
King Fahd University of Petroleum & Minerals
College of Computer Sciences & Engineering

Department of Computer Engineering

Channel Routing

Sadiq M. Sait & Habib Youssef

December 1995

Introduction to Channel Routing

• Channel routing is a special case of the routing
problem.

• Apply a ‘divide-and-conquer’ strategy.

• Used in the design of custom chips as well
as uniform structures such as gate-arrays and
standard-cells.

• Very popular because it is efficient and simple,
and guarantees 100% completion.

1 2 3 4 5 6 7Col #

Trunk Track

Branch

m pk

m p k

Problem Definition

• The channel is defined by a rectangular region
with 2 rows of terminals along its top/bottom
sides.

• A number between 0 and N is assigned to each
terminal.

• These numbers are labels of grid points and
represent the netlist (zeros indicate that no
connection).

• In case of a standard-cell design methodology,
the objective is minimize number of tracks for
routing.

• For gate-array design methodology the objec-
tive is to finish routing.

• Horizontal segments belonging to different nets
that do not overlap may be assigned to same
track (see Figure).

• Thus, there are horizontal constraints on nets.

• Also, any two nets must not overlap at a ver-
tical column. (see Figure, column 3).

Constraint Graphs

• For any instance of the channel routing prob-
lem we associate two constraint graphs; to
model the horizontal and vertical constraints.

• The HCG(V, E) is an undirected graph where
a vertex represents a net.

• An edge (i, j) ∈ E represents that the horizon-
tal segments of net i and net j overlap.

• The V CG(V, E) is a directed graph where a
vertex represents a net.

• Each vertical column introduces an edge (i, j) ∈
E if net i has a pin on the top and net j on
the bottom of the channel.

Example

1 2 3 4 5 6 7

0 1 6 1 2 3 5

6 3 5 4 0 2 4

Col #

• The netlist can be represented by two vectors
TOP and BOT given by TOP=[0,1,6,1,2,3,5]
and BOT=[6,3,5,4,0,2,4].

• To determine if two horizontal segments of
nets overlap we define a set S(i), where S(i)
is the set of nets whose horizontal segments
intersect column i.

• The number of elements in each set is called
the local density.

• Clearly, the horizontal segments of two nets in
any set S(i) must not be placed in the same
horizontal track.

• For the above channel routing problem the val-
ues of S(i) are:

S(1) = {6} S(2) = {1,3,6}
S(3) = {1,3,5,6} S(4) = {1,3,4,5}
S(5) = {2,3,4,5} S(6) = {2,3,4,5}
S(7) = {4,5}

• Those sets which are already subsets of other
sets can be eliminated.

• For example, S(1) = {6}, and S(2) = {1,3,6}
are subsets of S(3) = {1,3,5,6}. Therefore
they need not be considered. The remaining
sets S(i) after elimination are called maximal
sets.

• For this example, the maximal sets are:

S(3) = {1,3,5,6} S(4) = {1,3,4,5}
S(5) = {2,3,4,5}

Construction of Horizontal Constraint
Graph

• The HCG (also known as the interval graph)
is constructed by placing an edge between ver-
tices i and j if both i and j belong to a set
S(k),

• For example, S(3) = {1,3,5,6}. Therefore
edges are placed between vertices (1,3), (1,5),
(1,6), (3,5), (3,6), and (5,6).

• The complete HCG is shown in Figure (a) be-
low.

6

5

3

2

1

(a) (b)

6

52

3

1

4
4

(c)

1

2

3

4

5

6

Zone Representation

• Is an alternate representation of the HCG.

• It is a graphical representation of the maximal
sets S(i).

• Each set S(i) is represented by a column and
the elements of the maximal sets S(i) are rep-
resented by line segments.

• In terms of the interval graph a zone is defined
by a maximal clique, and the clique number is
the density.

Zone Table

The zone-table for channel routing problem of the
previous Example is given in Table below.

column S(i) zone
1 {6}
2 {1,3,6} 1
3 {1,3,5,6}
4 {1,3,4,5} 2
5 {2,3,4,5}
6 {2,3,4,5} 3
7 {4,5}

Construction of VCG

• The VCG is simpler to construct.

• For every column k of the channel not con-
taining a zero in either TOP(k) or BOT(k) a
directed edge is drawn from vertex TOP(k) to
vertex BOT(k).

• For example, in the given netlist, TOP(2)=1
and BOT(2)=3. Therefore the VCG will have
an edge from vertex 1 to vertex 3.

• Similarly there is an edge from vertex 6 to ver-
tex 5, and so on.

• The complete VCG is shown in Figure (c) be-
low.

6

5

3

2

1

(a) (b)

6

52

3

1

4
4

(c)

1

2

3

4

5

6

Cost function and Constraints

• In the channel routing problem the length of
the channel is fixed.

• The objective then is to minimize number of
tracks.

• Unnecessary contact cuts and vias are also highly
undesirable (decrease in yield and reliability).

• The number of layers available for routing is
constant. (two or three).

• Several routing models exist for three layer
channel routing (VHV and HVH routing).

• In such a model there are obviously no vertical
constraints.

• We present heuristics to solve the two layer
H-V routing problem.

Approaches to Channel Routing

• Most techniques are based on the left-edge al-
gorithm with several extensions and variations
of this.

• In this algorithm tracks are processed one at a
time.

• In this lecture we will present the basic Left
Edge Algorithm.

• Then, the dogleg algorithm proposed by Deutch
which performs splitting of nets is described.

• Finally another technique that uses merging
of nets proposed by Yoshimura and Kuh is ex-
plained.

• All the above techniques aim at reducing the
total number of horizontal tracks required to
perform channel routing.

The Basic Left-Edge Algorithm

• The original left-edge channel routing algo-
rithm was proposed by Hashimoto and Stevens.

• It attempts to maximize the placement of hor-
izontal segments in each track.

• Segments of nets are sorted in the increasing
order of their left end points from the left-edge
of the channel, hence the name.

• The basic algorithm imposes the restriction
that each net consists of a single trunk.

• Trunks (horizontal segments) are routed on
one layer and branches (vertical segments) on
the other.

• In no vertical constraints the algorithm pro-
duces a solution with minimum number of tracks
given by maxi | S(i) |.

• This is also the lower bound on the number of
tracks.

Unconstrained left-edge algorithm

ALGORITHM Unconstrained ChannelRouter
Begin
1. Sort all nets on their leftmost

end positions;
2. Select the net with the lowest

left position;
Place it on the lower most available
track;
Delete net from list;

3. Continue scanning the list and select
from it nets that do not overlap with
the nets assigned to this track;
Assign the nets to the current track
and delete from list;

4. If list �= φ Then Goto 2;
5. Exit
End.

Example

• For the netlist shown in Figure below:

1 2 3 4 5 6 7

0 1 6 1 2 3 5

6 3 5 4 0 2 4

Col #

• Use the left-edge algorithm to assign nets to
tracks:

• The trunks, sorted in the order of their left
end points, are 6, 1, 3, 5, 4 and 2. This is
illustrated in Figure below.

4

6

3

1

2

5

1 2 3 560 1

46 3 5 4 20

• Ignore the vertical constraints for the moment.
Using the left-edge algorithm we try to assign
the sorted segments to tracks.

• The first segment chosen from the above sorted
list is 6 and is placed in track 1.

• The next segment in sequence is 1. But since
we have an edge (1,6) in HCG (see Figure (a))
it cannot be placed in the same track as 6.

• So also is the case with the trunks of nets 3
and 5 which are after net 1.

• The next net in sequence is 4 and since there
is no edge (6,4) in HCG, 4 is assigned to the
same track.

• The last element in the sorted list is 2, and
although there is no edge (6,2) in HCG, we do
have (4,2), therefore 2 is not assigned to track
1.

• The set of remaining sorted nets contains 1, 3,
5 and 2. Now the same procedure is repeated
to place the remaining segments in track 2,
and then in track 3 and so on.

• The final solution is shown in Figure below.

46

3

1 2 3

4

560 1

1

6 3 5 4 20

2

5

Example (contd)

• In the absence of vertical constraints the above
solution is acceptable.

• But we do have vertical constraints, and ig-
noring them will create short-circuit between
nets.

• A more elaborate algorithm which takes into
account the vertical constraint is the constrained
left-edge algorithm reported by Perskey et al.

• As in the previous case, horizontal segments
are placed on tracks from the lower left corner
of the routing region.

• The algorithm will place a horizontal segment
of a net only if it does not have any descen-
dants in the vertical constraint graph.

• The algorithm is commonly known as the con-
strained left-edge algorithm.

Constrained left-edge algorithm

ALGORITHM Constrained ChannelRouter
Begin
1. Sort all nets on their leftmost end positions;
2. Select the next net n with the lowest

left-end position;
If n has no descendants in VCG

Then Begin
Place n on the lowermost
available track;
Delete n from the sorted list;
Delete n from VCG
End

Else Goto 2
EndIf

3. Continue scanning the sorted list and from it
select those nets which do not overlap with
nets assigned to this track and have no
descendents in VCG;
Remove all selected nets from the list

4. If list �= φ Then Goto 2
5. Exit
End.

Example (contd)

Problem: Obtain a solution to the previous chan-
nel routing problem of taking both the horizontal
and vertical constraints into account.

• The same procedure as above is now repeated
but taking into consideration the vertical con-
straints.

• In this case, a segment corresponding to a net
can be placed in a track only if the nets corre-
sponding to its descendants have already been
assigned.

• Referring to the vertical constraint graph shown
below we see that only nodes 4 and 2 have no
descendants.

6

5

3

2

1

(a) (b)

6

52

3

1

4
4

(c)

1

2

3

4

5

6

• Now scanning the sorted list we ignore nets 6,
1, 3, and 5 because they all have descendants

and the corresponding nets have not been as-
signed.

• The first candidate is net 4. Therefore net 4
is assigned to track 1 and is deleted from the
sorted list as well as from the VCG.

• Continuing the scanning of the sorted list, we
reach net 2, which cannot be assigned to track
1 because of horizontal constraint (Figure (a)).

• The nets remaining in the list are 6, 1, 3, 5,
and 2.

• We now search for candidates that can go into
track 2. Scanning the sorted list, we ignore
nets 6, 1, and 3 since these have descendants
in the VCG.

• The next net, which is 5, is chosen and as-
signed to track 2. Net 2, the next in sequence
cannot be assigned to the same track as net 5
because of horizontal constraint.

• The above procedure is continued, and the fi-
nal solution is shown in Figure below.

0 1 2 3

4

56

0

1

23 456

1

4

6

5

3

2

Dogleg Algorithm
• The algorithm mentioned in the previous sec-

tion will fail if there are cycles in the VCG.

1 1 2

2 0 1

1 1 2

2 0 1

1

2

(a) (b) (c)

(a) Routing problem. (b) Vertical constraint
graph. (c) Solution using doglegging.

• The constrained left-edge algorithm fails, since
each net (1 and 2) is the descendant of the
other.

• Figure (c) shows that a solution to this prob-
lem is possible only if we allow splitting of net
segments.

• Even if the VCG contains no cycles, it is de-
sirable to allow splitting of horizontal tracks
(reduces the channel density).

1 1 2 2 0

0 2 0 3 3

1 1 2 2 0

0 2 0 3 3

(b)(a)

1

2

3

1 2

2 3

Example illustrating doglegging. VCG has no
cycles. (a) Problem and solution without dog-
legging uses 3 tracks. (b) Solution with dog-
legging uses 2 tracks.

• The splitting of horizontal segments of a net
is called doglegging.

• In doglegging we assume that the horizontal
splitting of a net is allowed at terminal posi-
tions only and no additional vertical tracks are
allowed.

Deutch’s Dogleg Algorithm

• This algorithm was proposed by Deutch.

• It helps in reducing the number of horizontal
tracks, particularly for channels with multi-pin
signal nets.

• The algorithm takes each multi-pin net and
breaks it into horizontal segments.

• A break occurs only in columns that contain a
pin for that net.

4

1

211 2

2a 2b

3a 3b

3

0

0

4432 3

1

2a 4

2b 3b

(a)

(b)

3a

4

1

2 3

(c)

(a) Channel routing problem. (b) VCG without
splitting of nets. (c) VCG with nets split.

• Using the new VCG the dogleg algorithm is
similar to the constrained left-edge algorithm.

Example

• Problem: For the channel routing problem
shown in Figure (a) find a solution using the
dogleg algorithm.

• Solution: The sorted list of net segments is
[1,2a,3a,2b,3b,4]. The set of nets S(i) whose
horizontal segments cross column i are given
by:

S(1) = {1,2a} S(2) = {1,2a,3a}
S(3) = {2a,2b,3a} S(4) = {2b,3a,3b}
S(5) = {2b,3b,4} S(6) = {3b,4}

• Referring to Figure (c) the net segments that
do not have descendants in the VCG are 2a,
3a and 4.

• Scanning the sorted list of net segments we
find that the first net segment that does not
have descendants is 2a.

• This segment is placed in the lowermost track.

• Continuing the scanning of the sorted list, the
next segment in sequence is 3a, but due to
horizontal constraint (see S(2) above) it can-
not be placed in the same track as segment
2a.

• Net 4, the next candidate in sequence, does
not have any horizontal constraint with seg-
ment 2a, and therefore is placed in the same
horizontal track.

• The placed nets are deleted from the sorted
list and the corresponding nodes are deleted
from the VCG.

• The above procedure is repeated by placing
the remaining segments in the next track, and
so on.

• The final solution is shown in Figure below.

2 303 44

1 1 2 0 2 3

42a

3a 3b

2b1

Yoshimura and Kuh Algorithm

• Motivation: If there is a path n1-n2-n3-· · ·-nk
in the vertical constraint graph, then obviously
no two nets among {n1, n2, n3, · · ·, nk} can be
placed on the same track.

• Therefore, if the longest path in terms of the
of nodes is k, at least k tracks are necessary.

• We now present two algorithms proposed by
Yoshimura and Kuh.

– The first algorithm uses the VCG and the
zone representation of HCG and attempts
to minimize the longest path in the VCG.
This is done by merging nodes of VCG so
that the longest path length after merging
is minimized.
Obviously, this merging is performed for the
purpose of minimizing the channel density.

– The second algorithm proposed by Yoshimura
and Kuh achieves longest path minimization
through matching techniques on a bipartite
graph.

• Both techniques report better results than the
dogleg algorithm.

• Before describing these algorithms we first in-
troduce the required terminology.

Definitions

• Let i and j be the nets for which,

(a) there exists no horizontal overlap in the zone
representation, and

(b) there is no directed path between node i
and node j in the vertical constraint graph,

(i.e., net i and net j can be placed on the
same horizontal track). Then, the operation
“merging of net i and net j”, results in the
following.

(a) It modifies the vertical constraint graph by
shrinking node i and node j into a single
node i · j; and,

(b) It updates the zone representation by re-
placing net i and net j by net i·j which occu-
pies the consecutive zones including those
of net i and net j.

Example

• Consider the netlist given below.

0 1 4 5 1 6 7 0 4 9 0 0
2 3 5 3 5 2 6 8 9 8 7 9

The zone table for this example is given in
Table below:

column S(i) zone
1 {2}
2 {1,2,3}
3 {1,2,3,4,5} 1
4 {1,2,3,4,5}
5 {1,2,4,5}
6 {2,4,6} 2
7 {4,6,7} 3
8 {4,7,8}
9 {4,7,8,9}
10 {7,8,9} 4
11 {7,9}
12 {9}

1

2

3

4

5 6

7

9

8

6

7

2

(a) (b)

5

3

1 4

8

9

• Consider nets 6 and 9. No horizontal overlap
and no vertical conflict (on separate vertical
paths), and therefore are candidates for merg-
ing.

• The merge operation explained above can then
be applied.

• The updated VCG and the zone representation
are shown in Figure.

• Due to merging, both nets 6 and 9 will be
placed in the same horizontal track. However
the position of the track is not yet decided.

• Modified zone representation and VCG with
merged nodes for the previous Example.

5

3

1

2

3

4

5

7

8
1 4

8

7

2

(a) (b)

6.9

6.9

The Algorithm

Algorithm merge1{zs, zt}
Begin
1. L={}; zs =leftmost zone; zt =rightmost zone.
2. For z = zs to zt Do

Begin
3. L = L+{nets which terminate at zone z};
4. R ={nets which begin at z + 1};
5. merge L and R so as to minimize

the increase of the longest path
in the vertical constraint graph;

6. L = L−{n1, n2, · · · , nj}, where
{n1, n2, · · · , nj}, are nets merged in Step 5;

End;
EndFor;

End.

Example of Yoshimura-Kuh Algorithm

• Problem: Apply merging of nets to the chan-
nel routing problem of previous Example and
obtain the routed solution.

• Solution:

zone 1: Refer to Figure. The set of nets that
terminate at zone 1 is L = {1,3,5} and the set
of nets which begin at zone 2 is R = {6}.
The merge operation can merge nets (1,6),
(3,6) or (5,6).

Verify that only the merging of nets 5 and 6
causes minimum increase in the length of the
longest path.

Therefore nets 5 and 6 are merged to form a
merged net 5 · 6 which ends at zone 3. The
updated set L is L = {1,3,5} − {5} = {1,3}.
(see Figures (a) and (b)).

• zone 2: In the next iteration, nets that ter-
minate at zone 2 are added to L. Note that
net 2 ends at zone 2. The updated set L is
{1,2,3}.
Only one net begins at zone 3, that is net 7,
therefore R = {7}. In the VCG, (see Figure
(b)) since nets 2 and 3 are along the same
path as net 7, the only candidate that can be
merged with net 7 is net 1.

The new merged net is 1 · 7. Next (see Figure
(c)), L is updated by adding nets that end at
zone 3 (net 5 · 6) and removing the nets that
are merged (net 1), L = {1,2,3}−{1}+5 ·6 =
{2,3,5 · 6}. The set of nets which begin at
zone 4 is R = {8,9}.

• zone 3: Observe that the merged net 5 · 6
ends at zone 3. In this step the merged net
5 ·6 is merged with net 9, and net 3 is merged
with net 8 to form the merged nets 5 ·6 ·9 and
3 · 8.

• The above procedure continues until the last
zone is reached. Figure below illustrates how
the vertical constraint graph is updated by the
algorithm.

95

3

1 4

6

8

9

7

2 3

4

8

9

2

4

2

(a) (b) (c) (d)

5.6

3

1 4

8

7

2

1.7

5.6

1.7

5.6.9

3.8

• Thus, applying the algorithm first, net 5 and
net 6 are merged. Then net 1 and net 7, and
finally nets 5 ·6 with net 9 and net 3 with net 8
are merged. The final graph is shown in Figure
(d) above.

• In the next step we apply the left-edge al-
gorithm and assign horizontal tracks to the
nodes of the graph. The list of nets sorted on
their left-edges is [2,3 · 8,1 · 7,5 · 6 · 9,4].

• The final routed channel is shown in Figure
below.

1

2
3

0 1 4 5 1 6 7 0 4 9 0 0

2 3 5 3 5 2 6 8 9 8 7 9

4
7

8
95 6

An Improved Algorithm Based on
Matching

• In the algorithm of the previous section it is
possible that a merging of nets may block sub-
sequent mergings.

• To avoid this type of situation as much as pos-
sible Yoshimura and Kuh introduced another
algorithm.

• In this algorithm a bipartite graph Gh is con-
structed where a node represents a net and an
edge between net a and net b indicates that
nets a and b can be merged.

• A merging is expressed by a matching on the
graph which is updated dynamically.

Example

• Given the problem instance of Figure below.

(a) (b)

g

h
a b

g

hc

a

b

c

d

e

f

d

e

f

• Let us assume that at zone 1 the algorithm
merges net a with net d, and net b with net
e respectively (if we follow the merging algo-
rithm of the last section these mergings will
not occur, but they are assumed only for illus-
tration).

• The VCG and zone representations are modi-
fied as shown in Figure below.

(a) (b)

a.d

g

h
a.d

g

h

b.e

c b.ecf

f

• The merged VCG indicates that net f cannot
be merged with either net c or net g because
a cycle would be created.

• However if we merge net a with d and net c
with e, then net f can be merged with net b
as illustrated in Figure below.

• Merging of nets a and d, c and e, and b and f .

(a) (b)

a.d

c.e

g

h

b.f

a.d b.f

g

hc.e

• Therefore the final solution is order dependent.

Example

• In this example we introduce a bipartite graph
where a node represents a net and an edge
between net a and net b signifies that net a
and net b can be merged.

• A merging is expressed by a matching on the
graph. The idea is explained using the example
of Figure below.

(a) (b)

g

h
a b

g

hc

a

b

c

d

e

f

d

e

f

• We see that net d as well as net e can be
merged with any of the three nets a, b or c
in zone 1. The algorithm constructs a bipar-
tite graph Gh as illustrated in Figure (a) below
and a temporary merging is feasible but nei-
ther the vertical constraint graph nor the zone
representation are updated.

(a) (b) (c)

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

g g

• Next we move to zone 2, where net g termi-
nates and net f begins. So we add g to left
and f to the right of Gh as shown in Figure
(b).

• Since the VCG in Figure (b) indicates that net
f can be merged with either net a, net b or net
c, three edges are added and the matching is
also updated as shown by the heavier lines in
Figure (b).

• Of course there is no guarantee that the merg-
ing which corresponds to the updated match-
ing satisfies the vertical constraints (horizontal
constraints are satisfied automatically), so the
algorithm checks the constraints and modifies
the matching as shown in Figure (c).

• At zone 3, net d and net f terminate. This
means that, in processing zone 3, node d and

node f should be moved to the left side in
graph Gh and merged with their partner nets
a and b, respectively, as shown in Figure (a)
below.

(a) Updated graph Gh. (b) Updated VCG after
processing zone 3.

(a) (b)

a.d b.f

g
h

c e

a.d

b.f

g

h

c
e

• Net c and net e have not been merged yet,
since e has not terminated.

• The vertical constraint graph is also updated
as shown in Figure (b) above.

• A matching is next sought for the updated Gh.
The above procedure continues until all zones
have been processed (see Exercise at the end
of the chapter).

Greedy Channel Router

• The channel routers discussed in the earlier
sections route the channel one track at a time.

• A heuristic for channel routing known as the
‘greedy channel router’ routes the channel col-
umn by column.

• In each column the router applies a sequence
of greedy but intelligent heuristics to maximize
the number of tracks available in the next col-
umn.

• It does not use horizontal or vertical constraints.
All decisions are made locally at the column.

• The algorithm handles routing problems even
with cycles in the VCG.

• Routing is always completed, sometimes with
additional columns at the end of the channel
called spillover.

• Unlike other channel routers, in this technique
a net can occupy two different tracks until the
heuristic decides to merge them.

• Also, instead of doglegging only at terminal
locations, the greedy router allows any hori-
zontal connection to change tracks.

Definitions

• Initial-channel-width

• Minimum-jog-length

• Steady-net-constant

• Rising, falling, and steady nets

• Split net and collapsible net

• Spillover area

Greedy Channel Router

• The greedy router takes as input the specific
channel routing problem and three non-negative
integers, initial-channel-width, minimum-jog-
length, and steady-net constant.

• The router scans the channel column-by-column
from left to right.

• It uses six steps in routing each column.

• The wiring at a given column is completed be-
fore proceeding to the next. We will now ex-
plain the general idea and the various steps
involved.

Steps of Greedy Channel Router

• Step 1: Make feasible top and bottom connec-
tions in minimal manner.

• Step 2: Free up as many tracks as possible by
collapsing split nets.

• Step 3: Add jogs to reduce the range of split
nets.

• Step 4: Add jogs to raise rising nets and lower
falling nets.

• Step 5: Widen channel if needed to make pre-
viously infeasible top or bottom connections.

• Step 6: Extend to next column.

Step 1 of Greedy Channel Router

4

1

2

3
4

1

2

3

4

4

1

2

3

1

2
3

1 1

00

Before AfterBeforeAfter

1

2

1

2

Before After

1

2

1

2

2
3

1

0

5

4

2

3

1

0

5

4

Before After

2

3

1

4

2

3

1

4

Before After

3

2

3

2

2

3

1

5

4

2

3

1

5

4

Before After5 5

(a) (b)

(c) (d)

(e) (f)

Step 2 of Greedy Channel Router

2

3

1

2

3

1

Before After2 2

3

1

4
3

1

4

Before After

0 0

0 0

4

1

0 0

1
4

2
3

1

Before After

2
1 1

Before After

0

0 0

1

0 0

1

1

4
3

2
3

1

2

0

1

4

3 2

2 2

2

(a) (b)

(c) (d)

Steps 3 to 6 of Greedy Channel router.
(a)-(d).

1

0

(a) (b)

(c) (d)

After After

0

2
1

0

Before

0

1

4
3

-

-

-

-

1

2

1

0

2
1

0

2

1

0Before

1
5

6

7

1

0

1
5

6

7

1

0

1

5

6

7 7

5

4
3

Before After

The router will always complete routing success-
fully, although, to do so, sometimes it may use
a few additional columns beyond the right end of
the channel.

Example of Greedy Channel Router

Apply the greedy algorithm of Rivest and Fiduccia
to route the netlist given below.

0 1 2 5 7 1 6 0 2 9 0 0
4 3 5 3 5 4 7 1 3 1 6 9

Let the initial-channel-width be 6 tracks, and the
minimum-jog-length allowed be equal to 1.

Solution to greedy router problem of above Exam-
ple is shown in Figure below.

0 1 2 5 7 1 6 0 2 9 0 0

4 3 5 7 1 6 93 5 4 3 1

T
0

T
1

T
2

T
3

T
4

T
5

• The solution is obtained as follows:

Let the tracks be numbered from T0 to T5 as
shown in Figure above. We shall explain the
application of the above heuristic at each col-
umn starting from the left-most.

Column 1: Connect pin 4 to T5 and extend it
to the next column.

Column 2: Connect pin 1 to T0 and pin 3 to
T4 and extend tracks T0, T4, and T5 to the
next column.

Column 3: Connect pin 2 to T1 and pin 5 to
T3. Jog net 5 from T3 to T2 since net 5 is
a rising net. Extend tracks T0, T1, T2, T4,
and T5 to the next column.

Column 4: Connect pin 5 to T2 and pin 3 to
T4. Jog net 5 from T2 to T3 since net 5
now is a falling net. Extend tracks T0, T1,
T3, T4, and T5.

Column 5: Connect pin 7 to T2 and pin 5 to
T3. Extend tracks T0, T1, T2, T4, and T5 to
the next column.

Column 6: Connect pin 1 to T0 and pin 4 to
T5. Jog net 1 from T0 to T3 since net 1 is
a falling net. Extend tracks T1, T2, T3, and
T4.

Column 7: Connect pin 6 to T0 and pin 7 to
T5. Merge tracks T2 and T5. Extend tracks
T0, T1, T3, and T4.

Column 8: Connect pin 1 to T5. Jog net 5
from T0 to T2 and jog net 1 from T5 to T3.
Extend tracks T1, T2, T3, and T4 to the next
column.

Column 9: Connect pin 2 to T1. and pin 3
to T5. Merge tracks T4 and T5 and extend
tracks T2 and T3.

Column 10: Connect pin 9 to T0 and pin 1 to
T5. Jog net 9 from T0 to T1, merge Tracks
T3 and T5 and then extend tracks T1 and
T2.

Column 11: Connect pin 6 to T5, merge Tracks
T2 and T5, and extend tracks T0 and T1.

Column 12: Connect pin 9 to T5 and merge
tracks T1 and T5.

• The complete solution obtained by the appli-
cation of the greedy router is shown in Figure
above.

Switchbox Routing

• When rectangular cells are placed on the layout
floor, normally two kinds of routing regions are
created: channels and switchboxes.

• Switchboxes are generalizations of channels and
allow terminals on all four sides of the region.

• The switchbox routing problem, as will be seen,
is more difficult than the channel routing prob-
lem.

Switchbox Routing Problem
Definition

• A switchbox is a rectangular region with no
inside obstructions, and with terminals lying
on all four sides.

• The terminals are grouped into a collection S
of disjoint sets called nets.

• To identify which terminals are to be con-
nected, each terminal is labeled with a net
identification number k, 1 ≤ k ≤ |S|.

• Formally a switchbox is defined as a region
R={0,1, · · · , m} × {0,1, · · · , n} where m and n
are positive integers.

• Each pair (i, j) in R is a grid point. The ith
column is a set of grid points COL(i) = {(i, j) |
j ∈ {0,1, · · ·n}}, 1 ≤ i ≤ m.

• The jth row or track is a set of points ROW (j) =
{(i, j) | j ∈ {0,1, · · ·m}}, 1 ≤ j ≤ n.

• The zeroth and mth columns are the left and
right boundaries of the switchbox respectively.

• Similarly, the zeroth and nth rows are the top
and bottom boundaries of the switchbox.

• The connectivity and location of each terminal
is represented as LEFT(i) = k, RIGHT(i) = k,
TOP(i) = k, and BOT(i) = k, depending on
which side of the switchbox it lies on, where i
stands for the coordinate of the terminal along
the edge and k for its identification number.

• Lee-type algorithms are not suitable for solving
this problem. Lee-type routers do not check
ahead to avoid unnecessary blocking of other
terminals.

• The goal of the switchbox router is to electri-
cally connect the terminals in each individual
net.

• Connections run horizontally or vertically along
rows and columns along grid lines.

• As in previous cases, only a single wire is al-
lowed to occupy each row and each column
segment. The wires are allowed to cross.

• An example of a switchbox is shown in Figure
below for which we have

R={0,1,2,· · ·,7,8,9} × {0,1,2,· · ·, 15,16,17}

TOP = (1,· · ·,8) = [8,7,1,2,6,1,5,3]
BOT = (1,· · ·,8) = [10,12,1,10,3,9,5,11]
LEFT = (1,· · ·,16) = [0,3,10,0,0,0,2,0,11,1,0,0,13,6,0,4]
RIGHT= (1,· · ·,16) = [10,5,9,2,12,5,8,11,7,5,7,3,13,6,3,4]

4

0
13

0

11

3

9

10

12

5
7

6

1

2

5

7

8

3

5

4

13

11

3
10

6

2

0

0

0
0
0

0

1 1 3

910 12

57 62

5

8

31 10 11

Switchbox Routing Algorithm

• We now present an efficient switchbox routing
algorithm due to Luk.

• This algorithm is a modification and extension
of the greedy routing heuristic of Rivest and
Fiduccia discussed earlier.

• Some operations of the greedy heuristic that
are not vital to its operation are relaxed and
modified to overcome the additional constraints
of switchbox routing.

• The additional constraints are:

(1) the matching of the terminals on the LEFT
and RIGHT of the routing region,

(2) bringing in left-edge terminals directly into
the routing region as horizontal tracks at
the column,

(3) instead of jogging to the next top and bot-
tom terminals as in Step 4 of the greedy
router, the horizontal tracks must be jogged
keeping in mind the target row, which is, a
row where a right edge terminal is located.
This jogging is to ensure matching the nets
with their right edge terminals.

Jogging Strategies

The main modification to the greedy channel router
of Rivest and Fiduccia is in the jogging schemes
applied to accommodate the additional switchbox
constraints discussed above.

The various jogging schemes are defined as fol-
lows.

(1) (JogR). For nets that have terminals on the
RIGHT, this jog is performed until the net oc-
cupies a track that matches one of the right
edge terminal positions.

(2) (JogT/B). For nets that only have terminals
on TOP and BOT, this jog is similar to the
one in the greedy channel router.

(3) (JogT/B; JogR). In this jogging scheme, first

(JogT/B) is performed on every net and then a

switch is made to perform (JogR) at the col-
umn where the last top and/or bottom termi-
nals appear.

Examples of the above jogging schemes are illus-
trated in Figure below:

Jogging schemes. (a) (JogR). Nets 1,2, and 3 jog
to right side target terminal. (b) (JogT/B; JogR).

(JogT/B) performed until column 3 and then (JogR).

01 02

2 0 1 0

(b)

1

2

3

1

1

2

3

0

0

0

0

(a)

General Structure of Switchbox
Algorithm

The general structure of the switchbox routing al-
gorithm is given in Figure below:

Algorithm SwitchboxRouter
Begin
0. Determine Scan Direction;

Bring in LEFT terminals into column.
Loop for i from 1 to m − 1 Do
1. If empty tracks exist then bring TOP(i)

and BOT(i) into empty rows;
2. Join split nets as much as possible;
3a. For net with no right terminal Do

Bring split nets closer by jogging;
3b. For net with right terminal Do SWJOG;
4. When close to right edge Do

Fanout to targets;
5. If Step 1 failed then increase number of rows;

Repeat Step1; update columns 1 to i;
While split nets exist Do;
6. Increase number of columns by 1;

Join split nets as much as possible;
End.

Steps of the Algorithm

• The algorithm begins by assigning one of the
four edges of the switchbox as the LEFT edge.

• Then the direction of scanning is determined
(this is done in Step 0). The quality of the
final solution depends on the direction of the
scan.

• A good heuristic based on augmented channel
density distribution is proposed by Luk.

• Once the scan direction is decided, the LEFT
edge terminals are brought into the first col-
umn.

• Then, for each column the first four steps
listed below are repeated.

• In Step 1 the nets TOP(i) and BOT(i) are
brought into empty rows.

• In the second step split nets are joined as much
as possible to increase the number of free tracks.

• Step 3 comprises of jogging. In Step 3a, as
in the case of the greedy channel routing al-
gorithm, trunks of each split net, which have
no terminals on the right are brought closer by
jogging.

• And in Step 3b, for those nets which have ter-
minals on the right we use the combination of
jogging strategies discussed above.

• This procedure is called SWJOG. It divides the
routing region into a left p-portion and a right
p-portion.

• The jogging strategy to be applied depends
upon the location of the column (in left or
right p-portion) where the decision is to be
made.

• The value of p is between 0 and 1. Below we
now enumerate the rules for SWJOG.

(a) For nets that do not have right side termi-
nals, always perform JogT/B.

(b) For nets that have a right side terminal and
whose rightmost top/bottom terminal is on
the right p-portion of the routing region,
perform JogR for that net.

(c) For nets that have a right side terminal
and whose rightmost top/bottom terminal
is on the left p-portion of the routing region,
perform (JogT/B; JogR), that is, (JogT/B)

before the last top/bottom terminal and
(JogR) at and after the last top/bottom
terminal.

(d) The value of p may vary between 0 and 1.
If p = 0 perform (JogR). Obviously, if p = 1
perform (JogT/B; JogR). A typical value of
p is 0.5.

• In the implementation, a distance dependent
threshold scheme is used to avoid excessive

jogging. A net is allowed to jog to its target
row only if it can be brought to or beyond
half-way between the initial position and final
target position.

• For nets that have a terminal in RIGHT and
whose right-most top/bottom terminal is (a) on
right p-portion of routing region perform (JogR).
(b) on left p-portion of routing region perform
(JogT/B; JogR).

0 1p n

n

0 1pn

n

(a) (b)

• In Step 4 for nets that occupy more than one
location on the RIGHT, when they get closer
to the right edge, these nets are made to fan-
out to their final terminal locations.

• Step 5 consists of increasing the number of
rows if Step 1 failed.

• And in Step 6, if split nets exist then the num-
ber of columns is incremented and split nets
are joined as much as possible.

• The complete routed solution of of the earlier
illustrated problem is shown in Figure below.

4

0
13

0

11

3

9

10

12

5
7

6

1

2

5

7

8

3

5

4

13

11

3
10

6

2

0

0

0
0
0

0

1 1 3

910 12

57 62

5

8

31 10 11

• The time efficiency of the switchbox router is
the same as the greedy channel router. The
router can be modified to route a region with
terminals fixed on any three sides.

Other Approaches and Recent Work

• We now look at some related work in the area
of channel and switchbox routing.

• Recent algorithms for both channel and switch-
box routing.

• We will look into a channel routing approach
proposed by Chaudry and Robinson based on
sorting.

• Their approach assumes that wires, in addition
to running horizontally and vertically, can also
run at 45◦ and 135◦.

• Techniques for multilayer and over the cell chan-
nel routing are discussed.

Channel Routing by Sorting

• Without loss of generality the nets in TOP
can be assumed to be numbered in sequence
1,2, · · · , n.

• For example the channel routing problem TOP
= [5, 4, 3, 2, 1, 6] and BOT=[1, 2, 4, 3, 5, 6]
can be also be specified as TOP=[1, 2, 3, 4,
5, 6] and BOT = [5, 4, 2, 3, 1, 6], where the
terminal labels in TOP are reordered to be in
sequence and corresponding changes are made
to the labels in BOT

• See Figure below for equivalent channel rout-
ing problems.

1

63

53

4

2

5 1

6

2

45

63

13

2

4

1 5

6

4

2

• The problem can also be specified as [5,4,2,3,1,6].

• Then, the nets in BOT are a permutation of
the sequence in TOP.

• Two permutations pi and pi+1 are said to be
adjacent if the routing problem obtained by
assigning pi to the lower side and pi+1 to the
upper side of the channel can be routed in one
track.

• Possible adjacent permutations and the asso-
ciated routing are shown in Figure below.

1

23

34

4

5

5 6

6

1

2

1

2

2

3

3

4

4

5

5

6

6

1

(a) (b)

• The solution to the channel routing problem
is represented as a series of permutations {pi},
i = 1,2,3, · · · , w such that p1 is the given per-
mutation (BOT) and pw = (1,2, · · · , n) (TOP),
and pi is adjacent to pi+1, for 0 ≤ i ≤ w.

• The channel routing problem then amounts to
finding a series of intermediate adjacent per-
mutations {pi} such that the number of per-
mutations w is minimized.

• We now present the basic idea behind two
routers, namely Swap-router and Sort-router.
These routers are based on permutations and
sorting.

Swap Router

• In swap router, two nets that have adjacent
terminals in the wrong order are interchanged.

• These nets can be connected using X rout-
ing as shown in Figure below. Note that it is
assumed that connections can run at 45◦ and
135◦.

3

3

4

4

5

5

6

6

1

2

2

1

• A series of adjacent permutations can be built
using only X routing.

• This corresponds to factoring the permutation
as a product of transpositions.

• Routing is done from bottom to top. If (a1, a2,
· · · , an) is the bottom permutation, we com-
pare ai and ai+1 for i = 1,3,5, · · · , n; and swap
the terminals if ai > ai+1.

• In the next step the process is repeated for
i = 2,4,6, · · · , n.

• The above two steps are repeated until all the
terminals are in the correct order.

• Since two nets cross only once if their termi-
nals are not in order the routing obtained by
this swap-router is a minimal crossing solution.

• Bounds on the channel width are obtained in
terms of span number. The span of a termi-
nal in a permutation is the difference of the
terminal number and its position in the per-
mutation.

• For example, in the permutation (5,4,1,3,6,2),
number 1 has a span of -2, number 2 has a
span of -4, number 3 has a span of -1, and so
on.

• The span number tells us how far the number
is from its correct position.

• Since in each step a net moves by at most
1 column, a net with span of y will require y
steps. It can therefore be concluded that

number of steps ≥ max(|spani|), 1 ≤ i ≤ n
(1)

• Clearly, channel width can be reduced by re-
moving the restriction of moving only one col-
umn at each step.

Example

Determine the number of tracks required to route
the channel instance specified by [5,4,6,2,1,3] us-
ing the swap-router.

Solution

• For the problem under consideration, TOP=[1,
2, 3, 4, 5, 6], BOT=[5, 4, 6, 2, 1, 3].

• We begin from bottom. In the first pass we
compare ai and ai+1 for i = 1,3,5, · · ·.

• This leads to a permutation (4,5,2,6,1,3). In
the next pass, we repeat the above, but for
i = 2,4,6, · · ·.

• The resulting permutation is (4,2,5,1,6,3). In
the third pass, again we apply swapping for
i = 1,3,5, · · ·. and the resulting permutation
is (2,4,1,5,3,6).

• The last two permutations are (2,1,4,3,5,6)
and (1,2,3,4,5,6) respectively.

• The routed solution is illustrated in Figure be-
low.

1 2 3 4 5 6

2 34 5 6 1

4 2 5 1 6 3

2 4 1 5 3 6

2 1 4 53 6

5 4 6 2 1 3

Sort Router

• From the previous discussion it is clear that
any sorting algorithm based on exchanges can
be easily converted to a channel router.

• An algorithm based on bubble-sort is presented
by Chaudry and Robinson.

• The steps of bubble-sort swap a pair of num-
bers only once if they are in the wrong order.
Therefore, as in the case of swap-router, the
sort-router always produces a minimal crossing
solution.

• Since in one pass of the bubble-sort at least
one number moves to its final place, it would
require at most n steps to sort the n numbers.
Thus the channel width will be ≤ n, where n
is the number of nets.

• Here again 45◦ routing is allowed.

• We will illustrate this process with an example.

Example

Apply the sort-router based on bubble sort to the
channel routing problem where TOP=[1, 2, 3, 4,
5, 6], and BOT=[5, 4, 6, 2, 1, 3].

Solution

• The problem instance to be routed is (5, 4, 6,
2, 1, 3).

• We now have to sort these numbers. Each in-
termediate step of sorting will produce an ad-
jacent permutation and will require one track.

• The numbers in bubble-sort can be either scanned
from left to right or vice-versa; and the num-
ber of passes required to complete sorting will
depend on the direction of scan.

• If the numbers are scanned from left to right
we call this a right-step, and if they are scanned
from right to left we call this a left-step.

• The number of steps required to route varies
depending on the direction of scan. The inter-
mediate permutations for both the right-step
and left-step are shown below as R-step and
L-step respectively.

R − step =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 2 3 4 5 6
2 1 3 4 5 6
4 2 1 3 5 6
4 5 2 1 3 6
5 4 6 2 1 3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

L − step =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 2 3 4 5 6
1 2 3 5 4 6
1 2 5 4 6 3
1 5 4 6 2 3
5 4 6 2 1 3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

• Coincidentally, in this example, the number of
intermediate permutations for both the right
step and the left step are the same.

• The channel routing solution of the above prob-
lem for both scan directions are given in Figure
below: (a) Left to right scanning. (b) Right
to left scanning.

1 2 3 4 5 6

5 4 6 2 1 3

1

4 31 5 6

2 3 45 6

41 32 5 6

2

(b)

1 2 3 4 5 6

5 4 6 2 1 3

1

2 34 5 6

2 3 4 5 6

4 1 32 5 6

1

(a)

• Details of choice of optimal step-type, and ex-
tensions to multiterminal nets, and multilayer
routing are available in literature.

Over-the-cell Channel Routing

• Another extension to the classical channel rout-
ing problem is over-the-cell channel routing.

• This method is employed when there are at
least two layers in the routing channel, and
one routing layer over the channel.

• Certain nets can be partially or totally routed
on one side over the channel using the single
available layer. Then, the remaining net seg-
ments are chosen for routing.

• Therefore, a common approach to over-the-
cell channel routing is to divide the problem
into three steps, namely, (1) routing over the
channel, (2) choosing the net segments, and
(3) routing within the channels.

• The third step can be accomplished easily us-
ing one of the conventional techniques dis-
cussed in Chapter 7 of the text.

• Cong and Liu showed that the first step can be
formulated as the problem of finding a maxi-
mum independent set of a circle graph and can
be solved optimally in quadratic time.

• In this step a row of terminals are routed on
one side of the channel using a single routing
layer.

• The result is that the number of hypertermi-
nals are minimized.

• Cong and Liu called this problem multiterminal
single-layer one-sided routing problem (MSOP).

• The second step is formulated as the problem
of finding a minimum density spanning forest
of a graph.

• An efficient heuristic which produces satisfac-
tory results is proposed.

• A channel routing problem and its over-the-cell
solution are illustrated in Figure below.

1 62

2

21 6 3 4 3 4 6

1 3 1 6 4 5 6 5 4 4
Over-the-cell routing

Over-the-cell routing

Summary

• In this session, we presented the problem of
channel routing.

• Graph theoretic approaches to solve the chan-
nel routing problem were presented.

• The algorithm which performs splitting of nets,
known as doglegging was described.

• We also presented two algorithms due to Kuh
and Yoshimura.

• The first uses merging of nodes so that the
longest path length after merging is minimized
as much as possible.

• The second algorithm achieves longest path
minimization through matching techniques.

• Both techniques report better results than the
dogleg algorithm.

• Further, the greedy router, which, unlike the
above mentioned methods, routes the channel
column by column, was presented.

• A modification of the greedy heuristic to route
switchboxes was also presented.

• Heuristics that employ sorting and swapping
to route channels, and ‘Over-the-cell channel
routing’, were presented in the section dedi-
cated to ‘other approaches’.

