
King Fahd University of Petroleum & Minerals
College of Computer Sciences & Engineering

Department of Computer Engineering

VLSI Placement

Sadiq M. Sait & Habib Youssef

December 1995

Placement

• Placement is the process of arranging the cir-
cuit components on a layout surface.

• Example: (a) A tree circuit. (b) A 2-D placement of
gates. (c) A 2-D symbolic placement. (d) A 2-D place-
ment requiring 12 units (estimated) of wiring. (e) A
1-D placement requiring 10 units (estimated) of wiring.

1

2

3

4

5

6

7 8

(a)

(b)

1 2

3

4

5

6

78

1

5

8

3

6

4

72

1 2

3

4

5

6

78

(c) (d)

2 7 8 4631 5

(e)

• The total wirelength ω is a widely used mea-
sure of the quality of the placement (easy to
compute).

• Consider the symbolic placement of Figure (a)
below.

• (a) Optimal placement with ω=12. (b) Alter-
nate solution with ω=22.

1 2 3

4 5 6

7 98

1 2

34

56

7

8

9

(a) (b)

• The area of a layout consists of two parts —
the functional area, and the wiring area.

Definition & Complexity

• Placement is NP-complete.

• Even the simplest case (namely 1-D place-
ment), is hard to solve; there are n!

2 arrange-
ments of n cells.

• For n = 50, (a small design), n!
2 = 1.5× 1064.

• Problem Statement
Given:

– A collection of cells or modules with ports
on the boundaries.

– The dimensions of these cells.

– A collection of nets.

Goal:
Find suitable physical locations for each cell
on the entire layout.

Sometimes a subset of the modules are pre-
assigned to locations.

Cost Functions and Constraints

• Routability.

• Wirelength.

• Area.

• Performance (timing, power, etc.)

• Most widely used cost function is wirelength.

• Performing actual routing to compare various
placement solutions is impractical; therefore,
estimates are used.

• Various methods of estimation are:

– Semi-perimeter Method

– Complete Graph

– Minimum Chain

– Source to Sink Connection

– Steiner Tree Approximation

– Minimum Spanning Tree

Application of Different Estimation
Methods

4

7

Steiner tree length= 11

6

33

Spanning tree length= 12

3

3

7

Chain length= 13

(c)

(b)

7

6

3

3

9

Complete graph length * 2/n= 16

(d)

4

3

9

Source to sink length= 16

(e)

(a)

6

4

Semi-perimeter length= 10

(f)

4

Minimize Total Wirelength

• The total weighted wirelength expressed as:

L(P) =
∑

n∈N

wn · dn

where,
dn=estimated length of net n;
wn=weight of net n.

F

E

G

H

A

D

B

C

Nets Weights
N1 = (A1, B1, H) w1 = 2
N2 = (B2, C1) w2 = 4
N3 = (C2, D) w3 = 3
N4 = (E1, F) w4 = 1
N5 = (A2, E2, G) w5 = 3

L(P) = 2 · 2 + 4 · 1 + 3 · 1 + 1 · 1 + 3 · 2 = 18.

Minimize Maximum Cut

• Consider the Figure below.

x = x i

• Let ΦP (xi) and ΦP (yi) denote the number of
nets for placement P cut by lines xi, and yi.

• For a given placement P , let X(P) indicate the
maximum value of ΦP (xi) over all i, that is,

X(P) = max
i

[ΦP (xi)]

Y (P) = max
j

[ΦP (yj)]

• ΦP (xi) and ΦP (yj) are also related to L(P).

L(P) =
∑

i

ΦP (xi) +
∑

j

ΦP (yj)

• Reducing X(P) and Y (P) increases routability.

Minimize Maximum Density

• An alternate measure for routability is the den-
sity D(P) defined as follows.

(a) (b)

A

B

A

– Let ηP (ei) indicate the number of nets that
must pass through each edge ei; and

– Let ψP (ei) indicate the capacity of the edge
ei,

Then we define the density of edge ei as

dP (ei) =
ηP (ei)

ψP (ei)

• dP (ei) must be ≤ 1 for routability. The routabil-
ity measure of the placement is given by

D(P) = max
i

[dP (ei)]

Algorithm Con Lin P lmt(n, C, P)
Begin .

(* n is the number of cells.*)
(* C[1 · · ·n,1 · · ·n] is the conn matrix.*)
(* P [1 · · ·n] is the placement vector.*)
(* P [i] is the slot in which mi is placed.*)

For i = 1 to n
P [i] = −∞;
(*P [i] = −∞ means slot i is empty.*)

EndFor
S ← Seed(n, C);
(*Determine the Seed cell.*)
P [S] ← n

2;
(*Place the Seed cell in the center.*)
Mark S as placed;
For i = 1 to n − 1 Do

sc ← Select Cell(n, P, C);
ss ← Select Slot(n, sc, P, C);
P [sc] ← ss;
Mark sc as placed;

End;
End.

Popular Approaches to Placement

• Partition-based method which is based on the
min-cut heuristic.

• Simulated Annealing based placement.

• Mathematical Programming approach; (this has
been covered in floorplanning).

• Force-directed heuristic which is a numerical
technique.

• Other approaches: e.g., Genetic placement.

Partition-Based Methods

• A partitioning algorithm

– groups together closely connected modules

– grouping reduces interconnection length and
wiring congestion

– is be applied repeatedly to generate a place-
ment

• Illustration

cc c

A B A1 A2 B2B1

A1

A2

B1

B2
A B

12 3

c

c c

1

2 3

c1

• The procedure described above does not min-
imize X(P), but minimizes ΦP (c2) subject to
the constraint that ΦP (c1) is minimum.

• We write this function as ΦP (c2)|ΦP (c1).

• The procedure also minimizes ΦP (c3)|ΦP (c1).

• A sequential objective function denoted by F (P)
simplifies the problem.

F (P) = min[ΦP (cr)]|min[ΦP (cr−1)]| . . .
. . . |min[ΦP (c1)]

where c1, c2, . . . , cr, is an ordered sequence of
vertical or horizontal cutlines.

The Min-Cut Placement Algorithm

• Assumes the availability of an ordered sequence
of cutlines.

• These cutlines divide the layout into slots.
Two key requirements of the algorithm are:

(1) an efficient procedure to partition the cir-
cuit, and

(2) the selection of cutlines.

• Greedy procedure, therefore solution obtained
is not globally optimal.

• Illustration of sequences of cutlines.

(c)(b)(a)

1

2

3

4

5

6

7

10d10a 10b 10c9a 9b8

1

2a

3a

3b

3c

2b

3d

46a 5a 6b 6c 5b 6d

3a

1

3b

24a 4b

• Three schemes:

1. Quadrature Placement Procedure

2. Bisection Placement Procedure

3. Slice/Bisection

Algorithm Min − cut(ℵ, n, C)
(* ℵ is the layout surface.
n is the number of cells to be placed.
n0 is the number of cells in a slot.
C is the connectivity matrix *).

Begin
If (n ≤ n0) Then place-cells (ℵ, n, C)
Else Begin

(ℵ1,ℵ2) ← cut-surface(ℵ);
(n1, c1), (n2, c2) ← partition(n, C);
Call Min-cut (ℵ1, n1, c1);
Call Min-cut (ℵ2, n2, c2);

EndIf;
End.

Example

P

Q

R

O

O

O

2

1

3

2
1

3

5

7

8

10

9

11

14

15

16

4

12

13
6

• Partitioning using the KL algorithm yields two
sets of gates, namely L and R, where
L={1,2,3,4,5,6,7,9} and
R={8,10,11,12,13,14,15,16}.
The cost of this cut is found to be 4.

• Elements of subsets after second partition are:

LT={2,4,5,7}; (* Top Left *)
LB={1,3,6,9}; (* Bottom Left *)
RT={8,12,13,14}; (* Top Right *)
RB={10,11,15,16}. (* Bottom Right *)

C

C1

2

2,4,5,7

1,3,6,9

8,12,13,14

10,11,15,16

• The procedure is repeated again with two cut-
lines running vertically/horizontally (c3a and
c3b)/(c4a and c4b).

• Final division of layout into slots and the as-
signment of gates.

P

C4a

C2

Q

R

C4b

C3a C1
C3b

O1

C4b

O2

C4a

O 3

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

C2

Limitation of the Min-cut Heuristic

• Location of external pins not taken into ac-
count.

• The inclusion of these signals in partitioning-
based placement is terminal propagation.

• Cell x of a group connected to an external
signal s.

s
x

• Clearly cell x has to be nearest to the point
where signal s enters.

• At the outermost level, signal positions are
typically fixed by pad positions.

• What happens at an inner level of partitioning?

• (a) Partitioning of R following partitioning of
L. (b) Propagating s to the axis of partition-
ing.

s

L

R

L

1

2

(a) (b)

R

pL1

L2

• First stage non-bias partition.

L
R

s R
L

G

1

2

3

p

p

p

(a) (b)

s

• To do terminal propagation, the partitioning
has to be done breadth first.

Example

• The gates of the circuit shown in Figure below
are to be assigned to slots of a 2 × 2 array.

• (a) Circuit for Example. (b) Corresponding
graph.

a b

c d

a
b

c

d

(a) (b)

s s

• Solution. (a) Dividing the circuit into L and
R. (b) Unbiased partition of R. (c) Biased
partition of L producing P . (d) L partitioned
without terminal propagation.

a b
a b

c d c d a
d

bc

c
d

L

L

1

2

R

R

1

2

L R

(c)(a) (b) (d)

L

L

1

2

R

R

1

2

L R
a b

C1 C1C1C1

p
1

Simulated Annealing for Placement

• We now adapt Simulated annealing for place-
ment. The requirement are:

1. a suitable perturb function to generate a
new placement configuration (cell assign-
ment to slots), and

2. a suitable accept function.

• A simple neighbor function is the pairwise in-
terchange.

• Other schemes to generate neighboring states
include
– displacing a randomly selected cell to a ran-

dom location,

– the rotation and mirroring of cells, etc.

• In simulated annealing, the swap is accepted if

– ∆h < 0 (∆h = (Cost(NewS)−Cost(S))), or

– if the acceptance function (random < e−∆h/T)
is true.

Example

• Given a netlist with 9 cells and 13 nets. Use
SA annealing for placement.

– Minimize the total Manhattan routing length.

– Use the semiperimeter method to estimate
the wirelength.

– Use sequential pairwise exchange as the per-
turb function.

– Use the following annealing schedule:

Initial temperature: T0=10;
Constants: M=20; α=0.9; β=1.0.

Nets
N1 = {C4, C5, C6} N2 = {C4, C3} N3 = {C2, C4}
N4 = {C3, C7, C8} N5 = {C2, C3, C6} N6 = {C4, C7, C9}
N7 = {C2, C8} N8 = {C1, C7} N9 = {C3, C5, C9}
N10 = {C6, C8} N11 = {C2, C6, C7} N12 = {C4, C7, C9}
N13 = {C3, C9}

Termination condition: Halt if no cost im-
provement is observed at two consecutive tem-
peratures.

Solution

• (a) Initial configuration for Example. (b) P ob-
tained by simulated annealing, wirelength us-
ing semi-perimeter estimate=24.

1 2 3

4 5 6

7 8 9

12

35

46 7

8

9

(a) (b)

• The output of the program is given in Table
on the next page.

• The entries shown are those where the new
configuration was accepted.

Output of Simulated Annealing run

cnt α · T (a, b) random C(S) C(NewS) e−∆h/T

1 (1,2) 0.05538 34 36 0.8187
2 (1,3) 0.37642 36 36 1.0000
3 (1,4) 36 35
4 (1,5) 0.11982 35 38 0.7408
5 (1,6) 38 36
6 (1,7) 36 32
7 (1,8) 0.62853 32 32 1.0000
8 (1,9) 32 31
10 10 (2,3) 0.75230 31 32 0.9048
11 (2,4) 0.36827 32 32 1.0000
12 (2,5) 32 30
13 (2,6) 0.86363 30 30 1.0000
14 (2,7) 0.76185 30 31 0.9048
15 (2,8) 0.33013 31 32 0.9048
16 (2,9) 0.65729 32 32 1.0000
17 (3,1) 0.47104 32 33 0.9048
18 (3,2) 33 32
19 (3,4) 0.42597 32 32 1.0000
20 (3,5) 0.86318 32 33 0.9048
21 (3,6) 33 27
22 (3,7) 27 26
24 (3,9) 0.20559 26 28 0.8007
25 (4,1) 0.58481 28 32 0.6411
26 (4,2) 0.30558 32 36 0.6411
27 (4,3) 36 33
28 (4,5) 0.31229 33 33 1.0000
29 (4,6) 0.00794 33 35 0.8007
30 9 (4,7) 35 34
31 (4,8) 34 33
32 (4,9) 33 31
33 (5,1) 31 30
34 (5,2) 0.28514 30 32 0.8007
35 (5,3) 0.35865 32 34 0.8007
36 (5,4) 0.87694 34 35 0.8948
37 (5,6) 35 34
38 (5,7) 34 33
39 (5,8) 0.03769 33 35 0.8007
40 (5,9) 35 34

• The same program is executed again by sup-
pressing the condition that probabilistically ac-
cepts bad moves.

• Output generated by deterministic pairwise in-
terchange algorithm.

iterations (swap) Cost(S) Cost(NewS)
7 (1,8) 34 33
15 (2,8) 33 32
20 (3,5) 32 30
21 (3,6) 30 28
49 (7,1) 28 27
60 (8,4) 27 26

• This transforms the simulated annealing algo-
rithm to the deterministic pairwise exchange
algorithm.

• The results of this execution are shown in Ta-
ble above and the corresponding placement
obtained is shown in Figure below.

• The algorithm converges to a local optimum
after 60 iterations.

TimberWolf Algorithm

• Placement for standard-cell design with Macro
blocks (up to 11 are allowed).

• Pads and macro blocks retain their initial po-
sitions is optimized.

• Placement and routing is performed in three
distinct stages.

– Ist stage, cells are placed to minimize the
wirelength.

– 2nd stage, feed-through cells are inserted,
wirelength is minimized, and preliminary global
routing is done.

– 3rd stage, local changes are made in the
placement to reduce the number of wiring
tracks.

• We are concerned only with the Ist stage. Sim-
ulated annealing is used.

Perturb Functions

(1) Move a single cell to a new location, say to
a different row.

(2) Swap two cells.
(3) Mirror a cell about the x-axis.

• TimberWolf3.2 uses cell mirroring less frequently
(10%) when compared to cell displacement
and pairwise cell swapping.

• Perturbations are limited to a region within a
window of height HT and width WT .

a H
 T

WT

(x y)aa,

• The dimensions of the window are decreasing
functions of the temperature T .

• If current temperature is T1 and next temper-
ature is T2, the window width and height are
decreased as follows:

W (T2) = W (T1)
log(T2)

log(T1)

H(T2) = H(T1)
log(T2)

log(T1)

Cost Function

• The cost function used by the TimberWolf3.2
algorithm is the sum of three components

γ = γ1 + γ2 + γ3

γ1 is a measure of the total estimated wire-
length. For any net i, if the horizontal and
vertical spans are given by Xi and Yi, then the
estimated length of the net i is (Xi + Yi).

• This must be multiplied by the weight wi of
the net.

• Further sophistication may be achieved by as-
sociating two weights with a net — a horizon-
tal component wH

i and a vertical component

wV
i . Thus,

γ1 =
∑

i∈Nets

[wH
i · Xi + wV

i · Yi]

where the summation is taken over all nets i.

• The weight of a net is useful in indicating how
critical the net is.

• Let Oij indicate the area of overlap between
two cells i and j.

• The second component of the cost function,
γ2, is interpreted as the penalty of overlaps.

γ2 = w2
∑

i�=j

[Oij]
2

• In the above equation w2 is the weight for
penalty. The reason for squaring the overlap
is to provide much larger penalties for larger
overlaps.

• Due to cell displacements and pairwise exchanges
of cells, the length of a row may become larger
or smaller (see Figure below).

• γ3 represents a penalty for the length of a row
R exceeding (or falling short of) the expected
length LR.

γ3 = w3
∑

rows
| LR − LR |

where w3 is the weight of unevenness.

Annealing Schedule

1. The cooling schedule is represented by

Ti+1 = α(Ti) × Ti

where α(T) is the cooling rate parameter
which is determined experimentally.

2. The annealing process is started at a very
high initial temperature say 4 × 106.

3. Initially, the temperature is reduced rapidly
[α(T) ≈ 0.8], in the medium range α(T) ≈
0.95, and in the low temperature range,
again α(T) ≈ 0.8.

• From experiments, for a 200-cell circuit, 100
moves per cell are recommended, which calls
for the evaluation of 2.34× 106 configurations
in about 125 temperature steps.

• For a 3000-cell circuit, 700 moves per cell are
recommended, which translates to a total of
247.5 × 106 attempts.

Force-Directed Placement

• The idea behind the method is that cells con-
nected by a net exert forces on one another.

• Magnitude of the force F is proportional to the
distance between them.

• Analogous to Hooke’s law in mechanics, (force
exerted on each other by two masses connected
by a spring).

• Force with which the masses pull each other
is k × d; (k = spring constant, d = distance
between them).

• Total force Fi experienced by cell i connected
to several cells j at distances dij is given by

Fi =
∑

j

wij · dij

4
i

1

2

3

• Referring to Figure above, the force Fi on cell
i connected to 4 other cells is given by

Fi = wi1 · di1 + wi2 · di2 + wi3 · di3 + wi4 · di4

• If the cell i is free to move, it would do so
until the resultant force on it is zero. (zero-
force target location).

• When all the cells move to their zero-force tar-
get locations, the total wirelength ω is mini-
mized.

• The method consists of computing the forces
on any given cell, and then moving it to its
zero-force target location.

• This location (xi
◦, yi

◦) can be determined by
equating the x- and y- components of the forces
on the cell to zero, i.e.,
∑

j

wij · (x◦j − x◦i) = 0;
∑

j

wij · (y◦j − y◦i) = 0

• Solving for xi
◦ and yi

◦,

{xi}◦ =

∑
j wij · xj
∑

j wij

{yi}◦ =

∑
j wij · yj
∑

j wij

Example

• A circuit with one gate and four I/O pads is
given in Figure (a) below. The four pads are
to be placed on the four corners of a 3 by 3
grid. If the weights of the wires connected to
the gate of the circuit are wvdd=8; wout=10;
win=3; and wgnd=3; find the zero-force target
location of the gate inside the grid.

(a) Circuit for Example. (b) Placement ob-
tained.

OUT

GNDIN

OUTIN

0,2

0,1

0,0 1,0 2,0

(a) (b)

Vdd

Vdd

GND

Solution

The zero-force location for the gate is given
by:

{xi}◦ =

∑
j
wij · xj∑
j
wij

=
wvdd · xvdd + wout · xout + win · xin + wgnd · xgnd

wvdd + wout + win + wgnd

=
8 × 0 + 10 × 2 + 3 × 0 + 3 × 2

8 + 10 + 3 + 3
=

26

24
= 1.083

{yi}◦ =

∑
j
wij · yj∑
j
wij

=
wvdd · yvdd + wout · yout + win · yin + wgnd · ygnd

wvdd + wout + win + wgnd

=
8 × 2 + 10 × 2 + 3 × 0 + 3 × 0

8 + 10 + 3 + 3
=

36

24
= 1.50

The zero-force location for the gate can be ap-
proximated to be at grid location (1,2). The
final placement of pads and the gate is shown
in Figure (b) above.

Force-directed Placement ...

• The approach can be generalized into a con-
structive placement procedure as follows.

• Starting with some initial placement, a cell at
a time is selected, and its zero-force location
computed.

• The decisions to be made include:

– the order in which cells are selected, and

– where the selected cell is to be put in case
the zero-force location is occupied.

• The cell to be moved may be selected ran-
domly or by using a heuristic technique.

• It seems logical to select the cell i for which
Fi is maximum in the present configuration.

• If the zero-force location is occupied by an-
other cell q, then options available include:

(1) Move p to a free location close to q.
(2) Evaluate the change in cost if p is swapped

with q.
(3) Ripple move.
(4) Chain move.
(5) Find all pairs (p, q) where zero force location

of p is q and vice versa. Swap the cells p
and q.

Algorithm {ForcedirectedP lacement}
Compute total connectivity of each cell;
Order the cells in decreasing order of their connectivities
and store them in a list L.
While (iteration count < iteration limit)

Seed = next module from L
Declare the position of the cell vacant;
While end ripple = false

Compute target point of the cell to nearest integer;
Case target point is

VACANT:
Move seed to target point and lock;
end ripple ← true;
abort count ← 0;

LOCKED:
Move selected cell to nearest vacant location;
end ripple ← true;
abort count ← abort count + 1;
If abort count > abort limit Then

Unlock all cell locations;
iteration count ← iteration count + 1;

EndIf;
SAME AS PRESENT LOCATION:

end ripple ← true;
abort count ← 0;

OCCUPIED: (*and not locked*)
Select cell at target point for next move;
Move seed cell to target point and lock
the target point;
end ripple ← false;
abort count ← 0;

EndCase;
EndWhile;

EndWhile;
End.

Example

• Consider a gate-array of size 3 rows and 3
columns. A circuit with 9 cells and 3 sig-
nal nets is to be placed on the gate-array us-
ing the force-directed algorithm. The initial
placement is shown in Figure (a) below. The
modules are numbered C1, · · · , C9 and the nets
N1, N2, N3 are shown below. Show the final
placement and calculate the improvement in
total wirelength achieved by the algorithm.

Nets
N1 = (C3, C5, C6, C7, C8, C9)
N2 = (C2, C3, C4, C6, C8, C9)
N3 = (C1, C9)

Placement of Example. (a) Initial placement,
wirelength estimate using chain connection=16.
(b) Final placement, wirelength estimate using
chain connection=14.

1 2

34

5

6

7 8

9

0,2

0,1

0,0
1,0 2,0

(a) (b)

1 2 3

4 5 6

7 8 9

0,2

0,1

0,0
1,0 2,0

Solution

The connectivity matrix for the given netlist
and the total connectivity of cells is shown in
Table below.

Cells 1 2 3 4 5 6 7 8 9
∑

1 0 0 0 0 0 0 0 0 1 1
2 0 0 1 1 0 1 0 1 1 5
3 0 1 0 1 1 2 1 2 2 10
4 0 1 1 0 0 1 0 1 1 5
5 0 0 1 0 0 1 1 1 1 5
6 0 1 2 1 1 0 1 2 2 10
7 0 0 1 0 1 1 0 1 1 5
8 0 1 2 1 1 2 1 0 2 10
9 1 1 2 1 1 2 1 2 0 11

We will use the algorithm of Figure discussed
earlier to solve the problem. We select abort
count = 3 and iteration count = 2.

First 2 iterations of force-directed placement of
Example.

iter Selected Cell Target Case Placed Result
1 2 3

9 (Seed) (1,1) Occupied (1,1) 4 9 6
7 8 -
1 2 3

5 (1,1) Locked (2,0) 4 9 6
abort count = 1 7 8 5

1 1 2 3
3 (Seed) (1,1) Locked (2,2) 4 9 6

abort count = 2 7 8 5
1 2 3

6 (Seed) (1,1) Locked (2,1) 4 9 6
abort count = 3 7 8 5

1 2 3
9 (Seed) (1,1) Same (1,1) 4 9 6

7 8 5
1 2 -

3 (Seed) (1,1) Occupied (1,1) 4 3 6
7 8 5
1 2 9

2 9 (1,1) Locked (2,2) 4 3 6
abort count = 1 7 8 5

1 2 9
6 (Seed) (1,1) Locked (2,1) 4 3 6

abort count = 2 7 8 5
1 2 9

8 (Seed) (1,1) Locked (1,0) 4 3 6
abort count = 3 7 8 5

Other Approaches and Recent Work

• Artificial Neural Networks.

• Genetic Algorithm.

• Stochastic/Simulated Evolution.

• Performance Driven Placement (timing, power,
etc.,).

• Placement for new design methodologies and/or
technologies.

Genetic Placement

• It is a search technique which emulates the
natural process of evolution as a means of pro-
gressing toward the optimum.

• It has been applied in solving various optimiza-
tion problems including VLSI cell placement.

• Terminology

– Population

– Genes

– Chromosome

– Schema

– Generation

– Fitness

– Parents and Offsprings

– Genetic Operators, Crossover, Mutation,
Inversion.

Example

• Consider the graph of Figure (a) below. The
9 vertices represent modules and the numbers
on the edges represent their weighted intercon-
nection. Give a possible solution and express
it as a string of symbols. Generate a popu-
lation of 4 chromosomes and compute their
fitness using the reciprocal of weighted Man-
hattan distance as a measure of fitness.

(a) Graph of a circuit to be placed. (b) Posi-
tion definition. (c) One possible placement.

1

23 4

6

a

b c

d

e

f

g4

1

8

7

7

hi 0 1 2

3 4 5

6 87

a

bc

d e f

g h

i

(a) (b) (c)

3

Solution

• The nine modules can be placed in the nine
slots as shown in Figure (b).

• One possible solution is shown in Figure (c).

• Let us use a string to represent the solution as
follows.

• Let the left most index of the string of the
solution correspond to position ‘0’ of Figure
(b) and the right most position to location 8.

• Then the solution of Figure (c) can be then
represented by the string aghcbidef (1

85).

• The number in parenthesis represents the fit-
ness value which is the reciprocal of the weighted
wirelength based on the Manhattan measure.

• If the lower left corner of the grid in Figure (b)
is treated as the origin, then it is easy to com-
pute the Cartesian locations of any module.

• For example the index of module i is 5.

• Its Cartesian coordinates are given by
x = (5 mod 3) = 2, and y = 	53
 = 1.

• Any string (of length 9) containing characters
[a, b, c, d, e, f , g, h, i] represents a possible
solution.

• There are 9! solutions equal to the number of
permutations of length 9.

Genetic Operators

• Crossover is the main genetic operator.

• It operates on two parents and generates an
offspring.

• It is an inheritance mechanism.

• The operation consists of choosing a random
cut point and generating the offspring by com-
bining the segment of one parent to the left
of the cut point with the segment of the other
parent to the right of the cut.

• From our previous example consider the two
parents bidef|aghc (1

86), and bdefi|gcha (1
110).

• If the cut point is randomly chosen after posi-
tion 4, then the offspring produced is bidefgcha .

• Simple crossover sometimes fails.

• Modifications to the above crossover opera-
tions to avoid repetition of symbols are

a. Order crossover,

b. Partially Mapped Crossover (PMX), and

c. Cycle crossover.

Partially Mapped Crossover

• Here we will explain the operation of the PMX
technique.

• The PMX crossover is implemented as follows:

– Select two parents (say 1 and 2) and choose
a random cut point.

– As before the entire right substring of par-
ent 2 is copied to the offspring.

– Next, the left substring of parent 1 is scanned
from the left, gene by gene, to the point of
the cut.

– If a gene does not exist in the offspring then
it is copied to the offspring.

– However if it already exists in the offspring,
then its position in parent 2 is determined
and the gene from parent 1 in the deter-
mined position is copied.

• As an example consider the 2 parents bidef|gcha

(1
86), and aghcb|idef (1

85). Let the crossover
position be after 4.

• Then the offspring due to PMX is bgcha|idef .

Crossovers used in Genie

Genie: a genetic placement system for placing
modules on a rectangular grid.

• The first crossover operator selects a random
module es and brings its four neighbors in par-
ent 1 to the location of the corresponding neigh-
boring slots in parent 2.

• Illustration

(a) A random module and its neighbors. (b) The
neighbors in (a) of parent 1 replace neighbor-
ing modules in parent 2.

a
b

c
d es

d a

b
c

es

p
q

r
s

(a) (b)

• The second crossover operator selects a square
consisting of k × k modules from parent 1 and
copies it to parent 2.

• Illustration (a) A square is selected in parent
1. (b) Modules of square in parent 1 are copied
to parent 2 and duplicate modules are moved
out.

a b c
d e f
g h i

b h x
w i p
gma

(a) (b)

Algorithm (Genetic Algorithm)
(* Np= Population Size *)
(* Ng= Number of Generations *)
(* No= Number of Offsprings *)
(* Pi= Inversion Probability *)
(* Pµ= Mutation Probability *)
Begin

(* Randomly generate the Initial Population *)
Construct Population(Np);
For j = 1 to Np

Evaluate Fitness(Population[Np])
EndFor;
For i = 1 to Ng

For j = 1 to No

(* Choose parents with probability *)
(* proportional to fitness *)
(x, y) ← Choose parents;
(* Perform crossover to generate offsprings *)
offspring[j] ← Generate offspring(x, y);
For k = 1 to Np

With probability Pµ Apply
Mutation(Population[k])

EndFor;
For k = 1 to Np

With probability Pi Apply
Inversion(Population[k])

EndFor;
Evaluate Fitness(offspring[j])

EndFor;
Population ← Select(Population, offspring, Np)

EndFor;
Return highest scoring configuration in Population

End.

Conclusion

• We discussed a major VLSI design automation
subproblem, namely placement.

• Wirelength is one of the most commonly op-
timized objective function.

• Different techniques used to estimate the wire-
length of a given placement were presented.

• Other cost functions, (minimization of maxi-
mum cut, and of maximum density) were stud-
ied.

• Three algorithms were discussed:
– Min-cut partitioning based placement.

– Simulated annealing algorithm.

– Force-directed placement algorithm.

• Terminal propagation which also considers ex-
ternal pins during placement was studied.

• SA is currently the most popular technique in
terms of placement quality, (takes an excessive
amount of time).

• We also discussed the TimberWolf3.2 package
which uses SA for module placement.

• Force-directed algorithms operate on the phys-
ical analogy of masses connected by springs.

• We also discussed some recent attempts.

Procedure (Genetic Algorithm)
M= Population size. (*# Of possible solutions a
Ng= Number of generations. (*# Of iterations.*)
No= Number of offsprings. (*To be generated by cross
Pµ= Mutation probability. (*Also called mutation rate
P ← Ξ(M) (*Construct initial populati
For j = 1 to M (*Evaluate fitnesses of all i

Evaluate f(P[j]) (*Evaluate fitness of P.*)
EndFor
For i = 1 to Ng

For j = 1 to No

(x, y) ← φ(P) (*Select two parents x and
offspring[j] ← χ(x, y) (*Generate offsprings by cr
Evaluate f(offspring[j]) (*Evaluate fitness of each o

EndFor

For j = 1 to No (*With probability Pµ apply
mutated[j] ← µ(y)
Evaluate f(mutated[j])

EndFor
P ← Select(P, offsprings) (*Select best M solutions f
EndFor
Return highest scoring configuration in P.

End

