

�

H. Parandeh-Afshar, A. Tootoonchian, M. Yousefpour, O. Fatemi, and M. Hashemi

Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

hparande@ut.ac.ir, a.tootoonchian@parsemi.com, m.yousefpour@ece.ut.ac.ir,

omid@fatemi.net, hashemi@comnete.com

Abstract— In this paper, a novel level-based hardware/
software partitioning heuristic has been proposed. The
algorithm operates on functional blocks of designs represented
as directed acyclic graphs (DAG), with the objective of
minimizing the processing time under various hardware area
constraints. In most existing methods, the communication
overhead and the fact that the vertices mapped onto the same
computing unit have less communication, is overlooked during
the partitioning decision, while the proposed algorithm
considers this fact during partitioning.

I. INTRODUCTION
ardware-Software codesign transforms an application
specification into interacting hardware (HW) and

software (SW) components that exhibit the desired behavior
and satisfy the performance constraints. Task partitioning
and task scheduling are required in many applications. Sub-
tasks extracted from the input description should be
implemented in the right place (using the partitioner) at the
right time (using the scheduler). Optimization techniques
based on heuristic methods are generally employed to
explore the search space so that feasible and near-optimal
solutions can be obtained. Common heuristic-based
algorithms include tabu search (TS), simulated annealing
(SA), and genetic algorithm (GA). These algorithms mostly
are application independent and do not use the specific
characteristics of different applications. For instance, a data
flow application has different characteristics from a control
bound application. In the first set of applications, the
application is specified by the flow of data while the later is
inherently based on control signals. Using the characteristic
of data flow applications a new heuristic algorithm has been
proposed in this paper. Generally, in this paper, the problem
of minimizing execution time of an application for a system
with hard area constraints is considered. It is assumed that
an application is specified as tasks graph DAG (directed
acyclic graph) extracted from a sequential application
written in C or any other procedural language, where the

graph vertices represent functions, and the graph edges
represent function calls or accesses between functions.

In this paper, we propose a level-based HW-SW
partitioning heuristic which is applied to data flow systems.
In this heuristic, a limited search space is used for
performing partitioning. This space is named window. In
most existing methods, the communication overhead and the
fact that the vertices mapped onto the same computing unit
have less communication, is overlooked during the
partitioning decision, while the proposed algorithm
considers this fact during partitioning. Also it will be shown
how with an adaptive cost function, area constraint is
applied. Simulation results show improvements in search
time while keeping the same quality of solution when
compared to three other heuristic search algorithms: genetic
algorithm (GA), simulated annealing (SA) and tabu search
(TS).

The rest of this paper is organized as follows: In Section
2, a review of related works in HW-SW partitioning is
provided, while in Section 3, problem description will be
defined and the reference architecture that has been used is
introduced. Section 4 discusses the proposed partitioning
algorithm. Experimental results and comparisons will be
presented in Section 5. Finally, the summary and concluding
remarks are given in Section 6.

II. RELATED WORK
Partitioning is a crucial step in codesign because it plays

an important role in allocating tasks properly between
hardware and software under system constraints. Several
approaches such as dynamic programming [2], genetic
algorithms [3], and greedy heuristics [4] have been
proposed. Most of the initial work, [2], [5], focused on the
problem of meeting timing constraints with a secondary goal
of minimizing the amount of hardware. Subsequently there
has been a significant amount of work on optimizing
performance under area constraints, [6], [7], [8]. With the
goal of searching a larger design space, techniques such as

A Slice-Based Automatic Hardware/Software
Partitioning Heuristic

H

150

The 18th International Confernece on Microelectronics (ICM) 2006

simulated annealing (SA) have been applied to HW-SW
partitioning using fairly simple cost functions. While a lot of
initial work such as [5] was based exclusively on SA, recent
approaches commonly measure their quality against a SA
implementation. For example, [6] compares simulated
annealing with a knowledge-based approach, and [7]
compares SA with Tabu search.

The three previous works in HW-SW partitioning that are
most directly related to our work are [7], [8], [10]. The
reference model of our work for HW-SW partitioning is
based on [9], in which partitioning granularity is at task
level: each partitioning object represents a function and the
DAG edges are annotated with call counts. Similar to [7],
[8], and [10], the problem of minimizing execution time is
considered while satisfying HW area constraints.

III. SYSTEM ARCHITECTURE
In this paper the problem of HW-SW partitioning of an

application specified as a task graph extracted from a
sequential program written in C is considered. For the
purpose of illustrating the basic partitioning formulation, we
assume a simple target architecture that contains one SW
processor and one HW unit connected by a system bus. Both
software and hardware have their own local memory and
communicate with each other through a shared memory
(system memory) and shared resource conflicts are taken
into account. Waiting time is added when a shared resource
is engaged by another task, and a waiting task can only be
executed after the shared resource is released (non-
preemptive).

The input to the partitioning algorithm is a DAG
representing a task-graph, TG = (V, E). V is the set of graph
vertices and E is the set of edges. Each partitioning object
corresponding to a vertex vi � V is essentially a function
that can be mapped to HW or SW. Each edge eij � E
represents a call or an access to the callee function vj from
the caller function vi. The SW execution times and call
counts are obtained from profiling the application on the SW
processor. The simple model for HW area estimates assumes
that the area of a cluster of components can be obtained by
summing the individual HW areas. Communication time
estimates are made by simply dividing the volume of data
transferred by the bus speed.

Here as [7]'s approach, heuristic algorithm is used as the
partitioner. The partitioning results will be evaluated by a
cost estimation model to obtain processing time. Estimating
processing time is based on list scheduling, in which
hardware tasks are scheduled without resource conflicts.

The processing time includes communication time,
execution time on hardware or software, and waiting time
for available shared resources or input data. Task allocations
are obtained as a result of scheduling, and no resource
conflict is guaranteed. Such an approach is applicable to
coarse grain or functional partitioning and scheduling.

The list scheduler is used to order tasks, without any

shared resource conflicts, with regard to partitioning results,
task precedence, and the target system model. After the
processing time information is obtained, it is sent back to
guide the partitioner to explore only promising regions. This
iteration process between partitioning and scheduling to
minimize processing time will terminate when the stop
condition (such as the number of iterations specified by the
designer) is met.

IV. PARTITIONING HEURISTIC
Proposed partitioning algorithm consists of two main

steps: Clustering and Windowing. These two steps are
discussed in the following.

A. Clustering Algorithm
Due to the communication costs and limitations, we

propose a clustering algorithm to merge nodes in the graph.
By merging of nodes, more coarse grained nodes are
constructed and dedicated communication links are
established between nodes in a cluster.

The other advantage of clustering is reducing the search
space which affects partitioning search time. In this work,
the nodes that are closely related are merged. Closely related
nodes are the nodes which in simple chains of the graph. A
simple chain contains the nodes that have only one
successor and one predecessor. The nodes that make a
simple chain are merged together where the merging process
continues until the overall process time of the cluster, when
it is implemented in HW, is below a threshold. This
constraint prevents from making very coarse grained clusters
in which smaller nodes could have better partitioning. The
threshold is two times greater than the maximum delay of
nodes in the graph when they are implemented by HW.

Figure 1 (a) shows a DAG which has several simple
chains. In this figure, four sets of simple chains have been
shown. The nodes in each chain can be merged by
considering the threshold. The new clustered graph is shown
in Figure 1 (b). In this new graph there are fewer nodes than
the previous one. This graph will be used for partitioning by
applying the proposed partitioning heuristic.

B. Partitioning Heuristic
First, the clustered graph of previous section is used for

constructing a precedence graph. In this step, each node in

(a) Original DAG (b) Clustered DAG

Fig. 1. Node Clustering of DAG

151

The 18th International Confernece on Microelectronics (ICM) 2006

the graph is assigned a level. This new graph is named
precedence graph. In the precedence graph, the nodes that
have the same level are independent and hence, can be
executed concurrently. Therefore, these concurrent tasks can
be extracted from the precedence graph. This work is
performed by using the data dependency of tasks in the data
flow graph. In this stage, a level is assigned to each node
which is used in the proposed partitioning process.

In the precedence graph, concurrent tasks have been
defined and they could be executed simultaneously. On the
other hand, the successor nodes should wait until their
predecessor nodes finish their execution. This means that in
the partitioning process, an incremental algorithm for
defining HW or SW assignment can be used by considering
the levels of the tasks in the graph. Using this fact, the
search space of partitioning process can be limited. In the
simplest case, the nodes in each level can be selected for
partitioning. Limiting search space to members of a level
instead of all of the system will decrease complexity of the
large problems to few nodes of each level.

On the one hand, limiting the process of partitioning
decision to single levels can not produce efficient results and
some more levels should be considered in each iteration. On
the other hand, using more levels for making decision will
increase search time. To solve this problem, the overall
search space is divided to some slices. These slices are
named window. A window is a space which consists of
several consequent levels. In each step, it is tried to optimize
the current window search space. So an exhaustive search is
performed to find the most optimum result. The most
optimum result has the minimum cost in terms of processing
time of each task and communication overhead between
tasks. Meanwhile, the exact communication overhead is
specified after scheduling. Hence, for evaluating the result
of each window, partitioning results are sent to the list
scheduler and the overall process time of that window is
computed. This window moves along the levels of the
graph until it reaches the end of the graph that is when
partitioning process ends.

As mentioned in the problem description section, the
proposed system architecture covers important features of
the target system such as shared resource conflicts and
communication time overhead. In the general model, the
system architecture consists of one processor (software
representative) and a set of dedicated hardware. Both
software and hardware have their own local memory and
communicate with each other through shared memory. But
the fact is that the vertices mapped onto the same computing
unit, have less communication latency and the delay
overhead of data communication between different systems
varies. In general, hardware-hardware or software-software
communication methods mostly are faster than hardware-
software communication methods which are used in
hardware/software co-design [11] [12]. On the other hand,
one of the most important issues that should be considered

in codesign process is communication overhead. This issue
is especially important during partitioning process where
different tasks are assigned either to HW or SW.

As a result, although the process time of each task is an
effective issue in making decision about HW or SW
assignment, the mapping of parent nodes should be
considered, too. Therefore, in the proposed algorithm, one
of the factors that affect the partitioning decision is how the
predecessors of each node have been partitioned. For
instance, if the parents of one node are assigned to HW
(SW), there would be more probability that the node to be
assigned to HW (SW) with a specified weight.

In the windowing algorithm there are two issues regarding
the size of the window and the way that the window moves.
Experimental results showed that by setting the window size
to 3, optimum results are achieved in terms of processing
time and search time. The second issue is the way that the
window moves across graph levels. The movement of
window across the graph can be performed in two ways. The
first one is moving the window such that no overlapping
occurs between two consecutive windows. This model will
be inefficient whereas in the proposed algorithm mapping of
parent nodes affects the mapping of their successors. The
second method proposes to keep overlapping between
consecutive windows. In this work, one level is shared
between two consecutive windows. This helps the next
windows keep track of the previous mappings. Figure 2
shows a simple precedence graph with a window size of 3.
As illustrated, the nodes in the last level of current window
have dark color. These nodes will be used in the partitioning
decision of the next window and their mappings may be
changed.

Another issue that should be considered during the

partitioning process is area constraint. The problem
considered in this paper is to partition the application into
HW and SW components such that the execution time of the
application is minimized while simultaneously satisfying the
hard area constraints of the HW unit. For this purpose, the
cost function contains an area factor. This factor initially has
a tentative value. In each iteration of the partitioning
algorithm, area consumption will be evaluated. If the
resulted partitioning meets area constraint requirements, the
algorithm will be terminated; otherwise the area factor of
cost function will be adaptively updated. Logically this
factor should be decreased to reduce the probability of HW

Fig. 2. A window with size = 3 and overlapped nodes.

152

The 18th International Confernece on Microelectronics (ICM) 2006

assignment. This may resulting in having the nodes that
have similar or close costs either in HW or SW to be moved
to SW. The algorithm will iterate until the area constraint is
met.

For decreasing the area factor of cost function a varied
value is used. This value adaptively varies during
partitioning iterations. Consider the ‘�’ value in the
following equation.

� = (aggregate area) � (area constraint) (1)

In this equation � is the result of division of aggregate

area of all HW components of current partitioning by the
area constraint value. If the aggregate area of all HW
components is greater than area constraint, ‘�’ will be
greater than 1. In this case, if the area factor of cost function
is divided by �, it will be decreased. This process will be
repeated until � reaches a value less than 1.

V. EXPERIMENTAL RESULTS
For evaluating the proposed algorithm, three other heuristic
algorithms, GA, SA, and TS were used for comparison.
Figure 3 shows results of these heuristics for a randomly
generated task graph under various area constraints. As
shown, the process time of the proposed algorithm is very
close to the other three heuristic methods while the search
time is about 4 times faster on average.

In this experiment, rather than using random graphs, we
used graph structures that are common in real applications.
These structures include out-tree, in-tree, fork-joint, mean
value and FFT with a constant number of nodes and edges
as shown in Table I [1]. For each graph type, 20 runs are
performed. These results have been computed with the area
constraint of 0.9. Results obtained from all realistic graphs
clearly show that the proposed heuristic is superior to GA,
SA and TS in terms of search time while keeping the same
processing time.

VI. CONCLUSION
In this paper, a new heuristic partitioning algorithm suitable
for data flow applications was presented. In this method, the
fact that the vertices mapped onto the same computing unit
have less communication overhead is considered.
Furthermore a novel windowing algorithm that reduces the
search space and inherently improves the search time has
been introduced. In this algorithm, by considering the data
dependency of tasks a level is assigned to them. It was
shown that by using the level of each task and constraining
the search space to a window space, search time was
reduced comparing to three popular heuristics, GA, SA, and
TS. Experimental results indicate that the processing time of
the partitioned system using the proposed algorithm is
comparable to the existing techniques.

REFERENCES
[1] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An

Effective Technique for Allocation Task Graphs to Multiprocessor,”
IEEE Transaction on Parallel and Distributed Systems, vol. 7, pp.
506–521, 1996.

[2] R. Ernsl, J Hcnkel, and T Benner, "Hardware-software cosynthesis for
microcontrollers". IEEE Design and Test,V-10, Dec 1993.

[3] K. Ben Chehida, M. Auguin, "HW/SW partitioning approach for
reconfigurable System design", CASES 2002.

[4] A. Kalavade, E. Lee, "A global criticality/Loca1 Phase Driven
algorithm for the Constrained Hardware/Software partitioning
problem", CODES 1994.

[5] R. Gupta, De. Micheli, "System-level synthesis using re-
programmable components", EDAC 92.

[6] M. L. Vallejo, J. C. Lopez, "On the hardware-software partitioning
problem: System Modeling and partitioning techniques", ACM
TODAES, V-8, 2003.

[7] T. Wiangtong, P.Y.K. Cheung, W. Luk, “Comparing Three Heuristic
Search Methods for Functional Partitioning in HW-SW Codesign”,
International Journal on Design Automation for Embedded Systems,
vol. 6, 2002.

[8] F Vahid, TD Le. "Extending the Kernighan-Lin heuristic for Hardware
and Software functional partitioning", Jrnl Design Automation for
Embedded Systems, V-2, 1997.

[9] P. Eles, Z. Peng, K. Kuchinski, Doboli, "System Level
Hardware/Software Partitioning based on simulated annealing and
Tabu Search”, Jrnl Design Automation for Embedded Systems, V-2,.
1997.

[10] J. Henkel, R. Ernst, "An approach to automated hardware-software
partitioning using a flexible granularity that is driven by high-level
estimation Techniques". IEEE Trans. On VLSI, V-9 2001.

[11] Peter Voigt Knudsen et al, “Integrating Communication Protocol
Selection with Partitioning in Hardware/Software Codesign”,
Proceedings of the 11th international symposium on System synthesis,
1998.

TABLE I
RESULTS OF SOME REALISTIC TASK GRAPHS

 In-Tree
Out-
Tree

Fork-
Joint

Mean-
Value FFT

P Time 5653 5843 10698 12243 7871 GA
S Time 2.0 1.79 3.28 5.67 2.56
P Time 5567 5823 19823 12207 7676 SA S Time 1.38 1.33 2.25 3.14 1.86
P Time 5599 5737 10490 12192 7911

TS S Time 1.87 1.99 3.1 4.80 2.68
P Time 5353 5878 10658 11712 7798 OUR S Time 0.47 0.54 0.968 1.015 0.393

Fig. 3. Processing time and search time under various area constraints.

153

The 18th International Confernece on Microelectronics (ICM) 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	Button2:
	Button3:

