
Finding low activity op-code sets using genetic
computing

Mohammad Dastjerdi-
Mottaghi

Nanoelectronics Center of
Excellence,

 School of Electrical and
Computer Engineering

University of Tehran, Tehran, Iran
Email:

m.mottaghi@ece.ut.ac.ir

Mohammad Riazati

Nanoelectronics Center of
Excellence,

School of Electrical and Computer
Engineering

University of Tehran, Tehran, Iran
Email:

m.riazati@ece.ut.ac.ir

Masoud Daneshtalab

Nanoelectronics Center of
Excellence,

School of Electrical and Computer
Engineering

University of Tehran, Tehran, Iran
Vali Asr Educational Institude,

Email:
m.daneshtalab@ece.ut.ac.ir

Zainalabedin Navabi

Departement of Electrical and Computer Engineering
Northeastern University, Boston, U.S.A.

Email:
navabi@ece.neu.edu

ABSTRACT
In this paper, we propose a genetic algorithm for finding

the optimum op-code sequence for instruction set of a given
processor. The sequence, which we look for, raises the least
possible average signal transitions on the address bus of the
given processor. The algorithm takes the probability of each
instruction pair. Then randomly generates some op-code
sequence as the initial population. Afterwards it iteratively
uses some problem specific heuristics to generate a better
population based upon the existing population and the table of
pair probabilities, in this manner better and better populations
are generated until (after about 200000 iterations) no better
op-code sequence can be generated at which time the
algorithm stops. Results, for MIPS-R4000, show that the
proposed algorithm reduces the average switching activity of
the address bus by 44%.

Keywords: Chromosome, Genetic Algorithm, High Class,
Instruction coding, Low Class, Low power, Middle Class, Op-
code sequence, Switching activity

I. INTRODUCTION
The increasing trend of today technology to portable and

battery operated systems on the one hand and numerous
problems posed by large and extensive circuitry in IC's, such
as cooling on the other hand leads the designers to low-power
circuits. Studies have shown that power dissipation in static
CMOS circuits is directly related to their sa (switching
activity) as the following equation also tells us the same fact:

Eavg = sa * C * V 2
A new technique for switching activity reduction in fetch unit
of a generic processor is presented in this paper. What we are
looking for is an optimum op-code sequence for instructions

of a processor which results in the least possible switching
activity (in the fetch unit) in the CPU while executing different
programs.

One of the inevitable functions of a CPU is fetch. Fetch unit
is the ever active unit of almost all CPU's. A dominant source of
switching activity in this unit is the bit transitions caused by
instruction words. Each instruction word is composed of an op-
code (operational code) part plus some other parts. Minimizing
the bit transitions caused by op-code part of instruction words
can noticeably reduce the total switching activity of the fetch
unit; this is the target of this paper.

For the rest of the paper we have introduced related works
in section II. Section III talks about optimum instruction coding
and the related topics. In section IV the details of the proposed
algorithm are given. Results and summary are the topics of
sections V and VI, respectively.

II. RELATED RESEARCHES
Bit transition reduction in data and address busses of

processors has attracted the attention of many research groups
recently. T0 method [2] proposes adding an extra line to address
bus which signals the regularity (augmented one by one) of
addresses. Whenever the cited line is '1' memory control
circuitry simply adds 1 to the previous address and generates the
new address. [3] achieves the same goal without using the extra
line; in this technique by inspecting the address bus whenever no
change is made to it, it is added by one, otherwise the new
address is used. Locality of data and address references is used
by [4] in which addressing is done through the use of offsets and
bases. Although these techniques give efficacious solutions to
activity reduction of address unit they do not reduce switching
activities caused by instructions themselves. Unfortunately
instructions do not follow any regularity. The encoding
technique proposed in [5] uses self-organized lists to obtain an

52

The 18th International Confernece on Microelectronics (ICM) 2006

optimum encoding for accessing frequently used addresses.
Introduced in [6] is a power reduction technique based on
association of suitable op-codes to instructions which
considers instruction op-codes and the movement among
instructions as a state machine. In this state machine
instructions are modeled to states and fetches are considered
as state transitions. Then minimum average switching activity
in the state machine is looked for using the proposed
techniques in [7] and [8]. The corresponding state machine in
[7] which works based on integral linear programming has too
many states and consumes too much time to give the optimum
op-code sequence and practically is not usable. [8] is similar to
[7] except that using some heuristics tries to speed up the
calculations. The technique is less accurate and due to too
many sates of its state machine is practically useless.

III. OPTIMUM INSTRUCTION CODING
Associated to each instruction of a CPU is an op-code;

this is what we mean by instruction coding.

A. HOW INSTRUCTION CODING AFFECTS
ACTIVITIES IN FETCH UNIT
Frequencies of different instructions of a CPU are not

identical; i.e. in a typical program, instructions such as load,
jump and move are more frequent than instructions like divide
and multiply. This fact helps us devise more efficacious op-
code sets for instructions. Especially when some combinations
of instructions are more probable to appear in a typical
program, we can assign such op-codes to these instructions
that the resulting switching activity becomes as few as
possible. As an example consider the op-code sequence of
Table I. As you see the most probable instruction pair in this
table is (LD, ST); it means that in typical programs 11.64%
(see Table I) of two consecutive instructions are loads (LD)
followed by stores (ST). Therefore instruction coding
{LD=00, ST=01} is better than {LD=00, ST=11}; since the
former causes just 1 bit transition whereas the latter causes 2
bit transitions.

Current
Instruction

Next
Instruction

Probability
(P)

Cost
(C) C * P

LD(00) LD(00) 0.095251 0 0
LD(00) ST(01) 0.116411 1 0.116411
LD(00) ADD(10) 0.00521 1 0.00521
LD(00) SUB(11) 0.088735 2 0.17747
ST(01) LD(00) 0.08958 1 0.08958
ST(01) ST(01) 0.086719 0 0
ST(01) ADD(10) 0.084454 2 0.168908
ST(01) SUB(11) 0.042384 1 0.042384
ADD(10) LD(00) 0.078568 1 0.078568
ADD(10) ST(01) 0.039663 2 0.079326
ADD(10) ADD(10) 0.050523 0 0
ADD(10) SUB(11) 0.004492 1 0.004492
SUB(11) LD(00) 0.036448 2 0.072896
SUB(11) ST(01) 0.078474 1 0.078474
SUB(11) ADD(10) 0.015107 1 0.015107
SUB(11) SUB(11) 0.08798 0 0

AHD (Average Hamming Distance) 0.928826

Table I - AHD for an instruction set of 4 instructions and op-code sequence
of {LD=00, ST=01, ADD=10, SUB=11}

B. COST OF AN INSTRUCTION CODING
As implied in the previous section knowing the appearance

probabilities of different combinations of instructions is
necessary to associate an optimum op-code to each instruction.
In this paper we use frequencies (appearance probabilities) of
pairs of instructions. To obtain the frequencies of instruction
pairs we have first compiled benchmark programs (including
compressors, word processors and compilers) and then in the
resulting assembly program we have counted all pairs of
consecutive instructions and in this way we have calculated the
frequency of instruction pairs (for MIPS-R4000 processor).

To each instruction pair we associate a cost. The Hamming
distance between op-codes of each pair is considered as its cost.
As you may know the Hamming distance between two bit
patterns is the number of bits where the patterns do not have
similar bits; for example the Hamming distance between 001010
and 010010 is 2 since there are 2 bits (bolded) in these patterns
that are not the same.

The cost of an instruction coding is defined to be the
weighted average Hamming distance (cost) of all pairs of op-
codes. It is mathematically expressed by the following formula:

�� ��
f

sf
s

sf IIPIIHDAHD),(),(

In the above formula, HD is the Hamming distance and P is the
probability associated with each instruction pair. If and Is are first
and second instructions respectively.

Table I, shows the information used to calculate the cost of
the following instruction coding:

ocSeq1 = {LD=00, ST=01, ADD=10, SUB=11}
In this table there are 16 pairs of instructions in conjunction with
their frequencies and costs. To obtain AHD (average Hamming
distance) of sequence ocSeq1, PC � is calculated for each pair.
Then these values are added up to give AHD which is by
definition the cost of ocSeq1.

C. ALGORITHM OUTLINE
Now we want to give you a general view of how the

proposed algorithm works: It is an iterative optimization
algorithm which looks for the optimum op-code sequence
(instruction coding). In each iteration, using genetic computing,
a new op-code sequence (population) is generated. Then the
AHD (fitness) of each op-code sequence is computed and
according to the obtained AHD's a better population is
generated. This iteration is repeated until no better op-code
sequence is found. In fact in this process, AHD is minimized and
the op-code sequence with the least AHD is found.

The search space in this problem is very vast; for a
processor with i instructions a total of about i! permutations exist
among which one (or more) has the least AHD (i.e. what we are
looking for). For a processor with 15 instructions the search
space size is 1,307,674,368,000 while typical instruction count
of today processors is about 80 or so.

53

The 18th International Confernece on Microelectronics (ICM) 2006

1. Start: Generate random population of n
chromosomes (n op-code sequences).

2. Fitness: Evaluate the fitness (AHD(x)) of each
chromosome x in the population.

3. New population: Create a new population by
repeating the following steps until the new
population has the least AHD
3.1. Selection: Select two parent chromosomes

from the population
3.2. Crossover: With a crossover probability

cross over (recombine) the parents to form
new offspring (op-code sequence). If no
crossover was performed, offspring is the
exact copy of parents.

3.3. Mutation: With a mutation probability
mutate new offspring at each locus
(position in chromosome).

3.4. Accepting: Place new offspring in the
new population

4. Replace: Use newly generated population for a
further run of the algorithm

5. Test: If the end condition is satisfied, stop,
and return the best solution in current
population

6. Loop: Go to step 2

Table II – The outline of the genetic algorithm used
in our solution

As you see an ordinary search technique can not find the
answer in a reasonable time period. Recently genetic
algorithms are extensively deployed in such problems to find
the optimum (or often sub-optimum) answer. Genetic
computing can perform better since it benefits from problem
specific heuristics to ignore some cases and move faster
toward global optimum(s). For problems with vast search
spaces, a well designed genetic algorithm is often (not always)
faster and more successful than other search techniques, since
it does not examine all cases.

IV. FINDING THE OPTIMUM OPCODE SEQUENCE
USING GENETIC COMPUTING
We deployed genetic computing to solve the problem; in

Table II the outline of the genetic algorithm which we have
used in our solution is shown. The key factors which cause a
genetic algorithm to converge to the answer are encoding
(representation), selection, crossover and mutation. These
factors drastically affect the performance of a genetic
algorithm and here we want to discuss each of them.

A. Encoding (Representation)
A genetic algorithm (GA) performs its search with some

chromosomes a group of which is called population. This is a
key question how a chromosome is related to the problem and
how it is represented. In this problem we consider a
chromosome to be an op-code sequence. Therefore a
population is a group of op-code sequences based upon their
fitness (AHD) a new generation (population) is created in each
iteration. As said before in the problem of instruction coding
we are given n instructions to each of which a unique op-code
from interval [0, n) is to be associated. Hence we can represent
a chromosome with a sequence of n numbers (op-codes) each
of which corresponds to some instruction; in the jargon of

genetic computing it is called permutation encoding. The output
of our algorithm is the best (fittest) chromosome.

B. Selection
GA (genetic algorithm) is not different from random search

unless we can make sure that a better generation is created from
the existing generation. In creation of a better generation
crossover and selection play very important roles. What
differentiates GA from random search is crossover which is
problem dependant and its efficacy is very much influenced by
selection. Domain (problem) knowledge helps us devise better
and more efficient schemes for crossover and selection.

Before crossing over two chromosomes we should first
select them from the population. To do so after the fitness of
each chromosome is evaluated we categorize the population into
three categories of High Class, Middle Class and Low Class
from each of which we select differently. The categorization is
done based upon the difference between the fitness of the best
and the worst chromosome. Specifically we form an interval,
called the fitness range, the lower bound of which is the least
AHD (the best fitness) and its upper bound is the greatest AHD.
Then those chromosomes whose fitness values lie in the lower
10% of the fitness range are classified as High Class (good)
chromosomes and those whose fitness values lie in the upper
10% of the fitness range, as Low Class and the rest are
considered as Middle Class chromosomes.

We use roulette wheel to select from High Class
chromosomes; i.e. the fitter the chromosome is the more
probable it is to be selected. Middle Class chromosomes are
randomly selected. But Low Class (bad) chromosomes are
selected using inverse roulette wheel; i.e. the fitter the
chromosome is the less it is probable to be selected. This is
because we select chromosomes to generate better offspring;
hence worse chromosomes should be bettered sooner.

C. Crossover
The objective of crossover is to use the results of previous

searches (populations) to generate a better generation. Domain
(problem) specific knowledge helps us devise efficient schemes
to move toward a better population and get closer to the
optimum answer. For the problem of optimum instruction coding
we propose 3 crossover schemes for the different classes of
chromosomes.

C.1. Low class chromosomes
In Figure 1 the proposed crossover scheme for low class

chromosomes is shown. The idea behind the scheme is to find
the genes which are responsible for the badness of the
chromosomes and to correct these bad genes by replacing them
with their peers in a good chromosome (step 5 in Figure 1). We
define bad genes to be those which are common to two bad (low
class) chromosomes.

As seen in Figure 1, two low class chromosomes are first
selected; then the intersection of the two chromosomes is found.
Then a good chromosome is selected from high class
chromosomes. Finally the original (bad) chromosome is copied
exactly to the offspring except for the common loci (positions in
chromosome) the values of which are copied from the high class
chromosome (step 5). In step 6 repeated genes, which make the
chromosome (op-code sequence) invalid, are replaced with bad
genes which were discarded in step 5.

54

The 18th International Confernece on Microelectronics (ICM) 2006

C.2. Middle class chromosomes
In Figure 2 the proposed crossover scheme for middle

class chromosomes is shown. The idea behind the scheme is to
find the genes which are responsible for the goodness of two
high class chromosomes and to inject them to a middle class
chromosome (step 5 in Figure 2) hoping that this injection
makes the middle class chromosome fitter. We define good
genes to be those which are common to two good (high class)
chromosomes.

As seen in Figure 2, two high class chromosomes are first
selected; then the intersection of the two chromosomes is
found. Then a middle class chromosome is selected and is
copied exactly to the offspring (step 4). In step 5 good genes
(common to good chromosomes) are injected into the
offspring. Validation is done in step 6 where repeated genes,
which make the offspring (op-code sequence) invalid, are
replaced with genes which were discarded in step 5.

C.3. High class chromosomes
In Figure 3 the proposed crossover scheme for high class

chromosomes is shown. The idea behind the scheme is to
associate distant op-code pairs (with greater Hamming distances)
to less frequent instruction pairs, hoping that distant pairs have
less chance to raise signal transitions on the address bus and
final AHD becomes less.

As seen in Figure 3, a high class chromosome is first
selected and copied exactly to the offspring (step 2). Then using
roulette wheel a rare instruction pair (with least possible
frequency) is selected from the corresponding table; this is step 3
in Figure 3 and the selection is such that pairs with lower
frequencies are more likely to be selected. In the figure pair (=,
<) is selected which has the frequency of 0. In step 4 roulette
wheel is used to select a distant op-code pair (i.e. the more
distant the more likely to be selected). Now the selected distant
pair is associated to the rare instruction pair selected in step 3.
Finally validation is performed in step 6 which removes repeated
genes (op-codes).

Figure 1- The proposed crossover scheme for low class (bad) chromosomes – The final offspring
which is placed in the next population is the op-code sequence of (1, 3, 4, 0, 6, 7, 5, 2)

Figure 2- The proposed crossover scheme for middle class chromosomes – The final offspring which
is placed in the next population is the op-code sequence of (1, 3, 2, 4, 5, 7, 6, 2)

55

The 18th International Confernece on Microelectronics (ICM) 2006

Figure 3- The proposed crossover scheme for high class (good) chromosomes – The final offspring which is placed in the
next population is the op-code sequence of (4, 0, 7, 3, 1, 5, 6, 2) - Probabilities are per 1000 instructions.

D. Mutation
Mutation is performed to prevent GA from getting stuck

in local optima. For this problem we propose to randomly
select two loci (positions in chromosome) and exchange their
values. This causes the chromosome to randomly jump to a
new area in the search space. We propose to perform mutation
with 1% of probability (i.e. on average, one out of 100
chromosomes is mutated). Notice that if the mutated
chromosome is not a good one, it becomes extinct after some
generations.

V. RESULTS AND DISCUSSION
The proposed technique can be applied to any processor

the op-codes of which are of the same size (like RISC
processors). [6] has reported his results for MIPS-R4000. To
show the efficacy of our technique we too, applied our
proposed technique to MIPS-R4000 and obtained the optimum
instruction coding (op-code sequence). Then we ran 8
different applications with the resulted op-code sequence and
measured the average switching activity of each program. [6]
has done the same procedure for his results as we have done
(the preceding steps). We used PCSpim [10] to simulate the
execution of programs on MIPS-R4000. This processor has a
total of 64 instructions (hence 6-bit op-codes) therefore the
chromosomes had 64 genes. The results are shown in Figure 4.

Figure 4- Switching Activities of different programs run with 3 op-
code set: Vendor's op-code set, [6] and the proposed technique

As seen in the figure the op-code set, obtained by the
proposed technique, reduces the total switching activity of the
address bus by 44% as compared with the original op-code set
of MIPS-R4000 (Vendor's), this is 12% better than of [6].

VI. SUMMARY AND CONCLUSION
The objective of this paper was to find the optimum

instruction coding (op-code sequence) for a given processor. The
optimum instruction coding is such arranged that raises the least
signal transitions while running different applicationc.

Chromosome Op-code sequence
Population size n��1020

High � roulette wheel
Middle � Random Selection
Low � inverse roulette wheel

Encoding permutation
High � Figure 3
Middle � Figure 2 Crossover type
Low � Figure 1

Crossover rate 90%
Mutation scheme Exchange of two randomly

selected loci
Mutation rate 1%

56

The 18th International Confernece on Microelectronics (ICM) 2006

Table III – summary of the proposed genetic algorithm
We presented a genetic algorithm which looked for the

optimum op-code set for the instruction set of a given
processor. We were motivated to optimize the op-code set
since some power saving could be achieved by minimizing the
signal transitions raised by instruction words. We deployed
genetic computing to find the solution since the search space
was very vast (for a processor with n instructions there are a
total of n! different op-code sets one (or more) of which raises
the least signal transitions on average).

The proposed algorithm takes two inputs: the list of all
instructions and an nn� table each entry of which gives the
frequency of its corresponding instruction pair. The output of
the algorithm is the optimum op-code sequence.

The outline of the proposed algorithm is given in Table II.
We proposed three crossover schemes, depicted in figures 1 to
3, which efficiently guide the population toward the optimum
op-code sequence. The proposed GA is summarized in Table
III. Results for MIPS-R4000 show that, the proposed
technique raises 44% less switching activity as compared to
the original instruction set of MIPS-R4000. The reduction is
12% better than that of [6].

REFERENCES
[1] Wei-Chung Cheng; Pedram. M, “Power-Optimal Encoding for a DRAM
Address Bus,” IEEE Transaction on VLSI, Vol. 10, Issue 2, pp. 109-118,
April 2002
[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address busses in low-power
microprocessor-based systems,” in Proc. IEEE 7th Great Lakes Symp. VLSI,
Mar. 1997, pp. 77–82.
[3] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredundant address bus
encoding for low-power,” in Proc. IEEE Int. Symp. Low-Power Electronics
and Design, Aug. 2001, pp. 182–187.
[4] E. Musoll, T. Lang, and J. Cortadella, “Working-zone encoding for
reducing the energy in microprocessor address buses,” IEEE Trans. VLSI
Syst., vol. 6, pp. 568–572, Dec. 1998.
[5] M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power address
encoding using self-organizing lists,” in Proc. IEEE Int. Symp. Low-Power
Electronics and Design, Aug. 2001, pp. 188–193.
[6] L. Benini, G. De Micheli, A. Macii, E. Macii, and M. Poncino, “Reducing
power consumption of dedicated processors through instruction set encoding,”
in Proc. IEEE 8th Great Lakes Symp VLSI, Feb. 1998, pp. 8–12.
[7] L. Benini, G. De Micheli, “State Assignment for Low Power Dissipation,”
IEEE Journal of Solid State Circuits, Vol. 30, No. 3, pp. 258-268, March
1995.
[8] G. D. Hachtel, M. Hermida, A. Pardo, M. Poncino, F. Somenzi, “Re-
Encoding Sequential Circuits to Reduce Power Dissipation," ICCAD-94:
IEEE/ACM International Conference on Computer-Aided Design, pp. 70-73,
San Jose, CA, November 1994.
[9] J. Heinrich, MIPS R4000 Microprocessor User's Manual, Second Edition,
MIPS Technologies, Mountain View, CA, 1994.
[10] SPIM, a MIPS32 simulator, Larus James,
http://www.cs.wisc.edu/~larus/spim.html, retrieved on 2006-04-05.

57

The 18th International Confernece on Microelectronics (ICM) 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	Button2:
	Button3:

