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INTRODUCTION

• The phase following cell placement.

• Routing is accomplished using computer pro-
grams (routers).

• Consists of precisely defining paths that carry
electrical signals run.

• Takes up almost 30% of design time and a
large percentage of layout area.

• Routing algorithms were first applied to design
of PCBs.

• The main application of automatic routers has
been in the automated design of VLSI circuits.
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Maze Routers

• Consider the layout as a maze.

• Finding a path is similar to finding a path in
the maze.

• The layout floor is assumed to be made up of
a rectangular array of grid cells.

• Functional cells fill up some slots in the grid
and constitute the obstacles of the maze.

• The most popular algorithm is the Lee algo-
rithm.

• Running time of maze algorithms is large and
memory requirement is high.

• Maze routers based on the Lee algorithm con-
nect a pair of points at a time.

• Multi-pin nets can be connected in a spanning-
tree like fashion.
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Problem Definition

Given:
• a set of cells with ports (inputs, outputs, clock,

power and ground pins) on the boundaries,

• a set of signal nets,
• locations of cells on the layout floor, and
• geometrical constraints and number of routing

layers.

Goal: find suitable paths on the available layout
space, that is those paths that minimize the given
objective functions, subject to constraints.
Constraints may be:
• imposed by the designer,
• the implementation process, or
• layout strategy and design style.

Examples of constraints are:
• minimum separation between adjacent wires,
• minimum width of routing wires,
• number of available routing layers,
• timing constraints, etc.

Examples of objective functions include:
• reduction of wire length, and
• avoidance of timing problems.
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Routing Material

• The connections are made by first uniformly
depositing metal on a carrier surface.

• Then unwanted metal is etched away.

• In PCBs this surface is usually fiberglass. While
in VLSI it is silicon.

• In VLSI design, polysilicon is also used to carry
signals.

• In 2-layer VLSI routing, the 2 layers are sepa-
rated by an oxide insulating layer.

• Holes in this insulating layer called contact-cuts
(or vias) connect conductors between two lay-
ers.

• Certain VLSI technologies allow three layers
for routing. (2 layers in metal and the 3rd
layer in polysilicon)
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Illustration of general routing
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Cost functions and Constraints

• Reduction of wiring area.

• Improvement in performance.

• Improve yield (by reducing cuts).

• Two possible paths connecting a pair of points
are shown below. (a) The shortest path. (b) A
longer path with more bends.
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Geometrical Constraints

• Minimal geometries must be maintained, (min-
imum width and spacing dictated by the tech-
nological process).

• Must be able to consider all geometrical con-
straints abolishing the need for DRC.

• For routing purposes, only those design rules
must be considered which define geometries of
wires and contact holes.

• Commonly, this is achieved by using a proper
equidistant grid.

• Wires are represented by lines and restricted
to grid line positions.

• Wire widths and separation between wires is
constant for all nets and design rules are avoided.
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Illustration of grid cell size
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Maze Routing Algorithms

• The entire routing surface is represented as a
rectangular array of grid cells.

• All ports, wires, and edges of bounding boxes
that enclose the cells are aligned on the grid.

• Segments on which wires run are also aligned
with the grid lines.

• The size of grid cells is defined such that wires
belonging to other nets can be routed without
violating the width/spacing rules of wires.

• Two points are connected by finding a se-
quence of adjacent cells from one point to the
other.

• Maze routers connect a single pair of points at
a time.
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Lee Algorithm

• Most widely known maze routing method for
finding a path in a maze.

• An excellent characteristic is that if a path ex-
ists then it is surely found.

• In addition it is guaranteed to be the shortest
available one.

• The algorithm can be divided into three phases.

• The first phase consists of labeling the grid,
and is called the filling or wave propagation
phase.

• It is analogous to dropping a pebble in a still
pond and causing waves to ripple outward.

• The second phase of the algorithm is called
the retrace phase.

