.3.3 Data Structure to Handle Tabu-lists

Arrays are convenient data structures to store moves or their attributes.
Two arrays tabu_start(m) and tabu_end(m) may be used, where m repre-
sents the move attributes. The size of the array depends on the problem.
The array tabu_start(m) stores the iteration number when the attribute
m becomes tabu and tabu_end(m) stores the iteration number when the
attribute m loses its tabu status. In each iteration, attributes that are
components of the current move are used to update the above arrays.

As an example, if element ez is the attribute of a current move
(say a dropped edge from a tree) in iteration ¢, and tabu_start(m)
and tabu_end(m) represent the arrays that indicate the iteration num-
bers between which the addition of the dropped edge is forbidden, then
tabu_start(esz), or simply tabu_start(3) is set to (¢ + 1) and tabu_end(3)
is set to (¢ + k) where k is the tabu tenure (size of the tabu list). To
check if any attribute is tabu_active, we just have to check if tabu_end(m)>
current_iteration number. It is sufficient to only maintain array tabu_start
since the value tabu_end(m) can be derived from the value of tabu_start(m),
that is, tabu_end(m)= tabu_start(m) + & — 1.

Move attributes can also be stored in a queue as was done in Exam-
ple 36. Every time a move to a new state 1s accepted, its attribute is inserted
into the tabu queue, and the oldest attribute in the queue is deleted. A cir-
cular queue initialized to null values can be used to implement such a tabu
list. The size of the memory required to implement a queue is much lesser
than that required by array tabu_start. When queues are used, an addi-
tional array denoted by tabu_status(m) can be used to help quickly check
if the attribute under consideration is tabu_active or not. Whenever an
attribute (denoted by new_attribute) is inserted in the queue, and the old
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Figure 4.5 (a) Graph whose nodes are to be assigned. (b) Position definition (labels of
slots). (c) One possible assignment.

attribute (denoted by old_attribtue) deleted from it, the tabu_status array
can be updated as follows:

tabu_status(old_attribute)=0  old_attribute no longer tabu
tabu_status(new_attribute)=1 new_attribute becomes tabu

Queues can also be used to store swaps. For permutation problems,
another convenient data structure to store swaps is a 2-D matrix of size
n x n (n represents the number of elements in the problem). Only the
upper diagonal matrix is sufficient to store the tabu tenure of each swap.
Every time swap (¢, j) is made, element M (¢, j) is assigned a value k, and
the remaining non-zero entries are decremented by 1 (that is, M(p,¢)=
M(p,q)—1, p #1i,q # j). We shall illustrate the use of this data structure
in the example below (Example 38) and also show how the lower diagonal
matrix can be used to store the frequency of swaps which are useful in
diversifying the search.

example 38 Consider the graph of Figure 4.5(a). The illustration is
repeated here from Chapter 3 for convenience. The 9 vertices repre-
sent modules and the numbers on the edges represent their weighted
interconnections. The problem is to use tabu search to assign the nine
modules to the nine slots in a way that requires the smallest amount
of wire to interconnect them.

The nine modules can be assigned to the nine slots as shown in Fig-
ure 4.5(c). We can also represent the solution as a one dimensional
array. For example, the solution in Figure 4.5(c) can be represented as
shown below.

Solution of Figure 4.5(c)
Location 1 2 3 4 5 6 7 8 9
Cell a g h c b 1 d e f
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It can also be represented as a string “aghcbidef” | where the left most
slot index of the string corresponds to slot ‘1’ of Figure 4.5(b) and the
right-most to slot 9.

Use standard ‘module swap’ as a move to transform the current as-
signment to a new one. For tabu restriction, prevent the reversal of the
4 most recent swaps (k = 4). Override this tabu restriction (aspiration
criterion) if the tabu swap produces a solution better than the best
seen. Choose size of the candidate list [V™| = 3. Tllustrate the first 6
iterations of tabu search.

solution 11 We can begin with the initial solution given below whose
cost 1s 85.

Current Solution

a b c d e f g h 1 Cost=85

A tabu list can be used to store pairs of swapped modules. Another
way to keep track of recently made moves is to use a matrix. The tabu
matrix is initialized to zero. During each iteration, location (¢, j) of the
matrix will hold an integer that represents the number of iterations for
which the swap of pair (4, 7) is tabu. Only the upper half of the tabu
matrix is sufficient. Such a matrix structure i1s convenient if we are to
use 1t later to store not only tabu swaps, but also frequencies of swaps.

Iteration # 1: The three neighbors of the initial solution and the
gain of each are tabulated below.

3 Neighbors of
Current Solution

Swap Gain
bed -6 <
as>c -10

cer -10




Tabu structure

b c d e f
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g i
a
b 4
c
d
e
f
g
New Accepted Solution
Cost=91
|a|dcb|e f|g|h|i|BeStCost:85

The best solution from the candidate list is the swap (b, d). Although all
moves lead to a solution poorer than the current one, the best amongst
these is chosen. The entry in location (b, d) = 4 indicates that this swap
will remain tabu for the next four consecutive iterations. The new ac-
cepted solution has a cost of 91 and is shown above.

Iteration # 2: Three new neighbors of the above solution are gen-
erated. This time we have a solution better than the current solution
resulting from the swap (e,7). A new entry in location (e, ) is made,
and entry in the other location (b, d) is reduced to 3.

3 Neighbors of

Current Solution

Swap Gain
eeri 4
d>f -10
asrg -8

<
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Tabu structure

b c d e f g h

New Accepted Solution

[~ ]

b|i

C

(leln]e]

Cost=87

Best Cost=85

Iteration # 3: The same procedure is repeated and the best among
them (swap (¢, ¢)) is chosen. No tabu moves have yet appeared. Observe
the new entry made and the previous entries decremented by one. The
cost of the new solution is 79 (which is also the best solution seen so

far).

3 Neighbors of
Current Solution

Swap Gain
ceri 8
asrg -8
ced -4

Tabu structure

b c d e f g h

<
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New Accepted Solution

Cost="79
f | 8 | h | € | Best Cost=79

i

[~ ]

b|c

Iteration # 4: In this iteration, another good move (swap (b, g))
is made and the cost further reduces by 3 units. This is the last itera-
tion in which the first move, swap (b, d), is tabu. It loses its tabu status

after this iteration.

3 Neighbors of
Current Solution

Swap Gain

a<rh -10

b&g 3 <
feri -20

Tabu structure

b c d e f g h i

New Accepted Solution

[~ ]

| Cost=76

i Best Cost=76

g|c f|b|h|e

Iteration # 5: In this iteration we see that two of the three moves
made are tabu, since they have non-zero entries in our tabu matrix.
We therefore select an alternative swap (b, f) which yields a decrease
in cost of wirelength by one unit.

3 Neighbors of
Current Solution

Swap Gain
eeri -4 T
bt 1 <

b>d -6 T
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Tabu structure

b c d e

g
a
b 0 3
c
d
e
g

New Accepted Solution

i

[~ ]

2

b|f|h|e

Cost=75
| Best Cost=75

Iteration # 6: In this final iteration, once again we see two of the
three moves tabu. The best move ((¢,¢)) has a tabu tenure of 2, but
satisfies our aspiration criterion, and is therefore accepted. The tabu
matrix is updated, entry (e, ¢) is made 4, and other non zero entries are
decremented by one. The solution resulting after the first six iterations

1s shown below.

3 Neighbors of
Current Solution

Swap Gain
b&g -14
ceri 8
as>f -26

T«
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Tabu structure

b c d e f g h i

New Accepted Solution

Cost=67

¢ Best Cost=67

[~ ]

s |ifeefn]e]

4.3.4 Other Aspiration Criteria

As discussed earlier, a simple type of aspiration criterion consists of over-
riding the tabu status when the move yields a solution that is better than
the best seen so far, that is C’ost(Strial) < Cost(BestS). This is also known
as Global Aspiration by Objective and is most widely used. A variation
of this method is the Regional Aspiration by Objective which consists of
sub-dividing the search space into regions €2, € 2. As a special case of
regional aspiration by objective, a hashing function ¢(.S) may be defined to
distinguish between different solutions. The region €2, can then be identified
by placing bounds on values of g(S) Y293 GL9 For example, Q, = {9 :
g(S) = r}. Then, if BestCost(£2,) is the minimum Cost(S) for S € Q,, a
move aspiration is satisfied if C’ost(Strial) < best_Cost(Q,) 1493 GL95

Another aspiration criterion is based on the direction of the search
and is known as Aspiration by Search Direction. Here, if an improving
move m 1s made, then the reverse move m in the tabu list is accepted
if 1t is also an improving move. A vector “direction” similar to tabu_end
is used where direction(m) is set to a value improving or non-improving
depending on the move; direction(m) = improving (non-improving) if
the most recent move containing 7 was an improving (non-improving)
move. An attribute aspiration for m is satisfied making it tabu-inactive
if direction(m) = improving and the current trial move is an improving
move, that is if C’ost(Strial) < Cost(S). In other words, aspiration of a
move m is satisfied if the move leads to a solution with a lower cost and
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and 1ts reversal also leads to a solution with a lower cost than that of the
current solution.

As an example consider the swap (¢, ¢) in iteration # 3, of Example 38
(Page 202). This is an improving move, since it lead to a new solution with
a gain of 8. The tabu tenure chosen was 4. In iteration #6 the swap of
the same pair reverses the move (Page 204). This move is tabu, however,
the move may be accepted since the reversal is also an improving move.
Swap (¢, i) in iteration #6 results in gain=8. (Note that we have used the
iterations of Example 38 only as an illustration, the aspiration criterion
used there is different).

A degree of change in the solution structure or quality called
“influence’ can also be used to define an aspiration criterion called As-
piration By Move Influence. The greater the change in the structure or
solution quality due to a move, the larger we say 1s its influence. Influence
can also be thought of as associated with distance. A high influence move
takes the solution farther away from the current solution. Therefore, if a
low influence move is made, its reversal can be accepted provided a high
influence move is made prior to the reversal ST9W?3 The reason for this is
that if a high influence move is made between two low influence moves, and
if these low influence moves are reverse of one another, then the reversal of
the low influence move will most likely not be a previously visited solution.

To further understand the notion of move ‘influence’, consider the
graph bisection problem (see Chapter 1, Page 9) where it is required to
bisect a graph with vertices having varying weights, into two subgraphs,
each subgraph having approximately the same weight. A high influence
move, which significantly changes the structure of the current solution can
be a swap of two vertices of very dissimilar sizes (or weights). High influ-
ence moves may or may not improve the current solution, but are important
especially when 1t 1s required to break away from local optima. This is be-
cause a series of moves that is confined to making only small changes is
unlikely to discover good solutions G195,

The strategy when employing aspiration by move influence may be as
follows. Moves of lower influence are applied until any further gain from
them appears unlikely. At this point, and in the absence of improving
moves, aspiration criteria can shift to give influential moves more impor-
tance. And once an influential move is made, tabu restrictions previously
determined for less influential moves may be dropped.

Let us assume that moves are classified into two categories based on
their influence L; ‘0’ for a low influence moves, and ‘1’ for high influence
moves; in fluence(m) =0/1 depending on whether the move m is a low /high
influence move. Let latest(L), L=0 or 1, be the most recent iteration where
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a move of influence level L was made. Then an aspiration attribute for m is
satisfied if influence(m) = 0 and tabu_start(m) < latest(1), that is, m is
associated with a low influence move, and a high influence move has been
performed since establishing the tabu status for m. In general, for multiple
levels of influence, L = 0,1,2,..., the aspiration by influence for m is
satisfied if there is an L > influence(m) and tabu_start(m) < latest(L).

In situations when all available moves are classified tabu, and are not
admissible by any aspiration criteria, then the least tabu move may be
selected. This criterion is also known as Aspiration by Default. An example
of least tabu move may be the move that is least recent in the tabu queue.

Another approach is to employ the same attribute of the move that
1s used to identify the tabu status and associate an aspiration level value
with 1t. The reversal has to do better than this historical aspiration level. In
some applications, it has been found useful to give aspiration level a tenure
that parallels the tenure of the tabu list. This means that the aspiration
level of the selected attribute is updated whenever that move is made tabu
and whenever the aspiration level criterion is passed. More details on above
and other proposals for aspiration criterion are suggested in G193

4.4 LIMITATIONS OF SHORT-TERM MEMORY

In many applications, the short-term memory component by itself has
produced solutions superior to those found by alternative procedures,
and usually the use of intermediate-term and long-term memory is by-
passed. However, several studies have shown that intermediate and long-

term memory components can improve solution quality and /or performance
MGPO89, Rya89, IE94, DV93

Below we illustrate with the help of an example, how the short-term
memory component based on tabu restrictions and aspiration criteria alone
will not direct the search towards an optimal solution. Once again we will

use the example of finding a minimal cost spanning tree with constraints
Glo90c

example 39 A graph with five nodes and 9 edges (e1 to eg) is shown
in Figure 4.6(a). As in the previous example we would like to find a
minimal cost spanning tree subject to the following constraints:

x5 + 26 < 2xy; and r7 < g

The cost of each edge is given in the table below.
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Edge e1 e es eq es eg er eg eg

Cost|20|18|19|18|9|8|10|17|29|

To allow evaluations of trees that violate the constraints, as before, let
us use an arbitrarily chosen penalty of 100 for each violation.

Figure 4.6(b) shows the minimum cost optimal tree that satisfies both
constraints. Our objective in this example is to intuitively argue, that
starting from the tree given in Figure 4.6(a), the use of short-term mem-
ory component alone will not drive the search to the optimal tree 1290°,

@ (b)

Figure 4.6 (a) Tree of initial solution of Example 39. (b) Optimal solution of Example

39.

solution 12 The cost of the initial solution (Figure 4.6(a)) is the
sum of the cost of edges plus the cost of two violations since edges es
and eg can appear in the tree only when edge eg appears. Since the
first constraint i1s violated by two units, the cost of the initial tree 1s
54 4+ 200= 254. Now as we proceed in the search, in order to satisfy
constraint zs + z¢ < 2x9, moves that lead us from this initial solution
will tend to drop edges e5 and eg rather than add the high cost edge eg,
Cost(eg)=29. Further, once a feasible solution is obtained from which
edge eg 18 excluded, the chances that it will be re-introduced are low.
For example, if we reach the solution with edges es, e3, €4 and eg (with
Cost=T72), then we cannot add edge e7 until we add edge eg, (constraint
2), and edges eg and e cannot be added until we add edge ey which
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is an expensive edge. Therefore it is not likely that we will reach the
optimal solution shown.

Increasing the size of the tabu list will also not remedy the situation.
Clearly, there are situations where the short-term memory component
alone fails to discover the right move to drive the solution into new
regions (diversify).

Having studied the short-term memory component and seen its lim-
itation, we now proceed to look at the intermediate-term and long-term
memory functions. As will be illustrated, these components can be added
modularly to the basic tabu search technique based on a short-term criteria.

4.4.1 Intermediate-Term Memory (Search Intensification)

The basic role of the intermediate-term memory component is to intensify
the search. By its incorporation, the search becomes more aggressive. As
the name suggests, memory is used to intensify the search.

Intermediate-term memory component operates as follows. A selected
number m > |T| (recall that |T| is the size of tabu list) of best trial
solutions generated during a particular period of search are chosen and their
features are recorded and compared. These solutions may be m consecutive
best ones, or m local optimal solutions reached during the search. Features
common to most of these are then taken and new solutions that contain
these features are sought. One way to accomplish this is to restrict /penalize
moves that remove such attributes.

example 40 For example, in the TSP problem with moderately
dense graphs, the number of different edges that can be included into
any tour is generally a fraction of the total available edges (Why?). Af-
ter some number of initial iterations, the method can discard all edges
not yet incorporated into some tour. The size of the problem and the
time per iteration now become smaller. The search therefore can focus
on possibilities that are likely to be attractive, and can also examine
many more alternatives in a given span of time.

This type of intensification strategy is useful for solving large problems
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because the search focuses on generating solutions that are good, and only
a subset of decision elements are incorporated in these solutions.

4.4.2 Long-Term Memory (Search Diversification)

The goal of long-term memory component is to diversify the search.
The principles involved here are just the opposite of those used by the
intermediate-term memory function. Instead of more intensively focusing
the search with regions that contain previously found good solutions, the
function of this component is to drive the search process into new regions
that are different from those examined thus far.

Diversification is used to explore new regions of the solution space.
Most heuristic search techniques use or have a built in mechanism for diver-
sifying the search. Without diversification, the search can become localized
in a small area of the solution space, eliminating the possibility of finding
a global optimum.

The introduction of randomization to achieve diversification is com-
mon among search procedures such as simulated annealing and genetic
algorithms. Simulated annealing incorporates randomization to make di-
versification a function of temperature (see Chapter 2). Genetic algorithms
(Chapter 3) also use randomization in crossover, mutation, and, selection,
to diversify the search. Diversification strategies in tabu search are designed
and used in a number of ways. The long-term memory component is used
to incorporate diversification. Generally there appears to be a hidden as-
sumption that diversification must tantamount to randomization KG9,
However, in tabu search, deterministic diversification is employed with the
help of short- and long-term memories.

Diversification using long-term memory in tabu search can be accom-
plished by creating an evaluator whose task is to take the search to new
starting points 91°8°b For example, in the TSP, a simple form of long-term
memory is to keep a count of the number of times each edge has appeared
in the tours previously generated. Then, an evaluator can be used to pe-
nalize each edge on the basis of this count, thereby favoring the generation
of “other hopefully good” starting tours that tend to avoid those edges
most commonly used in the past. This sort of approach is viewed as a fre-
quency based tabu criterion in contrast to the recency based (tabu list)
illustrated earlier. Such a long-term strategy can be employed by means
of a long-term tabu list (or any other appropriate data structure) which
is periodically activated to employ tabu conditions of increased stringency,
thereby forcing the search process into new territory.

It 1s easy to create and test the short-term memory component first,
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and then incorporate the intermediate/long components for additional re-
finements. Below we illustrate this by two examples. One is an optimization
problem based on the short-term memory component. The other example
illustrates how frequency can be accommodated in the previous example to
diversify the search. Examples of other techniques used for diversification
are discussed in Section 4.5.

Penalizing Frequent Moves

We now illustrate how the long-term memory can be incorporated to diver-
sify the search process. To do this, we use the same matrix data structure
used in our earlier example (Example 38, Page 199). Recall that the upper
diagonal matrix was used to store the recency information. We will use the
lower diagonal matrix to store the frequency of moves made. That 1s, each
entry (¢,7) in the lower diagonal matrix stores the number of times the
swap (¢, ) was made. We can then use this information to define a move
evaluator £(H, .S), which is a function of both the cost of the solution, and
the frequency of the swaps stored. Our objective is to diversify the search
by giving more consideration to those swaps that have not been made yet,
and to penalize those that frequently occurred 9932 Therefore, the design
of the evaluator must be such that moves that most frequently occurred in
the past are given less consideration. For example, if a swap (¢, j) was made
to take the solution from current state S to a new state S*, and the term
Freq(i, j) is the number of times swap (¢, j) was made, then the evaluation
of the move can be expressed as follows:

£(H,57) = Cost(S*) Cost(S*) < Cost(S5)
' T Cost(S*) + a x Freq(i,j) Cost(S™) > Cost(S)

a is constant which depends on the range of the objective function values,
the number of iterations, the span of history considered, etc. Its value (a’s)
is such that cost and frequency are appropriately balanced.

example 41 For the problem in Example 38 (Page 199), the solution
after 30 moves is given below.

Solution After 30 Moves Cost—95

|a|g|e|f|d|h|b|i|c|BestCost:67

The number of times each move has been made is given in the lower
diagonal matrix. We will illustrate how this information can be used
to diversify the search.
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solution 13

Tabu structure

(Recency)
a b c d e f g h i
a [ ] 2
b - 3
c 1 m 4
d 2 1 1 m
e 2 [ ] 1
f 3 1 m
3 1 1 m
h 3 1 m
i 1 4 3 1 1 m
(Frequency)

For the sake of illustration, let us use a candidate list of size 5. The
five neighbors of the current solution are given in the table below:

5 Neighbors of
Current Solution

Penalized
Swap Gain Gain £(H,S)
atsg 11 11 84 T
f&b -21 -36 131
icrg 6 6 101 <
a+rd -4 -14 109
ceb -12 -17 112

In the table above, the first move, swap (a, g) is the only move with a
positive gain (see column 2), but this move is tabu, does not satisfy our
aspiration criterion, and is therefore not considered. For the remaining
moves, those with negative gains, we will resort to our evaluator.

E(H,S") = Cost(S*) + Penalty-term
= Cost(S*) + 5 x Freq(, j)

The ‘Penalized Gain’ 1s obtained by adding the ‘penalty term’ to the
gain of the move. We use a value of a=5 since for our cost values be-
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tween 60 and 120, this value seems reasonable. In our case, we chose
to diversify once every 30 iterations, In a later section (Section 4.9.2),
we explain how the values of parameters such as «, are determined.

From the table above, the swap (4, g) has the smallest value of £(H, S),
hence it becomes the accepted move. Observe, that of all the moves with
negative gains, the swap (a, d) has the largest non-penalized value (of
-4). However, the penalty incurred because Freq(a, d) is high since this
swap has been made two times, whereas swap (¢,¢) has not yet been
made. Thus accepting the swap (¢, g) will hopefully take the search into
new regions.

4.5 EXAMPLES OF DIVERSIFYING SEARCH

In this section we will illustrate how deterministic diversification is em-
ployed in tabu search using two examples, the quadratic assignment prob-
lem (QAP) and the processor scheduling problem.

4.5.1 Diversification in Quadratic Assignment (QAP)

The diversification strategy presented here was studied by Kelly et al ¥:¢94
for the quadratic assignment problem. The technique suggested can be
extended to other permutation problems, and can be integrated with other
heuristics.

The QAP can be viewed as a permutation problem with the following
objective function,

n—1 n
Minimizez Z Jizde(iyn () (4.3)
i=1 j=i+1

In this function, f;; is the flow between objects i and j, dy(j)x(;) is the
distance between the locations where objects i and j are placed, and n is
the total number of objects or locations. A feasible solution is then given
by IT = {n(1),m(2),...,7(n)}, where 7(7) is the index of the location that
contains object 1.

The method to solve the QAP problem proposed in ¥F%%% starts by
using the local search procedure with pair-wise swap as a move strategy.
This procedure is extremely fast but rarely finds the optimal solution. Tabu
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search based on short-term memory can also be used. Then, a completely
deterministic diversification approach with no reliance on randomization is
used to move away from the local minimum. When the current solution is
determined to be sufficiently far away from the previous local minimum, or,
if a new best solution is found during this stage, the diversification restric-
tions are lifted and the local search procedure is activated once again KG9,
As will be explained below, the approach uses two simple memory devices.
Following the generation of a starting solution, memory is used to store the
recent local optimum to achieve what 1s called ‘first-order form of diversi-
fication’. A frequency-based memory is also used to achieve a second order
form of diversification.

Generating a starting solution

The initial solution is generated by solving a linear placement problem
which assigns objects to locations to minimize a linear cost function. Cost
coefficients ¢;;, which are lower bounds on the cost of assigning objects ¢
to location j, are first generated. These ¢;; provide a lower bound on the
optimal solution.

To determine the cost coefficients for the linear assignment problem,
the flow matrix is defined as F' = (fi;) = (f1, f2,..., fi...., fa), and the
distance matrix as D = (di;) = (d1,da, ..., ds, ..., dy), fi and d; are vectors
of n non-negative integers. Column f; consists of the flows between object ¢
and the n objects in the problem. Similarly, column d; consists of distances
between locations j and the n locations in the problem. Let f! be the
vector formed by removing the ith element (zero) from f; and reordering
the remaining elements in ascending order. Similarly, let d} be formed by
removing the jth element (zero) from d; and reordering the remaining
elements in descending order. The cost of assigning object ¢ to location j
can be bounded from below by ¢;; = ff * d}T.

First-order diversification

Following the construction of the initial solution, and the succeeding series
of pair-wise exchanges that lead to a local optimum, the algorithm enters
this stage. This first order diversification stage is designed to take the search
to a solution that is “maximally diverse” with respect to the local minimum
most recently visited. The notion of diversity in this context employs two
concepts. One is the distance concept that characterizes two solutions as
being increasingly diverse as their separation increases. The separation is
defined to be the minimum number of moves to get from one to the other.
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The second concept concerns the “difficulty” of getting from one solution
to the next. Starting from a local optimum, another solution is said to be
diverse in relation to this point if it is distantly separated (relative to the
minimum number of moves to reach it) and has an objective function value
close to or better than that of the first.

The first-order diversification strategy takes the following form. Let
the most recent local minimum be denoted by the permutation II

min —
{Tmin(L), Trmin(2)s - -+, Tmin(7) } and the current solution by permutation
Meur = {meur(1), mcur(2), - - -, mcur(n)}. Consider all swaps mcur(z) <
meur (y) such that wcur(x) = mpip(®) or meur(y) = mpin(y). That is,

if module x or module y in the current solution is in the same location as
in the most recent local minimum, then modules x and y are considered
for swap. Swaps of this type will always increase the separation from the
local minimum. Then, from the swaps in the indicated category, we choose
one that degrades the objective function the least (or improves it the most
if improving moves are available since the move may increase, decrease, or
keep the objective value constant).

Diversifying moves are made until no moves exist that belong to the
above indicated set. At this point the algorithm switches back to local
search heuristic, and then the procedure is repeated.

The above procedure of first-order diversification may be perceived as a
form of tabu search, in the sense that the restriction imposed on the choice
of swaps 1s equivalent to the tabu restriction that disallows the exchange
of objects ¢ and j if both are currently placed in locations different from
the ones they occupied in the most recent local minimum. This restriction
1s not lifted until either no more moves are possible or a solution is found
that is better than the best visited so far KMG94,

Second-order diversification

For the second-order diversification, a frequency-based memory matrix M
is maintained, where m;; counts the number of times object ¢ occupies
location j in the local minima encountered throughout the search history.
By keeping track of the total number m* of local optima encountered, we
get from M the matrix M* whose entries m;; = m;;/m” represent the
relative number of times an item ¢ occurs in location j over the set of local
optima. Two possible uses of matrices M and M* in the application of

second-order diversification are suggested KG9

Restarting: Here, a certain cutoff rule is used to terminate the first-order
diversification, then a new starting solution is generated by solving a linear
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assignment problem with cost coefficients given by c¢;; = m;;. Once this
new solution is generated, the first-order diversification resumes until again
meeting the conditions of the cutoff rule.

Periodic Second-Order Evaluation: After a selected number of local
optima are generated during the first-order phase, the next sequence of
moves replaces the objective function evaluation with an evaluation that
minimizes m;, + Mgy, (or more generally a convex combination of this term
and Max(m;,, mis)), where { = meur(z) and & = mcur(y). The idea is to
move objects out of high frequency locations. An incremental version of
this rule replaces m;, with m;, — myy and my, with my, — m;,, thereby
favoring exchanges that move objects out of high-frequency locations or into
locations that have corresponding low frequencies ¥FG%4 The contribution
of the second-order evaluation can also be weighted by a penalty factor
p (see Section 4.4.2 on Page 211) and added to the objective function
evaluation in the first-order process KIG94,

4.5.2 Diversification in Multiprocessor Scheduling

The multiprocessor scheduling problem can be defined as follows. Let
L = {q1,92,...,¢n} denote a collection of n tasks to be executed on a
collection of m identical processors say Py, P2, -+, Py. The goal is to find
an assignment that minimizes the makespan of the m parallel processors,
that is, to find

min max t(q;) (4.4)

where t(g;) is the time taken to execute task ¢;. The value T; = queP, t(q;)
is the latest finishing time of processor i, and the the goal may be ex-
pressed as that of distributing the tasks to Py, Ps,---, P, to minimize

max; E HG94.

The scheduling problem can also be viewed as assigning n items {q¢1, ¢2,

.+y qn t with weight t(g;) to m bins with the goal of minimizing the weight

of the heaviest bin. In this case, 7; can be interpreted as the weight of bin

i 1G94 The problem is similar to the one discussed in Chapter 3 (Exam-

ple 23) with the difference that communication times for passing messages
between processors is ignored.

The application of tabu search to solve the above problem is discussed
in detail in H9%% A dynamic tabu list and the associated tabu criteria have
been used to avoid repetitions of long move sequences. However, they were
not sufficient to guide the search to improve the best solution found. The
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search was trapped into regions of schedules with extremely unbalanced
distribution of short and long tasks. Certain processors were assigned many
small tasks, and other processors were assigned many big tasks. The simple
exchange move was not powerful enough to modify the general form of such
a structure. Based on this observation, whenever the search gave evidence
of failing to improve the current best solution for a long period, Hubscher
and Glover 1994 proposed the following diversification scheme. Task sets
that contain a relative large or relatively small number of long tasks are
redistributed by an influential diversification move. The diversification is
called “influential” because it considerably modifies the solution structure.

Hiibscher and Glover #9494 introduced the notion of task distribution
factor f(¢) for each processor . Factor f(¢) is used to identify two processors
that have the shortest and the longest tasks.

where

Ti= ) tg)

q;EP;

f(%) is an approximate measure of the number of long tasks in P;. The
greater the value of f(i), the greater the number of long tasks in P;. Let ¢
be such that f(i) < f(k), 1 <k <m, and let j be such that f(j) > f(k),
1 < k < m. That is, processor ¢ has a deficiency and processor j has
an excess of long tasks assigned. Now F; and F; are taken and tasks are
redistributed to have a significant influence on the current solution. A new
solution is created by reallocating their elements as follows.

Let S; and S} be two empty sets. First, take P; (with an excess of long
tasks) and successively assign its tasks, in order of decreasing task length
on a best fit basis to S; and Sj. Then, assign the elements of P; in the
same way to S} and S}. Finally, assign all tasks of S} to P; and of 5% to
P;. The above procedure redistributes the longer tasks of P; and shorter
tasks of F; on both processors. Elements of P; and P; are redistributed
between S; and S} one after the other, because this results in assigning 5;
and S} about half of the tasks from F; and the other half from P; . This is
especially useful if m, the number of processors, is small.

When is the influential diversification step executed? For test cases
used in HG94 experiments have shown that executing such a step after
3000 non-improving moves is all that is needed. Smaller number of itera-
tions, generally, will not allow the search procedure adequate time to settle
in on a better (local) minimum, especially considering that an influential
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diversification step results in a significantly altered state for continuing the
search HG94,

4.6 TS CONVERGENCE ASPECTS

Simulated annealing (Chapter 2) is seen as a probabilistic version of lo-
cal search. For ordinary local search the acceptance probabilities of uphill
moves are equal to zero. For simulated annealing the acceptance proba-
bilities of uphill moves depend on the magnitude of the cost increase and
the value of a control parameter called temperature. This nondeterministic
behavior causes the simulated annealing algorithm to converge in the limit
to a global minimum (see Chapter 2, Section 2.3).

The tabu search algorithm as described in previous sections is known
as ordinary or deterministic tabu search. Ordinary tabu search is a gener-
alization of deterministic local search. The main differences between tabu
search and local search are:

1. Local search is completely memoryless while in tabu search move de-
cisions are made based on past moves (short-term, intermediate-term,
or long-term memory).

2. Inlocal search, only moves to lower cost states are accepted. The search
stops as soon as a minimum state (local or global) is reached. On the
other hand, for tabu search, we move to the state with the lowest cost
in the neighborhood of the current state (subject to tabu criteria). The
cost of the new state may be larger than that of the current state.
Hence, tabu search can escape local minima.

Because of its deterministic nature, ordinary tabu search may never
converge to a global optimum state. The incorporation of a nondeter-
ministic element within tabu search allows the algorithm to lend itself to
mathematical analysis similar to that developed for simulated annealing,
making i1t possible to establish corresponding convergence properties. Tabu

search with nondeterministic elements 1s called probabilistic tabu search.
Glo89b, FK92

Simulated annealing is a special generalization of local search. On the
other hand, probabilistic tabu search is a general framework for a variety
of local search strategies. Probabilistic tabu search relies on appropriately
designed probabilities to guide the search process. The probabilities are
designed based on the following principles: 91039b
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1. More attractive moves yielding lower cost states have higher status and
thus should receive higher acceptance probabilities.

2. The status of a move is diminished (entailing a lower probability of
acceptance) if it reverses or repeats a recently made move.

3. Thresholds of aspiration, based on previous performance, can override
an otherwise diminished status, yielding a reinforced or even a preemp-
tive basis for selection (acceptance with probability 1).

Let S be the current state and R(S) be its local neighborhood. Follow-
ing the first principle, a positive weight function is used to assign a weight
w; to each state S; € R(S). The lower the cost of state S;, the more attrac-
tive is the move to 5;. Hence, the lower the cost of a state, the higher is its
weight. For example one may choose the following weight function,

1
Cost;
Let p; be the probability of accepting the move from S to S; € R(S). The
pi’s can be computed as follows:

w; =

W

Pi = ==
Zsjex(s) wj

Following the second principle, tabu moves with shorter residence time
in the tabu list should receive a lower acceptance probability than those
of longer residence. One may achieve this by reducing the weights of tabu
states in proportion to their residence in the tabu list. For example, for a
tabu list of size 10 one may assign a reduction factor r of 0.1 to the most
recent tabu move, 0.2 to the 2nd most recent, ... 1 to the least recent tabu
move. Let S-to-S; be a tabu move and r; be its reduction factorf, then the
acceptance probability of this move is equal to r; X p;.

According to the third principle, aspiration levels should override the
tabu status of the move. For example, if S-to-S; is a tabu move which
satisfies the aspiration criteria, then its acceptance probability is set to p;,
i.e., r; is set to 1. Another alternative strategy is to set to 1 the acceptance
probability of such a move.

Probabilistic tabu search has been shown to converge in the limit to a
global optimum state. The proof consists of showing that the state transi-
tions of the algorithm correspond to an ergodic Markov chain. The proof is
analogous to that of simulated annealing and therefore will not be repro-
duced here. The interested reader is referred to Chapter 2 of this book and

to FR92 Below, we provide a brief informal proof due Fred Glover“1o89b,

t If the move is non-tabu then r; = 1.
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The configuration graph of the solution space is finite. Given that the
assigned probabilities are positive (a condition not too difficult to satisfy),
a directed path of finite length exists from each node (state or solution) of
the configuration graph to each other node of the graph. Each time a state
is visited, there is a nonzero probability of leaving that state and reaching
another feasible state. Following this argument, starting from any state,
there must exist a finite sequence of transitions with positive probabilities
leading to a global optimum state. Hence, probabilistic tabu search will
have a nonzero probability of visiting a global optimum state if allowed to
run infinitely long.

4.7 TS APPLICATIONS

Tabu search has been applied to solve combinatorial optimization problems
appearing in various fields of science, engineering, and business. Results re-
ported indicate superior performance to other previous techniques. Exam-
ples of some hard problems to which tabu search has been applied with suc-
cess include graph partitioning ““%!, clustering 459 TSP (traveling sales-
man problem) MHEM8S 1y vimum independent set problem FH4W90 'graph
coloring PAWo3, HAWST 'y aximum clique problem 95593 and quadratic as-
signment problem Tai%1 SK90 {6 name a few. In the area of engineering,
tabu search has been applied to machine sequencing 7?3 scheduling
MRO3, DT93, TE94, WHS9, BC95, WiddL 700 clustering ASF98, multi-processor
scheduling HG%4 vehicle routing ©sm93, ST93, RLBY6 = general fixed charge
problem SM93 bin-packing “H°! bandwidth packing 4932 VLSI place-
ment V92 circuit partitioning 2V%3, global routing Y5%% high-level synthe-
sis of digital systems SAB96, AK9 "epe

A good summary of most recent applications of tabu search can be
found in ©1°°% G195 Below we present in some detail how tabu search has
been adapted to solve two hard problems: (1) the classical QAP, and (2) the
bandwidth packing problem that occurs in telecommunication.

4.7.1 QAP Problem

Most methods to solve the QAP consist of two phases, construction and
improvement S¥°0 T291  One way to improve the search is to use pair-wise
exchange. tabu search can be incorporated in this improvement phase in
order to continue the search when local optima are reached. The procedure
described in this section is due to Skorin-Kapov and is referred to as Tabu-
Navigation. In this procedure, the user can interact during the execution
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(navigate through the search space) by using new parameter values and by
invoking long-term memory S¥90.

A move in tabu-navigation procedure is a pair-wise swap. The attribute
of a move is an unordered pair (,j) of the objects that exchange their
locations. The Move_value is the difference between the objective function
after and before the move. If Move_value<0 than the swap is an improving
move. The best swap is the one that identifies a pair (Zpest, Jbest) for which
the Move_value is the smallest. The subset of all pairs (¢, j) is the domain
of admissible moves.

Tabu list of length tabu_size is a circular list that is updated during the
improvement phase of the algorithm, and stores (¢, j) pairs that represent
the modules that have been swapped. ‘Best solution’ aspiration criterion
is used (see Page 188). Length of the tabu list and the maximum num-
ber of iterations are user specified parameters. The procedure runs for a
certain number of iterations with a given tabu_listsize. Then the user is
given the following four choices to restart the procedure with new values for
tabu_listsize and maztmum number of iterations, or to end the procedure
and return the best solution found.

(1) Restart from the beginning of the improvement phase.

(2) Restart from the best solution obtained thus far.

(3) Restart from the beginning of the construction phase, penalizing the
move performed thus far in order to diversify the search.

(4) End the procedure.

When user choice is (3), the short-term tabu is terminated and the
long-term tabu is invoked. The long-term memory is a function that records
moves taken in the past in order to penalize them. The goal is to diversify,
by compelling the search to explore unvisited regions. As discussed earlier
one form of long-term memory function for permutation problems of size n
is an n x n matrix (let this be denoted by LTM, see Example 41). When
pairs of objects (4, j) exchange locations, LTM;; is replaced by LTM,;; + 1.

In this procedure, at the end of the short-term memory phase, and
before starting the construction of the new initial permutation, the matrix
px LTM 18 added to the distance matrix D, where 1 1s a penalty parameter.
That is, the distance between two locations i, j is increased by pk, where
k is the number of times the pair (¢, j) was swapped. This way the search
can be directed closer to or farther from the explored regions by changing

o

Also in this procedure, following the construction of the new initial
solution, the value of the objective function for that solution is computed
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without penalties and the improvement phase is restarted. The short-term
memory is re-initialized, in contrast to the long-term memory which restarts
with values from the end of the previous phase. The description of the tabu-
navigation algorithm is given in Figure 4.7.

Algorithm (Tabu_Navigation)
Begin

Step 1. Read the “How” matrix F and the “distance” matrix D.
Initiate long-term memory.
Step 2. Construct the initial permutation using a constructive algorithm.

Step 3. Initiate short-term memory by reading the values for parameters tabu_size and

max_iter (i.e., maximal number of iterations).

For K =1 to max.iter Do
Begin

(a) examine all possible pair-wise exchanges and perform the best admissible move

(b) update tabu list
(c) update long-term memory

End

Step 4. Perform one of the following:
1) Restart from the solution given by the construction phase.

Read new value for tabu.size and/or max_iter and Goto Step 3.
ii) Restart from the best solution generated thus far.

Read new values for tabu.size and/or max_iter and Goto Step 3.
iii) Invoke long-term memory.

Replace the original matrix D by D+LTM and Goto Step 2 .
iv) End the procedure. Display best solution and the CPU time used.

End

Figure 4.7 Tabu-Navigation Algorithm.

The above tabu-navigation algorithm was tested on a standard set of
problems of varying sizes SK°C. By incorporating tabu search into the
simple pair-wise exchange algorithm, the best known solutions or better
were obtained in record CPU time. For each of the problems, a number
of runs were performed to assess good parameter values and the use of
aspiration criteria and long-term memory. For some problems (n=15 and
20 from NVR68) "the best known solutions were obtained without the use of
long-term memory and aspiration criteria, and for others (n=30 NVE68) best
solutions were obtained without the aspiration criterion, and by invoking
the long-term memory.

Tabu-navigation was executed S¥°C using different values of the param-

eter tabu_size. The best value of tabu_size was observed to be an increasing
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function of the size of a problem. When the algorithm was used without
aspiration criteria, the best tabu sizes were integers between n/2 and n/3.
It was also observed that the use of aspiration criteria caused good values
of parameter tabu_size to become larger.

Different strategies were tested for changing tabu sizes when choosing
alternative ii) in Step 4 of Figure 4.7 SK% . For the QAP problem, it
was found that if the aspiration level criterion is not used, then decreasing
tabu list sizes in a step-wise manner produces the best results. The intuitive
justification given for this behavior was that smaller tabu sizes enable more
careful examination of the state space (provided that no cycling occurs). In
the experiments conducted, the tabu size was decreased every 50 iterations
in steps of 30,15,10,8... etc.,

For the same QAP problem, if an aspiration level criterion is used, the
restrictions imposed by larger tabu sizes are balanced by the possibility of
overriding the tabu status of a move. In that case, it seems that the strategy
to increase the tabu size works better. The tabu size was increased every
50 iterations in steps of 6,8,10,20... etc.,

Note that all possible pair-wise exchanges are examined at Step 3 of
Figure 4.7. This becomes very expensive as the problem size increases. Can-
didate list strategies (discussed in Section 4.9.3) suggest ways of avoiding
this extensive computational effort without sacrificing solution quality.

4.7.2 Bandwidth Packing Problem (BWP)

In this section we present the adaptation of the tabu search algorithm to
another problem known as the Bandwidth Packing (BWP) problem. This
practical problem occurs in the area of telecommunications. The demand
requirements of calls to be routed through a given telecommunication net-
work may exceed the network’s installed capacity. It is then required to
select a subset of calls and assign them to feasible paths, with the objec-
tive of maximizing profit.

In this section we present the tabu search implementation for the static
version of the BWP problem, where the demand is given in the form of a

table of calls, and the bandwidth (BW) requirements are fixed and known
LG93a

Laguna and Glover define the BWP by reference to a graph with ca-
pacitated edges 9932 Each call has a known revenue and a non-negative
BW requirement, and can be assigned to a path in the graph. Associated
with each link in the graph is a capacity (or BW) and a unit cost. The
demand of the calls exceed the total capacity of the network. The problem
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is to find an optimal assignment of a feasible subset of calls to paths. The
notation used is as follows.

n, p, and ¢ : number of nodes, links, and calls respectively.
For each link j :  b; is its capacity, ¢; the unit cost and f; the flow.
For each call ¢ :  r; 1s the capacity requirement, v; the revenue,

s; the source node, and #; the terminal node.

Links represent undirected arcs or edges. Let A denote the set of as-
signed calls, i.e., those calls with an assigned path. Mathematically, the
problem may be expressed as follows F&932.

P
Maximize Profit = Z vy — ch x f; (4.5)
icA Jj=1
subject to
fi < by, j=1,...,p, where f; = Zri (4.6)
1€EA;

and A; is the set of calls routed through link j.

In Equation 4.5, the first term identifies the total revenue from all
assigned calls. The second term identifies the cost of using links to which
the calls are assigned. Only those links with positive flow f; contribute to
the total cost. In Equation 4.6, the inequality constraint ensures that the
capacity of each link is not violated. Flow of each link equals the sum of
the BW requirements for each call routed through the link.

The procedure is initiated by first computing a pre-specified number
of profitable paths for each call i (i = 1,...,¢), up to a maximum of kpax
paths. A path 7 1s profitable for call ¢ if

vi—rix Y e >0 (4.7)
JEL=
where L is the set of links in path 7. The total cost of routing a call through
any of its profitable paths is known (since these costs are calculated when
the paths are generated).

Now given ¢ calls, and k; profitable paths for each call ¢, the problem
consists of assigning calls to paths (upto a maximum of kpax paths), in
order to increase profit “4932 A move (i, h), for i = 1,--- ¢ and h =
0,---,k; 1s an operation that changes the assignment of call ¢ from its
current path g to path h. After a move, tabu list forbids call ¢ from being
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assigned to path g for tabu_size iterations where tabu_size i1s the current
size of the tabu list.

At each iteration the method performs the best move available and the
tabu information is updated. The definition of “best move” is a function
of the search state and the information contained in the different memory
structures discussed below.

Frequency information is used in BWP for diversification based on long-
term memory. The idea behind using frequency information, as discussed
in Section 4.4.2, is to direct local choices by exploiting the knowledge of
how often the same choice has been made in the past (see Example 41).
The long-term memory function embedded in this method consists of ¢ lists
of the from Freq(é,h) for i =1,...,q and h =0,...,k;. The (¢, h) element
identifies the number of times that call i has been moved to path & during
the search. The best move at any iteration is the non-tabu move with the
largest penalized Move_value (pmv). If call ¢ is currently assigned to path
g, then the pmv for the move (7, k) is given by:

pmv(i, h) = Move_value(i, h) — a x Freq(i, h) (4.8)

where

10 otherwise

o { 0 if Move_value(é, k) > 0,

Move_value(i, h) = r; - Z c; — Z ¢; (4.10)

JEL, JELR

The parameter «a can be made to depend on the problem class and
solution history. The choice of 10 was based on experimentation.

Multiple dynamic lists whose sizes change systematically are used.
Specifically, each call ¢ has its own tabu list size, denoted by tabu_size(7).
This size is allowed to take 3 possible values that are a linear function of
the number of profitable paths k; for each call i. For any call ¢, small (S),
medium (M), and large (L) sizes are set equal to k;, 1.5 X k;, and 2.0 x k;,
respectively. The value of tabu_size(¢), for i = 1,..., ¢ is initially set to S
(that is, k;), and then systematically changed every 2x tabu_size(i) itera-
tions following the sequence {S,M,S,L., M,L}. The sequence is repeated until
the end of the search 9932 Tabu status is over-ridden if cost is better than
the best.
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4.8 PARALLELIZATION OF TS

General iterative heuristics such as tabu search are getting more widely
adopted to obtain near optimal solutions to numerous hard problems. For
small problems, all these techniques have reasonable runtime requirements.
For example, for a placement problem with few hundred modules, all itera-
tive heuristics described in this book were able to find very good solutions
in less than an hour on an Ultra I Sun station. However, most practical
problems are very large and require several hours of computer time to solve
by iterative heuristics. Application-specific constructive heuristics always
lead to solutions that are far from optimal. In many instances they fail
to find even a feasible solution. One way to adapt iterative techniques to
solve large problems in reasonable time is to resort to parallelization strate-
gies. In Chapters 2 and 3 we have seen various parallelization strategies of
simulated annealing and genetic algorithms, which resulted in remarkable
speedups. In this section we shall briefly survey parallelization of the tabu
search heuristic.

Let T be a random variable representing the time to find a desired solu-
tion by tabu search heuristic. For many problems solved by tabu search with
short-term memory, empirical evidence showed that the random variable T'
is exponentially distributed T2191 (the sample distribution of T" approximates
the exponential distribution). That is,

Prob(T'<t) = 1 — e~ M

with A > 0. The parameter X is equal to 1/T, where T is the average time
required to obtain a desired solution observed over a large number of runs
of the algorithm. This observation is equivalent (in probability) to saying
that, if the search of a desired solution over a single computer takes ¢ units,
then the same solution will be found in ¢/k units by k parallel searches on
k independent computers. Hence, ideal linear speed-up is achieved by con-
current searches. Furthermore, because of the properties of the exponential
distribution (namely the memoryless property), there will be no advantage
in re-starting the tabu search.

The most straightforward and widely adopted parallelization approach
is based on the above observation FBTV94 Taio0, GPR94 1p thig approach,
k tabu search processes are spawned and run concurrently on k proces-
sors. Each process has the task of exploring a subset of the neighborhood
of current solution. Two approaches are followed: synchronous and asyn-
chronous. In the synchronous approach the various processes are always
working with the same solution, but exploring different partitions of the
current local neighborhood. A master process orchestrates the activities
of the slave processes GPR94, Tai%0 Tp the agynchronous approach, all pro-
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cesses are peer and usually are not all working with the same current solu-
tion FBTVO4, Taid3 Fyrthermore, sometimes each process is seeking a partial
solution and then a global solution to the original problem is constructed by
merging the partial solutions.™°3 Both approaches require that the set of
possible moves be partitioned among the available processors so that each
processor will be exploring a distinct subregion of the current solutions

neighborhood.

Algorithm MasterProcess;
Begin
Initialize parameters and data structures;
So = Initial solution;
BestS = Sop;
CurS = Sp; /* Current solution */
Send CurS to all slave processes;
While not-time-to-stop
Begin
Wait for best moves from all slaves;
Select the best move subject to tabu restrictions;
Send the selected move to all slaves;
End
Force all slaves to stop;
Return (BestS) /* of slave running on same machine */

End. /* MasterProcess */

Figure 4.8 Synchronous parallel implementation: The master process.

Synchronous Parallel Implementation: In this implementation a mas-
ter process and one of the slave processes are running on one machine. The
remaining slave processes are running on distinct machines. All slave pro-
cesses are started with the same initial solution. After searching its part of
the current neighborhood, each slave process reports its best move back to
the master. The master process selects the best among the received best
moves (subject to tabu conditions). If the stopping criteria are met then
the search stops; otherwise the master broadcasts the selected move back
to the slaves and the search continues. The pseudo code of the master and
slave processes are given in Figures 4.8 and 4.9.

A number of synchronous parallel implementations have been reported
in the literature™90, GPR94 For example, in SPRY 3 parallel implemen-
tation of the tabu search algorithm for the vehicle routing problem is de-
scribed. The approach reported is a slight variation of the aforementioned
master-slave strategy. The main steps of the reported parallel algorithm
are outlined in Figure 4.10. For a more detailed description of this parallel
implementation the reader is referred to “FR4 where a noticeable improve-
ment in solution quality over one of the best constructive algorithms for
vehicle routing problem, with substantial reduction in runtime, is reported.
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Algorithm SlaveProcess;
Begin
Initialize parameters and data structures;
Wait for initial solution Sy from master process;

BestS = Sop;
CurS = Sp; /* Current solution */
Repeat

Wait for selected move from the master;
Perform the move;
Update tabu_list;
Update BestS and CurS;
Try all moves in partial neighborhood;
Select best move and send it to the master;
Until stop;
End. /* SlaveProcess */

Figure 4.9 Synchronous parallel implementation: The slave process.

Algorithm ParallelTabuSearch;

Begin

1. Construct initial solution and broadcast it to all slaves;

2. Fach slave process explores its own neighborhood and
sends its best move to the master;

3. The master identifies a subset of moves that improve the
objective function (subject to tabu restrictions);

4. If there is no such move Then the master randomly selects
one uphill move;

5. The master broadcasts to all the slaves the selected move(s);

6. Each slave performs the received move(s) and makes necessary updates;

7. If time-to-stop Then Return BestS;

8. Goto Step 2

End.

Figure 4.10 Synchronous parallel implementation of tabu search.

Another possible parallel implementation of this class i1s as follows. Di-
vide the neighborhood into k& parts of approximately the same size and
evaluate these parts in parallel on & distinct processors. At each iteration,
every processor evaluates the moves attributed to it. It then broadcasts to
the other & — 1 processors the best move it has found in its region of the
current neighborhood. Finally, each processor will select the best among
its proposed move and the k& — 1 moves proposed by the other processors,
executes the move, and performs the necessary updates to its data struc-
tures. In case of a tie among several good moves, the move proposed by the
processor with the least recently accepted move is executed. Such paral-
lel implementation has been reported in ™! for the quadratic assignment
problem. The author reported a linear speedup with respect to a sequential
implementation of the tabu search algorithm.
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Algorithm PeerProcess;

Begin

1. Construct initial solution and initialize parameters;

Explores own neighborhood;

Select best move subject to tabu restrictions;

Update tabu list;

FExchange current best solution with neighbors;

Update current solution based on received neighbor solutions;
If time-to-stop Then Return best solution;

Gotostep 2

IR IS A T o

nd.

Figure 4.11 Asynchronous parallel implementation of tabu search.

Asynchronous Parallel Implementation: In this approach, each pro-
cessor is exploring a subset of the neighborhood of its current solution.
Each processor is competing with its neighbors (its adjacent processors) in
finding a superior solution. When the stopping criteria are met, every pro-
cessor reports its best solution. The general outline of this parallelization
approach is given in Figure 4.11.

Similar asynchronous parallel tabu search implementations for the trav-
eling salesman and quadratic assignment problems have been reported in
FBTV94 The results reported indicate a marked improvement in solution
quality as well as convergence speedup. In FBTV?4 the time between suc-
cessive solution exchanges is called diffusion interval. The authors stated
that the best results were obtained by performing this exchange and up-
dating current solution at each iteration as indicated in steps 5 and 6 of
Figure 4.11.

Other Parallel Implementations: In M4P989 the following synchronous
parallelization approach is described. A parent process initiates several
child tabu search processes, one on each processor. Each child process is
started with different conditions and parameters. Running each tabu pro-
cess with different parameters allows the exploration of distinct subregions
of the search space. Periodically, the parent process stops the child pro-
cesses. The best solutions from all tabu search processes are compared and
the search is restarted with the current best solution. Each child process ex-
plores (as much as possible) a distinct part of the search space. The child
processes are restarted with empty tabu lists as it is counter productive
to apply past restrictions to the new solution. This parallel implementa-
tion was tested on several instances of the traveling salesman problem. The
authors reported that the solution obtained with their parallel implementa-
tion were of lower cost than those obtained with other algorithms reported
in earlier literature. For most instances, the parallel tabu program was able
to obtain an optimal tour in a relatively short time. For example, for a 75
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city tour, the average runtime was about 150 seconds on a Sequent Balance
8000 multiprocessor machine.

A massively parallel implementation of tabu search for the quadratic
assignment problem (QAP) is reported in X9, A move consists of a pair-
wise exchange of the locations of two elements. For an n x n QAP the
examination of the whole neighborhood requires O(n?) pair-wise trial ex-
changes. O(n?) processors are used to explore the entire pair-wise exchange
neighborhood in constant time. The effect of each pair-wise exchange on
the objective function 1s evaluated and communicated to a master process,
which selects the best exchange (subject to tabu restrictions) and sends it
back to all the slaves. This parallelization strategy has been implemented on
the Connection Machine CM-2, a massively parallel SIMD machine“™-89, A
sizable reduction in the runtime per iteration was achieved when compared
to other sequential and parallel implementations T2191, €SK93 Fyrthermore,
this parallel implementation produced for some of the benchmark QAP test
cases better solutions than the earlier reported sequential tabu search im-
plementations ©5%%3_ It was also observed that the increase in the runtime
per iteration is a logarithmic function of the problem size.

The use of move decomposition as a basis for creating candidate lists
can also offer opportunities of parallel processing. To do this, it is neces-
sary to identify restrictions on the move available in each component of the
decomposition so that the outcome of treating each component indepen-
dently does not damage objective function measures. Restrictions of this
type can sometimes be very simple, as by fixing the end points of subse-

quences in certain permutation problems, such as TSP and flow scheduling
problems MHKMS89, ROS89

The approaches discussed above exhaust neither all possible avenues
nor opportunities to parallelize the tabu search algorithm. Surveys of sev-
eral other parallel implementations are given in “1°9%P and @096,

Parallel Tabu Search Taxonomy: Recently Crainic, Toulouse, and
Gendreau®T97 GLOT qyggested a taxonomy for the classification of tabu
search parallelization approaches. Three dimensions are recommended: (1)
control cardinality, (2) control and communication type, and (3) search dif-
ferentiation.

Control cardinality: A parallel search procedure can be 1-control or p-
control. In the 1-control case, one processor has the distinctive role
of running the algorithm and distributing the search tasks (such move
evaluations) among other processors. For the p-control case, each pro-
cessor is in control of its own search and the communication with other
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processors.

Control and communication type: This dimension relates to how the par-
allel search 1s controlled, how processes communicate, and what infor-
mation is communicated. With respect to this dimension, a parallel
tabu search procedure can have rigid synchronization, knowledge syn-
chronization, collegial, or knowledge collegial.

Rugid synchronization refers to a synchronous mode of operation, where
processes will be exchanging information at specific points of the search.
Knowledge synchronization also refers to synchronous operational
mode. Processes will be required to periodically stop and exchange
information. The difference between knowledge and rigid synchroniza-
tion is in the amount of information exchanged among the processors.
Collegial communication falls in the category of asynchronous ap-
proaches. In a collegial parallel tabu search procedure, processes will be
asynchronously making different searches, and broadcasting (globally
or selectively) to each other improving solutions.

Knowledge collegial communication also refers to an asynchronous op-
erational mode. However, parallel approaches of this type rely on a
more complex form communication, where findings of the processors
are used to influence each other search strategies.

Search differentiation: This dimension is indicative of the number of initial
solutions and the search strategies followed by the parallel tabu search
procedure. Two letters are used to indicate whether the search starts
from a single point (SP) or multiple points (MP), and two letters in-
dicate whether a single strategy (SS) or different strategies (DS) are
employed by the processors.

Many of the reported parallel tabu search procedures can be classi-
fied according to this taxonomy. For example, the two tabu search parallel
implementations for the quadratic assignment problem earlier reviewed in
this sectionT#191, CSK93 qre [ control, Rigid Synchronization, Single Point,
Single Strategy (1-RS-SPSS).

4.9 OTHER ISSUES AND RELATED WORK

4.9.1 Neighborhood, Evaluator functions, Stopping
Criteria

Neighborhood: In most combinatorial optimization problems, the num-
ber of available moves increases very rapidly with the size of the problem.
For example, the number of simple swap moves grows as the square of
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the size of the problem. In case of more complex moves, the number of
moves may grow at an even faster rate. Clearly, for most problems, the
entire neighborhood of S, R(S), may be too large and costly to examine.
For this reason, only a candidate subset of neighborhood, denoted by V™,
is examined G19892 The size of the neighborhood examined is a trade-off
between quality and performance. Generally this size is fixed, as was done
in our previous examples. We shall address this issue in more detail in
Section 4.9.3.

Evaluator Functions: As mentioned in the introduction, from any cur-
rent solution, a reasonably sized subset of neighborhood is explored. And
the best move amongst these is chosen. The use of ‘best move criterion’ is
based on the supposition that moves with higher evaluations have a higher
probability of leading to an optimal solution (or leading to an optimal
solution in fewer number of steps).

In order to select the best move from the candidate list, one needs an
evaluator function to rate each candidate move. In memory-less algorithms
such as simulated annealing, the function to evaluate the merit of a move is
generally the objective function itself. In such a case we say that the move
evaluator 1s a function of the solution state, as was in our previous exam-
ple (Example 36). There are situations where the standard cost function
evaluator may not be very effective. An important principle in tabu search
is that the evaluator chosen should be a function of the search path and
search state. That is, the evaluator must implicitly reference the history H
of the search process. As will become evident, this has several advantages,
for example in breaking of ties, in diversifying the search, etc. If two moves
are equally good, then history can be used to decide which search direc-
tion to choose. Similarly, moves that have more frequently occurred in the
past can be given less consideration in the future, thereby diversifying the
search.

As an example, the evaluation of a move can be expressed as the sum
of the cost of the new solution and a function ¢ that depends on the search
history (memory). History here not only refers to the tabu list but also to
some previous record of moves.

E(H,S) = Cost(S) + g(H) (4.11)

For example, ¢(H) can be a function of the frequency of some previous
moves. One can also think of more complex evaluation functions.

The interpretation of the evaluator can depend on the region searched.
In some situations, after reaching a local optimum, it may be preferable
to move a distance away (see Section 4.5) before considering moves with
higher evaluations. That is, the evaluator should apply a different stan-
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dard of comparison in this region. An approach for developing evaluators
that support intensification and diversification for a class of problems, re-
ferred to as ‘“Target Analysis’ (TA) is discussed in the following section
(Section 4.9.2). Target analysis provides a means of uncovering and ex-
ploiting information that leads to the determination of such evaluators in
a systematic fashion.

Stopping Criteria: The algorithm given in Figure 4.3 (Page 187) is ex-
ecuted for a fixed number of iterations. Another stopping criterion 1s to
continue until no improvement on the best solution is obtained over a fixed
number of successive iterations. An estimate C'ost™of the minimum value
of the cost function can also be used to decide when to stop. The search
can stop as soon as we reach close enough to Cost*. For example, we know
that the cost of the tree in Example 36 cannot be less than the sum of the
4 least cost edges, that is edges ea, €4, €5, and eg (c(e2)+ c(ea)+ cles)+
c(eg)= 18). Of course, this tree violates our constraints, but we are sure
that the cost of the optimal tree will not be less than this. In case we do
not get close to C'ost™, then we stop after a certain maximum number of it-
erations. In some problem instances we do not seek to minimize, but would
like to have a solution within a certain cost range. In this case, the moment
a feasible solution with the desired cost 1s found the search can stop.

4.9.2 Target Analysis (TA)

As mentioned earlier, tabu search works by making the “best” admissible
move at each iteration. The move evaluator generally chosen is the objective
function where the ‘Move_value’ is given by the decrease in the cost, or
a function of cost and how frequently that particular move was made.
However, this strategy does not always guarantee that the selected move
will take the search in the direction of an optimal solution. It has actually
been observed that its merit diminishes as the number of iterations during
a solution attempt increases F@93b, Glod0a,

Improved problem solving methods can be created by incorporating a
learning component in the search. Target analysis (TA) is one such pro-
cedure that has been described by Glover and Greenberg 989 It helps
in creating dynamic evaluation functions thereby providing a systematic
process for diversifying the search over a longer term. Its main features
have been sketched by Laguna and Glover by viewing the approach as a
five-phase procedure 493
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Phase-1: This phase consists of applying existing methods to determine
optimal or exceptionally high-quality solutions to representative problems
of a given class. It i1s a straightforward phase where extensive effort is
involved.

Phase-2: This phase uses solutions produced by Phase-1 as targets, and
each problem is solved again, with the following purpose:

1. to evaluate the ability of the current decision rule in order to (1) iden-
tify “good” moves, and (2) determine regions where these rules are
operating effectively,

2. to score available moves at each iteration and to bias choices in order
to select moves with high scores, thereby leading to the target solutions
more quickly than the customary decision rule, and,

3. to generate information that can be used to infer the scores.

Phase-3: This phase is concerned with the construction of a parameterized
function of the information recorded in the previous phase. The goal of this
phase is to find values of the parameters to create what is known as a master
decision rule (MDR).

Phase-4: This phase generates a mathematical or statistical model to de-
termine effective parameter values for the MDR.

Phase-5: This phase consists of applying the MDR, to the original repre-
sentative problems and to other problems from the chosen solution class to
confirm its merit.

TA can be useful in integrating effective diversification in the search.
When TA is used as a tool for diversification within tabu search, some of
the functions that integrate the MDR may depend on long-term memory
structure. For the machine scheduling problem, Laguna and Glover have
shown how TA methodology can be embedded within the heuristic solu-
tion framework provided by tabu search to create a more effective form of
diversification 993 Laguna and Glover’s implementation focussed on a
specific class for scheduling problems, however, the concepts are general and
are capable of being adopted to many other scheduling settings and other
combinatorial optimization problems. Below we present the application of
target analysis to the machine sequencing problem.
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Application of TA to Machine Sequencing Problem

Consider the problem of scheduling N jobs, each arriving at time 0 on a
continuously available machine. The goal is to minimize the sum of the
setup costs and linear delay penalties. Each job ¢, (i = 1,2,...N), requires
t; units of time on the machine, and a penalty p; is charged for each unit
of time when the job commencement is delayed; s;; is the setup cost of
scheduling job j immediately after job ¢. Two dummy jobs, 0 and N + 1,
are included in every schedule, where ¢ty = {y4+1 = 0, and pg = py41 = 0.
The costs sp; and s; y41 are considered to be an initial setup cost and a
cleanup cost, respectively. A schedule has the form:

m={0,n(1),n(2),---,7(N), N+ 1}

where m(i) is the index of the job in position ¢ of the schedule. No prece-
dence constraints are enforced and no preemption is allowed, therefore,
any permutation of the N jobs is a feasible schedule. The objective is to
minimize the sum of penalty (delay) and setup costs for all jobs LG93P,

Two classes of moves were used to solve the above problem. The first
is the common pair-wise exchange (or swap) of two jobs, called the swap
move. The second class of moves consists of taking a job out of its current
position and inserting it somewhere else in the schedule, which is referred
to as the insert move (see Exercise 91).

Let the transfer of job m() to a position between jobs 7(j) and 7(j—1)
be denoted by Insert(n(i), j) and the swap of the jobs in positions ¢ and j
be denoted by Swap(n (i), 7(j)), where ¢ < j. In both cases, the attribute
of the move chosen to classify tabu is the job 7 (¢). In addition to tabu_list,
another array called tabu_state is used as a counter of the number of times
each job appears in the tabulist.

During Phase-2, to measure the goodness of a move, Laguna and Glover
use a scoring procedure based on the knowledge gained in the first phase. To
do this, solution scores are constructed to measure the extent to which any
given solution deviated from the target solution. From this, move scores
are derived as the difference between the solution scores obtained before
and after the application of the move.

Two different solution scores are defined for the job sequencing prob-
lem, namely, the absolute position score and the relative position score. The
absolute position score is simply a count of the number of jobs that occupy
their targeted optimal positions. Therefore, N is the highest value that can
be obtained by any solution. Similarly, the relative position score is a count
of the number of jobs that are scheduled immediately after their targeted
predecessor jobs. Again, N is the highest value that can be obtained. Both
the above scores are combined into a single composite solution score (by
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summing them). The resulting maximum targeted value is 2 x N.

From the composite solution score determined, the score attributable
to each move is computed as the score of the schedule after the move minus
the score of the schedule before the move. Therefore, moves with positive
scores have the ability to move the schedule “closer” to its target, and
higher scoring moves generally produce a faster convergence than lower
scoring moves.

Using the above approach, each problem in the sample is solved again
in order to measure the effectiveness of the current choice rule. Also, scores
are kept separate for the two categories of moves: improving (Move_value
< 0) and non-improving (Move_value > 0).

Laguna and Glover chose a class of machine sequencing problems (sche-
duling problem) comprising between 20 and 35-jobs. The average move
score per iteration was calculated every 50 iterations for a solution at-
tempt of 500 iterations. From the experimental results the following was
observed: the average quality of the decisions made in non-improving situa-
tions tends to decrease as the number of moves increases, while the average
quality of the decisions made in improving sttuations tends to increase as
the number of moves increases “4°3P. Based on these observations, they
used frequency counts to bias the selection of moves in tabu search solu-
tion states where no improving moves are available. The frequency count
1s multiplied by a penalty parameter and added to the move value of every
non-improving move. This procedure is used to successfully avoid long-term
cycling and allows the procedure to find improved solutions during later
stages of the search process. During the search, the move with the least
penalty is selected MG93b,

The information chosen to be examined as a basis for diversification
utilizes a simple count of the number of times the particular moves are
selected for execution. Two arrays are defined for this purpose; Swap_count
and Insert_count. Swap_count(%, j) contains the number of times that job
i has exchanged positions with job j; and Insert_count(i, j) contains the
number of times that job i has been moved to a positions immediately
before job j.

This information is used in Phase-3 to design evaluation functions ca-
pable of diversifying the search. The MDR then combines these functions,
including the one currently in use (that is, Move_value), to provide a device
to further focus the search procedure on good target solutions. Since the
merit of the current evaluation function in improving regions does not seem
to decrease as the execution time progresses, the focus then was to design
functions for diversification in those regions in which non-improving moves
are available. A simple form of a diversification function was created for
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this purpose. If the admissible move Swap(n (), 7(j)) is being considered
for the best move at the current iteration, then its relative attractiveness
(Move_appeal) is evaluated as follows:

If Move_value(m(i), 7(j)) <0
Move_appeal=Move_value(r (i), 7(j))
Else
Move_appeal=Move_value(r (i), 7(j))
+ axSwap_count((7 (i), 7(j))?

Recall that an improving move has a Move_value<0. Similarly, the more
negative the value of Move_appeal, the more appealing is the move. Hence
the strategy is to make more frequent moves less appealing.

A similar function for admissible Insert moves is obtained by substitut-
ing Swap_count by Insert_count in the expression above. This function has
the characteristic of allowing different levels of diversity within the search.
These levels are controlled by the selection of a and 3. For example, for
large values of 3, the method reduces very rapidly the likelihood for se-
lecting moves that have been frequently preferred earlier in the search. On
the other hand, « is used to assure only a minimal diversification. This
is especially important in early search stages, when the count values are
relatively small.

The values of o and 3 are determined via experimentation (Phase-4).
The values o and 8 are varied to identify the combination that produces
the highest average scores for the move selected, applied to the initial rep-
resentative set of trial problem. The best parameter setting found was a
linear Move_appeal function for which =10 and g=1.

Finally, (Phase-5) the modified tabu search procedure is applied. In
the experiments conducted, optimal solutions to all 20-job problems were
found within 30 CPU seconds. For all cases tested, the combination tabu
search/TA was found to be superior than tabu search alone.

4.9.3 Candidate List Strategies

A common phenomenon in most combinatorial optimization problems is
that R(S), the neighborhood of solution S, is large. Complete examina-
tion of all alternatives then becomes computationally very expensive, espe-
cially as problem sizes become large. In such cases, the number of solutions

examined can be restricted using what is known as candidate list strate-
gies HG94, Glo95, Glo89a
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A trivial candidate list strategy is similar to what was employed in
our earlier examples. A small number of random moves are made that
constitute the candidate list, and the ‘best’ amongst them is chosen. Instead
of choosing a random sample, strategies can be used for example to restrict
the search to a certain region, thereby intensifying the search. Below we
highlight some of the candidate list approaches suggested by Glover, that
can been used to create improved solution approaches G10892 Glo95

Decomposition of Moves: One candidate list strategy known as sub-
division strateqy decomposes moves into components 10892 Glo95  Here
compound moves are decomposed with the aim of isolating good ‘com-
ponents’ that will most likely be part of the best compound move ©1°95,
The motivation for this approach is that components are much fewer and
are often evaluated much faster than the compound moves. For example,
the swap move, a compound move, is composed of ‘add moves’ and ‘drop
moves’. The total number of swap moves generally equals the product of
the numbers of their add and drop components °°°. Permutation prob-
lems are particularly suited to the use of move decomposition strategies.
In permutation problems, it is convenient to divide the permutation into
successive subsequences, and then examine only moves that involve changes
within these subsequences MBG8°,

Candidate lists can also be created by decomposing moves into subsets
based on structural attributes of the problem or of the current solution. In
many applications, moves can be subdivided according to a natural classi-
fication of their components. For example, moves can be segregated based
on different regions, machines (as in the case of the scheduling problem),
products, activities, due dates, etc G089 Glo95

As mentioned above, candidate list strategies can also be seen to
be related in function to intensification strategies proposed in connec-
tion with the use of intermediate-term memory (Section 4.4.1) in tabu
search G108%a, Glo89b The g0a] in intensification is to concentrate the search
effort in areas expected to yield highest rewards. From this point of view,
decomposition itself constitutes a form of intensification which is deter-
mined by features of position or classification. The idea is to focus on a
particular subregion of the search space. Advanced types of intensification
strategies may make use of learning to determine good ways to focus the
search (see Section 4.9.2).