• The final phase is called label clearance. In this
phase all labeled cells except those used for
the path just found are cleared for subsequent
interconnections.
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Filling in Lee Algorithm
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• The filling phase begins by entering a ‘1’ in all
empty cells adjacent to the source cell S.

• Next, 2s are entered in all empty cells adjacent
to those containing 1s. Then, 3s are entered
adjacent to 2s and so on.

• This process continues and is terminated when
one of the three conditions occurs.
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Filling & Retrace in Lee Algorithm

Filling continues until:

a. the grid cell T is reached; or

b. T is not reached and at step i there are no
empty grid cells adjacent to cells labeled i−1;
or

c. T is not reached and i equals M , where M is
the upper bound on a path length.

The Retrace procedure is the reverse of filling.
The actual shortest path is found as follows:

• If grid cell T was reached in step i, then there
exists at least one grid cell adjacent to it which
contains i − 1.

• Likewise, a grid cell containing i − 2 will be
adjacent to one containing label i − 1 and so
on.

• By tracing the numbered cells in descending
order from T to S, the desired shortest path is
found.

• The cells of the retraced path for the filled grid
of Figure (a) are shaded in Figure (b).

• Once the desired path is found, the cells used
for the route connecting S and T are regarded
as obstacles for subsequent interconnections.
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Time/Space Complexity of Lee
Algorithm

• The processing time for filling is proportional
to L2, (L is the length of the path)

• The processing time for retrace is proportional
to L

• Therefore, the algorithm has a time complexity
of O(L2) for each path

• In addition, for an N × N grid plane, the algo-
rithm requires O(N2) memory

• Also, some amount of storage is required to
store positions of cells on the wavefront

• The worst case running time is also of O(N2)

• Extensions to reduce running time and storage
have been proposed
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Coding Schemes to Reduce Memory

• A non-trivial storage problem is that a unit of
memory space is needed for every grid cell.

• In a filled grid we observe that for each cell
labeled k, all adjacent cells are labeled either
k − 1 or k + 1.

• Therefore, during retrace, it is sufficient if we
can distinguish the predecessor cells from the
successor cells.

• Labeling schemes based on this idea are widely
used. Two are listed below.
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Coding Schemes to Reduce Memory..

• In the first scheme

– Labeling sequence is 1,2,3, 1,2,3 . . .

– Only three bits per memory cell are required
since a grid cell may be in one of the 5
states.

• The second scheme proposed by Akers

– Labeling sequence is 1,1, 2,2, 1,1, 2,2 . . . .

– This scheme is most economical, since each
cell will be in one of the four states: empty,
blocked, labeled with 1, or labeled with 2.

– Independent of the grid size, two bits per
memory cell are sufficient.
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Filling Sequences That Reduce
Memory Requirement

(a) Sequence 1,2,3, 1,2,3 . . . . (b) Sequence 1,1,
2,2, 1,1, 2,2 . . . .
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Reducing Running Time

• Running time is proportional to the number of
cells searched in the filling phase.

• The following speed-up techniques are used.

(a) Starting point selection.

(b) Double fan-out.

(c) Framing.
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Connecting Multi-point Nets

• Lee algorithm as seen above connects two pins

• A multi-pin net consists of three or more pins
to be connected.

• The optimal connection of these pins resulting
in the least wirelength is termed as the Steiner
tree problem.

• This problem has been proven to be NP-hard

• A sub-optimal solution to connect a multi-
point net can be obtained using Lee algorithm
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Example of Routing a Multipoint Net

(a) Five points of a net. (b) Interconnection tree
found by repeated application of modified Lee al-
gorithm. (c) A shorter interconnection found by
deleting an edge and re-routing.
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Finding More Desirable Paths

• Often practical situations require a more de-
sirable path, not necessarily the shortest

• An example is of finding a path that will cause
least amount of difficulty for subsequent paths

• The filling phase of the Lee Algorithm can be
modified to accommodate such constraints.

• The requirement of any filling phase is that the
desired path be unambiguously traced back.

• Akers observed that a path running along ob-
structions would leave more room for subse-
quent ones

• Suppose that a net x has been routed as shown
below. The standard Lee Algorithm will result
in the shortest path z. while the longer path y
could be more preferable.
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Finding More Desirable Paths

• If the objective is to accomplish the desired
path such as y, then the required path selection
can be accomplished by preparing a weighted
array as shown in Figure below.

• The desired path may be generated by routing
a net so as to minimize the total weight of
used cells.

• For path y this weight is 13, and for path z it
is 15.

• The wave propagation phase in Lee Algorithm
is modified to minimize the total weighted sum
of grid points.

• The modified procedure is shown in the fol-
lowing slide with an example.
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Example of Finding Desirable Paths
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Further Speed Improvements

• The filling phase of Lee Algorithm is similar
to the breadth first search

• It can also be thought of as construction of a
tree with each node having at most 4 children.

• the running time for a particular instance of
source-target pairs is proportional to the num-
ber of cells being searched until the target is
reached.

• One idea behind speed-up techniques is to ad-
vance the wavefront with a higher priority to-
wards the target direction.

• Two techniques are presented in the follow-
ing slides; Hadlock’s algorithm and Soukup’s
algorithm.
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Detour Numbers

• Hadlock’s algorithm is a shortest path algo-
rithm with a new method for cell labeling called
detour numbers

• It is a goal directed search method.

• The detour number d(P ) of a path P connect-
ing two cells S and T is defined as the number
of grid cells directed away from its target T .

• If MD(S, T ) is the Manhattan distance between
S and T , then it can be proved that the length
l(P ) of a path P is given by

l(P ) = MD(S, T ) + 2 × d(P ). (1)

• An example of path length and detour numbers
is shown in Figure below.

S

T

=Directed away
from the target

d(P) =4     
MD(S,T) =7

l(P) =7+2 * 4 =15
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Hadlock’s Algorithm

• Figure in previous slide illustrates how path
length is represented by the detour number.

• Note that in Eqn (1) MD(S, T ) is fixed, inde-
pendent of the path connecting S and T .

• Based on this idea, the filling phase of the Lee
Algorithm is modified as follows:

a. Instead of filling a cell with a number equal
to the distance from the source, the detour
numbers with respect to a specified target
are entered.

b. Cells with smaller detour numbers are ex-
panded with higher priority.

• Figure (a) shows the filling of a grid. Observe
that for any cell filled with i, if the adjacent
cell is towards the target, then it is filled with
the same number, and if it is away from the
target then it is filled with i + 1.

• Path retracing is slightly different from the
standard Lee algorithm

• The number of grid units filled is considerably
smaller than in Lee algorithm.

• Therefore speed improvement is remarkable.
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Filling in Hadlock’s and Soukup’s
Algorithms
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Soukup’s Algorithm

• The previous algorithm performed filling in a
breadth first manner.

• Soukup suggested adding depth to the search.

• In Soukup’s algorithm a line segment from the
source is initially extended toward target.

• The cells on this line segment are searched
first. The line segment is extended without
changing direction unless it is necessary.

• When the line hits an obstacle, Lee algorithm
is applied to search around the obstacle.

• During the search, once a cell in the direction
of the target is found, another line segment
starting from there is extended toward target.

• The darkened circles in the figure indicate the
cells directed towards the target.

• Soukup’s algorithm finds a path if one exists,
but does not guarantee that it is the shortest.

• Its disadvantage is that it generates sub-optimal
paths (both in terms of length and # of bends).

• However, it is extremely fast, especially when
the routing space is not congested.

• It is claimed that it is 10-50 times faster than
the Lee Algorithm on typical two-layer routing
problems.
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Line Search Algorithms

• Line search algorithms overcome the drawback
of Lee algorithm.

• The idea is to draw lines passing through S
(source) and T (target). The two lines when
intersect give a Manhattan path between S and
T .

• Line search algorithms perform a depth-first
search.

• Because of their depth-first nature, line search
algorithms do not guarantee finding the short-
est path, and may need several backtrackings.