Simple learning strategies have been found to be very effective. For ex-
ample, in the application of tabu search to the TSP, in order to learn which
subclasses of edges are most likely to appear in good tours, the method
saves information during early stages of the search process. A large weight
is assigned to each node of an edge meeting that node in successive local
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optima. Another version of the same problem records the actual identities
of edges incorporated into each successive solution beginning with the first
local optimum (see also Example 40). After a certain fixed number of iter-
ations gathering such information, candidate lists based on examining only
the edges whose weights or identities lie within a specified range may be
employed to guide the search in subsequent iterations. Both of the above
intensification-based candidate list strategies have led to reduced solution
times without sacrificing solution quality “10898 Kno89, Glo89b

Layered Evaluations: This strategy is based on weeding out moves by
applying evaluations in successive layers. Moves that pass the evaluation
criteria in one layer are subjected to evaluation criteria in the next. Specif-
ically, a list of moves associated with each layer, list 7 for layer ¢ 1s derived
by applying criterion ¢ to evaluate the moves of list ¢ — 1. List 1 is created
from the set of all available moves, and it contains the best b of these
moves according to criterion 1. List 2 then contains the b5 best moves from
list 1 according to criterion 2, and so on. More generally, subsequent lists
may not merely contain moves that are members of earlier lists, but may
contain moves derived from these earlier moves. The values b; may be fixed
or determined adaptively. As with the move decomposition procedures, the
layered evaluations procedures can be embedded within a more advanced
candidate list method @1089a, Low76, Fox83

Sequential Fan Strategy: This strategy is highly exploitable in paral-
lel processing and is known as the sequential fan candidate list strategy
Glo95, Low76 Fox83 ere p best alternative moves at any given step are gen-
erated. Then, a fan of solution streams 1s created, one stream for each al-
ternative. The best moves for each stream are again examined, and p best
overall moves are used for the p new streams at the next step. This method
is sometimes called beam search. Refinements to this method (called fil-
tered beam search) have been proposed by Glover “1°8% and by Ow and

Morton ©M88,

Aspiration Plus Strategy: Another kind of candidate list strategy called
aspiration plus strategy is based on an aspiration threshold for the quality
of move to be selected. Based on the history of search patterns, moves are
examined until finding one that satisfies this threshold. At this point, an
additional fixed number of moves (denoted by Plus) is examined, and the
best overall move 1s selected. Min and M ax values may be used to avoid
too many or too few moves from being examined. The aspiration threshold
can be determined in several ways. One trivial way is to choose a threshold
based on the quality of the initial M¢n moves examined during the current
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iteration. Another strategy called first improving strategy results by setting
Plus=0 G199,

Elite Candidate List Strategy: Yet another approach called elite can-
didate list strategy consists of first building a master list of a relatively
large number of moves, and selecting from it a certain fixed number of &
best moves. Then at subsequent iterations the current best move from the
master list is chosen, and this continues until a move that falls below a
given quality threshold is obtained, or the total number of iterations have

elapsed. Then a new master list is constructed and the process repeated
Glo9s

Bounded Change Strategy: In this strategy, only moves that do not
cause a change of the solution cost by more than a limited amount are
accepted 1995,

According to Glover, in constructing candidate lists such as those de-
scribed above, the concept of move influence is important for long-term
considerations. Therefore, evaluation criteria should be periodically modi-
fied to create significant structural changes, especially when no improving
moves are found G195,

4.9.4 Strategic Oscillation

This is another diversification approach of tabu search, where the idea is to
drive the search towards and away from selected boundaries of feasibility. It
operates by moving until hitting a boundary that would represent a point
where the search would normally stop, also known as the ecritical level.
Then, instead of stopping, the neighborhood definition is extended, or, the
evaluation criteria modified, to permit crossing the boundary. The approach
proceeds for a certain depth, and then the boundary is crossed again in the
opposite direction proceeding to a new entry point. This process of crossing
the boundary from different directions creates a form of oscillation. Control
over this oscillation is established by generating modified evaluations and
rules of movement, depending on the region navigated and the direction of
the search. This process is also known as strategic oscillation.

There are several reasons for considering the use of strategic oscillation
when solving optimization problems XGA93 QOne of them is that if the
feasible solution space of the problem is disjoint, then strategic oscillation
provides a mechanism for crossing regions of infeasibility in the course of
search for optimal solution. As illustrated in Figure 4.12(a), maintaining
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Figure 4.12 Topologies that can benefit from strategic oscillation KGA93, (a)

feasible regions; (b) Non-convex feasible region.

Disjoint

feasibility at all times will not result in reaching an optimal solution, unless
the starting solution is located in the feasible region that contains one of the
optimal solutions. In some problems the feasible region may be connected;
however, reaching the optimal solution may require a long path through the
feasible state space, whereas if a solution path is allowed to enter infeasible
regions, the optimal solution may be found easily (see Figure 4.12(b)).

Recent applications of strategic oscillation have proved effective
in solving graph partitioning, scheduling and other hard problems
MR93, RP91, KGA93 A common implementation of strategic oscillation is to
alternate a series of constructive moves with a series of destructive moves
as explained in the following examples.

example 42 Consider the problem of finding an optimal spanning
tree subject to inequality constraints (see Examples 36 and 39). Strate-
gic oscillation for this problem results from a constructive process of
adding edges to a growing tree until it is spanning, and then continuing
to add edges to cross the boundary defined by the tree construction
(more than n—1 edges). A different graph structure results, which is no
longer a tree, therefore rules for selecting moves have to be modified.
The rules again change in order to proceed in the opposite direction,
removing edges until again recovering a tree. Of course, the possibil-
ity of retracing a prior trajectory which may result in cycling can be
avoided by standard tabu list mechanism.
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example 43 Another example of strategic oscillation that uses con-
structive/destructive moves arises in the multidimensional knapsack
problem. Here values of zero-one variables are changed from 0 to 1
until reaching the boundary of feasibility. The method then continues
into the infeasible region using the same type of change, but with a
modified evaluator. After a selected number of steps, the direction is
reversed by choosing moves that change variables from 1 to 0. Evalua-
tion criteria to drive towards improvement vary according to whether
the movement occurs inside or outside the feasible region. Recently,
such an approach has been reported to produce high quality solutions
for multi-dimensional knapsack problems F¥86, GK95

The boundary incorporated in strategic oscillation need not be defined
in terms of feasibility or structure alone. It can also be defined in terms
of a region where the search appears to settle around local optima. The
oscillation then consists of compelling the search to move out of this region
and allowing it to return. When applying strategic oscillation, it is recom-

mended that more time be spent in searching regions close to the critical
level Glo9s, GL95.

A desirable attribute of strategic oscillation is that it ensures sufficient
diversity in the search by emphasizing different parts of the problem over
time. The 1importance of feasibility is emphasized and de-emphasized ac-
cording to a prescribed patterny. This diversifying effect of strategic oscilla-
tion increases the search power of the method by using a dynamic objective
evaluation criteria that emphasizes and de-emphasizes various parts of the
problem, thereby making the search procedure more robust.

4.9.5 Path Relinking

Path relinking in tabu search consists of generating new solutions by explor-
ing trajectories that connect elite solutions produced by other approaches,
or elite solutions produced in previous iterations.

In path relinking, one of the elite solutions is selected as an wnitiating
solution S’ and another as the guiding solution S”. The procedure works

t This type of diversification is substantially different from the traditional types of
diversification schemes based on long-term memory functions discussed in Section 4.5.
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as follows. The two solutions generate a path from S’-to-S”, producing
a sequence of intermediate solutions S = S(1),5(2), ..., S'(r) = S”.
S’(i+1) is generated from S’(¢) a the result of a move. This move is chosen
such that the number of moves remaining to reach S” is minimized. This is
accomplished by selecting moves that introduce attributes contained in the
guiding solution, or reduce the distance between attributes in the initiating
and those in the guiding solution. Once the path 1s complete, one or more
of the solutions in the S” —to — S” path is selected as a solution to initiate
a new search phase @195

A set of elite solutions can also be used as guiding solutions. Attributes
provided by this set can be assigned weights. Larger weights are assigned
to attributes that occur in greater numbers in the guiding solutions. This
allows giving more emphasis to solutions with higher quality and /or special
features 91°°¢. By modifying these assigned weights, promising regions in
the search space can be searched more thoroughly.

The generation of paths “relinks” previous points in ways not achieved
by previous search history. The initiating (guiding) solutions can also be
‘null’ solutions. In this case constructive (destructive) methods are used
to reach the guiding solution. The initiating and guiding solutions can
have interchangeable roles, therefore they are collectively called as reference
solutions. For appropriate choices of reference solutions and neighborhoods
for generating paths from them, additional elite points are likely to be
found in the regions traversed by the paths (proximate optimality principle
Glo95) Tt has been observed that combinatorial solution spaces often have
topologies that may be usefully exploited by such an approach Mes93, NS93,

Path relinking has similarities to a population-based approach called
scatter search 91°77 In scatter search, new solutions are generated by cre-
ating modified linear combinations of the reference points “1°77. In both,
path relinking and scatter search, the reference points are elite solutions,
and the best combined solutions are used to re-initiate the search processes
which is executed repetitively. However, the modified linear combinations
in scatter search can be viewed as generating paths in Euclidean vector

space, whereas in path relinking, the combination is in neighborhood space
Glo96

Since the solutions produced by path relinking may be viewed as combi-
nations of their reference solutions, there is also a connection between tabu
search and genetic algorithms (Chapter 3). According to Glover ¢1°%° many
recently developed crossover operators in genetic algorithms (see Chapter
3) can be shown to arise as instances of path relinking, by restricting atten-
tion to two reference points (which represent parents in GAs), except that
strategic selection replaces randomization (frequently used in GAs). Path

relinking automatically provides solution combination procedures that suit
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specific contexts. This is different from GAs where each new class of prob-
lems requires the design of new crossovers G199

Intensification and diversification can also be incorporated in path re-
linking. With reference to path relinking, intensification approaches typi-
cally choose reference solutions S’ and S” to be elite solutions that lie in
a common region, or those which share common features. Diversification
strategies based on path relinking select reference solutions that come from
different regions or those that exhibit contrasting features. Diversification
strategies may also place emphasis on paths that go beyond the reference
solutions.

The basic path relinking process can be summarized as follows. First
a neighborhood structure and associated solution attributes are identified.
Neighborhoods for path relinking process may differ from those used in
other search phases. For example, they may be chosen to tunnel through
infeasible regions. Then, a collection of two or more reference solutions are
chosen to serve as initiating and guiding solutions. Intermediate solutions
are generated with the help of moves that connect initiating and guiding
solutions. These moves may also take the generated solutions beyond the
guiding solutions. These intermediate solutions serve as initial solutions in
subsequent search iterations.

4.10 CONCLUSIONS

In this chapter we presented the basics of tabu search heuristic. Sev-
eral implementation issues such as moves and their attributes, tabu-lists
(static/dynamic) and tabu restrictions, data structures to handle tabu lists,
and various aspiration criteria were presented with examples (Section 4.3).

Tabu search 1s different from other search techniques in several re-
spects. One, of course, is the use of memory. In addition, reasonably sized
subset of neighborhood is explored and the best move amongst these is cho-
sen. Further, unlike other search techniques where ‘best’ generally refers to
the best cost of the solution, in tabu search best refers to change in the
evaluation function which depends not only on the objective/cost function,
but also on the search history, region being searched, etc.

The core of the tabu search algorithm is the short-term memory com-
ponent, implemented with the help of tabu_list(s) and aspiration crite-
rion. Intermediate and long-term memory components are also used for
intensification and diversification (Sections 4.4.1 and 4.4.2). Diversification
techniques that penalize frequently occurring moves, and others that are
suitable for permutation problems, were discussed in Section 4.5.
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Convergence aspects were discussed in Section 4.6. Deterministic tabu
search is not guaranteed to converge, on the other hand probabilistic tabu
search would converge if run for a large amount of time.

In the section on tabu search applications (Section 4.7) we illustrated
how tabu search can be engineered to solve several hard combinatorial
optimization problems. Two such applications have been discussed in detail.

Tabu search has been able to find optimal solutions for many relatively
small problems instances in reasonably small time. The runtime can grow
to unacceptable proportion for large problem size. Several parallelization
strategies have been proposed for tabu search All of them resulted in sig-
nificant speed up (Section 4.8).

Other important, recent, and often neglected issues were discussed in
Section 4.9. Target analysis presented in Section 4.9.2 helps in designing
suitable evaluators useful when applying diversification strategies. Neigh-
borhood has a different meaning in tabu search than in other search meth-
ods. Often, the term neighboring solutions refers to a solution that is ob-
tained by means of a small perturbation to the current solution. However,
in tabu search, when intensification and diversification are applied using
intermediate-term and long-term memory processes, ®(H, S) may contain
solutions not in V(S). For example, these may include high quality local
optima (elite solutions) encountered at various points during the search
process.

A common phenomenon in most combinatorial optimization problems
is that the amount of computational effort needed to generate all the avail-
able moves grows faster than linearly with increase in the problem dimen-
sion. Complete examination of all alternatives then becomes computation-
ally expensive. In such cases, the number of solutions examined can be
restricted using what is known as ‘candidate list strategies’. Various pro-
posed candidate list strategies that help increase the efficiency of search
were discussed (Section 4.9.3). Using such strategies, search can also be
restricted to certain regions, thereby causing intensification.

Strategic oscillation 1s a critical component in some tabu search ap-
plications KG493 The general concept (Section 4.9.4) is one of varying
the weights applied to different parts of the problem when evaluating
moves G1089b, Glo77 Tp the study presented in KG493 the importance of fea-
stbility during the search procedure is dynamically varied. In tabu search,
sometimes infeasible neighboring solutions are also considered. By allowing
feasible as well as infeasible solutions to occur, the search is able to traverse
more of the solution space and locate better solutions in the process.

In order to generate new starting solutions, path relinking is employed
(see Section 4.9.5). In path relinking, some elite solutions are selected,
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one of them serves as an initiating solution. Then, smallest number of
moves are made that take the initiating solution to the remaining solutions
(guiding solutions). The intermediate points (or solutions) can be used as
new starting solutions. New elite solutions may also be found in this process,
since the process is similar to that of combining good characteristics of

various solutions.
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EXERCISES

exercise 87
Describe the key features of the tabu search heuristic and enumerate
the key differences with other search heuristics discussed in the book.

exercise 88

Write a program to solve the problem discussed in Example 36,
Page 189. Experiment with: (a) different tabu list sizes, (b) different
move attributes, and (c) different candidate list sizes.

exerclse 89

1. Explain how you will determine a good size for the tabu list. What
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output will you need to observe and what range of sizes will you
experiment with?

2. Should the size of the list be a function of the problem size, type
of moves, or both? Justify your answer.

3. What are the benefits of using dynamic tabu lists.

exercise 90
What experiments must be designed to determine a suitable value of
tabu list size and candidate list size, and suitable move attributes?

exercise 91

Show that the swap move for the scheduling problem discussed in Sec-
tion 4.9.2 examines N x (N — 1)/2 neighbor solutions, and the insert
move is able to examine N x (N — 3) 4+ 2 additional neighbors.

exerclse 92

1. Write a tabu search program to solve the problem discussed in
Example 38, Page 199, using tabu search.

2. Compare the performance of the heuristic if the move attribute
stored is one of the elements that has been swapped, and the tabu
condition is any swap that involves this element in the tabu list. Is
this condition more or less stringent that the one used in Exam-
ple 387 How will this change in move attribute affect the change
in the size of the tabu list?

3. Repeat the above if the swap move 1s replaced by the insert move.
How does this small change affect the execution time of the pro-
gram?

exercise 93

The multiprocessor scheduling problem in Section 4.5 is defined as fol-
lows: let L = {q1,q2,...,¢n} denote a collection of n tasks which must
be assigned to m processors say Py, Po, -+, Py. The goal is to find
an assignment that minimizes the makespan of the m parallel proces-
sors. Show that on an average there are about n/m tasks assigned to
each processor, which allows (n/m)? x m?/2 = n?/2 possible exchange
moves.

exercise 94
What are the limitations of short-term memory tabu search? How can
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memory be used to intensify/diversify the search? For some combinato-
rial optimization problems discussed in this chapter, explain what type
of information you will need to intensify /diversify the search. How will
you use this information? Illustrate your suggestions using the prob-
lems discussed in Examples 36 and 38.

exercise 95

Write a program to show that using only short-term memory com-
ponent it is not possible to go from the initial solution given in Fig-
ure 4.6(a) to the optimal solution given in Figure 4.6(b).

exercise 96
Explain how you will use recent local minima solutions encountered to
diversify your search from current solutions (see Page 215).

exercise 97
In the context of tabu search explain briefly what do you understand
by the following term:

Aspiration by move influence

Candidate list strategies

Dynamic tabu lists

Evaluator functions

Frequency based and recency based tabu criterion
Multiple tabu lists

Strategic oscillation

O =1 O O W N

Target analysis

exercise 98

Repeat Exercise 92 by including information on frequency of moves to
penalize them. Suggest an evaluation function. Explain when and how
often you will switch to this evaluation function to diversify the search?
Use the data structure given in Example 41 and explain how you will
determine the value of a in the Equations on Page 211.

exercise 99
Consider the Vehicle Routing problem described in Chapter 1, Page 9.

1. What type of moves and what memory structure will you use to
transform one solution to another?

2. Suggest at least two attributes of moves that can be used.
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3. What memory structure would you use for storing recency and
frequency information?

4. Solve the problem using short-term tabu search. Choose suitable
values for sizes of tabu list(s) and candidate list.

5. Experiment with different tabu list sizes, and different attributes
of moves.

6. Describe how you will use elite solutions to incorporate their good
attributes during intensification.

7. Store frequencies of moves and elite solution and devise a suit-
able scheme based on memory to diversify the search. Use target
analysis to develop evaluators to support intensification and diver-
sification for this problem. Incorporate this strategy in your short-
term tabu implementation and compare the quality of solution and
run-time.

8. Propose criteria that you would use to determine when to apply
intensification and when to apply diversification.

9. Finally, if strategic oscillation is to be allowed by crossing bound-
aries of feasible solutions, explain how you will accept moves that
violate constraints. Discuss the effect of inclusion of strategic os-
cillation in your program.

exercise 100
Repeat the previous exercise (Exercise 99) considering the Flowshop
Scheduling problem described in Chapter 2 (Exercise 38).

exercise 101
Repeat Exercise 99 for the Terminal Assignment problem described in
Chapter 2 (Exercise 39).

exercise 102
Repeat Exercise 99 for the Concentrator Location problem described in
Chapter 2 (Exercise 40).

exercise 103
Repeat Exercise 99 for the Constrained Minimum Spanning Tree prob-
lem described in Chapter 2 (Exercise 41).

exercise 104
Repeat Exercise 99 for the Mesh Topology design problem described in
Chapter 2 (Exercise 42).
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exercise 105
Repeat Exercise 99 for the Weighted Matching problem described in
Chapter 2 (Exercise 43).

exercise 106
Repeat Exercise 99 for the Plant Location problem described in Chap-
ter 2 (Exercise 44).

exercise 107
Repeat Exercise 99 for the Bandwidth Packing problem described in
Chapter 4 (Section 4.7.2).

exercise 108

For problems given in Exercises 99 to 107, and the various combina-
torial optimization problems discussed in Chapter 1 (pages 8 to 10),
experiment with the following and comment on change in solution qual-
ity, ease of implementation, convergence, and runtime:

With change in candidate list size.
With change in tabu list size.

With dynamic tabu lists.

With multiple tabu lists (if applicable).
Different move strategies.

Different move attributes.

=~ O O = o N

Different candidate list strategies (some types are more suitable for
one type of problem than others).



CHAPTER

FIVE

SIMULATED EVOLUTION (SIME)

5.1 INTRODUCTION

Ever since Kirkpatrick, Gelatti and Vecchi ®¢4V83 suggested the use of the
simulated annealing paradigm to tackle hard combinatorial optimization
problems, much research work has been conducted on its use and improve-
ment. Concurrently, efforts were made to design other randomized iterative
optimization algorithms that are based on somehow more elaborate heuris-
tic knowledge, which should allow the newly designed algorithm to exhibit
superior performance to that of simulated annealing with respect to run
time requirements and/or quality of solution. One of those heuristics is
Simulated FEvolution which was proposed by Kling and Banerjee in 1987
KB8TH Qimulated evolution is based on an analogy with the principles of
natural selection thought to be followed by various species in their biolog-
ical environments.

During the process of biological evolution, organisms tend to develop
features that allow them to adapt to the peculiarities of their environment.
The more an organism adapts to its environment, the better are its chances
of survival. In other words, by adapting, an organism optimizes its chances
of surviving in its environment. Hence, adaptation is seen as a form of
optimization. This similarity has given rise to a new class of randomized
iterative algorithms which consists of Genetic Algorithms, Simulated Evo-
lution, and Stochastic Fvolution. Genetic Algorithms have been discussed
in Chapter 3, Stochastic Evolution will be discussed in the next Chapter,

255
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and Simulated Evolution will be the subject of this Chapter. All three algo-
rithms of this class are general randomized search heuristics that are based
on concepts learned from biological evolution. For all three algorithms, the
cost function is an estimation of the degree of adaptation of a particular
solution to the target objective. For a maximization problem, the higher
the value of the objective function is, the more that particular solution is
adapted to its environment.

In this chapter, we start in Section 5.2 with a brief narration of the
fairly recent history of Simulated Evolution (SimE). Then Section 5.3 de-
scribes the basic SimE algorithm. SimE operators and parameters are ad-
dressed in Section 5.4. A qualitative comparison of SimE, SA, and GA algo-
rithms is provided in Section 5.5. In Section 5.6 we look into the convergence
aspects of SimE. Examples of SimE applications are given in Section 5.7.
Parallelization strategies of SimE are presented in Section 5.8. Finally, in
Section 5.9, we briefly present other issues and recent development related
to SimE.

5.2 HISTORICAL BACKGROUND

The first paper describing Simulated Evolution (SimE) appeared in 1987
KB87b The paper was authored by Ralph Kling (working then on his Ph.D.)
and Prithviraj Banerjee (his dissertation chairman). Other papers by the
same authors followed KB89, KB90, KBIL "Gince all of the work of Kling and
Banerjee appeared in design automation conferences and journals, appli-
cations of simulated evolution by other researchers were mostly to solve
hard design automation problems MHT89 LM93, Mao94, MH94, MH96 y/epy few

other applications were in other areas of engineering® V94 G-M94,

Simulated Evolution is a powerful general iterative heuristic for solv-
ing combinatorial optimization problems. It is an instance of the class of
general iterative heuristics discussed in N85 [t is stochastic because the
selection of which components of a solution to change is done according to a
stochastic rule. Already well located components have a high probability to
remain where they are. The probabilistic feature gives Simulated Evolution
hill-climbing property.

Like Simulated Annealing and Genetic Algorithm, SimE is conceptu-
ally simple and elegant. Actually, all algorithms discussed in this book are
similar in several aspects: (1) they are general in the sense that they can
be tailored to solve most known combinatorial optimization problems; (2)
they have the capability of escaping local minima; and (3) they are blind,
1.e., they do not know the optimal solution and have to be told when to



SIMULATED EVOLUTION (SIME) 257

stop.

5.3 SIMULATED EVOLUTION ALGORITHM

The Simulated Evolution algorithm (SimE) is a general search strategy
for solving a variety of combinatorial optimization problems. It is usually
confused with the Stochastic Evolution algorithm that will be the subject
of a later chapter. However, as shall be seen, each algorithm has its own
distinctive features. Distinctions among these two heuristics are the result
of differences in the way they mimic the biological processes of evolution
as well as in the way they adapt their parameters during the search.

Combinatorial optimization problems seek to find a global optimum of
some real valued cost function cost : 2 — R defined over a discrete set €.
The set Q 1s called the state space and its elements are referred to as states.
A state space Q together with an underlying neighborhood structure (the
way one state can be reached from another state) form the solution space.

Combinatorial optimization problems can be modeled in a number of
ways. A generic formulation suggested by Saab and Rao SR0 is the follow-
ing:

Given a finite set M of distinct movable elements and a finite set L of
locations, a state 1s defined as an assignment function S : M — L satisfy-
ing certain constraints.

Many of the combinatorial problems can be formulated according to
this generic model. Below, we give few examples. Other examples are pro-
vided in the next Chapter.

example 44 Quadratic Assignment Problem (QAP)SR0,

Problem: Given a set M of n modules and a set L of |L| locations,
|L| > n. Let ¢; ; be the number of connections between elements ¢ and
J, and di; be the distance between locations k and {.

Objective: Assign each module to a distinct location so as to mini-
mize the wire length needed to interconnect the modules.

To formulate QAP in terms of the above state model, choose M =
{1,2,...,n} and L = {1,2,...,|L|}. Then a state is defined as the
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onto function S : M ={1, 2, ....,n} — {1, 2, ...,|L|}. In this case,
one additional constraint is required, which can be stated as S(i) #
S(j) Vi # j,i.e., no two elements are assigned to the same location.
The cost of a state, C'ost(S) is the wire length required to interconnect
all the elements in their present locations. That 1s,

Cost(S) = > > eijdsps()

i=1j=1

example 45 The Graph Bisection Problem (GBP) SR0,

Problem: Given a graph G = (V| E) where, V is the set of vertices,
E the set of edges, and |V| = 2n. Partition the graph into two sub-
graphs G1(Vi, F1) and Go(Va, Es) such that, (1) [Vi| = |Va| = n, (2)
VlﬁVQ = @, and (3) V1UV2 = V.

Objective: Minimize the number of edges with vertices in both V)

and V5.

To formulate GBP in terms of the proposed state model, choose M =
V', the vertex set, and L = {1,2}. Then a state is defined as the onto
Junction S : V' — {1,2}. In this case, there is one constraint which can
be stated as [ST1(1)| = |ST1(2)], i.e. a state is a partition of the vertex
set into two parts of equal cardinalities. Moreover, the cost of a state,

Cost(S), is the number of edges (¢, j) € E with S(¢) # S(j).

example 46 The Traveling Salesman Problem (TSP) SR,

Problem: Given a complete graph G = (V, E) with n vertices. Let
dy o be the length of the edge (u,v) € E and dy = dy . A path
starting at some vertex v € V| visiting every other vertex exactly once,
and returning at vertex v 1s called a tour.

Objective: Find a tour of minimum length, where the length of a tour
is equal to the sum of lengths of its defining edges.

To formulate TSP in terms of the suggested state model, choose the
movable elements as the order in which the vertices are visited, that
is, M ={1,2,...,n} and choose L = V. Then a state is defined as the
one-to-one function S : {1,2,...,n},—= V, where 1 < S(i) < n, S(i) #
S(), 1 <i<n 1<j<n, and {# j. S(1) is the vertex where the
tour starts and ends, and S(7) is the i*® vertex visited during the tour,
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ALGORITHM Simulated_Evolution(M, L);
/* M: Set of movable elements; */
/* L: Set of locations; */
/* B: Selection bias; */
/* Stopping criteria and selection bias can be automatically adjusted; */
INITIALIZATION;
Repeat

EVALUATION:

ForEach m € M Do gm, = g—: EndForEach;

SELECTION:
ForEach m € M Do
If Selection(m,B) Then P, = P,U{m}
Else Pr = P-u{m}
EndlIf;
EndForEach;
Sort the elements of Ps;

ALLOCATION:
ForEach m € P; Do Allocation(m) EndForEach;
Until Stopping-criteria are met;
Return (BestSolution);
End Simulated_Fvolution.

Figure 5.1 Simulated Evolution Algorithm.

1 < i< n. A state is simply a permutation of the sequence [1,2,...,n],
The tour corresponding to state S is [S(1), S(2), ..., S(¢), S+
1), ..., S(n), S(1)]. The cost of state .S, Cost(S), is the length of the

corresponding tour, i.e.,

n—1
Cost(S) = dsm),sq) + ZdS(i)VS(iH)
i=1

The SimE algorithm starts from an initial assignment, and then, fol-
lowing an evolution-based approach, it seeks to reach better assignments
from one generation to the next. SimE assumes that there exists a popu-
lation P of a set M of n (movable) elements. In addition, there is a cost
function C'ost that is used to associate with each assignment of movable
element m a cost Cyp,. The cost Cl, is used to compute the goodness (fit-
ness) gm of element m, for each m € M. Furthermore, there are usually
additional constraints that must be satisfied by the population as a whole
or by particular elements. A general outline of the SimE algorithm is given
in Figure 5.1.

SimE algorithm proceeds as follows. Initially, a populationt is created

t In SimE terminology, a population refers to a single solution. Individuals of the
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Function Selection(m,B);
/* m: is a particular movable element; */
/* B: Selection Bias; */
If Random < 1—gm+ B Then Return True
Else Return False
EndIf
End Selection;

Figure 5.2 Selection function employed in the SimE algorithm of Figure 5.1.

at random from all populations satisfying the environmental constraints
of the problem. The algorithm has one main loop consisting of three basic
steps, Evaluation, Selection, and Allocation. The three steps are executed in
sequence until the population average goodness reaches a maximum value,
or no noticeable improvement to the population goodness is observed after
a number of iterations. Another possible stopping criterion could be to
run the algorithm for a prefixed number of iterations (see Figure 5.1). We
now look at each of the steps of the SimE algorithm in more details, and
illustrate it with the help of some examples.

5.3.1 Evaluation

The Evaluation step consists of evaluating the goodness of each individual
i of the population P (see Figure 5.5). The goodness measure must be a
single number expressible in the range [0, 1]. Goodness is defined as follows:

4 = — (5.1)

where O; is an estimate of the optimal cost of individual 7, and Cj is the
actual cost of ¢ in its current location. The above equation assumes a min-
imization problem (maximization of goodness). Notice that, according to
the above definition, the O;’s do not change from generation to genera-
tion, and therefore, are computed only once during the initialization step.
Hence only the C;’s have to be recomputed at each call to the Evaluation
function.

Empirical evidence X190 shows that the accuracy of the estimation of

O; 1s not very crucial to the successful application of SimE. However, the
goodness measure must be strongly related to the target objective of the
given problem.

Let us illustrate how one might define goodness for two well known
combinatorial optimization problems: the Graph Bisection Problem (GBP)

population are components of the solution; they are the movable elements.
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Figure 5.3 Example of Graph Bisection Problem: V = {1,2,3,4,5,6}, E = {(1,2),
(174)7 (175)7 (176)7 (273)7 (274)7 (275)}7 (374)7 (376)7 (476)}7 S_l(l) = {1727 5}7 5_1(2) =
{3,4,6}, and Cost(S) = 4.

and the Traveling Salesman Problem (TSP).

example 47 Graph Bisection Problem:

The population is equal to the set of vertices, that is P = V. An
individual is just a vertex. The edge (u,v) € F is said to be cut if and
only if u € V, and v € V5_,, p = 1,2, that is, S(u) # S(v). The cost
of a state S is equal to the number of edges whose state is cut. Each
edge (1, 7) is assigned a weight w; ; as follows,

= {0 if S(i) = S(j)
WL S() # 50)

That 1s, each edge whose state is cut is assigned a weight equal to 1
and 0 if 1ts state is uncut.
Then, for each vertex : € V', we can define its goodness with respect to
a particular partition as follows:

dl' — Wy Wy

g d; d;

where d; 1s equal to the degree of vertex ¢ and w; is the sum of the
weights of the edges connected to vertex i. Hence, a vertex whose neigh-
bor vertices are all located in the same partition S(¢) of vertex ¢ will
have a weight w; = 0, thus giving a maximum goodness of 1. Such
vertex should remain in its current location.

For the example in Figure 5.3, the weights of the various edges for this
particular bipartition are wq 2 = w1 5 = wa 5 = W34 = wz s = was = 0 and
Wi4 = Wi, = W3 = waq = 1. Then the degree, weight, and goodness of
each of the six vertices are:
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d1:4 w1:2 glzl—%:05
dy=4 wy=2 g2:1—%20.5
d3:3 W3 = g3 = 1—% = 0667
d4:4 w4:2 g4:1—%:05
d5:2 w5:0 gg,:l—gzl
d6:3 We = Je = 1—% = 0667

example 48 Traveling Salesman Problem:

For each vertex i € V, let Nearest(i) and NextNearest(i) be the
closest and next closest vertices to i, and d™" be the distance of i to
its two nearest neighbors. That is,

min
di — di,Nearest(i) + di,NextNearest(i)

For any particular tour [S(1), ..., S(i — 1), S(¢), S(i+ 1), ..., S(n),
S(1)], the goodness of vertex S(i) € V, 1 < i < n is defined as follows:

azis

ds i)

9s@) =

where,

dsi1y = dsqy,s2) + dsm),s1)

dsin)y = dsn-1),5(n) + dsn),s(1)

dsiy = ds@g-1),54) + ds@y,saey 2<i<n—1

Figure 5.4 illustrates how the goodnesses are computed for a TSP
instance with five vertices. For this graph, d}"™ = 243 = 5,
dpn = 242 = 4, d3"" = 343 = 6, dP" = 142 = 3,
dim = 143 = 4. For the tour of Figure 5.4(b), g1 = % = 1,
ga = % = 0.667, g5 = g = 0.667, g4 = % = 05,95 = % = 1,and
the average goodness in the population is (1/5) x Zle g; = 0.7667.
For this tour S(1) = 1, S(2) = 2,5(3) = 3, 5(4) = 4, and S(5) = 5.
Similarly, for the shorter tour of Figure 5.4(c), the goodnesses will
be g1 = 5 = 08333, 90 = % = 06667, 95 = 2 = 0.8571,
g4 = % =1,95 = % = 1, and the average goodness in the population
is (1/5) x S._g; = 0.8714. For this tour S(1) = 1, S(2) = 3,
S(3)= 2,5(4) = 4, and S(b) = 5.

Notice, that after a particular perturbation, only the goodnesses of
those vertices affected by the perturbation need to be updated.
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() (b) (c)

Figure 5.4 TSP example. (a) A complete Graph on five vertices; weights on the edges
represent distances between the corresponding vertices. (b) A tour with length 15. (c)
A tour of length 13.

Figure 5.5 Evaluation.

5.3.2 Selection

The second step of the SimE algorithm is Selection. Selection takes as input
the population P together with the estimated goodness of each individual,
and partitions P into two disjoint sets, a selection set P and a set P, of
the remaining members of the population (see Figure 5.6). Each member
of the population is considered separately from all other individuals. The
decision whether to assign individual ¢ to the set P or set P, is based
solely on its goodness g;. The Selection operator uses a selection function
Selection, which takes as input g; and a parameter B, which is a selection
bias. Values of B are recommended to be in the range [—0.2,0.2]. In many
cases a value of B = 0 would be a reasonable choice.

The Selection function returns true or false. The higher is the goodness
value of the element, the higher is its chance of staying in its current lo-
cation, i.e. unaltered in the next generation. On the other hand, the lower
is the goodness value, the more likely the corresponding element will be
selected for alteration (mutation) in the next generation (will be assigned
to the selection set P;).

The Selection operator has a nondeterministic nature. An individual
with a high fitness (goodness close to one) still has a non zero probability of
being assigned to the selected set P;. It is this element of nondeterminism
that gives SimE the capability of escaping local minima.
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Figure 5.6 Selection.

5.3.3 Sorting

For most problems, it is always beneficial to alter the elements of the pop-
ulation according to a deterministic order that is correlated with the objec-
tive function being optimized. Hence, in SimE, prior to the Allocation step,
the elements in the selection set Ps are sorted. The sorting criterion is prob-
lem specific. Usually there are several criteria to choose from. For example,
for the graph bisection problem (GBP), one may sort the elements of P;
in ascending order of their goodnesses. Another possible criterion would be
to sort the elements of Ps in descending order of their D-values, where D,
the D-value of vertex v € V is defined as follows KL70,

D, = E, — I,

where F, and [, are the number of edges having v as one of their ends
and whose states are cut and uncut respectively. Refering to Figure 5.3,
Di=2-2=0,Dy=2-2=0,D3=1—-2=-1,D,= 2-2=0,
Ds = 0—-2=-2,and Dg = 1 —2 = —1. In descending order of their
D-values, the sequence of these six vertices would be [1, 2, 4, 3, 6, 5]. This
is the same order that would have been obtained if the vertices were sorted
in ascending order of the goodness values (see Example 47 on page 261).

5.3.4 Allocation

Allocation 1s the SimE operator that has most impact on the quality of
solution. Allocation takes as input the two sets Ps and P, and generates a
new population P’ which contains all the members of the previous popula-
tion P, with the elements of P; mutated according to an allocation function
Allocation (see Figure 5.7).

The choice of a suitable Allocation function is problem specific. The
decision of the Allocation strategy usually requires more ingenuity on the
part of the designer than the Selection scheme. The Allocation function may
be a nondeterministic function which involves a choice among a number of
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Allocation

Figure 5.7 Allocation.

possible mutations (moves) for each element of P;. Usually, a number of
trial-mutations are performed and rated with respect to their goodnesses.
Based on the resulting goodnesses, a final configuration of the population
P’ is decided. The goal of Allocation is to favor improvements over the
previous generation, without being too greedy.

Allocation functions can be local or global. With local Allocation, a se-
lected individual is altered on the basis of local information so that only
local alterations within the immediate neighborhood of that individual are
allowed. On the other hand, global Allocation uses global information about
all the individuals of the population so that it may affect any of the indi-
viduals in the entire population. For example, in the quadratic assignment
problem a local alteration would attempt to swap the selected module with
another module in its local neighborhood, whereas a global alteration would
seek a swap with any of the modules of the population.

The Allocation operation 1s a complex form of genetic mutation which
is one of the genetic operations thought to be responsible for the evolution
of the various species in biological environments. The Allocation function
mutates the population P by altering the locations of the elements of the
selected set P;. The population P is regarded as the parent and the pop-
ulation after mutation is P’ and is regarded as the offspring. There is no
need for a crossover operation as in GA since only one parent is maintained
in all generations. However, since mutation is the only mechanism used by
SimE for inheritance and evolution, it must be more sophisticated than the
one used in GA.

Allocation alters (mutates) all the elements in the selected set Py one
after the other in a predetermined order. The order as well as the type of
mutation are problem specific. For example, for the case of the quadratic
assignment problem, alteration of a module may consist of swapping the
location of a selected module with the location of another module. For
each individual e; of the selected set Py, W distinct trial alterations are
attempted. The trial that leads to the best configuration (population) with
respect to the objective being optimized is accepted and made permanent.
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Since the goodness of each individual element is also tightly coupled with
the target objective, superior alterations are supposed to gradually improve
the individual goodnesses as well. Hence, Allocation allows the search to
progressively converge toward an optimal configuration where each individ-
ual is optimally located. As shall be seen later, depending on the problem
being solved, it is sometimes beneficial to make the parameter W decrease
with increasing number of iterations (generations). Hence, as SimE pro-
gresses from generation to generation, Allocation changes gradually from
a being near-global to local. The reason is that, after a number of genera-
tions, more and more elements are assigned to their optimal locations. A
large value of W would waste too much time making bad trial-mowves, that
is, trial-moves that cause a large decrease of the population fitness.

5.3.5 Initialization Phase

This step precedes the iterative phase. In this step, the various parameters
of the algorithm are set to their desired values, namely, the maximum
number of iterations required to run the main loop, the selection bias B,
and the number of trial alterations W per individual. Furthermore, like any
iterative algorithm, SimE requires that an initial solution be given. The
convergence aspects of SimE are not affected by the quality of the initial
solution. However, starting from a randomly generated solution usually
increases the number of iterations required to converge to a near-optimal
solution.

The magnitude of the selection bias B is less than one. A negative value
for B will increase the number of elements selected at each iteration, which
allows the algorithm to work and search harder at each iteration. This may
lead to better solutions, but at the expense of higher runtime requirement.
On the other hand, a positive value of B will have the effect of inflating
the fitness of the elements, thus causing a reduction in the number of cells
selected for relocation (mutation). This will speed-up the algorithm, but at
the risk of an early convergence to a sub-optimal structure (local optimum).
Experiments on several placement problems suggest that the selection bias
B must be in the range [—0.2;0.2] for best results. However, the value of
B is a function of how realistic is our estimate of the optimal cost O; of
individual 7. In case O; is a tight lower bound on the actual cost C; of
element ¢, then a value of B = 0 is a reasonable choice. On the other hand
if O; is a very loose lower bound for C, that is, if O; can not possibly be
achieved, then one should choose a negative value for B to compensate for
the lack of an accurate estimate of O;.

The number of trial alterations (moves) per individual is problem-
specific. For example, for the TSP problem a move of a vertex ¢ may consist
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of a swap with any of the other vertices. Therefore, the maximum value of
W would be in this case equal to n — 1. However, a smaller value for W
would be more appropriate to keep the runtime under control. The param-
eter W does not have to be the same or constant for all individuals. W
might be interpreted as defining a window of locations around a particular
individual (a vertex in the case of TSP). For the case of TSP, a reasonable
value for W would be a function of a radius constraint R around the ver-
tex in question. That is, each vertex will be trial swapped with only those
vertices that are at most R units of length away from it.

5.4 SIME OPERATORS AND PARAMETERS

The operators used by SimE to evolve from generation to generation are Se-
lection and Allocation. These have the most effect on the convergence speed
of SimE algorithm as well as its runtime requirement. Other parameters
seem to have marginal effect on the performance and runtime requirement
of the algorithm.

Kling and Banerjee studied extensively various aspects of the SimE
algorithm and their effect on its runtime requirement and performance.
These aspects are,KB1

(1) Selection operator.

(2) Allocation operator.

(3) The number of iterations.
(4) The number of populations.

5.4.1 Effect of Selection

The Selection operator examines at each iteration the goodness of each
element, and decides its chances of survival in its current state. Selec-
tion decides the survival of each element independent of all other ele-
ments of the population. Highly fit elements are rewarded with a high
probability of survival. With such strategy, each element ¢ has a probabi-
lity p; = min(1—g;, 1) of getting selected for alteration (assuming B = 0).
Therefore, when g; ~ 1, p; &~ 0. Hence, following the SimE selection
strategy, more and more elements are gradually assigned good locations.
Kling and Banerjee compared SimE Selection with a random selection
strategy. XB9! For a random selection strategy, the selection probability of
element ¢ will be p; = 1 — Random, where Random is a number uni-
formly distributed on the interval [0, 1]. Experimental results showed that



268

SimE Selection (according to fitness) allows the SimE algorithm to con-
verge more rapidly to a slightly better solution. With a random selection,
SimE algorithm was also able to converge reasonably fast to a good solution
of much better quality than the best solution obtained with a completely
random walk in the same amount of time.

5.4.2 Effect of Allocation

Among the SimE functions, Allocation has most impact on the rate of
convergence as well as the quality of solution. Allocation’s role is to perturb
the current population by assigning the elements of the selected set P; to
new locations. In order for the offspring population to be fitter than its
parent, the selected elements must be assigned to better locations. SimE
Allocation performs for each element of P; a number of trial relocations.
The trial locations are within a window that is a function of a parameter W.
For each trial relocation the objective function is evaluated and recorded.
After performing all the trials of the current element, the best trial is made
permanent, and the element is removed from the selection set Ps. This
procedure is repeated until Ps; becomes empty.

SimE Allocation was compared with a Random Allocation strategy KB

Random Allocation assigns each element of the selected set to a random
location within its trial window. Experimental results®B°" showed that
SimE Algorithm with a Random Allocation function exhibits a similar per-
formance to that obtained with a complete Random Search heuristic. This
illustrates the importance of the Allocation function on the performance of
SimE algorithm.

5.4.3 Effect of Number of Populations

Kling and Banerjee have experimented with several concurrent non-
interacting populations.i N populations are used, where at each genera-
tion, N offsprings are generated, one from each population, leading to 2N
populations. Then, out of the 2N populations N are selected based on
their average goodnesses. As the number of populations N was increased,
a less than linear improvement in solution quality was observed, but at
the expense of a linear increase in space and runtime requirements. Also,
when the number of populations was increased, improvement in quality of
solution became less predictable B!

t Recall that in SimE terminology, a population refers to a single solution as opposed
to several solutions in the case of GA.
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5.4.4 Effect of Number of Iterations

The quality of solution obtained by SimE improves when the number of
iterations is increased. The improvement i1s quite steep in the early iter-
ations. It gets less steeper with later iterations until it becomes almost
insignificant. The number of required iterations can be easily tuned via
experimentations. This behavior is observed with all problems. One inter-
esting observation though, is that doubling the number of iterations usually
leads to less than a double of runtime requirement. The reason is that, as
more and more iterations get executed, less and less cells get selected for
alteration. Therefore, the algorithm works less and less harder in later gen-
erations. Hence, an increase in the number of iterations i1s an efficient way
of improving the quality of solution obtained by SimE algorithm. This is a
more efficient way than increasing the number of populations.

5.5 COMPARISON OF SIME, SA, AND GA

In this Section, we look at the main differences between SimE and SA, then

SimE and GA.

SA and SimE have the following fundamental differences:

(1) In SA, a perturbation of current state (solution) is a single move, while
for SimkE it is a compound move.

(2) For SA the elements involved in the move are selected at random, while
for SimE the elements (usually more than two) are selected based on
their fitnesses;

(3) for SA the iterative process is guided by a parameter called temperature,
while for SimE the search process is guided by the individual fitnesses
of the solution components.

As discussed in previous chapter, GA is another evolution based ran-
domized iterative algorithm. GA and SimE follow a similar strategy in
exploiting evolution to move from one generation to the next. However,
there are significant differences between the two algorithms:

(1) SimE works with a single solution called population. The constituents
of a solution are called individuals or elements. On the other hand, GA
works with a set of solutions. A single solution is an individual (also
called a chromosome), and an individual (solution) is made up of genes.
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(2) GA relies on genetic reproduction. The population of next generation is
selected among individuals of current generation and their offsprings.
Fitter individuals have higher probabilities of surviving to the next
generation. Offsprings are reproduced using crossover between selected
pairs of parent individuals of current population. Also, a small fraction
of the individuals may undergo mutation. In contrast SimE maintains a
single individual throughout the generations. Evolution from one gener-
ation to the next uses genetic mutation only whereby some elements of
current solution are altered. SimE has no crossover since this operator
requires two individuals.

(3) In SimE, an individual is evaluated by estimating the fitness of each
one of its genes. The single individual of the next generation is obtained
by probabilistically altering some of the genes of the current individ-
ual (single parent of current generation). Genes with lower fitnesses
have higher probabilities of getting altered. On the other hand, GA
computes the fitnesses of complete solutions. In general, solutions with
higher fitnesses have higher probabilities for mating. However, which
substrings of mating parent solutions are inherited by the offspring are
completely random. Usually the fittest among the parents and their off-
springs survive to the next generation. Therefore, though both SimE
and GA perform a stochastic evolutionary-based search of the state
space, SiImE is more greedy, and thus usually requires fewer iterations
to converge toward desirable solutions.

Overall, SimE algorithms usually run much faster than SA and GA
algorithms. The reason is that the concept of fitness helps the algorithm
converge quickly to a near optimal solution. Furthermore, since a single
solution is maintained at all times, it has much less time and space require-
ments than GA.

5.6 SIME CONVERGENCE ASPECTS

The proof that SimE algorithm converges to a global optimum consists of
showing that the SimE walk through the state space corresponds to an
ergodic Markov chain. The proof described in this section i1s due to Kling
and Banerjee ¥B?1 Another proof has been reported inMH%6.

Recall that the SimE algorithm has three main steps: Evaluation, Se-
lection, and Allocation. Only the Selection and Allocation steps change the
current state. The Selection step changes the current state into an interme-
diate illegal state. The Allocation step changes the incomplete intermediate
state into a new legal state. The state space can be seen as a graph where
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Current State New State

Pa(k.i)

Intermediate State
Figure 5.8 Probability transition diagram of SimE algorithm.

the nodes correspond to states and edges correspond to transitions between
states. The walk that is followed by the SimE algorithm consists of a path
in the state space graph. Note that a transition to a new state depends only
on the current state and not on any of the states that were visited prior
to current state. Hence, the search process 1s memoryless. Therefore, this
allows us to describe the search state with a Markov chain. A state of the
Markov chain models a particular valid solution configuration. Edges in the
probability transition diagram of the Markov chain correspond to transi-
tions between corresponding solution configurations (states). The transition
from current state S; to a new state S} is labeled with the probability p; »
that such transition is executed.

Let 5;, S5, and S be respectively the current, intermediate, and new
states, and P! be the set of elements selected for alteration by the Selec-
tion operator. The Selection operator changes the current state S; into the
intermediate state S; with a selection probability p,(j, 7).

Similarly, the Allocation operator changes the intermediate state S;
into the new state Sy with probability p, (¢, k). Each iteration of the SimE
algorithm consists of a transition from some current state S; to some new
state Sp via some intermediate incomplete state S; as illustrated in Fig-

ure 5.8.

The transition probability from state S; to state S; via intermediate
state S; can be expressed as follows,

pi k(1) = ps(d, 1) X pa(k, i) (5.2)

To keep the Markovian analysis simple, the selection set .S; is restricted
to consist of a single element. Let ¢ refer to the only element in S;.

Let gi(j) be the goodness of element ¢ at current state S;. Since the
probability that a particular element ¢ of current state S is selected for
alteration is proportional to 1 — g;(j), the selection probability p,(j, ¢) can
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be expressed as the ratio of a selection function Fj(j, ¢) and a normalization
function N;(j,¢) to make the p,(j,4) a distribution.

Ps (]a Z) (53)

where,
Fo(1) =1 = 4:(h) (5.4)
and
NoGid) = D0 = (i) (5.5)

where n is the number of elements in the population. Substituting Equa-
tions 5.4 and 5.5 into Equation 5.3, we get the following,

I — 4:(j)

n(l — Gj) (5:6)

ps(j, Z) =

where G; refers to the average goodness of current state S;.

Similarly, the allocation probability ps(k, ¢) can be expressed as the ra-
tio of an allocation function Fy(k, ) and a normalization function N, (k, ).

palhi) = F 6.1)
where,
Folk,i) = (1 — ¢;(k)Gy (5.8)
and

Na(kd) = Y (1 — gi(1)Gy (5.9)

1ENE

where A, is the set of all reachable new states from intermediate state S;
(recall that the selection set consists of element ¢ only). The term (1 — g;(k))
in Equation 5.8 compensates for the selection of element 7, while the term
(i, 1s responsible for choosing destination state S.

When the allocation sets A; are disjoint, Equation 5.9 can be rewritten
as follows KB91:

Na(k,i) = NXG@)(1 — Gg)? (5.10)
where the term N (i) depends only on the selection set P!. The disjointness

of the N;’s can be guaranteed by a careful implementation of the allocation
operator K190,
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Now, substituting the expressions of ps(j,47) and p,(k, ) in Equation
5.2, we get the following expression of the transition probability from cur-
rent state S; to new state S; via intermediate state S;,

(1 = g(h) x (1 = gi(k))Gy
n(l—G;) x Ni(0)(1 — Gg)?

pik(i) = VP! and j#£k  (5.11)

and,

pis(0) = 1 = pxli) (5.12)

The above equations show that all transition probabilities are strictly
positive for goodness values 0 < g < 1. Also, the transition probabilities do
not depend on the iteration index. Therefore, the state transition diagram
of the SimE algorithm is a time homogeneous irreducible Markov chain. The
chain is obviously finite since the population is finite. Moreover, since each
state is reachable from itself by a single transition, the chain is aperiodic,
and hence, it is ergodic. Consequently, the steady state probability vector
of this Markov chain exists. Note however, that the transition probabilities
are dependent on the selected set P!, thus complicating the derivation of
the stationary distribution. Fortunately, for the case of disjoint allocation
sets, the term N (i) depends only on the set P!, and therefore, the depen-
dency on P! is canceled out in the local balance equations as illustrated in

5

Equation 5.13 below.

L I (5.13)
Dik Tk

where 7; is the steady state probability of state ;.

Using Equation 5.11, the local balance equations (Equation 5.13) sim-
plify to the following,
ﬂ Gj (1 - Gk)

= T ys v 5.14
| Ge(l—Gy) R (5.14)

Letting Si be equal to Sp, the initial state, Equation 5.14 simplifies to
the following,
G 1 -Gy

;o= I—GJ X GO ) VS], (515)

The 7;’s constitute a distribution, i.e.,

domo=1 (5.16)
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Therefore, using Equations 5.16 and 5.15, and solving for 7;, we get,

1 Gj .
ﬂ-]_éxl—Gj Y j (5.17)

where G is a normalization constant used to force the m;’s to be a distri-
bution. That is,

_ G
G = Zl_Gj (5.18)

J

Equation 5.17 states that, if given infinite time, the SimE algorithm
will visit the global optimum state S,,; with probability

1 G

Topt = 5 X % (519)
Also, the fraction of time (probability) spent by the algorithm in a state
Sk of high goodness is proportionally higher than the proportion of time
spent in a state of lower goodness. Furthermore, since the optimum state
has the highest goodness, correspondingly, it will have the largest steady
state probability. In other words, the SimE algorithm will bias the search
to drift toward high goodness states, and once it reaches such states, it has
a high probability of remaining there.

5.7 SIME APPLICATIONS

As mentioned earlier, the SimE algorithm can be used to solve a wide
range of combinatorial optimization problems. The algorithm, however,
has to be adapted to the type of problem under investigation. Specifically,
(1) the solution space has to be defined, (2) a suitable state representation
be adopted, and (3) the operators Fvaluation, Selection and Allocation be
properly defined.

Kling and Banerjee published their results with respect to SimE in
design automation conferences KBS KBO0 and journals KB89 KB g
explains the fact that most published work on SimE has been origi-

nated by researchers in the area of design automation of VLSI circuits
LHT89, LM93, MH94, Mac94, MH96

The first problem on which SimE was first applied is standard cell

placement KB87P, KIi90 Ty thig section we describe this SimE-based standard

cell placement algorithm as reported in ¥B87
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Figure 5.9 Example of standard cell layout.

5.7.1 Standard-Cell Design Style

In standard-cell design style, all cells have the same height but varying
widths. The widths of the cells are usually a multiple of some grid unit.
Cells are placed in an array of horizontal rows, and all interconnections
of signal nets are made in the spaces between the adjacent rows. Usually,
for each terminal on one side of a standard-cell there is also an electrically
equivalent terminal on the opposite side. The standard-cell layout model
is shown in Figure 5.9. The four blocks surrounding the cell rows on the
top, bottom, right and left are the external Input/Output (I/O) buffers.
The rectangular areas in between the cell rows are the routing channels.
Feed-through cells are inserted within the cell rows in order to provide
interchannel routing. Feed-throughs are also available within some of the
cells (wide cells). For the standard-cell design style, the channels do not
have prefixed capacities.

The objective of standard cell placement is to arrange the various cells
of the design in rows so as to optimize a given cost function that is supposed
to accurately characterize the quality of the placement. The cost function
used in ¥B3 is an estimate of the total wire length. The placement pro-
gram consists of two phases (see Figure 5.10): an initialization phase where
the various parameters and data structures are set, and (2) an iterative
placement phase which consists of the Simulated Evolution algorithm.
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Phase - |

}

Figure 5.10 Flowchart of SimE-based standard cell placement program.

Initialization
(Precomputation)
"y

Evaluation

Initialization phase

The initial placement solution is randomly generated. Optionally, the pro-
gram can accept a previously generated good placement. The evolution
process should maintain already well placed cells in their current locations
and try to improve the locations of the remaining cells.

As discussed in Section 5.3.1 on page 260, the goodness g; of a cell i is
equal to

where O; is a reference value (a lower bound on C;) and Cj is the actual
cost of the cell in its current location. All reference values are computed
during the initialization phase.

Since placement quality is measured by the total wire length, the good-
ness of the current location of a particular cell ¢ is a function of the length of
all the nets connected to that particular cell. Therefore, we need to estab-
lish a lower bound on the length of each net, which will serve as a reference
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Figure 5.11 Computation of the smallest possible net length: (a) Five cells connected
by one net; (b) the five cells are packed in the smallest possible rectangle; (c) the cells
are reshaped to fit in a square and half a cell height is subtracted from each side of that
square; half of the resulting square (in dotted lines) is taken as an estimate of the net
length.

value for the quality of placement.

The approach used to compute a lower bound on net length is illus-
trated in Figure 5.11. The idea consists first of packing the cells connected
by the net in the smallest possible rectangle. Then, all cells are re-shaped
so that the enveloping rectangle forms an approximate square. Row spac-
ing is included in this computation. Next, half a cell height (equal to the
maximal pin displacement in the y-direction) is subtracted from each side
of the square. Finally, half the perimeter of the resulting square is used as
a lower bound on the length of the net (see Figure 5.11).

Evaluation of placed cells
The goodness measure used by the evaluation routine must be highly cor-

related with the overall objective of the placement problem. Kling and
Banerjee ¥B87P experimented with the following three goodness measures.
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Figure 5.12 Concentric circle evaluation. Each circular region encloses an area equal
to the total area of all the cells of the net. For this example, the goodness of cell 2 in
the middle of the concentric circles is g = 1+1+0'75+0'i+0'5+0'25+0 = 0.5714.

Concentric circle function. The goodness function used is based on the
assumption that a good placement requires that most of the cells connected
to the cell being evaluated be within its immediate vicinity. For each cell
i, the area a; covered by all its neighboring cells (cells connected to it) is
computed. The cell is then enclosed by concentric circles which cover integer
multiples of a;. The area of the innermost circle is a;, the area of the next
innermost circle is 2a;, etc. Let n; be the number of concentric circles of
cell 4. Then each concentric circle is assigned a weight o;;, = 1—(j— l)n%,
1 < j < n;. For example for n; = 4, the weights will be oy, = 1, ay, =
1-025=0.75 a;, =1—-05 =105, and o;, = 1 —0.75 = 0.25, from
the innermost circle to the outermost circle. The area lying outside the
outermost circle has a weight of 0. Now, each pin is assigned the weight of
the circle it falls in. The goodness of the cell in its current location is equal
to the average weight of all the pins connected to it. The cost function
evaluation is illustrated in Figure 5.12.
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Position-oriented function. The second goodness function is based on
the use of the reference net length values computed in the initialization
phase (see subsection 5.7.1 on page 276). The cells connected by a particular
net cover a minimal area approximated by the area of the smallest rectangle
that covers all the connected cells if they were located next to each other.
All cells located inside that smallest bounding rectangle should not be
penalized. On the other hand cells falling outside that rectangle contribute
to some additional wiring cost and therefore should be penalized.

Initially the goodness values of all cells are set to zero. Then for each
net n, the (z,y)—location of its gravity center is determined as follows.

Let E,, be the set of all the pins connected by net n. Then the gravity
center (#n;yy) of net n is computed as follows,

1 1
= Sy oy = A > w

PEEL peEE,

Then, the smallest bounding rectangle of the net (determined during ini-
tialization) is drawn around the net gravity center. Each pin falling within
the rectangle is assigned a goodness of 1. The goodness of a pin falling out-
side the rectangle is set equal to the ratio of the distance of the boundary
of the net’s smallest rectangle from the net’s center over the distance of the
nearest cell boundary of that pin from the net’s center (see Figure 5.13).
After processing all nets, the goodness of a cell ¢ 1s set equal to the average
of the goodnesses of its pins. That is,

Z Gip

o 1
9 = |E
PEE;

il
where |E;] is the set of pins of cell ¢ and g, is the goodness of pin p of cell
t. The cost function is illustrated in Figure 5.13.

Wire length based function. The last goodness function is based on
the reference net length values precomputed during the initialization phase.
Here, the goodness g; of a cell i is equal to

9i = Wi
where O; is the reference wire length value of cell ¢ as precomputed during
the initialization phase, and W; is the actual wire length of all the nets
attached to the cell in its current location.

Let N; be the nets connected to cell ¢, then, V i,

0, = Zrn

neN;
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Figure 5.13 Position-oriented evaluation. zy,, yn) is the center of the net. The goodness
of the pins a-to-f are g, = ge =1, gc = gq = gy = 0.5, and go = 0.4.

neN;

where 7, and [, are respectively the reference length and actual length
of net n. The reference length of each net n is computed as indicated in
subsection 5.7.1 on page 276. The actual length is estimated by half the
perimeter of the smallest rectangle enclosing all the pins of the net in their
current locations.

Selection of cells for relocation

This step determines which cells will retain their current locations and
which should be assigned to new locations in the next generation. For each
cell i, a random number in the range [0, 1] is drawn and compared to the cell
goodness g;. If g; 1s greater than the random number then cell ¢ survives in
its current location; otherwise it is stored in a selection queue for allocation.
The selected cells are then removed from their current locations.

Allocation (relocation of selected cells)

Recall that the Allocation function has the most impact on the quality of
solution and the speed with which the search converges toward desirable
solutions.

In early iterations (generations), the number of cells selected for alter-
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Figure 5.14 Sorted individual best fit allocation. Cell 1 is tried in all four available
locations and assigned to its best location 3; then cell 2 is tried in the remaining three
locations and assigned to location 4; next cell three is tried in the remaining two locations
and assigned to location 2; and finally cell 4 is assigned to location 4, the only remaining
available location.

ation can be as much as 50% of the total number of cells. With increasing
number of generations, this number is decreased to lesser and lesser cells,
reaching only few cells near convergence. Therefore, to save on runtime re-
quirements, it is desirable to use a low complexity allocation function dur-
ing the early generations, and then switch to a more complex and accurate
allocation toward later generations when most cells are already optimally
located.

Based on above observation, three allocation functions are used, with
increasing complexity. The least complex is used during early generations
and relies on a simplified evaluation routine which ignores overlaps due to
the swap of cells of unequal widths. For all three techniques, a windowing
technique is applied to limit the number of trial locations per cell. From the
least complex to the most complex, the three allocation schemes are:X190
(1) sorted individual best fit allocation, (2) weighted bipartite matching

allocation, and (3) branch-and-bound search allocation.

Sorted individual best fit allocation. The cells in the selection queue
are sorted such that the cell with the largest number of connections is at
the head of the queue. Then the selected cells are removed from the queue
one at a time in the sorted order and assigned to new locations as follows.
Each selected cell is tried at all available locations. The number of trial
locations decreases by one after the placement of each cell. Every trial lo-
cation 1s evaluated using a simplified evaluation routine. The evaluation
routine evaluates the wire lengths taking into consideration already placed
cells only. The allocation function assigns each selected cell to the available
trial location of highest goodness value. This allocation function is illus-
trated in Figure 5.14. It has a time complexity of O(s?), where s is the
number of selected cells.
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Locations

Figure 5.15 Weighted bipartite matching allocation. All four cells are tried in each
of the four locations; then a matching algorithm is used to make the best possible
assignment.

Weighted bipartite matching allocation. First, the goodness of each
cell in the selection queue is evaluated in every possible trial location. A
table A[s, s] of size s? is constructed where A7, j] gives the goodness of
assigning cell i to location j. Then a matching algorithm®HU7 is used
to identify the allocation of minimum overall wire length cost (maximum
average placement goodness). This allocation function is illustrated in Fig-
ure 5.15. It has a time complexity of O(s®). Here also, nets connected to
unplaced cells are not considered during the evaluation of the trial loca-
tions.

Branch-and-bound search allocation. Branch-and-bound is an all
state space search method™57®. The solution is constructed one element
at a time. The branch-and-bound method builds a search tree, where each
node of the tree is a partial solution. A path from the root to a leaf is a
complete solution with all selected cells assigned to locations.

The root 1s at level 0. Children of the root are at level 1 and so on. A
node at level 1 is a partial solution consisting of one element. A path from
the oot to a node at the k" level is a partial solution with k elements, 1 <
k < s. The root has s children (1, 1), (1,2), ... (1,4),...(1,s) corresponding
to trial allocations of cell 1 to location 1, cell 2 to location 1, ..., cell 7 to
location 1, ... cell s to location 1, respectively. Each node is assigned a
cost corresponding to the wiring incurred by that partial allocation. The
node with the lowest cost is expanded next. It will have one less child
than its parent. This process continues as long as there are live nodes. An
unexpanded node remains alive as long as its cost is lower than any of the
costs of the reached leaf nodes. Leaf nodes are at level s of the tree.

As an example, assume that the selected queue consists of s = 4 cells
to be re-assigned to 4 available locations (see Figure 5.16). Level 1 will have
the four nodes (1;1;28), (1;2;5), (1;3;40) and (1;4;30), corresponding to
trial allocations of cells 1, 2, 3, and 4 to location 1 with wiring costs of 28,
5, 40, and 30 respectively. The assignment with minimum wiring cost is 5
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and corresponds to assigning cell 2 to location 1 (node (1;2;5) at level 1
of the branch-and-bound tree). That node is expanded next. It will have
three children corresponding to trying out cells 1, 3, and 4 in location 2.
The corresponding nodes have costs of 7, 10, and 50 respectively. These
costs correspond to partial solutions with two cells already assigned, cell 2
to location 1 and cell 1, 3, or 4 to location 2. At this stage, the unexpanded
alive nodes are (1;1;28), (1;3;40), and (1;4;30) of level 1, and (2;1;7),
(2;3;10), and (2;4;50) of level 2. Node (1;2;5) of level 1 has already been
expanded. Among the unexpanded alive nodes, node (2;1;7) of level 2 has
the lowest cost of 7. That node is expanded next. Node (2;1;7) will have
two children corresponding to trying out cells 3 and 4 at location 3 and with
costs of 30 and 17 respectively. The search process continues until the leaf
node (4;3) is reached. The path from the root to that node corresponds to
the assignment of cell 2 to location 1, cell 1 to location 2, cell 4 to location
3, and finally cell 3 to location 4. The cost of such assignment is 22. At this
moment nodes (1;1;28), (1; 3;40), and (1;4; 30) of level 1, node (2;4;50) of
level 2, and nodes (3; 3;30) and (3;4; 27) of the level 3 of the tree are pruned
because their cost is higher than the cost of the leaf node (4;3;22). The
search continues by expanding node (3; 1;20) of level 3, which produces the
child (4;4;25) with cost 27. At this moment there are no more live nodes
and the search stops. The best allocation is that corresponding to the path
from the root to the leaf node (4;3;22) with cost 22. In Figure 5.16, each
edge has an integer label indicating when the trial allocation node at the
end of that edge was performed. For example, the label of the edge from
the root node to node (1;2;5) is equal to 2, which means that the trial
allocation of cell 2 to location 1 was performed second. Nodes enclosed
in rectangles are those that have been expanded. Leaf nodes are enclosed
in double rectangles. Remaining nodes are those at which the search was
pruned.

It is well known that the branch-and-bound search approach has an
exponential worst time complexity. However, sorting of the selection queue
can force pruning of large portions of the search space, thus reducing the
required runtime of this allocation procedure. Furthermore, this allocation
function is used only at later stages when the number of altered cells is
small (usually less than 10).

Cell realignment after Allocation. The allocation function ignores
mismatches among the sizes of the available trial locations and the se-
lected cells. Therefore a postprocessing step is required to remove any cell
overlaps or empty spaces that may result from such mismatches. The oper-
ations performed by this postprocessing step are illustrated in Figure 5.17.
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dead space. (b) Removal of cell overlap.
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Stopping criteria

The iterative evolution-based search is stopped if a 100 consecutive itera-
tions fail to improve the placement cost. The algorithm then outputs the
best possible placement found. Optionally, at the user request, the algo-
rithm invokes postprocessing routines which optimizes the locations of the

I/0 pads and other aspects of the design such as the placement of macro
blocks K199

Results and Discussion

Most of the research work on stochastic iterative algorithms has been
sparked by simulated annealing (SA) and its many success stories on a
large number of combinatorial optimization problems from a variety of dis-
ciplines. Since its invention, SA has enjoyed its status as being considered
a sort of benchmark randomized iterative heuristic for all other heuristics
in this class. It has become customary that every newly reported random-
ized search heuristic has to prove itself by performing better than SA on a
number of (benchmark) test cases. Therefore, SimE was no exception, and
its inventors had to compare their SimE-based standard cell placer with an

SA-based placer.

The SimE-based placement program was compared to TimberWolf 5.4,
a popular standard cell program implemented at the University of Berkeley
SSV86, SL8T, Sec88 - Timberwolf follows the simulated annealing algorithm.
The SimE-based placement program produced placements of similar qual-
ity (on some test cases marginally better), but in a noticeably less time.
For some of the test circuits, a 50% reduction in runtime with respect to
TimberWolf was observed X190 Hence, SimE passed the test!

Furthermore, a comparison of the three proposed allocation schemes
was conducted. The study indicated that the sorted individual best fit allo-
cation strategy was best during the initial stage. During the intermediate
stage, the weighted bipartite matching allocation exhibited the best perfor-
mance. The branch-and-bound allocation method gave the best results at
the near convergence later stage K19,

5.7.2 Other Applications of SimE

Simulated Evolution attracted a relatively low number of researchers.
Furthermore, all reported SimE work has been exclusively in the
area of electronic computer-aided design (ECAD). A number of pa-
pers described SimE-based heuristics to the routing of VLSI circuits.
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LHT89, CLAHL95, TSN93, CLH89 LHTSs, LAH95, HHYLHO1 QT was also suc-

cessfully applied in high level synthesis TJ90 KL92a, KLO2b " (ther reported
SimE applications are in micro-code compaction™&9% and the synthesis of
cellular architecture Field Programmable Gate Arrays (FPGAs)ANM93,

Another Ph.D. work that was centered around the SimE algorithm
was performed at the University of Wisconsin at Madison (USA) by
C. Y. MaoM299% Mao applied SimE to perform the automatic syn-
thesis of Gate Matrix layouts. He also performed theoretical analysis
of SimE-based heuristics and elaborated general convergence proofs of

SimE, where he modeled the SimE search process by an ergodic Markov
chain MH94, Mao94, MH96

5.8 PARALLELIZATION OF SIME

In previous sections, several aspects of SimE algorithm were discussed.
Similar to simulated annealing algorithm, SimE is a very sound approxi-
mation algorithm. It is a general algorithm that is relatively easy to apply
to almost any combinatorial optimization problem. However, SimE seems
to be more greedy than simulated annealing, thus allowing to reach near-
optimal solutions in lesser time than simulated annealing. This claim has
been supported by experimental results K190 Nevertheless, SimE may still
have large runtime requirements. The reason is that, like other stochas-
tic iterative algorithms, SimE is blind. That is, it has to be told when to
stop. Depending on which stopping criteria are used as well as the size of
the problem, SimE may consume hours of CPU time before it stops. The
most practical approach to speed up the execution of SimE algorithm is to
parallelize it.

Unlike Simulated Annealing, Genetic Algorithms, and Tabu Search,
the parallelization of SimE has not been the subject of much research. The
only effort at parallelizing simulated evolution is attributed to the inventors
of the technique K190 KB87a Kling and Banerjee suggested three ways of
speeding up the SimE algorithm: (1) implementing the algorithm on a vec-
tor computer (SIMD machine), (2) parallel acceleration where execution of
the algorithm is distributed among a number of networked workstations,
and (3) hardware acceleration which consists of implementing time con-

suming parts in hardware (namely, goodness computation) KIi90

Hardware acceleration is not a cost effective approach. Therefore, in the
remainder of this section we shall concentrate on the use of parallelization
techniques to speed up the SimE execution.
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5.8.1 Implementation of SimE on Vector Processors

Vector processors computers are SIMD machines optimized for running
scientific software programs that involve a large amount of numerical com-
putations such as matrix multiplications. Besides involving symbolic ma-
nipulations, several design automation problems such as floorplanning and
placement also require quite a bit of numeric computations. Such design
automation programs can be designed to take advantage of the capabili-
ties of vector processor machines. Kling and Banerjee ran an SimE-based
placement program on several test circuits and reported that, up to 50%
of the program runtime was spent evaluating the goodnesses of cells K190,
Therefore, a significant speed-up would be obtained if the computation of
the goodness measure is accelerated. On the basis of this observation they
redesigned their placement program to take advantage of the vector proces-
sors architecture of an IBM 3090VF mainframe. They reported speed-ups
in excess of 100% on all benchmark circuits used ¥1°°, Below, we briefly
illustrate this parallelization approach on the Quadratic Assignment Prob-

lem (QAP) (see Section 5.3 for a definition of QAP).

An instance of QAP is given in Figure 5.18. Connectivity among the
cells is specified in the form of a matrix Cpxn = [ ¢ ], where ¢;; is the
number of connections between cells z and 7, 1 <7 <n,1 < j<n,and n
is the number of cells. The layout area is assumed to be a two-dimensional
surface consisting of m locations, m > n. Assume that the distances be-
tween the various locations are specified in the form of a distance matrix
Dpxm = [ dgi ], where dg; is the distance between locations k and [,
1<k <m, 1<l <m. A particular assignment of the cells to locations is
represented as a vector A = (ay,as,...,4;,...,a,) where g; is the current
location of cell 7, 1 < i < n.

The objective is to seek an assignment A of minimum connection
length. That is, the cost function to be minimized is

Cost(A) = Zn: Zn: ¢ijda; a;

i=1j=1

Hence, a possible measure of the goodness of the current location a; of
a particular cell ¢ is,

g = — (5.20)

where O; is the minimum length of all the connections to cell ¢, and W;
is the actual length of all the connections to cell ¢. O; corresponds to the
connection length if all the cells connected to cell ¢ are packed in the small-
est possible area around cell ¢ (see Figure 5.19). Let 4, 49, ..., & be the &
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Figure 5.18 Example of Quadratic Assignment Problem.

cells connected to cell ¢. Assume that the cells are sorted in nonincreasing
order of the number of connections they have with cell i. That is, cell i
has the largest number of connections to ¢, then ¢; has the second largest,
and finally ig has the least number of connections to z. Then O; is equal to
the following (see Figure 5.19),

0; = Y[

j=1

]Ci,ij 1 S 1 S n (521)

SN

Note that O;, 1 <17 < n, are evaluated only once during the initialization
phase of the algorithm.

The actual length of all connections to cell ¢ is given by the following
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Figure 5.19 Tllustration of the estimation of O; and W; for the Quadratic Assignment
Problem. (a) Locations of cells when packed in the smallest possible area around cell ::
there are 4 locations at a distance of 1 from cell 7, 8 at a distance of 2, 12 at a distance
of 3,...,d X 4 at a distance of d. (b) Actual length of all connections to cell ¢ according
to Equation 5.22: W; = 2x4434+3+1Xx2+4 = 20. (c) Optimal length of all

connections to cell ¢ according to Equation 5.21: O; = 2x1+14+14+2%x14+2 = 8.

Hence, g; = % = 04.

expression (see Figure 5.19),

Wi =Y cijdae; 1<i<n (5.22)

j=1

Equation 5.22 is a dot product of the " row vector of matrix C' with
a column vector of matrix D indexed by the assignment vector A. Such
computation can be efficiently implemented on a vector processors machine

such as the IBM 3090V F K10

5.8.2 Implementation of SimE on MISD and MIMD
machines

A straightforward parallelization of SimE on MISD or MIMD machines
could be as follows. Each processor is assigned a particular initial popula-
tion. Then each of the processors would be running sequential SimE starting
from 1ts assigned initial population. This simple approach would be very
good if the search subspaces of the various processors do not overlap (or
have minimal overlap). In this case all processors would be concurrently
searching distinct parts of the solution space. However, this would require
that one has enough knowledge about the search space in order to partition
it among the individual processors. In most cases this is a very unrealistic
assumption, and usually very little is known about the search space. On
the other hand, the subspace corresponding to the neighborhood of a par-
ticular solution is usually controlled by the algorithm designer (Allocation
operator and windowing technique), and can easily be searched in parallel
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by the available processors, with minimal overlap.

Another parallelization strategy would be to parallelize the execution
of the simulated evolution operators. Unlike simulated annealing algorithm,
which is inherently serial, most of the activities of SimE algorithm can be
executed in parallel. Recall that the SimE algorithm consists of three steps
that must be executed in sequence: Fvaluation, then Selection, and finally
Allocation. These steps are repeated until some stopping criteria are met.
The activities of each of the first two steps can be performed concurrently
without affecting the correctness of the algorithm. The elements of the pop-
ulation can be carefully partitioned among m processors. Each processor
i, 1 < i < m would be assigned a subset P! of the population P. Then,
each processor i will evaluate the goodness of each element in P’ and run
the Selection step to partition P into a selection subset P! and a subset
of remaining cells P!. This will achieve a linear speed-up of the execution
of the Evaluation and Selection steps of the algorithm.

The parallelization of the Allocation function is more complex. For a
carefully partitioned population and using a windowing technique, alter-
ations performed by the allocation function on the sub-populations can be
forced not to overlap, thus allowing the concurrent relocation of several
selected cells at a time. Periodically, the sub-populations are merged and
re-partitioned to avoid missing parts of the search space. A similar paral-
lelization strategy has been adopted to parallelize an SimE algorithm for
standard cell placement on a network of workstations *B%72. Each station
is assigned a number of rows of the standard cell layout. Each station exe-
cutes one iteration of the SimE algorithm on the cells of the rows assigned
to it. At each iteration, the rows are redistributed among the processors.
The authors reported a linear speed-up for problems where each processor
is assigned a fairly large number of cells (200 to 250 cells). For a large num-
ber of cells per processor, the processing time is more than one order of
magnitude than the communication time among the processors K90, KB87a_

In this parallelization strategy, one of the processors will have to be in
charge of running SimE on a particular partition as well as performing the
following tasks periodically (for example at the end of each SimE iteration):
(1) receive the sub-populations from all other processors and merge them
into a new population, (2) partition the new population, and (3) finally
distribute the resulting sub-populations among the processors.



SIMULATED EVOLUTION (SIME) 291

5.9 CONCLUSION AND RECENT WORK

In this chapter, we have examined an elegant and general randomized search
heuristic. Like other heuristics of its class, 1t is suitable for solving hard
combinatorial optimization problems, those with no known closed form
solutions or polynomial time algorithms. SimE attempts to mimic natural
selection processes of biological environments. A solution configuration is
a population made of several elements. At each iteration, a fitness measure
is evaluated for each element of current generation (population). Every
element of current population has to prove its goodness in its current state.
Unfit elements have proportionally high probability of being altered so as
to gradually generate populations with higher overall fitness. The iterative
process stops when no (significant) improvement is observed after a number
of consecutive alterations. The search would have then, hopefully, converged
to a global optimum.

Undoubtedly, the Simulated Evolution algorithm is a sound and ro-
bust randomized search heuristic. It is guaranteed to converge to a global
optimum if given enough time. It 1s powerful, yet simple to tune to any
particular combinatorial optimization problem. It has modest runtime and
space requirements compared to genetic algorithm. It is built around the
biological concept of fitness, a notion easier to digest and tune than the no-
tion of temperature used in the simulated annealing algorithm. It is quite
unfortunate though that SimE has not attracted as many researchers as
simulated annealing, genetic algorithm, and tabu search did. We believe
that this is due to two principal reasons: (1) SimE is fairly recent; the
first paper introducing the heuristic appeared in 1987 ¥B37": and, most
importantly (2) Kling and Banerjee published most of their SimE-related
papers in VLSI design automation conferences and journals. SimE would
have attracted much more researchers from other engineering and scientific
disciplines if it were presented at events and journals of those disciplines.
However, in the recent two to four years, SimE has seen a number of appli-
cations in domains other than CAD of VLSI. Interested readers can consult
references provided at the end of the chapter. It 1s our hope that this book
would allow the randomized iterative heuristics herein described to reach
a wider class of the scientific and engineering communities.
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EXERCISES

exercise 109
Discuss and compare similarities and differences between SimE, GA,

and SA.

exercise 110
Based on your understanding of the SimE algorithm, rank the following
according to their impact on the algorithm performance:

(a
(b

) Accuracy of the estimation of the goodness measure.
)
c) Value of the selection bias parameter.
)
)

Quality of initial solution.

(
(d) The Allocation step.
(e) Sorting of the elements of the selection set.

exercise 111

In the text, 1t was stated that, generally, it is beneficial to allocate
the selected elements according to a specific order which is problem
specific. Argue in favor or disfavor of such claim. Discuss the effect of
sorted allocation on runtime, quality of solution, rate of convergence,
etc.

exercise 112
Discuss the effect of the selection Bias parameter on the runtime and
quality of solution of the algorithm.

exercise 113
The selection Bias parameter has a large impact on the size of the



SIMULATED EVOLUTION (SIME) 295

selection set. This usually has major consequences on the quality of
the search as well as the runtime requirement of the algorithm.

1. Why is the selection bias needed?

2. Suggest methods of setting the value of this parameter other than
the trial and error approach proposed by Kling and Banerjee.

3. One approach that relieves the user from using the selection bias
is to normalize the goodness values so as to force them to fall in
the interval [0,1]. Provide a normalization formula that will force
the goodnesses of elements to fall in the range [0.1,0.9].

exercise 114

If one decides to limit the size of the selection set not to exceed a
particular small value (say 10% of the number of movable elements),
would that have any effect on the convergence of the algorithm? Justify
your answer.

exercise 115
For the random selection strategy discussed in the text (see Section
5.4.1 page 267), what would be the average size of the selection set?

exercise 116

As the search progresses, the average fitness of the population keeps
increasing. Let G; be the average goodness of the population at the
it" iteration. Derive an equation that would give an estimate of the
percent reduction in runtime between two consecutive iterations, ¢ and
¢+ 1, as a function of G;, G;41 and the number of elements 7.

exerclse 117

1. Given a set of n distinct positive integers X = {@1, 29, ..., 2,}.
The objective is to partition the set into two subsets X; of size
k and X3 of size n — k (1 < k < %) such that the difference
between the sums of the two subsets is minimized. This problem is
known as the set partitioning problem. One of the best heuristics
proposed for this problem for the case & = 2 is Karmarkar and

2
Karp algorithm (given below).

Algorithm Karmarkar_and _Karp

Step 0. Initialize sets A and B to empty;
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Step 1. Sort the numbers in descending order and put them in list L;

Step 2. Replace the largest two numbers in L by their difference;
Repeat this step until there are only two numbers in the list;

Step 3. Put one number into set A and the other number into set B;

(note that the difference between the two numbers is the
difference of the final solution)

Step 4. Replace the numbers in the sets which are not in the original

list as follows:
Suppose zisin A and ¢ = y — z, then
remove z from A
add y to A
add z to B
Repeat this step until only numbers in the original list are
present in both sets

End.

2. Run the above algorithm on the following set of elements

{12,4,7,10,8,9,25,6,18,14}.
3. Find the time complexity of the Karmarkar and Karp algorithm.

4. Implement Karmarkar and Karp set partitioning heuristic and ex-
periment with it on several instances of this problem.

5. Suggest a suitable goodness measure for this problem and illustrate
it on the above problem instance.

6. Suggest a suitable allocation strategy for this problem.

7. Design and implement a Simulated Evolution algorithm to solve
this problem. Run your SimE algorithm and compare quality of
results with those obtained by Karmarkar and Karp. Discuss your
results.

exercise 118 Prove the result of Equation 5.14.

exercise 119 Prove the result of Equation 5.17.

exercise 120 Consider an instance of the quadratic assignment prob-
lem consisting of 6 modules to be assigned to locations in a 2 x 3-layout
surface. The objective is to assign the modules so as to minimize the
Manhattan length of the module connections. Assume that the dis-
tance between two consecutive locations in the same row or the same
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column is equal to one unit. The connectivity matrix is as follows:

0 1 1

O == O
=
—_—_0 O
co o o~
_0 O = =
O, O R OO

1

where ¢;; = 1 indicating that modules ¢ and j are connected and ¢;; =0
otherwise.

1. Determine O;, C;, and g; of each of the six cells as discussed in
Example 44 on page 257. Assume that current state is as shown
below. Find the goodness of this state.

6 5 4

1 2 3

Table 5.1 Assignment example for Exercise 120.

2. Assume that the selection set consists of module 1 and module
swap 1s used by the allocation operator.

(a) Find the goodness of the states resulting from the swap of
module 1 with each of the other 5 modules.

(b) Determine the transition probabilities (selection probabilities)
from the current state to each of the possible intermediate
states.

(¢) Determine the allocation probabilities from each of the inter-
mediate states to each of the possible next feasible states.

exercise 121 Consider the following instance of the two-way parti-
tioning problem. There are six nodes numbered 1 to 6. Connectivity
between these nodes is as indicated in the following connectivity ma-

trix.
0100 00
101 100
0100 00
=10 10011
000 10 1
000 1 10

The objective is to divide the above six nodes among two partitions
so as to minimize the number of connections with ends in distinct
partitions.
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1. Propose a goodness measure and evaluate it for each node of the
population. Assume that the current solution consists of nodes 1,
2, and 5 in one partition, and the remaining nodes in the other
partition.

2. Suggest suitable cost function and allocation strategy and illustrate
it on this problem instance.

exercise 122
Consider the Vehicle Routing problem described in Chapter 1, Page 9.

1. Devise suitable solution encoding and fitness measure (Fvaluation
function).

2. Design appropriate Allocation function for this wvehicle routing
problem.

3. Derive an equation expressing the time complexity of the algorithm
as a function of the problem size, the complexity of the fitness
function, and the complexity of the Allocation operator.

4. Implement a simulated evolution-based program for the wvehicle
routing problem.

exercise 123
Repeat the previous exercise (Exercise 122) considering the Flowshop
Scheduling problem described in Chapter 2 (Exercise 38).

exercise 124
Repeat Exercise 122 for the Terminal Assignment problem described
in Chapter 2 (Exercise 39).

exercise 125
Repeat Exercise 122 for the Concentrator Location problem described
in Chapter 2 (Exercise 40).

exercise 126
Repeat Exercise 122 for the Constrained Minimum Spanning Tree prob-
lem described in Chapter 2 (Exercise 41).

exercise 127
Repeat Exercise 122 for the Mesh Topology design problem described
in Chapter 2 (Exercise 42).
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exercise 128
Repeat Exercise 122 for the Weighted Matching problem described in
Chapter 2 (Exercise 43).

exercise 129
Repeat Exercise 122 for the Plant Location problem described in Chap-
ter 2 (Exercise 44).



CHAPTER

SIX

STOCHASTIC EVOLUTION (STOCE)

6.1 INTRODUCTION

In the search to develop new efficient procedures for combinatorial op-
timization, researchers have adapted ideas from other disciplines. Simu-
lated annealing®?V®3 was inspired by the annealing of metals. Genetic
algorithm©°®? and simulated evolution®B! were based on an analogy
with the Darwinian theory of natural selection. In this chapter, we de-
scribe stochastic evolution, another randomized iterative search algorithm,
inspired also by the alleged behavior of biological processesSR89, SR90, Saad0,

Among the possible stochastic iterative algorithms for combinatorial
optimization, those that rely on a random walk always perform worst. Nev-
ertheless, many authors usually compare their iterative algorithms with
results obtained by random walk search algorithms! When given limited
CPU time, random walk undoubtedly leads to poor quality solutions.

As discussed in Chapter 2, in the high temperature regime, the sim-
ulated annealing (SA) algorithm follows almost a random search path. As
temperature is lowered down, SA starts behaving like a classic gradient
descent-method algorithm. An interesting question then comes to mind:
If a random walk is the worse of search methods, why would SA or any
other algorithm ever follows such a strategy? For the case of SA algorithm
there are several answers: (1) SA was designed to start from any randomly
selected initial solution. Therefore, in the early iterations, even large uphill

300
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moves should have a relatively high acceptance probability, thus break-
ing any possible non-optimal clusters of elements within the early solution
configurations, which may entrap the search in undesirable local minima.
(2) SA was designed to ape the process of metal annealing, and therefore
the initial temperature must be set high (as in the annealing of metals)
and then cooled (lowered) gradually, forcing the algorithm to accept most
of the uphill moves in this early hot regime. Would such strategy be suit-
able for combinatorial optimization? Many researchers do not agree with
such search strategy and blame it for the excessive runtime requirements
of SA. The reader can consult Nss8s5, KB87, KB89, Kli90, SR89, Saad0, SR91 to
cite few. This partly explains the wealth of other iterative and constructive
algorithms proposed in the literature. Several researchers rightfully object
to the cooling paradigm adopted by SA. Why would someone have to al-
ways start with a random walk and slowly move toward a gradient-descent
method? The subject of this chapter is to describe a relatively recent tech-
nique called Stochastic Evolution which prides itself by avoiding the random
walk strategy altogether.

In this chapter, we start with a brief narration of the fairly recent his-
tory of stochastic evolution. We then describe the basic stochastic evolution
algorithm; and give a brief qualitative comparison of stochastic evolution
(StocE) with simulated annealing (SA) and simulated evolution (SimE). In
Section 6.4 we address the convergence aspects of stochastic evolution. In
Section 6.5 we illustrate its use on several hard combinatorial optimization
problems. In Section 6.6 we present possible strategies to parallelize this
algorithm. Finally, in Section 6.7, we briefly present other work and recent
development related to stochastic evolution.

6.2 HISTORICAL BACKGROUND

Stochastic Evolution is a powerful general and randomized iterative heuris-
tic for solving combinatorial optimization problems. The first paper describ-
ing Stochastic Evolution appeared in 1989 SR8 The paper was authored by
Youssef Saab (working then on his Ph.D.) and Vasant Rao (his dissertation
chairman). Other papers by the same authors followed SR90, SR91,

Stochastic evolution algorithm is an instance of the class of general
iterative heuristics discussed in V5585 It is stochastic because the deci-
sion to accept a move is a probabilistic decision. Good moves, i.e., moves
which improve the cost function are accepted with probability one, and
bad moves may also get accepted with a non-zero probability. This fea-
ture gives Stochastic Evolution hill-climbing property. The word evolution
is used in reference to the alleged evolution processes of biological species.
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Like simulated annealing and simulated evolution, stochastic evolution is
conceptually simple and elegant. Actually stochastic evolution is somehow
inspired in part by both simulated annealing (Chapter 2) and simulated
evolution (Chapter 5).

As pointed out earlier, simulated evolution and stochastic evolution are
usually thought to be similar algorithms. Stochastic evolution is also seen
as a generalization of simulated evolution. The confusion is mainly due to
several historical facts. Simulated evolution was the fruit of the MS, then
Ph.D. work of Ralph Kling®i°® while stochastic evolution was the fruit of
the Ph.D. work of Youssef Saab5?®°°. Both were working concurrently at
the University of Illinois at Urbana-Champaign. Both were awarded their
degrees around the same time, Kling in July 1990 and Saab in August 1990.
Furthermore, to add to the confusion, both Kling and Saab refer to their
algorithms with the abbreviation SE. To remove some of the confusion,
throughout the remainder of this book, we shall refer to Kling’s simulated
evolution with the acronym SimE and to Saab’s Stochastic Evolution as
StocE. This short historical account should convince the reader that SimE
and StocE must be two different algorithms (after all, two Ph.D. degrees
can’t possibly be awarded for the same work!). Indeed, as we shall see, the
two algorithms have several fundamental differences. They diverge in the
way they mimic the biological processes of evolution, as well as the way
they adapt their parameters during the search. Later in this chapter, we
shall provide a thorough comparison of stochastic evolution (StocE) and
simulated evolution (SimE). We will also contrast StocE with simulated
annealing (SA).

6.3 STOCHASTIC EVOLUTION ALGORITHM

Stochastic Evolution (StocE) is a general search strategy for solving a va-
riety of combinatorial optimization problems.

Combinatorial optimization problems are problems that seek a global
minimum of some real valued cost function Cost : Q — R defined over a
discrete state space €2. The elements of the discrete set {2 are referred to as
states. A state space {2 together with an underlying neighborhood structure
(the way one state can be reached from another state) form the solution
space.

Combinatorial optimization problems can be modeled in a number of
ways. StocE adopts the following generic modelSR90:
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Given a finite set M of movable elements and a finite set L of locations, a
state is defined as a function S : M — L satisfying certain constraints.

Many of the combinatorial optimization problems can be formulated
according to this model. In 52399 the author illustrates the use of StocE
on eight NP-Hard problems: network bisection, vertex cover, set parti-
tion, Hamiltonian circuit, traveling salesman, linear ordering, standard cell
placement, and multi-way circuit partitioning. Below we recall some of
these formulations.

The Network Bisection Problem (NBP)

Problem: Given a hypergraph H = (V, E) where, V' is the set of vertices
and E the set of hyperedges. Each hyperedge e € F is a subset of V,
le,eCV.

Objective: Partition V into two sets V7 and V2 so as to minimize the
number of hyperedges cut and such that, |V1| = |Va| = n, ViNVe = 0,
and ViUV, = V.

Let V(e) be the vertices connected by hyperedge e. Hyperedge e is
cut if and only if 3 v € V(e) and 3 v € V(e) such that v € 1} and
v € V5. To formulate NBP in terms of the above state model, choose
M =V and L = {1,2}. Then, a state is defined as the onio function
S :V — {1,2}. In this case, there is one constraint which can be stated
as [STH(1)| = |STL(2)], i.e., a state is a partition of the vertex set into two
parts of equal cardinalities. Moreover, the cost of a state, Cost(S), is the
number of edges cut, 1.e.,

Cost(S) = |Eeutl
where F.yt, the set of hyperedges cut, is defined below,
Eew = {e€F: enS Y1) #£0 and enS™(2) £ 0}

An instance of the Network Bisection Problem is illustrated in Figure 6.1.

Hamiltonian Circuit Problem (HCP)

Problem: Given a graph G(V, E) on n vertices.

Objective: Find a Hamiltonian cycle on the n vertices of the graph.
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Figure 6.1 Network Bisection Example: V = {1,2,3,4,5,6}, E = {(1,2,4), (1,3),
(1,3,5), (2,4,6), (4,6), (5,6)}, S7H(1) = {1,3,5}, S71(2) = {2,4,6}, and Cost(S) = 2.

A Hamiltonian cycle 1s a simple cycle which includes all the n ver-
tices in V. A graph containing at least one Hamiltonian cycle is called a
Hamiltonian graph. A complete graph on n vertices contains n! Hamilto-
nian cycles. In general, checking whether a graph has a Hamiltonian cycle
or not is NP-Complete®/ 79

A subset E' C F of edges is a chain-set in G(V, E) if,

(1) each vertex in V' is at most in two edges of E’ and

(2) the subgraph induced by E’ in G contains no cycle of length <n — 1.

Clearly, if E' is a chain-set in G, then | B/ |< n, and | B/ |= n if
and only if £’ induces a Hamiltonian cycle on (. Therefore, a chain-set E’
induces either a collection of vertex-disjoint paths or a Hamiltonian cycle
in the graph®22%Y (see Figure 6.2).

HCP can be formulated as a partitioning problem as follows220 A

state is defined as the onto function S : E — {1, 2}, satisfying the condition
that the set of edges in S~!(1) form a chain-set of G. The cost of a state
S 1s computed as follows,

Cost(S) = n — |S7LH(1)]

Obviously, Cost(S) > 0, and Cost(S) = 0 if and only if the chain set
S~1(1) induces a Hamiltonian cycle in (. The objective is to find a state
with Cost equal to zero, if such as a state exists.
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Figure 6.2 Hamiltonian Circuit Example: (a) n = 4, V = {1,2,3,4}, and E =
{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) }. E is not a chain-set since it violates condition (1)
(e.g., vertex 1 is in three edges), and it contains a cycle of length3 <n—-1=4-1=3
(violation of condition (2)). (b) E' = {(1,2),(1,3),(1,4),(2,3),(3,4)} is not a chain-set;
it violates conditions (1) and (2). (c) E' = {(1,2),(1,4),(2,3),(3,4)} is a chain-set since
the graph induced by E’ has no cycle of length < 3 and each vertex is in at most 2
edges. Also, E' induces a Hamiltonian cycle since | E' |= 4.

The Traveling Salesman Problem (TSP)

Problem: Given a complete graph G = (V, E) with n vertices. Let d;;
be the length of the edge (¢,j) € F and d;; = d;;. A path starting at
some vertex s, visiting every other vertex exactly once, and returning
to vertex s is called a tour.

Objective: Find a tour of minimum length, where the length of a tour is
equal to the sum of lengths of its defining edges.

In the previous chapter, TSP was modeled as a permutation problem
and here we model it as a partitioning problem522°?. To formulate TSP as
a partitioning problem in terms of the above state model, choose M = E
that is, the movable elements are the edges, and choose L = {1,2}. Then a
state is defined as the onto function S : E — {1, 2}, satisfying the condition
that the set of edges in S=1(1) forms a Hamiltonian cycle in G. The cost
of astate S, Cost(S), is the sum of the lengths of the edges included in the
set ST1(1), i.e,

Cost(S) = S diy

(4,7)es—*(1)

An instance of the TSP problem with five cities is given in Figure 6.3.

6.3.1 StocE Algorithm

The Stochastic Evolution (StocE) algorithm seeks to find a suitable loca-
tion S(m) for each movable element m € M, which eventually leads to a
lower cost of the whole state .S € Q, where Q is the state space. A general
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Figure 6.3 Traveling Salesman example with five cities. Weights on edges represent
distances, e.g., d12 = 2,d1 3 = 3, di1 4 = 4, di 5 = 3, etc. The tour [1,2,3,4,5,1] has
length equal to d1 2 + d23 +da g +das +ds1 =24+ 445414 3 = 15. Hence for this
tour ST1(1) = {(1,2),(2,3),(3,4),(4,5),(5,1)} and Cost(S) = 15.

AlgorithmStocE(Sy, po, R);
Begin

BestS= S = Sp;

BestCost= CurCost= Cost(S);

P =Po;
p =0
Repeat

PrevCost= CurCost;
S = PERTURB(S,p); /* perform a search in the neighborhood of s */
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost); /* update p if needed */
If (CurCost< BestCost) Then
BestS=S;
BestCost= CurCost;
p = p — R; /* Reward the search with R more generations */
Else
p=p+1;
EndIf
Until p > R
Return (BestS);
End

Figure 6.4 The Stochastic Evolution algorithm.

outline of the StocE algorithm is given in Figure 6.4.

The inputs to the StocE algorithm are:

1. an initial state (solution) S,
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2. an initial value pg of the control parameter p, and
3. a stopping criterion parameter R.

Throughout the search, S holds the current state (solution), while
BestS holds the best state. If the algorithm generates a worse state, a
uniformly distributed random number in the range [—p, 0] is drawn. The
new uphill state is accepted if the magnitude of the loss is greater than the
random number, otherwise the current state is maintained. Therefore, p is
a function of the average magnitude of the uphill moves that the algorithm
will tolerate. The parameter R represents the expected number of iterations
the StocE algorithm needs until an improvement in the cost with respect to
the best solution seen so far takes place, that is, until CurC'ost<BestCost.
If R is too small, the algorithm will not have enough time to improve the
initial solution, and if R is too large, the algorithm may waste too much
time during the later generations. Experimental studies indicate that a
value of R between 10 and 20 gives good resultsS#290,

Finally, the variable p is a counter used to decide when to stop the
search. p is initialized to zero, and E—p is equal to the number of remaining
generations before the algorithm stops.

After initialization, the algorithm enters a Repeat loop Until the
counter p exceeds R. Inside the Repeat body, the cost of the current state
1s first calculated and stored in PrevCost. Then, the PERTURB function
(see Figure 6.5) is invoked to make a compound move from the current state
S. PERTURB scans the set of movable elements M according to some
apriori ordering and attempts to move every m € M to a new location
[ € L. For each trial move, a new state S’ is generated, which is a unique
function S : M — L such that S’'(m) # S(m) for some movable object
m € M. To evaluate the move, the gain function Gain(m) = Cost(S) —
Cost(S") is calculated. If the calculated gain is greater than some randomly
generated integer number in the range [—p, 0], the move is accepted and S’
replaces S as the current statef. Since the random number is < 0, moves
with positive gains are always accepted. After scanning all the movable
elements m € M, the MAKE_STATE routine makes sure that the final
state satisfies the state constraints. If the state constraints are not satisfied
then MAKE_STATE reverses the fewest number of latest moves until the
state constraints are satisfied. This procedure is required when perturbation
moves that violate the state constraints are accepted.

The new state generated by PERTURB is returned to the main
procedure as the current state, and its cost is assigned to the variable

t Here, we assume that we are dealing with a minimization problem
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FUNCTION PERTURB(S, p);
Begin
ForEach (m € M) Do /* according to some apriori ordering */
S' = MOVE(S, m);
Gain(m) = Cost(S) — Cost(S');
If (Gain(m) > RANDINT(—p,0)) Then

Ss=5
EndIf
EndFor;
S =MAKE_STATE(S); /* make sure S satisfies constraints */
Return (5)
End

Figure 6.5 The PERTURB function.

PROCEDURE UPDATE(p, PrevCost, CurCost);
Begin
If (PrevCost=CurCost) Then /* possibility of a local minimum */
p=p+ Piperi /¥ increment p to allow larger uphill moves */
Else
p = po; /* re-initialize p */
EndIf;
End

Figure 6.6 The UPDATE procedure.

CurCost. Then the routine UPDATE (Figure 6.6) is invoked to compare
the previous cost (PrevCost) to the current cost (CurCost). If PrevCost=
CurCost, there is a good chance that the algorithm has reached a local
minimum and therefore, p is increased by pjj.p to tolerate larger uphill
moves, thus giving the search the possibility of escaping from local minima.
Otherwise, p is reset to its initial value pg.

At the end of the loop, the cost of the current state S is compared with
the cost of the best state BestS. If S has a lower cost, then the algorithm
keeps S as the best solution (BestS) and decrements R by p, thereby
rewarding itself by increasing the number of iterations (allowing the search
to live R generations more). This allows a more detailed investigation of
the neighborhood of the newly found best solution. If S, however, has a
higher cost, p is incremented, which is an indication of no improvements.

6.3.2 StocE versus SA

Simulated Annealing and Stochastic Evolution are similar in several as-
pects:
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(1) like simulated annealing ¥/V83 the StocE algorithm is general in the
sense that it can be tailored to solve most known combinatorial opti-
mization problems;

(2) they both have the capability of escaping local minima; and

(3) they both are blind, i.e., they do not know the optimal solution and
have to be told when to stop.

However, SA and StocE have several fundamental differences:

(1) In SA, a perturbation of current state (solution) is a single move, while
for StocE it is a compound move;

(2) in StocE there is no hot or cold regime;

(3) for SA the acceptance probability of an uphill move keeps decreas-
ing with decreasing values of the temperature, whereas in StocE such
probability gets increased whenever the search is suspected to have
reached some local optimum, and reset to its initial value otherwise;
and

(4) the fourth fundamental difference is that StocE introduces the con-
cept of a reward whereby the search algorithm cleverly rewards itself
whenever it makes a good move.

We believe that StocE algorithms always run much faster than other
stochastic iterative algorithms such as simulated annealing. The reason is
that, for StocE, the parameter p, which controls how steep of a hill the
algorithm can climb, may be relatively large only when there is evidence
of the search getting stuck at a local minimum. Otherwise p is such that
only small uphill moves are allowed. Therefore, StocE does not have a hot
regime like simulated annealing where the algorithm will be performing
almost a random walk, thus wasting runtime resources. This observation
has been supported by experimental data SRl AM96,

6.3.3 StocE versus SimE

Because of its name, stochastic evolution (StocE) is often thought to be
similar to simulated evolution (SImE, see Chapter 5. However, by now, it
should be clear to the reader that StocE 1s fundamentally different from
SimE. Below, we enumerate some of their similarities and differences.

(1) Both StocE and SimE use a compound move to transit from current
state to next state. For SimE, the intermediate states are incomplete
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states where some of the selected elements have not yet been relocated.
For StocE, each intermediate state 1s a complete state, but which may
violate some of the environmental constraints that characterize feasible
solutions.

SimkE selects a number of individuals, removes them from their current
locations and finally assigns them one at a time to new locations. Each
of the selected individuals is assigned to a new location of highest good-
ness among all possible locations tried for that particular element. It
1s also possible to seek to allocate all the selected elements all at once
and to choose the allocation that leads to the highest cost improve-
ment. Such a strategy has been adopted in the branch-and-bound allo-
cation scheme of the simulated evolution standard cell placer (Section
5.7.1) Koo,

In contrast, StocE usually examines each element of the current

solution in a predetermined order, and attempts to alter the location
of the element. If the new location has a positive gain (improves the
goodness of the solution) then the alteration is accepted; alteration with
negative gains are also accepted with a probability that is a function
of the magnitude of the gain decrease and a user specified parameter.
After reaching a decision with the current element, the algorithm selects
the next element.
For both algorithms each compound move is counted as one iteration
(one generation). However, SImE stops the search after a user specified
maximum number of iterations or when no noticeable improvement is
observed over a number of successive generations.

In contrast, StocE uses the notion of reward and penalty whereby

a compound move is rewarded whenever the move takes us to a state
better than the current best, and 1s otherwise penalized. The reward
consists of increasing the number of generations (thus extending the life
of the search) by a user specified parameter R. The penalty consists of
decrementing the number of generations by 1.
SimE decides on each move on the basis of the fitness (goodness) of the
selected individual, which is a local information with respect to that
individual. An element m € M is moved to a new location if and only
if Random(0,1) > (1 — gp) where gy, is the goodness of element m, a
quantity in the interval [0, 1]. The new location is the one that leads
to the maximum cost improvement among a window of locations.

On the other hand, StocE attempts to move each element. It de-
cides on each move on the basis of the gain of that move. An ele-
ment m € M is moved to a new location if and only if Gain(S,S’) =
Cost(S) — Cost(S") > Random(—p,0) where S" = Move(S, m). Gain
is a global information about the new state and can have any real value.
Both SimE and StocE attempt to allocate the movable elements in a
predetermined order. Also, usually, for each movable element only a
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window of trial locations are tried.

We believe that the notion of reward and penalty is useful in cleverly
adjusting the number of required iterations to the nature of the search

space. This has been confirmed by experiments conducted by various re-
searchers Saa90, SRI1, AM96.

6.4 STOCE CONVERGENCE ASPECTS

Saab stated in the conclusion of his Ph.D. dissertation that the stochastic
evolution algorithm may never convergeS22°?. He attributes that to the way
the parameter p is updated.

In this section, we shall show that the behavior of the stochastic evolu-
tion algorithm can be modeled by a non-homogeneous Markov chain. The
non-homogeneity is due to the fact that the transition probabilities between
neighboring states depend on the parameter p, which gets updated during
the course of the search. Were the parameter p fixed, the algorithm would
be guaranteed to converge to a global optimum state since the behavior
of the algorithm could in that case be modeled by a homogeneous ergodic
Markov chain (see Section 1.8).

Similar to simulated evolution, the stochastic evolution algorithm con-
sists of two phases, an initialization phase where all the parameters and
data structures of the algorithm are set, and a randomized iterative search
phase. The iterative phase consists of two main steps, a perturbation step,
also called generalization, and a make-state step, referred to as specia-
lization MH96 The generalization step relocates some of the movable el-
ements, thus generating an intermediate state that may violate some of
the problem constraints. The specialization step performs some changes
to force a transition from the intermediate state to a new feasible state
satisfying all the problem constraints.

In order to keep the analysis simple, we shall assume that each move
changes the current state to another valid state. Furthermore, we will as-
sume that the cost of a state is an integer.

Let X, be the random variable representing the cost of the state
reached after n iterations. The sequence of random variables Xy, Xq,.. .,
X,, ... forms a discrete time Markov chain. That 1s,

P[Xn:j|X0:$0,X1:$1, aXn—lzi] = P[Xn:] |Xn—1:Z]
(6.1)

Here zg denotes the cost of the initial solution. Let p}’; be the transition
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probability from current state of cost ¢ to a next state of cost j at the nt®
generation, that is,

We can easily show that

0 ifj—1¢>pna
Py = ap () o s (6.2)
pgn_m(i’j) x (1— Z%) otherwise

where p,_; is the value of the parameter p after n — 1 iterations and
pgn_l)(i,j) is the probability of selecting state j € R(*~1)(7) when at state
i at m — 1°¢ iteration. R(*=1(4) is the set of neighbor states of i at the
nt? iteration. Recall that the parameter p is initialized to pg and may get
updated at the end of each iteration. Equation 6.2 assumes that we are

seeking a state of minimum cost.

Let P[X, = j | Xm =] = pij(m,n) be the (n — m)-step transition
probability, for all m < n. It can be shown that,

pij(m,n) = > pik(m,q) x pj(g,n) m<g<n (6.3)
k

The above multi-step transition probabilities are known as the
Chapman-Kolmogorov equations®¢”®. Let P(n) = [ p; j(n,n+ 1) ] be the
one-step transition probability matrix after n iterations. P(n) = P if the
chain is homogeneous. Let H(m, n) = [ p; ;(m, n) | be the multi-step transi-
tion probability matrix. Note that H(n,n+ 1) = P(n). In matrix notation,
the Chapman-Kolmogorov equations can be rewritten as follows,

H(m,n) = H(m,q)H(q,n) Y q € [m,n] (6.4)

By recurrence, it can be shown thatKleW’,

H(m,n) = P(m)Pim+1)...Pln—1) Ym<n-1 (6.5)

Let II") be the state transient probabilities after n iterations.

o+ = ™ pm) = TOH©0,n+ 1) (6.6)

Hence, the steady state probabilities II, if they exist, are given by the
following equation,
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M= lim TVH0,n+1) (6.7)

n—od

Therefore, because of the dependence of the state transitions on the time
varying parameter p, the stochastic evolution algorithm is not always guar-
anteed to hit the optimal state.

The existence of the steady state solution is strongly dependent on the
initial value of the parameter p and on the parameter R. For example, if
po > Costpax — Costnin where Costax 18 the cost of the state with the
largest cost and C'ostmiy is the cost of the global minimum, then starting
in any initial state Sy with cost Costy, the probability of moving to the
global optimum in just one transition is equal to the following:

Costqg — Costmin

pCostD,Costm;n(laQ) = pgl)(COSthCOStmin) X (1
Po

)

The above probability is strictly positive provided that pgl) (Costy, Costmin)
is positive. But since at each generation all the elements are processed,
the probability of reaching (selecting) any state of the state space from
the current state is positive provided the perturbation function (the move
operation) is probabilistic (nongreedy).

If both p and R are small, the algorithm may never converge. The
reason is that for small p some of the transitions become impossible (have
a zero probability), thus pruning portions of the search space. Furthermore,
if R is too small, the algorithm will not have enough time to move to an
optimal state. The value of py, R, and the cost of the various states are
strongly related. The identification of the condition(s) that will guarantee
the existence of the stationary probabilities remains an open problem.

6.5 STOCE APPLICATIONS

As mentioned earlier, the StocE algorithm can be used to solve a wide
range of combinatorial optimization problems. Like previously described
algorithms, 1t has to be adapted to the type of problem under investigation.
Specifically, (1) the solution space has to be defined, (2) a suitable state
representation be adopted, (3) the notion of cost and perturbation have to
be appropriately identified, (4) an initial value of the control parameter p
and a method to update it must be chosen, and finally (5) a value for the
stopping criterion be selected.

In this section, we first briefly describe how StocE can be used to solve
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four widely cited hard combinatorial optimization problems namely, Net-
work Bisection, Vertex Cover, Hamiltonian Circuit, and Traveling Salesman
Problems. These as well as other examples are provided in 52#°°. We then
use StocE to solve FPGA technology mapping problem, a hard combina-
torial optimization problem encountered in FPGA-design methodologies.

6.5.1 Network Bisection

The state model as well as the cost function for the network bisection
problem were given on page 303. A mowve consists of transferring a vertex
v from its current part to the complementary part. Let S* = MOV E(S, v)
be an onto function that associates a new state S’ for each move of a vertex

v at current state S, such that S’(v) = 3 — S(v) and S(u) = S’ (u) for all
u £ v.

The vertices are numbered 1, ,2, ..., |V|. The function PERTURB
scans all the vertices in ascending order. Since each move consists of trans-
ferring some vertex v from S(v) to 3 — S(v), the state that is returned by
the PERTU RB function may correspond to an unbalanced partition, i.e.,
|S=H(1)| # |S71(2)|. Therefore, a MAKE_STATE function is required to
reverse the fewest last moves that will make the partition balanced. The
initial value of the parameter p 1s equal to py = 2, the UPDATE of p con-
sists of incrementing it by one, and the algorithm starts from a randomly
generated bisection.

On all test problems, stochastic evolution produced better results than
simulated annealing and in a much shorter time%*2°0, The StocE runtime
was at times order of magnitude less than SA runtime, while the cost is

30% less.

6.5.2 Vertex Cover Problem

A wverter cover of a graph G(V, E) is a subset V; C V such that, for each
edge (i,7) € E, at least one of ¢ or j € V. (see Figure 6.7). For the Vertex
Cover Problem, we seek to find a vertex cover of minimum cardinality.

A matching of a graph G(V, E) is a subset of edges F,, C E such
that no two edges in FE,, share a common vertex. For example, F,, =

{(1,2), (5,3)} is a matching of the graph in Figure 6.7.

B, is maximal if G has no matching E,," such that |E,,’| > |Epn|. For
the example in Figure 6.7 Fy,,, = {(1,2),(5,3)} is not a maximal whereas
Em = {(1,2),(5,3),(6,4)} is maximal. If (¢,j) € Fy, then i is said to be
matched with j. Observe that no vertex can be matched with two or more
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Figure 6.7 Vertex Cover example: V. = {1,3,4,6} is a vertex cover of size 4 and
V. ={1,2,4,5} is another vertex cover of size 4.

FUNCTION Construct_Initial_Sate(G);

Begin
For (i =2) To n Do Sy(:) = 2 EndFor;
So(l) = 1;
For (i =2) To n Do
Begin
ForEach j € Adj(:) Do
Begin
If So(j) = 2 Then
SO (2) = 1;
Exit /* from the ForEach loop */
EndIf
EndFor
EndFor
Return (Sp)
End

Figure 6.8 Construction of initial vertex cover.

vertices. For any given graph, the size of a maximal matching 1s a lower
bound on the size of any vertex cover in the graph.

To solve VCP by StocE the following state model is used®#®%%: M = V|
L ={1,2}, and as a state the onto function S: V — L such that S(i) =1
if vertex ¢ is in the vertex cover, otherwise S(i) = 2. V(i,j) € E, S(i) = 1
or S(j) = 1, that is, either or both of ¢ and j are in the vertex cover.

Let V ={1,2,...,4,...,n} and Adj(i) = {j € V : (i,4) € E} be the
vertices adjacent to vertex ¢, 1 <7 < n. The initial state Sy is generated

by the constructive function given in_Figure 6.8.

For example, for the VCP instance of Figure 6.7 the following initial
vertex cover will be generated: V., = 1,3,6. Vertex 2 will not be included
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in the initial vertex cover because vertex 1 € Adj(2) and Sy(1) = 1. For
similar reasons vertices 4 and 5 are not included in the initial vertex cover.

The PERTURB function scans the vertices in increasing order, 1.e.,
, 2, ..., n. The move strategy is as specified in 6.9.

1

FUNCTION MOVE(S,q);
/* S is current state and 7 vertex to move */
Begin
If S(i) = 1 Then §' = MOVE_OUT(S,q)
Else ' = MOVE_IN(S,i)
EndIf
Return (S')
End

Figure 6.9 Move strategy used in the PERTURB function of the vertex cover problem.

The functions MOVE_IN and MOVE_OUT proceed as follows. Let
S be the current state and ¢ be a vertex not in the vertex cover, i.e.,
i € S71(1) and S() = 2. Then a move to the next state S’ can be made by
putting ¢ in the vertex cover and making the necessary adjustments to the
vertices adjacent to i. Such steps are carried out by the following function.

FUNCTION MOVE_IN(S, i);

Begin
For j=1To n Do S'(j)=S(j) EndFor;
S'(i) =1
ForEach j € Adj(i{) Do

If S'(k) = 1Yk € Adj(j) Then S'(j) = 2 EndIf
EndForEach
Return (57)
End

Otherwise, if i is in the vertex cover, i.e., i € S7!(1) and S(i) = 1,
then the following move strategy is adopted.

FUNCTION MOVE_OUT(S,i);
/* S is current state and ¢ vertex to move */
Begin
For j=1To n Do S'(j)=S(j) EndFor;
S'(i) = 2;
ForEach j € Adj(i{) Do
If $'(j) = 2 Then ' = MOVE_IN(S', j) EndIf
EndForEach
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Return (57)
End

MAKE_STATE is not required since all intermediate states are legal.
The parameter pg is initialized to 2 and pjjp=1.

On several random graphs varying in size from 100 vertices and 148
edges to 5000 vertices and 11508 edges, StocE produced smaller vertex
covers than those obtained with SA in a fraction of the time required by
simulated annealing (2% to 10% the runtime of SA)5232%0,

6.5.3 Hamiltonian Circuit Problem

Given a graph G(V, E) on n vertices, the objective is to identify a Hamil-
tonian cycle if one exists. The following Stochastic Evolution based HCP
solution is due to Youssef Saab%22%" where the partitioning state model is
adopted

Recall from page 303, a state is defined as the onto function S : E —
{1, 2}, satisfying the condition that the set of edges in S~!(1) form a chain-
set of (i. The cost of a state S is Cost(S) = n — | S7H(1) |. Cost(S) =0
if and only if the chain set S™!(1) induces a Hamiltonian cycle in . The
objective 1s to find a state with C'ost equal to zero, if such as a state exists.

The initial state Sy is chosen such that 50_1(1) = (). Therefore, Sy(e) =
2,Ve € E.

Moves are only associated with edges of F that have at least one of
their vertices as an end point of a path in the chain-set S71(1). A linked
list of all such edges is identified before each call to PERTURB. A vertex
not belonging to any of the paths in S~1(1) is considered to be an end of
an “empty path’. PERTURB scans the edges of L in their given order.
The objective is to extend the chain-set S=!(1), which is initially empty,
to a Hamiltonian cycle in the graph.

Let S be the current state and let (¢, j) denote the current
edge being scanned
If Cost(S) = 0 Then stop /* S71(1) induces a HC in G */
If Cost(S) > 0 Then the chain-set in S71(1) is a
collection of disjoint paths

S = MOVE(S, (4,7)))
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The move function behaves as follows:

Case 1: S((i,7)) = 2 ((¢,4) is not in the chain-set), and the vertices ¢

and j are at the ends of two different paths (one path or both paths
could be the “empty path”) in the chain-set S=1(1). In that case, accept
the move, i.e., S'((7,7)) = 1 and S'((k,1)) = S((k, 1)) V (,5) # (k,1),
(k1) e E.

Therefore, the chain-set is increased by one more edge which is (4, j),
that is, the move has a gain of “417.

example 49 Refering to Figure 6.10(b), edge (2, 3) of G belongs
to two disjoint paths of the chain-set. Therefore S((2,3)) = 2.
Figure 6.10(c) is the chain-set after the addition of edge (2,3) to
the chain-set of Figure 6.10(b).

Case 2: S((i,7)) = 2 and ¢ and j are the ends of the same path 7 of the

chain-set S=1(1).

If length (7) = n — 1 Then perform the move

since that would create a Hamiltonian cycle
Else don’t perform the move as that would violate
chain-set conditions.

example 50 (3,5) would be rejected if current chain-set is the
one given in Figure 6.10(b). However if current chain-set is the
one given in Figure 6.10(d) then (4,5) belongs to the path © =
[4,1,2,3,6,5], where length(nm) =5 = 6 — 1 (n = 6). Hence the
addition of (4,5) would create a Hamiltonian circuit. Therefore
stop the search.

Case 3: S((i,7)) = 2 and ¢ is at the end of one (“possibly empty”) path

and j is in the middle of another path in S=1(1) or vice versa. Assume
that j is the vertex in the middle of another path.

example 51 For the edge (4, 6) in the chain-set of Figure 6.10(b),
6 is in the middle of the path [3,6,5] and 4 is the end of an empty
path.

Let (k,j) and (j,1) be two edges in S=1(1) (for the example of
Figure 6.10(b) & = 3, and [ = 5).

In order to add the edge (4, 6) without violating Condition (1) (see
Page 304) of chain-set, one has to remove either the edge (k,j) or
(7,1) from the current chain-set (Probability 1/2 for each choice).
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For the example of Figure 6.10(b) edge (3,6) or (6,5) must be re-
moved and then edge (4,6) added to the chain-set. After such a
move, the resulting chain-set will have the same number of edges,
i.e., the move has zero gain (see Figure 6.10(b) and Figure 6.10(e)).

Case 4: S((i,j)) = 2 and i is the end of a path in S71(1) and j is in the
middle of the same path, or vice versa.

Assume that ¢ is in the end of a path and j is in the middle of the
same path.

example 52 In Figure 6.10(d), ¢ = 5 and j = 3, © =
[4,1,2,3,6,5], n = 6, and length(r) =5.

If length () = n— 2 (i.e., Cost(s) > 1) Then reject the move
For example, (5,3) in Figure 6.10(c). = =[1,2,3,6,5],
length(r) =4<6-2=14

Else Let k be a vertex in-between ¢ and j and is
adjacent to j on m € S71(1)
Then remove (k, j) from S~!(1) and
add (k, j) to S71(1); gain = 0.
For example, Figures 6.10(d) and (f): ¢ =5 and, j = 3, k = 6,
remove (3,6) and add (3,5).

Case 5: S((ij)) = 2 and both ¢ and j are in the middle of the same path
or different paths in S1(1). Then Reject the move.

Case 6: S(e) = 1. Then Reject the move.

Whenever no move is made, the PERTURB function proceeds di-
rectly to scan the next edge in the list L. Since all states are legal, there is
no need for function MAKE_STATE. The initial parameter pg = 0 and
Piner=1. Notice that p will fluctuate between 0 and 1. Therefore, moves
of negative gains (i.e., strict uphill moves) are never performed by StocE
in this HCP solution. However, the algorithm still has the capability of
escaping local minima because of the acceptance of zero gain-moves.

On experiments with random graphs of sizes varying between n = 100
vertices and 10,000 vertices (|E|=389 to 26,432)) StocE was able to find a
Hamiltonian circuit (runtime varying between 100 sec and 50 hours) where
SA failed to locate a tour for all test cases.
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Figure 6.10 Examples of moves for the HCP problem. (a) Graph G(V, E) where V =
{1,2,3,4,5,6} and E = {(1,2),(1,4),(1,6),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)}. (b) A
chain-set. (c) Case 1: chain-set of (b) after the call to function Move((2,3)). (d) Case 2:
edge (4,5) extends the chain-set to become a Hamiltonian cycle. (e¢) Case 3: chain-set of
(b) after removal of (3,6) and addition of (4,6). (f) Case 4: chain-set of (d) after removal
of (3,6) and addition of (3,5).

6.5.4 Traveling Salesman Problem

Given a complete graph G(V, E') and following the partitioning state model
of the TSP problem (refer to the TSP formulation given in Section 6.3, Page
305), M = E and L = {1,2}. A state is defined as the onto function S :
E — {1,2}, satisfying the condition that the set of edges in S™1(1) forms
a Hamiltonian cycle in G. The cost of a state S is the sum of the lengths
of the edges included in the set S~1(1), i.e, Cost(S) = Z(iyj)es—l(l) di ;
(see Figure 6.3).

The initial state (initial tour) Sy is constructed using the nearest-
netghbor heuristic. For example, for the TSP instance in Figure 6.3,

So =[4,5,1,2,3,4] and Costy = Cost(Sy) = 15.

The parameters py and pj;,., are initialized as follows,

po = min d;;
v(ijer
Piner = _max di;

v(i,j)EE
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(a) (b)

Figure 6.11 Perturbation on the TSP example given in Figure 6.3. (a)
S~y = {(1,2),(2,3),(3,4),(4,5),(5,1)} and Cost(S) = 15. (b) S’_l(l) =
{(1,3),(3,2),(2,4),(4,5),(5,1)} and Cost(S’) = 14; (1,3) ¢ S™1(1); suce(l) =41 = 2,
succ(3) = j1 =4, and (1,2) and (3,4) are removed.

Let S be the current state and (¢,7) € E not in the current tour, i.e.,
S((i,4)) = 2. Let ¢; = suce(i) and j; = succ(j) in the current tour of
S71(1) (see Figure 6.11). The new state S’ = MOV E(S, (i,7)) is formed

so as to satisfy the following conditions (see Figure 6.11):
S'((4,4)) = 1= 5"((i1,41))
S'((i,41)) =2 = S((j, jr))
V (k1) S'((k,1) = S((k,1))

For each vertex ¢ € V', a list Adj; 1s constructed containing all other
vertices in V in increasing order of their distance from ¢. That is, Adj;[k] is
the k' closest vertex to i, i # Adj;[k], 1 <k < n — 1. For example, for the
TSP instance of Figure 6.3, Adj; = [2,3,5,4] and Adjs = [1,4,3,5]. For
large graphs, to save on storage requirements and processing time, only the
first /n entries are stored in Adj;, Vi € V.

The PERTURB operator scans the edges as follows. Vertices are num-
bered 1 to n. Then starting at i = 1, PERTURDB attempts to make the
first legal move involving (i,7), 7 = 1,2,...,/n, 1 # j. The edges (i, j) are
examined in the order in which they appear in the list Adj;. Once a move
of (i,7) has been attempted or the list Adj; is exhausted, whichever occurs
first, PERTURB attempts a move with (i + 1, j) where j € Adj;11 and
S((i +1,7)) = 2. Once i = n, PERTURB returns the final state reached
(see Figure 6.12).

The MAKE_STATE procedure is not required since all intermediate
states are legal.



322

FUNCTION PERTURB(S);
Begin
For (i =1) To n Do
Begin
done = FALSE; k = 1;
While (k < \/n AND NOT(done) Do

Begin
J=Adji(k)i k=k+1;
If (i,7) € S71(2) Then
S' =MOVE(S, (i, 7));
Gain = Cost(S) — Cost(S);
If Gain > RANDOM(p,0) Then
S = 8'; /* accept move */
done = TRUE [* exit the While loop*/
EndIf
EndIf
EndWhile
EndFor;

Return (S) /* done with the compound move; return the new state */

End

Figure 6.12 Perturbation function for the TSP problem.

The above implementations was run on several randomly generated
TSP instances and compared with results obtained with an efficient sim-
ulated annealing implementation P38, On all instances StocE produced
shorter tours in half the CPU time or less52390,

6.5.5 StocE based Technology Mapping of FPGAs

Technology mapping i1s an important design problem of a typical CAD
system of Field Programmable Gate Arrays (FPGAs) BFRV92 Among the
widely used FPGA devices are island-based FPGA’s which are devices con-
sisting of universal programmable logic modules arranged according to a
two-dimensional array topology (see Figure 6.13).

A universal programmable module (UPM) is a logic cell that can
be user programmed to implement any Boolean function of its inputs.
Typically, a K-input look-up table is used for each UPM. A K-input
Look-Up Table (K-LUT) is a universal logic block that can implement
any Boolean function of its K inputs. Technology mapping for K-LUT-
FPGAs consists of mapping a general combinational Boolean network
into a functionally equivalent network of K-LUTs. The objective of
such mapping can be a minimized number of LUTs (area minimization)
FRC90, FRV91la, KP93, FS94, MNS491, Kar91’ a minimized LUT depth (delay
minimization) FRV91E, CCD+92, CD%4a 5 combined area-delay minimization
CD9b o1 easing routability SXC%4. For K > 5, this problem has been shown
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Figure 6.13 Architecture of an island based FPGA.

to be NP-complete ¥594. Figure 6.14 shows an example of a Boolean net-
work and a possible mapping with LUTs of 3 inputs (3-LUTs).

In this section, we illustrate how StocE can be used to solve the problem
of technology mapping a Boolean network onto a K-LUT FPGA. This
section is based on the work reported in 4M°6

Terminology and Background

A combinational logic circuit can be represented as a directed acyclic graph
(DAG) G(V, E) where each node v € V represents a Boolean function and
each directed edge (u,v) € E represents a connection between the output
of u and the input of v. Such a DAG representation is referred to as a
Boolean Network. A Primary input (PI) is a node with no incoming edges,
while a Primary output (PO) is a node with no outgoing edges.

For node v € V, input(v) is the set of nodes that supply inputs to v.
In general, given a subset Vi of V', input(V1) is the set of nodes in V — ¥}
that supply inputs to nodes in V;. A node u is a predecessor of node v if
there is a directed path from u to v in the Boolean network.
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Figure 6.14 (a) A Boolean Network example; (b) A covering of the Boolean Network
of (a) implemented with four 3-input look-up tables.

Referring to Figure 6.14, nodes a to d are PIs and nodes ¢ and j are
POs. input(j) = {b,c,d} and input({g,h}) = {a,b,¢,d,e}. Nodes a, b, ¢,
d, f, g and h are predecessor nodes of node 7, while only nodes a and b are
predecessors of nodes g.

Definition 15 A K-feasible cone at a node v, denoted by C, is de-
fined as a subgraph consisting of v and a number of its predecessor
nodes such that any path connecting v to any other node in C lies
entirely in Cy, and | input(Cy) |< K (see Figure 6.14).

Definition 16 The depth of a node v is defined as the maximum
number of LUTs (K-feasible cones) along any path from any primary
input to v. The depth of a primary input is taken as zero and the
depth of a Boolean network 1s the largest node depth in the Boolean
network.

For the example of Figure 6.14, depth(g) = 1, depth(h) = 2 and
depth(i) = depth(j) = 3. The depth of the Boolean network of Figure
6.14 1s equal to 3, assuming K = 3. Since each K-LUT 1s a programmable
block with K inputs and one output, a K-LUT can implement (or cover)
any K-feasible cone in a Boolean network.

A node v with one out-going edge is termed a fanout-free (FF) node.
A node v with n > 1 out-going edges is termed a fanout node. Such node
can be replaced by n FF nodes without affecting the Boolean network
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Figure 6.15 The effect of replicating a fanout node.

functionality. This is accomplished by replicating the fanout node n times
as illustrated in Figure 6.15. In Figure 6.15(a), node a with 2 outgoing
edges (n = 2) can be replaced (Figure 6.15(b)) by two fanout-free nodes
(a1 and ag) by replicating the original node functionality and connectivity
twice. The replicated nodes (a1 and as) are fanout free (Figure 6.15(b)). Tt
should be noted that if a fanout node is replicated n times, the out-degree
of its immediate predecessor nodes will increase by n — 1. If any of its
immediate nodes is FF, 1t will turn into a fanout node.

Definition 17 A potential fanout node is a fanout-free node which
feeds a fanout node.

In Figure 6.15, node a is a fanout node while nodes b and ¢ are potential
fanout nodes. As shown in Figure 6.15(b), once node a is replicated into
nodes a; and as, nodes b and ¢ become fanout nodes themselves.

State Space Model

In a general Boolean network, nodes are either fanout nodes or fanout-
free nodes. In the special case where all nodes of the Boolean network are
fanout-free, 1.e., the Boolean network 1s actually a tree, optimal technology
mapping of such a network in linear time has been shown to be possible
FS94 However, mapping general networks is NP-Hard. To map a general
Boolean network, two approaches are possible. In the first approach, the
Boolean network is decomposed into a forest of fanout-free trees by parti-
tioning the network at every fanout node. In essence, breaking the Boolean
network at a fanout node implies that this node is going to be the out-
put of a lookup table in the final mapping. The resulting trees are then
individually mapped and the final solution is obtained by re-assembling
the individually mapped trees. In the second approach, the Boolean net-
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work is converted into a forest of fanout-free trees by replicating fanout
nodes and the cones feeding them. This process is repeated until all nodes
become fanout-free. In essence, a replicated node implies that the logic
represented by this node will be implemented more than once in different
LUTs. Again, the resulting trees are individually mapped and the final
solution is obtained by re-assembling the individually mapped trees. Fig-
ure 6.16 illustrates the two approaches. In this figure, the original Boolean
network (Figure 6.16(a)) consists of one fanout node ‘a’ and three cones
C1, U5, and C5. To map the Boolean network using the first approach,
the Boolean network 1s partitioned by clipping the multiple fanout edges
out-going from ‘a’ as shown by the dotted curved line in Figure 6.16(b). As
a result, the Boolean network is transformed into a forest of three trees as
shown by the dotted rectangles in Figure 6.16(b). To map the Boolean net-
work using the second approach, the fanout node a and the cone that feeds
it (C4) are replicated as shown in Figure 6.16(c). As a result, the Boolean
network becomes a forest of two trees as shown by the dotted rectangles
in Figure 6.16(c). Following any of the above approaches results in a forest
of trees where each tree is optimally mapped, and the overall solution is
obtained by re-assembling the individually mapped trees.

The above two approaches represent two extremes which are unlikely
to yield good solutions. The search capability of an iterative algorithm such
as stochastic evolution can be effectively utilized to obtain better solutions
where only some fanout nodes and part of the cones feeding them are
replicated. Thus, the replicated part of the Boolean network may include
some, all, or none of the fanout nodes and their fanin cones. The mapping
algorithm will partition the resulting Boolean network at all non-replicated
fanout nodes. The resulting network is thus a forest of trees where each tree
is mapped individually and the final solution is obtained by re-assembling
the mapped trees. With the proper choice of the cost function and the state
model (solution space), the search capability of the iterative algorithm can
be utilized to select the set of nodes in the Boolean network which should
be replicated and the set of nodes which should be assigned to the outputs
of LUTs in order to optimize some target criteria.

Movable Objects and Locations: In mapping a Boolean network, the
strategy adopted is to assign LUTs to some of the fanout nodes and to
replicate some others. A replicated fanout node implies that its immedi-
ate fanout-free predecessor nodes (potential fanout nodes) would turn into
fanout nodes themselves and would thus be either replicated or assigned
to the outputs of some LUTs. Therefore, the set of movable element M is
chosen to be the set of fanout (F) and potential fanout (PF) nodes, i.e.,
M = F U PF, where F is the set of fanout nodes and PF is the set of
potential fanout nodes.
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Figure 6.16 Alternatives for mapping networks with fanout nodes.

In the final mapping, a node m € M will either be a fanout-free node,
a fanout node which is not replicated, or a fanout node which is replicated.
Accordingly, the set of possible locations is L = {1,2,3} with the following
interpretation:

(1) Fanout-Free (FF),
(2) Replicated-Fanout (RF), and
(3) Not-Replicated-Fanout (NRF).

Fanout nodes can arbitrarily move between locations NRF and RF. A
potential fanout node (PF) is initially assigned to location FF. If, however,
its immediate successor node is replicated, 1.e., moved from location NRF to
location RF, the PF node is moved to location NRF. From there, a potential
fanout node can move back and forth between locations NRF and RF. If,
at any time, its immediate successor is un-replicated, i.e., moved back from
location RF to location NRF, the PF node is then moved back to location
FF.
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Figure 6.17 Example to illustrate the state model. PI={a,b,c,d}, PO={i,j}, F={f,h},
and PF={e}. The only fanout nodes are f and i and the only potential fanout node is
e; therefore £ = {e, f,h}.

The above state model allows the StocE algorithm to investigate full,
partial, or no replication of the nodes in cones that feed any fanout node
in the network. The following example illustrates these concepts.

example 53 Consider the network shown in Figure 6.17. The net-
work has four primary inputs PI = {a,b,¢,d}, two primary outputs
PO = {i,j}, two fanout nodes F' = {f, h}, and one potential fanout
node PF = {e}. Note that the primary inputs are not classified as
fanout nodes, e.g., nodes b and ¢, or as potential fanout nodes, e.g.,
node d.

According to our state model, the set of movable elements £ is chosen
to be the set of fanout and potential fanout nodes. Therefore, £ =
{e, f, h}. Initially, f and h are in location NRF, and e is in location
FF. As the algorithm proceeds in searching the solution space, those
movable objects change their locations. Since f and h are fanout nodes,
they can only move between locations NRF and RF. However, node e
is a potential fanout node and will thus be in location FF unless h
moves to location RF| in which case it will be automatically moved to
location NRF from which it may move to location RF. If A moves back
to location NRF, e automatically moves to location FF. Figure 6.18
shows some possible moves and valid states in the solution space and
the locations of the movable objects in each case.

Ordering of the Movable Elements: The PERTURB function of the
StocE algorithm SR scans the set of movable elements M according to
some apriori ordering and moves every m € M to a new location | € L.
For this problem two orderings of movable elements are tried: (1) Random
ordering, where every movable element is randomly picked and perturbed.
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Figure 6.18 Example 53 continued. (a) S(e)=FF, S(f,h)=NRF. (b) S(e,f)=NRF,
S(h)=RF. (c) S(f)=NRF.

Each element is picked only once. This 1s a slight departure from the orig-
inal StocE algorithm, where a deterministic order is followed; (2) Depth
First Search (DFS) ordering, where nodes closer to primary outputs are
perturbed first.

To illustrate, consider the previous example (Figure 6.17). The set
of movable elements E is {e, f,h}. For the random ordering, the or-
der of objects can be any one of the possible six combinations, 1.e.,
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ALGORITHM COST(G(V,E), w1, ws);
Perform a topological sort on G(V, E);
ForEach v € V Do
compute dy, 2y, and Dy;
If d, > K Then
(1) sort ¢pred(v) in descending order of their weights,
where Weight(p) = w1 X zp — w2 X Dy X é—‘; Vp € ipred(v)
(i1) keep assigning LUTs to each p € ipred(v) till d, < K;
EndIf
If v is a primary output or at location NRF Then
assign a LUT to v;
set zy = 1;
update D,;
EndIf
EndForEach
Return (w; x Mapping’s no of LUTs + w2 X Mapping’s Depth)
End /* of COST */;

Figure 6.19 The cost algorithm.

{ehf hef,hfe, feh,efh, fhe}. For the DFS ordering, the order of the ob-
jects can be one of two possible combinations, i.e., {hef hfe}. Both of the
above orderings produced similar results*M?5.

The Cost Function

The cost of a state is a weighted sum of the estimated area and delay of
the resulting mapping. The total number of K-LUTs in the final mapping
i1s used as an estimate of the required implementation area. Likewise, the
depth of the final mapping is used as a measure for the resulting circuit
delay.

To estimate the area and depth of a particular state, the corresponding
Boolean network is mapped using a variation of the Level-Map algorithm
reported in ¥5°%. Level-Map constructively maps in linear time an input
Boolean network into a functionally equivalent network whose nodes repre-
sent K-LUTs. The optimization target of the mapping is controlled by two
user-defined weight factors wy and wy which determine the desired relative
weights assigned to area optimization and delay optimization respectively.
These optimization weight factors are chosen such that w; + w; = 1. For
example, if w; = 1 and ws = 0, the algorithm maps targeting area opti-
mization only.

Level-Map accepts a DAG representing the input Boolean network and
the parameter K which is the number of inputs to a LUT. It performs a
topological sort of all nodes starting from the primary inputs. Let ipred(v)
be the set of immediate predecessors of node v. The algorithm computes
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for each node v, its dependency d,, its contribution z,, and its depth D,
as follows (see algorithmic description given in Figure 6.19):

o Contribution z,:
a) z, = 1 if v is a primary input or v is assigned a LUT,
b) zy =) 2z, Vp € ipred(v), otherwise.
e Dependency d,:
a) d, = 1 if v is a primary input,
b) dy =3 2z, Vp € ipred(v), otherwise.
e Depth D,:
a) Dy = 0if v is a primary input,
b) D, = max(D,) Vp € ipred(v), if v is not assigned a LUT,
c) D, =max(D,) + 1 VYp € ipred(v), if v is assigned a LUT.

If the dependency d, of any node v is found to be greater than K, its
immediate predecessor nodes (ipred(v)) are sorted in a descending order
according to the following weight function,

K

Weight(p) = w1 X zp — wa X D, x o

LUTs are assigned to the predecessor nodes of v with larger weights till
d, < K. Once anode is assigned to be the output of a LUT, its z value is set
to 1, and the d and D values of its successor nodes are accordingly updated.
The choice of the Weight function 1s justified by the following argument.
If the mapping objective is area minimization, i.e., w1 = 1 and ws = 0,
then one should assign LUTSs to nodes with larger contributions (z values)
as this tends to reduce the number of LUTs. If the objective, however, is
delay minimization, i.e., w; = 0 and ws = 1, then one should assign LUTs
to nodes with smaller depths (D values) as this tends to reduce the overall
depth of the mapped network. The scale factor DLU is used to limit the
coefficient of ws to a maximum value of K which 1s also the maximum

value of the contribution term z,.

The cost function algorithm assigns a LUT to every primary output
node and every node at location NRF. The z values of these nodes are
set to 1 and their D values are updated. Upon completion, the returned
cost value is a weighted sum of the number of LUTs and the depth of the
resulting mapping. This value is used by the StocE algorithm to determine
the cost gain of a new state. The control parameters w; and s, used in the
weighted sum (Figure 6.19) are scaled versions of w; and wy. The reason
is that the number of LUTs and depth of the resulting mapping are not
necessarily comparable in value. Therefore, there 1s a need to scale the
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control parameters wy and wy to reflect the target relative weights for area
versus delay optimization®M°6.

example 54 This example illustrates how the cost function is evalu-
ated when the Boolean network shown in Figure 6.20(a) is mapped into
a K-LUT network for K = 3. Let the mapping target area optimization
only, i.e., w1 =1, and ws = 0.

@
(b)

Figure 6.20 Example of a Boolean network. K = 3, w; = 1, wy = 0. (b) Topological
order of the node of the Boolean network in (a).

The network has four primary inputs, PI = {a,b,¢,d}, two primary
outputs, PO = {i,j}, one fanout node, F = {f}, and no potential
fanout nodes. Accordingly, the set of movable objects M = {f}. Ini-
tially, f is in location NRF since it is not replicated.

Level-Map starts by topologicaly sorting the Boolean network.
Figure 6.20 (b) shows a possible order. The algorithm proceeds by com-
puting the d, z, and D values of every node in the Boolean network
in the specified topological order. Table 6.1 lists the computed d, z,
and D values for every node. In addition, the table shows the actions
taken at some nodes. For example, node f is assigned a LUT since it
is at location NRF (Not-replicated Fanout). Accordingly, its depth D
is incremented by one and its contribution z is set to one. As another
example, consider node ¢ where the dependency d exceeds K = 3, and
therefore, its immediate predecessors (nodes g and h) are sorted ac-
cording to the Weight function. Since node h has a higher weight, it
is assigned a LUT, its D value is incremented by one, and its z value
i1s set to one. Next, the d value of node 7 is updated. Finally, since
node ¢ is a primary output node, it is assigned a LUT, its D value is
incremented by one, and its z value is set to one.



STOCHASTIC EVOLUTION (STOCE) 333

node d z D Actions

a 1 1 0

b 1 1 0

c 1 1 0

d 1 1 0

g 2 2 0

e 2 2 0

f 2 1 1 f is assigned a LUT because it is at location NRF.
D is updated and z is set to 1.

h 3 3 1

i 5 1 3 Since d; > 3, children of ¢ are sorted and assigned
LUTs, h is assigned a LUT.

h 3 1 2 h is assigned a LUT (see actions at i).
D is updated and z is set to 1.

i 3 1 3 iis assigned a LUT because it is a primary output.

j 3 1 3 j is assigned a LUT because it is a primary output.

Table 6.1 Execution of Level-Map on the Boolean network of
Figure 6.20 (a). cost = w1 x No.of LUT's+wa X Depth = 1 x4+0x3 = 4.

The StocE based technology mapper described in this section was
tested on several benchmark circuits Y**°" and compared with reported con-
structive technology mappersMNS+91, CD94a, MSBSVO1, FRVO1a, FRVOLb g
well as with a genetic based mapper®F?3. In general, it was observed that
better solutions are obtained for several circuits, while for remaining cir-
cuits, solutions were of comparable quality*™M°®. The run-time of Stochastic
Evolution mapper was found to be 25-70 times faster compared to that of
the Genetic Algorithm based mapper®P3. The run-time varied between a
fraction of a second (smallest test case) to less than an hour (largest test

case).

6.6 PARALLELIZATION OF STOCE

Experimental results indicate that the stochastic evolution algorithm has
been able to find near-optimal solutions in a relatively very short time on
all test problems. However, this behavior is preconditioned on the design
skills and ingenuity of the designer who should cleverly decide several issues,
namely: (1) a suitable state model, (2) appropriate move strategy, (3) an
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initial value for the parameter p and its update method, and (4) an adequate
value of the stopping criterion parameter R. These issues have a large
impact on both, the runtime requirements and quality of solution of the
algorithm.

Because of its iterative and blind nature, stochastic evolution can re-
quire large runtime, especially on large problems with thousands of movable
elements and CPU-intensive cost functions. To speed up the execution of
stochastic evolution on such problems we can resort to the acceleration
techniques used with previous iterative algorithms, namely (1) hardware
acceleration, which consists of implementing time consuming parts in hard-
ware, and (2) software acceleration, where execution of the algorithm is
partitioned on several concurrently running processors.

The acceleration of the stochastic evolution algorithm did not receive
any attention from the research community. This section is therefore nec-
essarily tentative.

We believe that hardware acceleration does not offer a cost effective
strategy, and therefore we rule it out. In the remainder of this section we
shall concentrate on basic strategies to parallelize the stochastic evolution
algorithm.

Unlike genetic algorithm and simulated evolution which are highly par-
allel, stochastic evolution 1s highly sequential. In that respect, it is similar
to the simulated annealing algorithm. Recall that stochastic evolution has
one main loop consisting of several steps. An iteration of stochastic evolu-
tion consists of the following tasks:

(1) Perform a compound move on the current solution to create a new
valid solution (call to the PERTURB function followed by a call to the
MAKE_STATE function);

(2) compute the difference in the cost between the new and current solu-
tion;

(3) if the new solution has the same cost as the current solution then
increment the parameter p; otherwise reset p to its initial value py;

(4) if the new solution has the lowest cost among all previous solutions,
then replace the current best solution with the new solution and decre-
ment the counter p by R.

These tasks must be executed in sequence and repeated as long as the con-
dition p < R is satisfied. The most time consuming step is the perturbation
step. This step is also highly sequential and consists of several tasks. In this
step, the movable elements are processed one at a time in a pre-determined
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order and each is tried in a number of candidate trial locations. After pro-
cessing all elements, the routine MAKE_STATE is called to make sure that
the new state is a valid one. This is achieved by reversing the fewest latest
moves.

Because of the highly sequential nature of the StocE algorithm, the
easiest parallelization approach would be to proceed as follows. Each pro-
cessor 1s assigned a particular initial solution. Then each of the processors
would be running sequential StocE starting from its assigned initial solu-
tion. This simple approach would be very good if the search subspaces of
the various processors do not overlap (or have minimal overlap). In this case
all processors would be concurrently searching distinct parts of the solution
space. However, this would require that one has enough knowledge about
the search space in order to partition it among the individual processors.
In some instances, this can be a very unrealistic assumption, because very
little will be known about the search space.

For many problems, the subspace corresponding to the neighborhood
of a particular solution is controlled by the algorithm designer (the state
model, the parameter p, and the move operation). In many cases, it may
be possible to tune the algorithm for a particular problem instance so that
the state space is searched in parallel (with minimal overlap) by several
processors.

Recall from Chapter 2 that simulated annealing is also highly sequen-
tial, where its parallelization is strongly related to the temperature param-
eter. To parallelize stochastic evolution, we can follow similar approaches
to those adopted for the parallelization of simulated annealing, namely:
(1) move acceleration, and (2) parallel moves. In move acceleration, a move
is performed faster by distributing the various trial relocations on several
processors working in parallel. The speed-up that can be achieved by move
acceleration approach depends to a large extent on the problem instance.
Recall that each simple move usually consists of several trial relocations
of a particular movable element. The trial relocations can be performed
in parallel without affecting the correctness of the algorithm. For problem
instances where the window of trial relocations is large, sizable speed-up
can be achieved. However, for problems with a state model having |L| = 2,
such as the network bisection problem, this approach would be counter
productive.

For parallel moves, several moves are performed in parallel, where each
move is executed on a single processorf. Figure 6.21 is a general description

t This approach assumes that the moves do not have to be performed in any specific
order. This parallelization strategy will not work if the moves must be attempted in a
fixed predetermined order



336

of a possible parallel stochastic evolution algorithm following this paral-
lelization strategy.

In the description of Figure 6.21, it is assumed that one master proces-
sor 1s ordering the concurrent execution of p simple moves, where p is the
number of processors. The master evaluates the outcome from all trials. In
case of no success, the master then orders the parallel evaluation of p new
trials; otherwise, it selects the best new current solution among the accepted
solutions, and updates the state of all processors. This process repeats until
it is time to stop. At the end of the parallel execution of PERTURB, the
master processor may be required to run the MAKE_STATE procedure to
ensure a valid new state. The master processor is also in charge of updating
the parameter p and the counter p.

The parallel algorithm given in Figure 6.21 is a synchronous paral-
lelization where the processors are forced to communicate and synchronize
after each trial. However, since the current solution will get updated only
when a processor accepts a move and changes the state, the various pro-
cessors should be allowed to proceed asynchronously with their trials until
at least one of them accepts a simple move. Therefore, one can improve
the parallel algorithm of Figure 6.21 by making the following change. The
movable elements are distributed equally among the available processors.
Each processor will be in charge of the trial relocations of its associated
movable elements. Synchronization is forced only when one of the proces-
sors performs a successful trial. In this new variation communication will
be less. Furthermore, it 1s a more efficient parallelization since no processor
is forced to remain idle waiting for other processors with more elaborate
trials to finish.

Both variations of this parallel algorithm can be implemented to run
on a multicomputer or a multiprocessor machine. The parallel machine
model assumed is an MISD or an MIMD machine. For both algorithms,
it 1s assumed that each processor must be able to set a common variable
to True whenever it accepts a simple move; then the solution accepted
by the processor is communicated to a master processor which will force
all other processors to halt and to properly update the current solution.
The current solution together with the remaining unprocessed elements
are again distributed among the available processors. Unfinished moves,
i.e., moves that were in progress when their processors were forced to halt
will be tried again in the next iteration. Another possibility is to allow the
processors to complete the trials that are in progress when the request to
stop was received. Then there could be more than one solution accepted,
and therefore the master processor has to arbitrate between them, select
the best, and pass a copy to each processor. All moves tried during this
iteration, whether accepted or rejected are considered complete. During the
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AlgorithmParallel StocE;
/* So is the initial solution */
Begin
Initialize parameters;
BestS=Sp; CurS=5Sp; p = po;
Repeat
Communicate CurS and a movable element m; to each processor 7;
ParFor each processor ¢
NewS*=MOVE(CurS, m;);
If Gain(CurS, NewSi) > RANDOM (-p,0)
THEN A; = TRUE;
EndParFor
If Success Then
/* Success = (\/f:1 A; = True) */ ‘
Select(NewS); /* NewS is best solution among all NewS*''s */
If Cost(NewS) = Cost(CurS) Then p=p—1;
Else p = po;
EndIf
If Cost(NewS) < Cost(BestS) Then
BestS= NewS;

p=p—R
Else p=p+1;
EndIf
EndIf
Until p > R;

Return (BestS)
End. /*Parallel_StocE*/

Figure 6.21 General parallel stochastic evolution algorithm where synchronization is
forced after each trial.

following iteration only the remaining unprocessed movable elements will
be tried.

Another possible approach would be to allow the processors to proceed
concurrently with their search and to concurrently accept moves, with no
interaction whatsoever. Algorithms following this strategy are known as
error algorithms. The word error is used to highlight the fact that the pro-
cessors have incorrect knowledge about the state of the parallel search. Few
studies on such parallelization approach for the case of simulated anneal-
ing have indicated, that by limiting the number of concurrent moves or
by ensuring that the moves are always non-interacting, error is minimized
and convergence is maintained UKH83, IKB83, KR8 " However, it is not al-
ways clear how one can go about restricting the moves to be of a particular
type.

Another approach would be to use the notion of serializable move set
introduced by Kravitz and Rutenbar®R87 for the case of simulated an-
nealing. The idea consists of restricting the set of concurrent moves to be
serializable. Recall that a serializable move set is a set of moves that would
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produce the same reject/accept decisions whether executed in parallel or
in some serial order. For example, any set of rejected moves is a serializable
set. Also moves that are completely non-interacting are serializable too.
However, in general, the identification of the largest possible serializable
subset of moves (to maximize speedup) is a very difficult problem. Kravitz
and Rutenbar suggested instead a subclass of serializable move-sets that
are easy to identify. They refer to this move-set as the simplest serializable
set. A simplest serializable set is formed by taking a number of rejected
moves and appending to them an accepted move. Such move-set is always
serializable. The expected size of the serializable move-set is a good esti-
mation of the speedup, since it is a measure of the average number of trials
that are evaluated concurrently. The problem with this approach is that
the size of the simplest serializable set is controlled by the parameter p,
which is getting updated in an unpredictable way. This is unlike the case of
simulated annealing where the size of this set is controlled by the value of
the temperature which is steadily decreased in a predictable manner. For
large p, the size of this set is very small (close to 1 always) leading to unac-
ceptably low speedup (near 1). The reason is that, a large p is equivalent to
a hot regime in simulated annealing, where almost all moves are accepted
forcing the processors to communicate almost after each move. For small
p, most simple moves are rejected thus allowing the various processors to
run in parallel for most of the time. Because of the way the parameter p is
updated, it 1s difficult to predict the speed up that may result with such
parallelization strategy.

The above two strategies can also be carried at the level of a com-
pound move (a call to the function PERTURB ). Similarly, we will have
two strategies: (1) perturbation acceleration, and (2) parallel perturbations.
In perturbation acceleration, a compound move is performed faster by dis-
tributing the various simple moves on several processors working in parallel.
This is actually the parallel moves approach discussed above.

For the parallel perturbations approach, several perturbations are con-
ducted in parallel. To ensure that the various processors do not search the
same subspaces, one can proceed as follows. Each processor runs sequential
stochastic evolution with a different initial solution. Once all the processors
have converged, the best solution among all processors is selected. Then
each processor reruns sequential stochastic evolution on a mutated version
of the current best solution. Obviously, each processor must be assigned
a different mutated solution. These steps are repeated until no significant
improvement is obtained in & (for example k = 2) consecutive iterations.

The aforementioned strategies by no means exhaust all possible ap-
proaches to parallelizing stochastic evolution; they mainly illustrate how
one might go about parallelizing a highly sequential algorithm such as
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stochastic evolution. Furthermore, the parallelization of a general algorithm
such as stochastic evolution is usually highly influenced by the problem in-
stance itself.

6.7 CONCLUSION AND RECENT WORK

In this chapter we have described stochastic evolution algorithm, a gen-
eral randomized iterative heuristic for solving combinatorial optimization
problems. Like all other iterative heuristics described in earlier chapters,
stochastic evolution requires that it be adapted to the particular problem.
There are four main issues a designer has to consider:

A suitable state model for the problem.

. Choice of an appropriate move operation to relocate movable elements.
. An initial value of the control parameter p and its update strategy.

. A value for the stopping criterion R.

o N —

As has been discussed in Section 6.4, the above four issues are not
independent. The move operation depends on the state model. Also the
initial value of the parameter p and the strategy of its update depend on
the state model and the move set. Furthermore, the parameter R depends
on the choice of the state model, the move operation, and the parameter
p. Experimental studies have suggested that these are not hard to design
and tune to the particular problem in question.

Extensive experimental studies produced performance results better
than the simulated annealing algorithm with respect to runtime and quality
of solution®#9%,

The main concern with the stochastic evolution algorithm is that its
behavior corresponds to a non-homogeneous Markov chain that may not
have a stationary distribution, i.e., the algorithm may miss hitting a global
optimum even if given unlimited time. The reason for this behavior is that,
unlike simulated annealing where an uphill move has always a nonzero
probability of being accepted, for stochastic evolution a subset of the uphill
moves are always discarded because of a parameter p that is updated during
the course of the search. This issue is mainly of theoretical concern. On all
practical test cases, stochastic evolution has been shown to produce better
solutions than simulated annealing as well as genetic algorithms, and in
much less time.
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EXERCISES

exercise 130
Discuss similarities and differences between SA, SimE, and StocE.

exercise 131

Stochastic evolution can be seen as a generalization of simulated an-
nealing. Which aspects of the stochastic evolution algorithm if modified
would make it behave like the simulated annealing algorithm.

exerclise 132

1. What type of search would be performed by stochastic evolution
if the parameter p 1s fixed to zero?

2. Repeat the previous question if p is fixed to a negative number of
a very large magnitude?

3. Provide guidelines one should observe in deciding the initial value
as well as the update strategy of the parameter p. lllustrate your
suggestions using the Network Bisection instance given in Figure
6.1 and the Traveling Salesman Problem instance given in Figure

6.3.

exercise 133

For the simulated evolution algorithm, the function that has most effect
on the convergence of the algorithm is the Allocation function. For the
stochastic evolution algorithm, which function do you think has the
most effect on the convergence of the algorithm to superior quality
solutions?

exercise 134
According to your understanding of the StocE algorithm, rank, with
justification, the following according to their impact on the algorithm
performance:

(a) Computation of the Gain of each move.
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(b) Quality of initial solution.
(c) Initial value of the parameter p and the UPDATE function.
(d) The PERTU RB function.

)

(e) The value of the reward parameter R.

exercise 135

One of the important parameters of the stochastic evolution algorithm
is the Reward criteria R, which impacts both, the runtime requirement
as well as the quality of the reported solution.

1. What effect would a low value of R have on the runtime and solu-
tion quality of the algorithm?

2. What effect would a large value of R have on the runtime and
solution quality of the algorithm?

3. Which choice do you think will be more harmful, a low or a large
R? Justify your answer.

4. What aspect(s) of the problem instance should dictate the choice
of the adequate value of R? Illustrate your answers with some of
the examples presented in the text, such as the Traveling Salesman
and the Network Bisection problems.

exercise 136

Several authors think that simulated evolution and stochastic evolu-
tion are similar algorithms. Identify those distinctive features that are
against such view. Are there any aspects of the algorithms that support
such view.

exercise 137
Suggest a heuristic approach that will select appropriate values for the
parameters of the stochastic evolution algorithm, namely R, and p.

exercise 138

The behavior of the stochastic evolution algorithm is a nonhomoge-
neous Markov chain. Suggest the necessary changes to the algorithm
that will turn its behavior into a homogeneous ergodic Markov chain.

exercise 139
Show the result of Equation 6.2.

exercise 140
Stochastic evolution uses the notion of reward, which consists of in-
creasing the number of remaining iterations by R whenever the algo-
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rithm improves upon the current best solution, regardless of the mag-
nitude of the improvement, or for how long the algorithm has been
running. Suggest and experiment with alternative approaches to up-
dating the algorithm parameters (p and p).

exercise 141

In most experiments reported in the literature, stochastic evolution
produced similar or better results than simulated annealing, and in
a fraction of the time taken by simulated annealing. Identify those
features of the stochastic evolution algorithm which in your opinion
are the principal cause of this desirable behavior.

exercise 142
Refer to the Hamiltonian Circuit Problem described in Section 6.5.3,
page 317

1. For the graph of Figure 6.10(b), which edges are movable elements?

2. Assume that edge (1,6) has been selected for movement from S(2)
to S(1). Explain how will this be accomplished

3. If instead edge (4,6) has been selected for movement, show the
effect of this move on the chain-set.

exerclise 143

1. In Section 6.5.4 ( page 320), a partitioning state model was adopted
for the Traveling Salesman Problem (TSP). Design a stochastic
evolution algorithm for the TSP problem while adopting a permu-
tation as a state model. That is, the set of movable elements as well
as the set of locations are identified with the cities (M = L = V).
Iustrate all your design decisions on the TSP instance given in
Figure 6.3.

2. Which state model do you think is a more powerful model? Justify
your answer.

exercise 144

In the StocE-based implementation of technology mapping described in
the text, the decision as to which fan-out node to replicate is random.
There are more reasonable strategies which will take into consideration
the depth of the node or the size of the cone rooted at that node.

1. Work out few examples by hand to argue in favor or against the
usefulness of such strategies.
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2. Design and implement a StocE-based technology mapper and com-
pare strategies as the ones suggested above.

exercise 145
Consider the Vehicle Routing problem described in Chapter 1, Page 9.

1. Devise a state model for this problem, i.e., identify the set of mov-
able elements M and the set of locations L.

2. Design suitable Cost and PERTU RB functions for this problem.

3. Suggest suitable values for the parameters py and R.

exercise 146
Repeat the previous exercise (Exercise 122) considering the Flowshop
Scheduling problem described in Chapter 2 (Exercise 38).

exercise 147
Repeat the previous exercise (Exercise 122) considering the Terminal
Assignment problem described in Chapter 2 (Exercise 39).

exercise 148
Repeat Exercise 122 considering the Concentrator Location problem
described in Chapter 2 (Exercise 40).

exercise 149
Repeat Exercise 122 considering the Constramned Minimum Spanning
Tree problem described in Chapter 2 (Exercise 41).

exercise 150
Repeat Exercise 122 considering the Mesh Topology design problem
described in Chapter 2 (Exercise 42).

exercise 151
Repeat Exercise 122 considering the Weighted Matching problem de-
scribed in Chapter 2 (Exercise 43).

exercise 152
Repeat Exercise 122 considering the Plant Location problem described
in Chapter 2 (Exercise 44).



CHAPTER

SEVEN

HYBRIDS AND OTHER ISSUES

7.1 INTRODUCTION

This book has introduced the reader to five effective heuristics that belong
to the class of general iterative algorithms, namely, simulated annealing,
genetic algorithm, tabu search, simulated evolution, and, stochastic evolu-
tion. From the immense literature that is available it is evident that for a
large variety of applications, in certain settings, these heuristics produce
excellent results. All these algorithms have several important properties in
common, which are listed below:
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. They are blind, that is, they do not know when they reached an optimal

solution. Therefore they must be told when to stop.
They have ‘hill climbing’ property, that is, they occasionally accept
uphill (bad) moves.

. They are relatively easy to implement. All that is required is to have a

suitable solution representation, a cost function, and a mechanism to
traverse the search space.

. They are all ‘general’, that is, practically they can be applied to solve

any combinatorial optimization problem.

. Under certain conditions, they asymptotically converge to an optimal

solution. The rate of convergence is dependent on the choice of several
parameters.
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In each of the previous five chapters we illustrated how these techniques
can be individually applied to solve several of the known NP-hard combina-
torial optimization problems. Case studies and real problems in engineering
were used as examples to explain the heuristics and clarify concepts. Effec-
tiveness of each of these heuristics can be enhanced by hybridization where
features of one heuristic are incorporated into another to search for optimal
solutions. In this chapter (Section 7.3) we touch upon some work that has
been reported in the area of hybridization.

All algorithms discussed in this book are iterative in nature, and oper-
ate on design solutions generated at each iteration. A value of the objective
function is used to compare results of consecutive iterations and a solution
is selected based on its value. If the problem being solved consists of mul-
tiple objectives to be optimized, then balancing different objectives by a
weighted cost functions may not be sufficient to reach the desired solu-
tion. One convenient vehicle available for representing multi-objective cost
functions is fuzzy logic. Fuzzy logic provides a required formal algebra to
express and combine trade-off objective criteria. Functions for each objec-
tive are used (called membership functions) which map the numerical value
of objectives to the interval [0,1]. Optimization of multi-objective functions
is discussed in Section 7.4. Basics of fuzzy logic and its application in solv-
ing multi-objective optimization problems is presented in Section 7.5. In
Section 7.6 we briefly discuss optimization using neural networks. Some
points on how the quality of solution is gauged are also discussed in this
chapter.

We begin with a brief overview of the heuristics discussed in this book,
and highlight their strengths and weaknesses.

7.2 OVERVIEW OF ALGORITHMS

Before we go into discussion on some recently proposed hybrid techniques
(hybrids), let us briefly recall the key characteristics of the various algo-
rithms discussed in this book.

Simulated Annealing (SA): This stochastic search procedure is based
on the analogy of cooling of metals. The search proceeds step by
step, choosing a random neighboring solution, always accepting good
ones, and accepting bad ones with a non-zero probability. Initially the
probability of accepting bad moves is high, and towards the end, when
temperature tends to zero, 1t becomes less and less unlikely to accept
bad moves. The acceptance of early bad moves is usually not profitable.
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Clearly, simulated annealing is a randomized non-aggressive search
technique. Cycling in solution space is avoided due to randomness in
neighborhood search. One problem with simulated annealing is its slow
convergence to optimal or near optimal solution.

Genetic Algorithms (GAs): These algorithms emulate the natural pro-

cess of evolution. Unlike other heuristics, search is conducted by oper-
ating on a population of solutions, where a solution is represented in
the form of an encoded string. The basic idea is to obtain new solutions
from the combinations of existing ones. For this, a crossover operator
is used, which ensures that new solutions called offsprings inherit the
characteristics of parents. Mutation is used to inject new characteristics
in the individuals. Survival of solutions among parents and offsprings
is based on their fitness. The problem with genetic algorithms is that
they may suffer from premature convergence to a sub-optimal solution.

Tabu Search (TS): This is a more aggressive search technique based on

the systematic exploration of memory functions. In this technique, for
a given solution, a large number of neighbors are generated, from which
the best is chosen. To determine which of the generated solutions is the
best, an evaluator that is based on the objectives being optimized and
the historical information that has been accumulated, is used.

The trace of the current solution is controlled by the recent move
history to avoid cycling in the solution space. Use of intensifica-
tion/diversification in tabu search considerably helps in obtaining supe-
rior quality solutions. This is accomplished with the help of additional
memory structures that keep record of information such as frequencies
of moves, elite solutions, etc.

Simulated Evolution (SimE): Unlike in genetic algorithms, in SimE, a

single solution is referred to as a population, and its elements as individ-
uals. The procedure is best understood by comparing it with simulated
annealing. In simulated annealing, a perturbation of the current state
is a single move, while in SimE it is a compound move. Further, in
simulated annealing, the elements involved in a move are selected ran-
domly, whereas in SimkE the elements selected are based on their fitness.
A goodness function is required to determine the fitness of elements in
the current solution. Highly fit elements have a high probability to re-
main as they are. The individual fitnesses of the solution components
guide the search, and there is no parameter such as temperature.

Stochastic Evolution (StocE): This is another stochastic algorithm

which, similar to SimE, operates by making compound moves. In ad-
dition to this, in this algorithm, the probability of acceptance of bad
moves gets increased whenever the search is suspected to have reached
a local optimum, and reset to its initial value otherwise. A parameter
p 1s used which controls how steep a hill the algorithm can climb. The
algorithm also cleverly rewards itself whenever 1t makes a good move.
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There are no hot/cold regimes like in simulated annealing.

7.3 HYBRIDIZATION

Work on combining ideas from one heuristic into another has been around
for some time. In the previous section we briefly reviewed the key charac-
teristics of heuristics discussed in this book and highlighted some of their
strengths and weaknesses. The basic idea of hybridization is to enhance the
strengths and compensate for the weaknesses of two or more complemen-
tary approaches “K19% In the following paragraphs we describe several of
the hybridization approached attempts reported in the literature.

7.3.1 SA/TS Hybrid

We begin with a hybrid algorithm that combines ideas of simulated anneal-
ing and tabu search ™93 The basic technique works as follows.

The general structure of this SA/TS hybrid is that of simulated an-
nealing, with the following major differences. First, the initial solution is
not a random solution, but is generated heuristically. A cooling schedule
is then determined by running the algorithm (but without performing ex-
changes, as discussed in Section 2.4) and the parameters of the algorithm
are determined. Parameters in this hybrid include the starting temperature
T, the final temperature 7%, and an additional parameter called temper-
ature reset variable denoted by 7). Initial value of T, is set to 7. Then,
unlike in SA where a single neighbor 1s generated randomly, in this hybrid,
as in the case of TS, the neighborhood is searched using a deterministic
procedure and the best amongst these is taken for consideration. The cost
of this solution 1s determined, and the new solution is accepted based on
the Metropolis criterion. Every time a solution better than the best seen so
far is reached, the value of the temperature in that iteration (say Tj, where
k is the iteration number) is recorded as Tj.

The next major difference is the non-monotonic cooling schedule used
to update the value of temperature. Generally the normal decrement rule
is applied and the values of 7" and 3 are updated in each iteration. How-
ever, if a cycle of search is completed without accepting any move, which
may be due to freezing, or local optima reached, then the value of 7)., the
temperature reset variable, is updated as shown below and the temperature
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at that iteration (7} ) is reset to the value of T,.. The update rule used is:

T,
T = max{E,Tb} and set T, = 1T,

The above heuristic was applied to the vehicle routing problem. Ex-
perimental runs indicated that using the non-monotonic cooling schedule
to strategically manipulate the temperature, coupled with ordered search,

gave superior performance as compared to standard simulated annealing
Osm93

7.3.2 GA/SA Hybrid

Recall that the performance of simulated annealing i1s often hindered by
its slow convergence to optimal or near optimal solution, while genetic
algorithms may suffer from premature convergence KHN Gimulated an-
nealing can be combined with genetic algorithms to: (1) introduce more
diversity into the population, thereby preventing premature convergence,
and (2) avoid the long computation time required by SA.

In some recent hybrids proposed, the convergence of genetic algorithms
is improved by introducing the acceptance probability of simulated anneal-
ing as the criterion for accepting new trial solutions KHN95, TWE9S “Tgq;
et al. proposed two hybrid algorithms which they referred to as GAA and
GAA2. These algorithms combine incremental GA (IGA) and simulated
annealing. IGA is a variant of GA with the difference in processing newly
generated chromosomes. Every new chromosome generated in IGA is eval-
uated immediately and replaces a selected chromosome in the existing pop-
ulation.

GAA & GAA2

In GAA, during each iteration of IGA, a newly generated chromosome will
replace a selected chromosome from the existing population only when one
of the following criteria is met:

(a) if the offspring generated is the fittest among all those generated thus
far, or,

(b) if the offspring is fitter than the selected chromosome, or,

(c) if the probability of replacement is greater than a number randomly
generated between 0 and 1.

The probability of replacement for criterion (c) is equivalent to the ac-
ceptance probability used in fast simulated annealing SH87 and is given
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by

1

Prob(A) = m

(7.1)

where A is the amount of decrease in the fitness value of the new individual
and the individual selected for replacement. T 1s the temperature level of
the current iteration, and is reduced in every iteration according to the rule
T, = 7= x Ty, where Ty is the initial temperature, 7 the temperature at
the kth iteration, and r the temperature reduction factor (r < 1). Initially,
some chromosomes in the population will be replaced by those with lower
fitness values. However, as the temperature decreases, the probability of
replacement is gradually decreased. Using this technique, sufficient diver-
sity in the population is maintained and premature convergence avoided.

The second algorithm (GAA2) proposed in TWEF9 restricts the population
size to 2 individuals, therefore no selection of parents is required. Time and
memory requirements are reduced. Diversity is maintained by applying the
replacement criterion of GAA. Criterion (a) is not required due to small
population size. Elitist GA strategy is adopted where the fittest or the best
individual is guaranteed to survive. The temperature level in each iteration
is reduced when a pre-defined pseudo population size is reached.

GA/SA/TS Hybrid

This hybrid, proposed by Kim et al. ¥*HN95 j5 similar to the GAA hybrid
discussed above TWF9 with the difference that tabu search is also incorpo-
rated to escape from local optima. The method is a reasonable combination
of local search and global search. The basic steps are as follows: (1) the so-
lution region is globally searched using genetic algorithm; (2) the survival
of newly produced offsprings and their acceptance in the population is de-
cided by the acceptance probability of simulated annealing; and (3) the
neighborhood of the accepted solution is searched by tabu search. Kim
et al. applied this hybrid to solve the multi-year thermal unit maintenance
scheduling problem. The quality of results obtained by the proposed hybrid
was found to be better than GA or GA4+SA KHN9,

Glover explained the nature of connections between tabu search and
genetic algorithms and showed that a variety of opportunities exist for
creating hybrid approaches to take advantage of their complementary fea-
tures. Glover also discussed another approach known as scatter search 41°77
whose origins overlap with those of tabu search and roughly coincide with

the emergence of genetic algorithms @194, GKL95,
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Hybrid SGA

Other techniques that combine local search with genetic algorithms have
also been reported. One such work reports a hybrid elitist SGA (simple
genetic algorithm) where steepest ascent technique (in case of the maxi-
mization problem) is repeatedly applied to every member of the population
at each generation. A modification of this work is the staged hybrid SGA.
In this algorithm, after the initial population has been improved by local
search, genetic algorithm is allowed to continue uninterrupted for 10 gener-
ations. At the end of this genetic search stage, a single iteration of steepest
ascent is applied to each individual in the population MWSK?4 These pro-
posed techniques were applied on seismic data interpretation problems and
produced higher quality solutions while using significantly less computa-
tional time.

TS/SimE Hybrid

Tabu search i1s a metaheuristic that can be used over other heuristics to
control the search. As mentioned earlier, in case of tabu search, it is not
possible to search the entire neighborhood, and only a subset of neighbor-
hood is searched. This subset generally consists of some random solutions in
the neighborhood. Candidate list strategies are also used (Section 4.9.3).
Another possibility that will make the search more aggressive, and still
work with a subset of neighbors, 1s to select the neighboring states as is
done in the case of SImE (simulated evolution) heuristic (Chapter 5). In
order to implement this hybrid, a goodness function is required. Then, at
the start of every iteration, from a given current solution, neighborhood
states are generated by perturbing the individual elements of the solution,
where the probability of perturbation is a function of the goodness of that
element. Lower goodness maps to higher probability of the element leaving
its current position.

A similar strategy can be followed to construct a SA/SimE hybrid. Here
unlike the original SA where the elements involved in the perturbation are
selected at random, in the SA/SimE hybrid the elements will be selected
on the basis of their fitnesses. Acceptance of particular perturbation would
remain according to the Metropolis criterion.

7.3.3 Others hybrids

Several other genetic algorithm hybrids that work on lines similar to the
above have been summarized by Merkle and Gates M*¥96 Some of these
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include local search and others include simulated annealing. In one of the
algorithms mentioned, (due to Judson et al.) individuals are always re-
placed by their locally optimized solutions 7¥°2. Another similar hybrid
(proposed by Unger and Moult) uses simulated annealing UM93 Tn this
hybrid, each individual undergoes 20 steps of simulated annealing before
selection 1s performed. Merkle et al. proposed a hybrid genetic algorithm
which incorporates efficient gradient based minimization in the fitness cal-
culation. The algorithm also includes a replacement frequency parameter
pr which specifies the probability with which an individual is replaced by its
minimized counterpart. The algorithm can implement Baldwinian (p, = 0)
or Lamarckian (p, = 1) evolution, or more generally probabilistic Lamar-
ckian (0 < p, < 1) evolution MM92 M+96 The change in cost due to a move
in simulated annealing is generally the objective function value, while in
tabu search other factors of influence are taken into account such as the
frequency of a move. Work on modifying simulated annealing to accept
solutions based on evaluators instead of on objective function values has
been found to yield better results ¥2s9% Re<95 For more on hybridization,
and hybridizing the hybrids, etc., also see Pavol, RB94, Reeds

There are several other ways to hybridize heuristics, and as seen from
above, 1t is easy to think of new combinations and experiment with them.
Ideas of other heuristics can be incorporated not only at functional or higher
levels but also at the operator level. As an example, ideas from simulated
annealing have been incorporated in the design of new crossover operators
SW8T, Ree95  Below we describe a genetic algorithm crossover whose char-
acteristics and behavior change with the value of the simulated annealing
temperature parameter 7.

example 55 In Chapter 3 we discussed the uniform crossover opera-
tor (Section 3.5.1). This crossover uses a binary string template. Then,
for each bit position on the two selected parents, the value of the bit
in the template will indicate which of the two parents will contribute
its value in that position to the offspring. The template for the simple
crossover can be represented as a binary string 1 1 11 0 0. According
to this template, as in the case of the simple single point crossover, the
first four elements are taken from one parent and the last two from
the second. The binary elements in this string can also be generated
stochastically, then, the string 1 0 1 0 1 1 will mean that the 1st, 3rd,
5th and 6th elements are taken from one parent and the remaining
from the other. This latter method is also referred to as generalized
uniform crossover.

Ideas from simulated annealing were used to modify the above basic
operator SW87, Ree95 A threshold energy, referred to as 6., is used to
influence the way in which the individual bits are chosen. The proce-
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dure can be briefly described as follows: As the offspring chromosome is
being generated, bit ¢+ 1 is favored for selection from the same parent
as bit ¢, and bit 7 + 1 is taken from the other parent with a probability
¢(=9</T) where T is the temperature parameter of simulated annealing,
which 1s slowly decreased according to a predefined cooling schedule.
The effect of this is that at high temperature, since the number of
switches is high, this operator behaves like the generalized uniform
crossover operator. At medium temperature, the number of switches
between parents decreases and it becomes like a simple crossover. And
at very low values of T, the offspring actually is one of the parents.

7.4 GA AND MULTI-OBJECTIVE OPTIMIZATION

As discussed in Chapter 3, genetic algorithms (GAs) have been found to be
very effective in solving numerous optimization problems, especially those
with many (possibly) conflicting and noisy objectives. However, there seems
to be no consensus as to what fitness measure to use in such situations,
and how to rank individuals in a population on the basis of several con-
flicting objectivesPX97. In this section we present some recent work that
uses genetic algorithms to solve multi-objective problems. Ideas discussed
here can also be used with other heuristics explained in this book. In the
following section we will discuss how fuzzy logic has been incorporated to
address this issue.

In order to use genetic algorithms to solve multi-objective problems,
the fitness function should be combined so as to reflect all objectives. His-
torically, multiple objectives have been combined into a scalar objective
function, usually through a linear combination (weighted sum) of the mul-
tiple attributes, or by turning objectives into constraints. One way 1s to
assign a constant weight to each of the multiple objective functions whose
value will depend on the importance of that objective. For example, as-
suming that all objectives are to be maximized, the fitness of an individual

‘z’ (solution) in genetic algorithm can be expressed as

fle) =wi - fi(e) +ws - fale) + -4 wy - fulx) (7.2)

where z is a string, n is the number of objective functions, f(z) is a com-
bined fitness function, f;(x) is the ith objective, and w; is the weight of the
tth objective. The problem with this weighted sum approach is the difficulty
in determining suitable weights. Ad-hoc methods are usually employed. For
example, for the VLSI floorplan design problem 5195 Y95 the cost func-
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tion used consists of three terms, (1) the area or the size of the floorplan,
(2) the overall interconnection wire-length and (3) timing performance or
delay. Since the three terms are incompatible, they are normalized to fall
in the same range. Then, weights depending on the designers preferences,
are assigned to each term. Elitist preserve strategy is employed where the
population of next generation, in addition to having the best overall fit so-
lution, also contains the best solution with respect to each objective. That
18, the solution with best area, with best wire-length, and a third solution
that is best with respect to timing.

7.4.1 Pareto Optimality

A notion of optimality that respects the integrity of each of the separate
criteria is the concept of Pareto optimality. Here, suppose we wish to min-
tmize two objectives, expressed as f; and f2. Let A, B, C, D, E, and F, be
six possible solutions to a given optimization problem, with the following
fitnesses: HNG94

A:(10,90)  B:(20,70)  C: (08, 75)
D: (15, 60)  E: (09, 65)  F: (14, 63)

That 1s, solution A has a value of f;=10 and f>=90. If we plot the 6 points
f1 versus fo, obviously those that are lower and on the left are regarded
as the best. Points C and D are good choices since there are no points
better than these in both the criteria. C is best with respect to fi, and D
with respect to fo. On the other hand, A and B are poor choices. Solution
A(10,90) is dominated by solution C(08,75), since 10 > 8 and 90 > 75.
(If any solution p is to the right and top of another solution ¢, then we
say p is dominated by ¢.) A is also dominated by E. Similarly, B(20,70) is
dominated by D(15,60), E(09,65) and F(15,60). The set of solutions that
are not dominated by any other solution is {C, D, E, F}. In this problem, as
in any other multi-objective optimization problem, such a set of solutions
comprises the Pareto-optimal (P-optimal) set. Tt is from this set that the
decision maker has to make a choice. The Pareto optimality concept does
not assist in making a single choice.

7.4.2 VEGA

Let us now see how this concept of Pareto optimality has been applied
to solve multi-objective optimization problems using genetic algorithms.
One of the first works in applying genetic algorithms to multi-objective
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optimization problems was by Schaffer 5085 Schaffer suggested a Vec-

tor Evaluated Genetic Algorithm (VEGA) for finding Pareto optimal so-
lutions. In VEGA, the population is divided into equally sized, disjoint
sub-populations, each governed by a different objective function. Selection
is performed independently from each sub-population; however crossover is
performed across sub-population boundaries. The problem with this scheme
1s that, independent selection of best solution in each criterion results in
potential bias against middle solutions (such as E and F of Section 7.4.1).
That is, those which are good but not the best with respect to any single
criterion.

VEGA mostly finds extreme solutions on the Pareto front. Schaffer
suggested two approaches to improve VEGA. One is to provide a heuris-
tic selection preference for non-dominated individuals in each generation.
The other is a cross-breeding among the “species” by adding some mate
selection.

In another work, in order to spread the population out along the Pareto
front, Horn et al. proposed the Niched Pareto GA as an algorithm for find-
ing the Pareto optimal set. In this algorithm they incorporate the concept
of Pareto domination in the selection operator, and apply a niching pres-

sure to spread its population out along the Pareto optimal trade-off surface
HNG94

7.4.3 MOGA

Recently, Murata and Ishibuchi proposed a Multi-Objective GA (MOGA)
MI9 \which uses a weighted sum of multiple objective functions to combine
them into a scalar fitness function. The key feature of MOGA is that the
weights attached to the multiple objective functions are not constant but

randomly specified for each selection. Therefore, the direction of search in
MOGA is not fixed. Weights are chosen as follows:

random;(+)
ST, random; ()

where random;(-) is a non-negative uniformly selected random number
associated with objective j.

(7.3)

w; =

During the execution of MOGA | a tentative set of Pareto optimal so-
lutions is stored and updated at every generation. A certain number (say
Ngjite) of individuals are randomly selected from the set at each generation
and are used as elite individuals in MOGA. This elite preserve strategy has
the effect of keeping the variety of each population.

The sequence of steps used in MOGA is as follows. Following the gener-
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ation of initial population containing M strings, the values of the objective
functions for the generated strings are calculated, and a tentative set of
Pareto optimal solutions is updated. The fitness (Equation 7.2) of each
string is then calculated using the random weights given in Equation 7.3.
Next, pairs of strings are selected with a certain selection probability. The
selection probability of string # in a population ¥, denoted by P(z), is
specified as

Pla) = =L (&) = Juin(T) (7.4)

2vew (@) = froin (V) }

where fumin (¥) = min{ f(z)|x € ¥}. This step is repeated until % pairs of
strings are selected from the current population. Then, following crossover
and mutation, NgJji. strings from the set of M strings generated by the
previous operations are removed and replaced with N;;. strings randomly
selected from a tentative set of P-optimal solutions. This process continues
until a pre-specified set of stopping conditions is satisfied. MOGA returns
a set of Pareto-optimal solutions to the decision maker. The best solution
is then selected according to the decision maker’s preference M9,

Murata and Ishibuchi M compared MOGA with VEGA and Niched
Pareto GA for a simple test problem called “unitation versus pairs” HNG9
This problem has two objectives to be maximized: ‘unitation’, or Unit(x)
refers to the number of 1’s used in the fixed length bit string x, (Unit
(00101011) = 4) and ‘pairs’ denoted by Pairs(z) is the number of pairs of
complementary adjacent bits (Pairs(00101011)= 5). The fitness function
used was:

J(x) = wypit - Unit(x) + wpy;,g - Pairs(z) (7.5)
where w1t and wp,;,, are randomly specified non-negative weights.

In all three algorithms the one-point crossover was employed, with
P. =0.9, Npop = M = 100. As expected, many individuals in VEGA
were driven to the two extreme solutions (Pairs,Unitation)=(0,12) and
(11,6). The Niched Pareto GA succeeded in maintaining equal size sub-
populations, but one Pareto-optimal solution, namely (11,6) was not in-
cluded in the final generation. Whereas MOGA found all Pareto-optimal
solutions. The three algorithms were also run on other problems such as
flowshop scheduling and fuzzy rule selection, and better solutions were ob-
tained by MOGA. MOGA also was successful in finding all Pareto optimal
solutions for problems with concave Pareto fronts.

In another recent work, the authors of MOGA proposed a hybrid al-
gorithm for finding a set of non-dominated solutions of a multi-objective
problem. The heuristic is similar to MOGA | with a local search procedure
applied on each individual solution generated by genetic operations ™96
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Similar to MOGA, this hybrid heuristic does not return a single final so-
lution, but a set of solutions. The choice of the final solution is left to the
decision maker. This hybrid heuristic produced high quality results when
applied to the flowshop scheduling problem ™96,

7.5 FUZZY LOGIC FOR MULTI-OBJECTIVE
OPTIMIZATION

Most design problems that are encountered in science and engineering are
NP-hard even in their simplest form. Moreover, in these problems designers
usually seek to optimize several conflicting objectives. Solutions methods
that are typically applied resort to heuristic knowledge acquired through
experience and/or understanding of the problem domain. The natural lan-
guage which 1s the basis of fuzzy logic 1s a suitable vehicle for expressing
such knowledge. Another reason for resorting to fuzzy logic is the treatment
of uncertainties. Fuzzy logic provides a natural framework for dealing with
such imprecise knowledge.

Fuzzy logic is a branch of mathematics invented by Lotfi Zadeh to
represent and manipulate fuzzy knowledge, and to infer from it crisp out-
comes 22465, Kar96 Tn thig section, we present a brief introduction to fuzzy
logic, and show how it can be used to express heuristic knowledge and/or
to combine conflicting objectives.

7.5.1 Fuzzy Set Theory

Unlike in ordinary set theory where an element is either in a set or not in
a set, in fuzzy set theory, an element may partially belong to a set. Lotfi
Zadeh defined a fuzzy set as a class of objects with a continuum of grades of
membership. Formally, a fuzzy set A of a universe of discourse X 1s defined
as A = {(z,pa(z))] all z € X}, where X is a space of points and p ()
1s a membership function of ¥ € X. The variable x is known as the base
variable. For each value of #, 4 (%) indicates the degree of membership of
that value in the fuzzy subset A. In general the membership function g4 (.)
is a mapping from X to the interval [0,1]. If pa(z) =1, or 0, for all z € X
the fuzzy set A becomes an ordinary set 22465,

example 56 As an example, let h refer to height of an athlete, and
“tall” considered as a particular fuzzy linguistic value of the linguistic
variable “height”. The linguistic value “tall” is a fuzzy subset that will
be characterized by a particular membership function s 411(.) giving a
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meaning to the fuzzy linguistic value “tall”. For each value of A, the
base variable height, g .1;(h) returns a number indicating the extent
to which that height belongs to the fuzzy subset “tall”.

Degree of

membership
A
1.0 +

0.8 +
Short ediu Tall

05 +

03 +

0 } } } \ +—> Height
2.0 3.0 4.0 5.0 6.0 7.0

Figure 7.1 Membership functions for Short, Moderate, and Tall.

example 57 As another example, consider the possible heights of
sportsmen in feet to be H={3.5,4.0,4.5,5.0,5.5,6.0,6.5}. Heights around
4.5 feet are considered Short (S), around 5.5 feet are considered Mod-
erate (M), and heights around 6.0 feet are considered Tall (T). Thus,
Short, Moderate, and Tall are not crisply defined. Fuzzy sets for
Short, Moderate, and Tall may be expressed as sets of ordered pairs
{(z,pa(x)) | Vo € X}, where the first element of the pair is the height
and the second is its membership in that set. From our previous knowl-
edge we can define the fuzzy sets S, M and T as follows:

={(3.5,1.0), (4.0,1.0), (4.5,1.0), (5.0,0.3), (5.5,0.3), (6.0,0.0), (6.5,0.0)}
{(3.5,0.0), (4.0,0.0), (4.5,0.1), (5.0,0.5), (5.5,1.0), (6.0,0.5), (6.5,0.1)}
{(3.5,0.0), (4.0,0.0), (4.5,0.0), (5.0,0.1), (5.5,0.4), (6.0,1.0), (6.5,1.0)}

S
M
T

Figure 7.1 illustrates the three membership functions. For simplicity
we have used piecewise linear membership functions. Membership func-
tions can also be continuous curves of many different shapes. For ex-
ample, Figure 7.2 illustrates a continuous membership function of a
fuzzy set: An individual’s weight around 50 kilograms.

Those thinking in Boolean terms may view the membership function
as fuzzified variables of a multivariable logic. In our example of the
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degree of membership

1o (g ma (x1))

0.5

50 Weight (Universe of discourse X)

Figure 7.2 Continuous membership function for the fuzzy set: individual’s weight
around 50 Kilograms.

sportsmen (Example 57), if the three crisp variables (trivalent logic)
were defined as Short=4.5 feet, Moderate = 5.5 feet, and Tall=6.0
feet, then heights between 4.5 and 5.5 and between 5.5 and 6.0 feet are
not defined. Observe that the fuzzification of the three crisp variables,
as in Figure 7.1 causes spreading of the variables with a distribution
profile. This causes all heights in the given range to be included. If
a sportsmen’s height is 5.0 feet, this height belongs to variable Short
with degree of membership (or confidence) equal to 0.3, to variable
Moderate with degree of membership of 0.5, and, to Tall with degree
of membership of 0.1.

7.5.2 Fuzzy Operators

As seen above, in fuzzy logic, the values are not crisp, and their fuzziness
exhibits a distribution described by the membership function. In ordinary
set theory, operations such as union (U), intersection (N), and complemen-
tation (—) are used. What is the result of these operations on fuzzy sets?
This question has been addressed by various fuzzy logics. These are logics
that have been defined for operations on fuzzy sets. One such logic defined
by L. Zadeh is called the min-max logic 245 There are other fuzzy logics
which we will discuss later. In min-max logic, the “union”, “intersection”
and “complementation” are defined as follows:

pranp(x) = min(pa(x), pp(x))
praup(x) = max(pa(x), up(z))
praa(@) = 1.0 = (pa(z))
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7.5.3 Fuzzy Rules

Approximate reasoning can be made based on linguistic variables and their
values. Rules can be generated based on previous experience. The rules
are expressed as If ... Then statements. Connectives such as AND and
OR can be used in approximate reasoning to join two or more linguistic
values. The If part (antecedent) is a fuzzy predicate defined in terms of
linguistic values and fuzzy operators (AND and OR). The Then part is
called the consequent. In optimization problems; the linguistic value used
in the consequent part identifies the fuzzy subset of good solutions. There-
fore, the result of evaluation of the antecedent part identifies the degree of
membership in the fuzzy subset of good solutions according to the fuzzy
rule in question.

As mentioned above, in min-max logic, the fuzzy AND is realized
by the function min. If more than one rule is used to perform decision-
making, each rule can be evaluated to generate a numerical value. Then,
these numerical values from various evaluations of different rules can be
combined to generate a crisp value on a higher level of hierarchy.

7.5.4 Example of Fuzzy Multi-objective Optimization

Consider the VLSI placement problem where it is required to pack a number
of components (cells) while minimizing the circuit area, total interconnec-
tion length (wire-length), and the circuit delay. That is, we seek to find a
solution optimized with respect to area (A), wire-length (L) and delay (D).
Therefore, the objective function is not a scalar, but a vector-function

F(z) = (fu(z), fi(z), fa(z))

where fo(x) is the area of the design, fi(x) is the overall required wire-
length, and f4(x) is the timing delay.

To obtain a fuzzy logic definition of the above multicriteria objective
function one may proceed as follows. Three linguistic variables area, length,
and delay are introduced for these functions. For each variable, several
linguistic values can be defined. Let us define only one linguistic value for
each variable. That 1s, small for area, short for wire-length, and low for
delay. These linguistic values characterize the degree of satisfaction of the
designer with the values of objectives f;(z), (¢ = a,l,d). These degrees of
satisfaction are described by membership functions p;(-) on fuzzy sets of
linguistic values.

Membership functions for small area, short length and low delay are
easy to build. They are non-increasing functions, since the smaller the area
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fa(+), shorter the length fi(-), and lower the delay f4(-), the higher is the
degree of satisfaction pq(-), pi () and pqa(-) of the expert and, vice versa
(see Figure 7.3).

Degree of Degree of Degree of
membership membership membership
for “area” for “length” for “delay”
A A A
1 1
0.5 : 0.5
- > O - > O - >
A_min 1 area L_min 1 length D_min 1 delay
A_max A_max L_max L_max D_max D_max

Figure 7.3 Normalized membership functions for area, wire-length and delay.

To make the membership functions applicable to different designs, the
base variables area, length and delay are normalized to the interval [0,1].
The values Amin, Lmin, and D, are estimated lower bounds on the area,
total wire-length and timing delay of the circuit, respectively. The values
of Amax, Lmax, and Dpax are upper bound estimates for these variables.
For example, if genetic algorithm is used, then these values can be derived

from the maximum among the several solutions of the initial population
SYSA97T

The most desirable solution is the one with the highest membership in
the fuzzy subsets small area, short wire-length and low delay. However, such
a solution most likely does not exist since some of the criteria conflict with
each other. Therefore, one has to trade-off these individual criteria against
each other. This trade-off is conveniently specified in linguistic terms in the
form of one or several fuzzy logic rules illustrated below.

Let the fuzzy subset of good solutions be characterized by the following
fuzzy rule:

R.0 If (small area) OR (short wire-length) OR (low delay)

Then good solution.

We could implement the fuzzy OR above using the max operator. In that
case, according to rule R.0, the membership function of the fuzzy subset
of good solutions /(g evaluates to the following:

wes) (@) = max(ua(e), (), pa(a)) (7.6)
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As mentioned earlier, in addition to the classical min-max logic, there are
other fuzzy logics Zad65, DP80, Zim91, Yag77

The max (OR) and min (AND) operators are respectively s-norm and
t-norm operators ™! Formulation of multi-objective functions do not fa-
vor pure ANDing and pure ORing. The reason is that these operators are
non-compensatory. For the max operator the outcome of the fuzzy rule is
dictated solely by the criterion with the highest membership value. Simi-
larly, for the min operator the outcome of the fuzzy rule is dictated by the
criterion with lowest membership value. This undesirable behavior has led
to the development of other fuzzy operators which possess compensatory
properties. Examples of such operators are the Ordered Weighted Averaging
(OWA) operators proposed by Yager Y2888 In these OWA compensatory
operators the degree of ANDing and ORing is controlled by a parameter
B € [0,1]. Yager refers to these as the orlike and andlike operators. For
example, according to the orlike operation, the above fuzzy logic rule R.0
evaluates to the following.

1
nes)(e) = B xmax(pa, i, pa) + (1= F0) % g(pa +pr+pa) — (T7)

where g is a parameter between 0 and 1 indicating the degree of nearness
of this orlike operator to the strict meaning of the max operator. When
B = 1, the orlike operator behaves like a regular max operator, and for
B = 01t behaves like a weighted averaging operator.

In the previous fuzzification approach, each of the individual criteria
is characterized by a fuzzy subset (membership function). The member-
ship value in the fuzzy subset good solution results from the activation of
a fuzzy rule (such as R.0) which combines the individual fuzzy subsets
(criteria) using appropriate fuzzy operators. The solution with the highest
membership value in the fuzzy subset good solution is returned as the best
(optimum) solution. This approach got rid of the controversial weighted
sum approach. However, it does not maintain the integrity of the individ-
ual criteria as in the case of Pareto-optimality.

Recently, a fuzzy goal directed search approach has been proposed
SyA99 which exploits the expressive power of fuzzy algebra as well as makes
use of the notion of the Pareto-optimality. The approach has been applied
in simulated evolution based VLSI placement algorithm. Below we briefly
describe this approach.

7.5.5 Fuzzy Goal Directed Optimization

Let there be II solutions generated by the algorithm. Assume that we are
optimizing a n-valued cost vector given by C'(z) = (C1(z), Ca(x), ..., Cp(z))



364

where z € TI. Assume that a vector O = (01,04, ..., O,) gives lower bound
estimates on individual objectives such that O; < Cy(x) Vi, V& € IL
These are lower bound estimates on each objective which are not neces-
sarily achievable in practice. Further, assume that there is a user specified
goal vector G = (g1, 92, ..., gn) Which indicates the relative acceptable lim-
its for each objective. It means that x will be an acceptable solution if
Ci(x) < g; X O where Vi, ¢; > 1.0. The search algorithm seeks to find solu-

i
1.0
Hi(x)
1i"(x)
. Cji/Oj
1.0 ¢ g 9i
Ci(x)/0j

Figure 7.4 Membership function within acceptable range. By lowering the goal g; to

g} the preference for objective “/” has been decreased.

tions that are nearest to each individual goal. The word nearest is a fuzzy
linguistic value. Hence, the search objective can be conveniently expressed
by the following rule:

R.1: IF solution  is
nearest goal 1 AND
nearest goal 2 AND

nearest goal 1 AND
nearest goal n
THEN =z is a good solution.

In fuzzy algebra, and using the andlike compensatory operator of
Yager, the above rule translates to the following:

psy(@) = Bxmin(pu(z), pa(), . pn(2)) + (1-5) x %Zui(l‘) (7.8)

where /J(S)(l‘) 1s the membership value for solution # in fuzzy set good so-
lution. Thus, the solution with the highest /J(S)(l‘) in the fuzzy subset of
good solution is the one that is nearest to all design goals. The solution
which results in the maximum value for Equation 7.8 is reported as the
best solution found by the algorithm. The membership function for a gen-
eral objective “2” 1s shown in Figure 7.4. User preferences can be easily
expressed in goal vector (G. For example by decreasing the goal value g; to
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g in Figure 7.4, the subsequent membership value u}(z) for objective i
will decrease. This might dictate the acceptance or rejection of solutions.

The two approaches given above exhaust neither all possible factors to
be considered in design nor their dependencies; but they demonstrate how
a traditional definition of a multi-objective problem can be transformed
into a fuzzy logic definition.

7.6 ARTIFICIAL NEURAL NETWORKS

In the recent past, a paradigm known as neural computing has become
popular for applications such as machine vision, robot control, and so on.
Traditional computing methods have not been very successful in attacking
these applications, despite the fact that today’s computers have achieved
speeds of hundreds of MIPS (Million Instructions Per Second). On the other
hand, the human nervous system routinely solves problems such as pat-
tern recognition, and natural language understanding. Artificial Intelligence
(AI) techniques, which were predominantly the theme of fifth-generation
computers, have been only partially successful in solving problems such
as machine vision. Recently, there has been a revival of interest in neural
computing and natural intelligence techniques. These techniques revolve
around the concept of an artificial neural network, which is an ensemble
of a large number of artificial neurons. One can think of an artificial neu-
ral network as the analog of neural networks that are part of the human
brain. It is believed by a large number of computer professionals that neural
computing is the key to solving difficult problems like pattern recognition,
computer vision, and hard optimization problems W2*° In this section we
discuss the application of artificial neural networks to the 2-D placement
problem. We will focus our attention on a particular class of artificial neural
networks introduced by Hopfield HT85.

The main component of an artificial neural network (ANN) is an
artificial neuron. An artificial neuron receives several analog inputs
X1, Xs, -+, X, and generates a single analog output QOUT'. The output
is computed as follows. Each input is weighted down by the neuron; let W;
be the weight associated with input X;. The net input, denoted N ET is
given by

NET =) W; - X; (7.9)
i=1

The output is a function F' of NET (Figure 7.5). The function F' is also
known as the activation function of the neuron. A popularly used activation
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function is the sigmoid function F(z) = 1/(1 4 e~ %). If # is a sufficiently
large positive number, the sigmoid function approximates to unity. For
sufficiently large negative values of z, the sigmoid function is close to 0.
Another popular activation function is F'(z) = tanh(z).

X
Wy
A NET OUT=F(NET)
» » >
X2 . »
. v
L]
Wn F
X, Weighted Sum

Figure 7.5 An artificial neuron. (Weights are not a part of the neuron. The weighting
down is done along the connection between the input and the neuron).

Several artificial neurons can be connected to form an artificial neu-
ral network. For example, a single layer feed-forward network consists of
m neurons, each with n inputs. The principal inputs to the network are
denoted X1, X, -+, X,,. The weights associated with neuron i are denoted
Wi1, Wia, - -+, Wipn. The m - n weights of the network can be compactly rep-
resented by the m x n weight matrix W = [W;;]. Figure 7.6(a) shows a
feed-forward network with three neurons, each with three inputs. The out-
put of neuron ¢ is denoted by OUT;. A single layer recurrent network is
similar to a feed-forward network, except that the outputs are fed back as
inputs to the network. Figure 7.6(b) shows a recurrent network with three
neurons, each with three forward inputs and one feedback input. Hopfield

and Tank used recurrent neural networks to solve optimization problems
HT85

ouTy

OUT,

oUT3

—

(@) (b)

Figure 7.6 (a) A single-layer, feed-forward artificial neural network with 3 neurons. (b)

A single-layer, recurrent artificial neural network with 3 neurons.
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Energy Function and Stability

Just as temperature plays an important role in simulated annealing K¢GV83,
energy plays an important role in Hopfield’s neural networks. The set of
all outputs OUT; 1s known as the state of the network. Suppose that the
activation function of each neuron in the network is a threshold function,
le.,

1 if NET; > T;
OoUT; =<0 if NET; < T; (7.10)
unchanged if NET; =T;

where T; is the threshold level of neuron i. Since we are dealing with a
recurrent network, N ET; is given by

NET; = (3 Wi; - OUT;) + IN; (7.11)
J#L

It is clear that the network can be in 2" different states, since each of the n
neurons can output either 0 or 1. Each state is associated with an energy
level. When the network changes state, there is a change in its energy level.
It 1s known that the network will settle down to a state with minimal energy
level if the weight matrix W is a symmetric matrix and all the diagonal
entries of the matrix are 0. The network is said to converge to the state of
minimal energy. By constructing a neural network whose energy function
1s the objective function of a minimization problem, one can hope to solve
the minimization problem.

example 58 Consider how an artificial neural network can be set up
to solve the simplest case of the placement problem. Given n circuit
modules and a connectivity matrix C' = [C};], where C}; denotes the
connectivity between module ¢ and module j; the objective is to put
n interconnected objects into n slots of a 2-D array, such that the
total Manhattan interconnection length is minimized. The Manhattan
distance between the two pins is computed as follows. If the two pins
are located at coordinates (21, y1) and (22, y2), the Manhattan distance
between them is given by

di2 = [x1 — 22|+ [y1 — o (7.12)

We shall use the circuit shown in Figure 7.7(a) to illustrate this ap-
proach. The slots to which these modules are to be assigned are shown

in Figure 7.7(b).
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Figure 7.7 (a) Circuit for Example 58. (b) Position definitions.
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Figure 7.8 An artificial neural network for placement.

solution 14 The solution to this problem presented below is due to
Yu, "8 who used Hopfield’s neural nets to solve the placement prob-
lem.

To solve this problem a network with n? neurons is set up. This network
consists of an n X n matrix of neurons as seen in Figure 7.8 (a 2-D array
NN). Neurons are numbered from 0 to n? — 1, left to right, and top to
bottom. The value of element N N; ; represents the “chance” of module
‘2> being positioned at location ‘j’. Each row corresponds to a circuit
module. The n columns correspond to the n possible locations a circuit
module can take. Therefore, in order to obtain a feasible solution, only
one neuron in any row or any column can have its output 1. The output
of the neuron is normalized and thus is always between 0 and 1.

The next step is to define the synapse (connection point) parity and
strength. First, the Manhattan distance between any two locations is
computed. The value T, . i, ., between neurons k and [ is defined
as the connectivity between circuit modules ¢; and iy times f(j1, j2),
where f is a function of the distance between locations j; and js,
k=i x/n+j and | = iy x \/n + j». After some experimentation
f was chosen to be the of fset minus the Manhattan distance between
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j1 and js, where the offset parameter is usually greater than \/n.

As an example, the synapse strengths between neurons 2 and 3 (7% 3)
can be found as follows. Neuron 2 has (i1, 71)=0,2; and neuron 3 has
(42, j2)=(1,0) (see Figure 7.8). Therefore T 5 by definition is equal to

Co1 X (of fset — Manhattan distance between 2 and 0)

The partial synapse strength matrix is shown in Table 7.1 and the
corresponding connections for neuron 3 are shown in Figure 7.8.

Ty 0 1 2 3 4 5 6 7 8
0 0 -4 -4 -4 -4

1 -4 0 -4 2 -4 -4

2 -4 -4 0 1 -4 -4
3 -4 0 -4 -4 -4

4 -4 -4 0 -4 -4

5 -4 -4 -4 0 -4
6 -4 -4 0 -4 -4
7 -4 0 2 -4 -4 0 -4
8 -4 1 -4 -4 -4 0

Table 7.1 Partial synapse strength matrix, offset=3, inhibit=-4.

In formalizing the above problem YuY"8® modified the neural network

solution to the TSP (Traveling Salesperson Problem) problem by Hopfield
HT85 The energy function £ used by Hopfield has several minima, some of
which are local minima; the network can converge to any one of them. As
a result, there is no guarantee that the solution obtained will correspond
to a global minimum. Moreover, how does one determine the parameters
of the network (the weight matrix, thresholds, the constants involved in
the energy function and the activation function)? How sensitive is the final
solution to small variations in these parameters? How good is the final
solution when compared to other known techniques for solving the same
optimization problem? And finally, how fast does the network converge to
the final solution? Since neural computing is still an active research area,
the answers to these questions are still being investigated.

Yu’s results on applying Hopfield neural networks to the placement
problem were not promising. Some of the difficulties pointed out by him
are long simulation times, poor solution quality and high sensitivity of the
solution to network parameters. At this stage, it can only be concluded
that more research is required in order to understand the applicability of
neural networks to hard optimization problems.
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7.7 SOLUTION QUALITY

It is natural to ask how good the solution generated by a heuristic really is.
Assume that a heuristic algorithm A has been developed for a minimization
problem. If S4 is the solution generated by the heuristic, and S* is the
optimum solution, a measure of the error (¢) made by the heuristic is the
relative deviation of the heuristic solution from the optimal solution, that

18,

S5

€= 57*

Unfortunately, it is not easy to measure the error, since S* is not known.

Therefore, we have to resort to other techniques for judging the quality of
solutions generated by heuristic algorithms.

(7.13)

One method to alleviate the above problem is to artificially generate
test inputs for which the optimum solution is known apriori. For instance,
in order to test a heuristic algorithm for floorplanning, we may generate the
test input as follows. We start with a rectangle R and cut it into smaller
rectangles. If these smaller rectangles are given as input to the floorplan-
ner, we already know the best solution — a floorplan which resembles the
rectangle R.

example 59 We could also artificially generate test inputs for our
assignment problem discussed in Chapter 3 (Example 23). What we
are looking for is a scheme to generate task graphs whose optimal finish
time is known apriori. To generate such task graphs we can apply the
following procedure.

We assume that the number of processors and the time to completion
are known. For each processor, the time interval between zero and
finish time is divided randomly into slices. That is, we have generated
a random Gantt chart. Each slice in our randomly generated Gantt
chart corresponds to a task and its width represents the time required
to complete that particular task on the given processor. To generate
random task graphs we have to generate nodes and edges. Each slice
corresponds to a node (task) in the task graph. Next, edges are added
between tasks (nodes) as follows. Several pairs of tasks (say 7; and
T;) are chosen randomly, and if the finish time of task 7; in our Gantt
chart is before the starting time of task 7}, an edge is added in the task
graph between them (from 7; to T;). A communication cost must now
be assigned to this edge. A value equal to or less than the separation
between the finish time of task 7; and start time of 7} is assigned to the
edge (4, j). If T; and 7} are on the same processor, then any reasonable
value of cost can be assigned to this edge.
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Now that we know the best solution for our task graph, we use this
task graph as input to our iterative heuristic.

Po " Ts Ty T13

Py T2 To Tio Tia T17
Py | T7 T Tis T1s

Pz [ Tg T12 T16 T19

L | | | | |
O 4 8 12 16 20 2425

Figure 7.9 Random Gantt chart. Py - P5 indicate processors. Time to completion is
25.

An example Gantt chart is shown in Figure 7.9. The two tasks T and
Ty are selected, and since they are assigned to the same processor, an
edge with an arbitrary cost (18) is added between them. Whereas for
tasks 77 and T1g the difference in the finish time of 7% and start time
of Thp 1s 2 units, an edge with a cost of 2 units or less may be added
between these nodes. The generated random graph corresponding to
the above Gantt chart is given in Figure 7.10.

This method of testing, however, is not always feasible. It is difficult to
generate such test inputs for several hard practical problems. Furthermore,
a heuristic algorithm may perform well on artificial inputs, but poorly on
real inputs and vice versa.

Test inputs comprising of real problem instances called benchmarks, are
used to compare the performance of heuristics. Generally, such benchmarks
are universally recognized. Benchmarks are created by experts working in
the field. For example, for VLSI layout problems Y% there are two widely
used sets of benchmarks: the Microelectronics Center of North Carolina
(MCNC) benchmarks and the International Symposium on Circuits and
Systems (ISCAS) benchmarks. Then alternative heuristics are compared
against the same benchmark tests Bre®3,
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Figure 7.10 Random task graph corresponding to Gantt chart of Figure 7.9.

7.8 CONCLUSION

In this chapter we briefly reviewed the salient features of the five heuristics
discussed in the book. All algorithms incorporate domain specific knowl-
edge to dictate the search strategy. They also tolerate some element of
non-determinism that helps the search escape out of local minima. They
all rely on the use of a suitable cost function which provides feedback to the
algorithm as the search progresses. The principle difference among these
heuristics is how and where domain specific knowledge 1s used. For exam-
ple, in simulated annealing such knowledge is mainly included in the cost
function. Elements involved in a perturbation are selected randomly, and
perturbations are accepted or rejected according to the Metropolis crite-
rion which is a function of the cost. The cooling schedule has also a major
impact on the algorithm performance and must be carefully crafted to the
problem domain as well as the particular problem instance.

For the three evolutionary algorithms discussed in the book, genetic
algorithms, simulated evolution, and stochastic evolution, domain specific
knowledge is exploited in all phases. In the case of genetic algorithms, the
fitness of individual solutions incorporates domain specific knowledge. Se-
lection for reproduction, the genetic operations, as well as generation of the
new population also incorporate a great deal of heuristic knowledge about
the problem domain. In simulated evolution, each individual element of a
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solution is characterized by a goodness measure that is highly correlated
with the objective function. The perturbation step (selection followed by al-
location) affects mostly low goodness elements. Therefore, domain specific
knowledge is included in every step of the simulated evolution algorithm.
In stochastic evolution, at each iteration the algorithm actually attempts
to move each element. The acceptance/rejection of the move is based on a
gain measure and a parameter p. Both the gain measure and p are tuned
to the problem domain.

Tabu search is different from the above heuristics in that it has an
explicit memory component. At each iteration the neighborhood of the
current solution is partially explored, and a move is made to the best non-
tabu solution in that neighborhood. The neighborhood function as well
as tabu list size and content are problem specific. The direction of the
search is also influenced by the memory structures (whether intensification
or diversification is used).

In this book, it has not been our intention to demonstrate the superi-
ority of one algorithm over the other. Actually it would be unwise to rank
such algorithms. Each one of them has its own merits. Recently, an interest-
ing theoretical study has been reported by Wolpert and Macready in which
they proved a number of theorems stating that the average performance of
any pair of iterative (deterministic or non-deterministic) algorithms across
all problems is identical. That is, if an algorithm performs well on a certain
class of problems then it necessarily pays for that with degraded perfor-
mance on the remaining set of problems WM®7_ However, it should be noted
that the reported theorems assume that the algorithms do not include do-
main specific knowledge of the problems being solved. Obviously, it would
be expected that a well engineered algorithm would exhibit superior per-
formance to that of a poorly engineered one.

This chapter also addressed hybridization issues where desirable fea-
tures of two or more algorithms are combined. In addition, we provided
a brief introduction to fuzzy logic and illustrated how it can help deal
with multi-objective optimization problems. Neural network is another le-
gitimate soft computing paradigm that has been briefly described in this
chapter.

The simulated evolution algorithm discussed in this book should not be
confused with the simulated evolution work of Fogel FOW66  Fogel’s work
operates on a population of algorithms to develop artificial intelligence. An
algorithm’s behavior is abstracted as a finite state machine. An offspring
machine is created by applying mutation to the parent machine. Machine
that demonstrates the greatest ability (that is, one which provides greatest
payoff with respect to a certain cost measure) is retained for the next
generation FOW66, Fog9 Lyolution thus proceeds to find better and better
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programs for solving a given problem.

Genetic Programming (GP) is another branch of genetic algorithm not
discussed in this book ¥°%°2, Genetic programming is considered more pow-
erful than genetic algorithms primarily because its output is a computer
program. It is useful in finding solutions where the variables are constantly
changing. The main difference between genetic programming and genetic
algorithms is in the representation of the solution. Genetic programming
creates computer programs as the solution whereas genetic algorithms cre-
ate chromosomes (strings) that represent possible solutions. Operators such
as crossover and mutation used in genetic algorithms are also used in ge-
netic programming. In genetic programming, unlike in the case of genetic
algorithms, identical parents can crossover to yield a different offspring. Fit-
ness is assigned by executing each program in the population. The value of
fitness assigned is according to how well the program solves the problem.
The best computer program that appears in any generation is designated
as the result of genetic programming %°%°2 In brief, genetic programming
can be considered as the beginning of computer programs that program
themselves.

In this book we deliberately omitted other powerful combinatorial opti-
mization techniques such as Lagrangean relaxation, and exact enumerative
techniques such as branch-and-bound and dynamic programming. These
techniques, as well as others, have been included in several manuscripts.
We concentrated on approximation heuristics that share several proper-
ties. Further, two of the heuristics discussed (SimE and StocE) have not
previously appeared in other books. It is our belief, that these algorithms,
similar to others addressed in this book, are well designed and include suf-
ficient ingenuity to make them both effective and general approximation
heuristics.
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EXERCISES

exerclise 153

1. Write a program to generate traveling salesman problem instances

of user specified number of cities for which the optimal solution is
known. Assume the cities to be located on a square grid.

2. Repeat the above assuming that the cities are located equi-

distantly on a circle of a given radius.

exercise 154
What are the weaknesses and strengths of the individual heuristics
discussed in this book?

exerclise 155

1. The performance of simulated annealing is hindered by its slow

convergence to optimal or near optimal solutions, while genetic
algorithm suffers from premature convergence. Suggest how the two
techniques can be combined to design a hybrid heuristic that will
introduce more diversity into the GA population, and also avoid
the long computation times required by simulated annealing.

. Can tabu search be included into your hybrid? What do you expect

to be the improvement in terms of runtime and solution quality?

exerclse 156

1. All algorithms discussed in this book are forgetful, i.e., they do not

remember where they were, and therefore may re-visit the same
states during the search. Tabu search partially avoids this problem
by relying on a memory component (tabu list). For each of GA,
SA, SimE, and, StocE, suggest strategies to make them keep track
of some of the previously visited states.

. Implement and experiment with the suggested strategies on the

TSP problem.

exerclse 157

Design a hybrid heuristic which combines features of:



HYBRIDS AND OTHER ISSUES 379

1. Simulated Evolution and Stochastic Evolution.
2. Simulated Annealing and Stochastic Evolution.
3. Simulated Annealing and Simulated Evolution.

Ilustrate your hybrids on the traveling salesman problem.

exercise 158

What do you understand by the term Pareto Optimality? For multi-
objective optimization, how does this concept differ from the goal di-
rected search strategy discussed in this chapter?

exerclise 159

1. Given a graph with nodes of varying sizes, it is required to seek
a two-way partition that is balanced and which has a minimum
number of edges cut. Use fuzzy logic as discussed in this chapter
to formulate a suitable cost function. Identify suitable linguistic
variables; linguistic values, and related membership functions.

2. Repeat the above while following the fuzzy goal directed search ap-
proach suggested in this chapter. Assume that the user will specify
the optimal goal vector O = (cutsize, imbalance) which represents
estimates of lower bounds on the size of the cut set and the mag-
nitude of imbalance, and G' = (g, g;) which indicates the relative
acceptable limits for each objective.

3. In your opinion, how can one come up with reasonable estimates
of the lower bounds needed by the optimal goal vector O7

exercise 160
Repeat Exercise 159 for the case of & — way partitioning problem.

exercise 161
Do artificial neural networks constitute a reasonable optimization ap-
proach? Justify your answer.

exercise 162

How does optimization using ANNs differ from optimizing using itera-
tive heuristics discussed in this book? Address aspects such as run-time
complexity, difficulty of formulation, robustness in reaching (near) op-
timal solutions, capability of escaping from local minima, etc.
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exercise 163
Complete Example 58 and obtain all the elements of the synapse ma-
trix.

exercise 164

Given n circuit modules and a connectivity matrix C' = [C};], where Cj;
denotes the connectivity between module ¢ and module j; the objective
is to divide the modules equally among sets X and Y such that the
following cost function is minimized.

EW =33 "Cy (7.14)

i€EX jeY
Explain how an ANN (artificial neural network) can be set up to solve
the two-way circuit partition problem. (Hint: To solve this problem, a
network consisting of a 2 x n matrix of neurons can be set up. Each

column of this matrix corresponds to a circuit module. The two rows
correspond to the two sets X and V).

exercise 165

In this chapter, fuzzification was proposed as an alternative approach to
deal with multi-criteria optimization problems. Some of the operators
and parameters of the algorithms discussed in this book are inherently
fuzzy, and therefore, fuzzy algebra can be employed. For example, the
temperature parameter of SA is initially very high, and the SA search
stops when temperature becomes very low. These are fuzzy linguistic
values that can be described using membership functions. Suggest a
fuzzy cooling scheme for the SA algorithm.

exercise 166
For the QAP problem discussed in Chapter 5, fuzzify the allocation
step of simulated evolution.

exercise 167

As discussed in Chapter 4, a small tabu list size is preferred for ex-
ploring the solution near a local optimum, and a larger tabu list size is
preferable for breaking free of the vicinity of a local minimum. Varying
the tabu list size during the search process provides one way to take
advantage of this effect. Suggest a strategy that uses fuzzy logic to
dynamically choose the size of the tabu list. (Hint: Identify key words
that are in fact linguistic terms required to express appropriate fuzzy
rules).
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