• Produce completion rates similar to Lee algo-
rithm, with the difference that both memory
requirements and execution times are consid-
erably reduced.

• This is because the entire routing space is not
stored as a matrix.

• The routing space and paths are represented
by a set of line segments.

• Line search algorithms were first proposed by
Mikami-Tabuchi and Hightower.
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Mikami-Tabuchi’s Algorithm

• Let S and T be a pair of terminals of a net
located on some intersection of an imaginary
grid.

• The first step is to generate four lines (two
horizontal and two vertical) passing through S
and T .

• These lines are extended until they hit obstruc-
tions (a placed cell for example) or the bound-
ary of the layout.

• If a line generated from S intersects a line gen-
erated from T then a connecting path without
any bend or with one bend has been found.

• If the four generated lines do not intersect,
then they are identified as trial lines of level
zero and stored in temporary storage.

• Then at each iteration i the following opera-
tions are done.
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(1). Trial lines of level i are picked and along
each of its grid points (base-points) and traced.

Starting from these base-points new trial lines
are generated perpendicular to trial line i.
Let the generated line segments be identi-
fied as trial lines of level i + 1.

(2). If trial line of level (i + 1) intersects a trial
line (of any level) originated from the other
terminal point, then the required path is
found by backtracking from the point of in-
tersection to both points S and T .

Otherwise all trial lines of level (i + 1) are
added to the temporary storage and the
procedure is repeated from Step 1.

• The above algorithm guarantees to find a path
if one exists.



Mikami-Tabuchi’s Algorithm ...
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• In this example the trial line of level 1 origi-
nating from T intersects a trial line of level 2
generated from S.
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Hightower’s Algorithm

• It is similar to the Mikami-Tabuchi’s algorithm.

• The difference is that instead of generating
all line segments perpendicular to a trial line,
Hightower algorithm considers only those lines
that are extendable beyond the obstacle which
blocked the preceding trial lines.

• Example.
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• The shaded regions p, q, and r constitute ob-
stacles around which the path is to be found.
The procedure begins by constructing horizon-
tal and vertical lines from the source and tar-
get.

32



Notes

• When the routing area is not congested, the
above algorithms are expected to run fast.

• Particularly, Hightower algorithm is expected
to run in time proportional to the number of
bends.

• A conservative estimate of running time in a
complicated maze is O(N4)

• Thus the memory saving in line search algo-
rithm is dramatic, but the running time does
not improve very much.

• We might also need to backtrack from dead
ends (resulting from bad sequences of trial lines).
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Other Issues

• Multi Layer Routing

• Three-Dimensional Grid

Three dimensional cellular array for two layer
routing is shown below.
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• Two Planar Arrays. Figure below illustrates
two layer routing using two arrays.
(a) Layer-1. (b) Layer-2. (c) Retrace path.
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• Non-transitivity of three 2-point nets.
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• (a) Optimal routing of a prevents routing of b.
(b) Optimal routing of b prevents routing of a.
(c) Non-optimal routing of nets a and b.
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• Rip-up and Rerouting

• Power and Ground Routing

(a) Topological trees for power and ground
nets. (b) Actual widths of routing layers.
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Summary

• In this chapter we examined two types of grid
routers, the maze router and line-search router.

• The maze router uses a physical grid, and line
search routers use an imaginary grid.

• The basic grid router that uses Lee algorithm
has a large memory requirement and also may
require a large amount of running time.

• Techniques to reduce the running time and
memory requirement were discussed in detail.

• Other algorithms that modify the filling phase
of Lee Algorithm to reduce the running time
are Hadlock’s algorithm and Soukup’s algo-
rithm.

• Their techniques were illustrated with exam-
ples. Line search algorithms overcome the high
memory requirement of Lee algorithm.

• Two line search heuristics, one due to Mikami
and Tabuchi, and the other due to Hightower
were presented.

• Maze running algorithms guarantee finding a
shortest path if one exists, even if it is the most
expensive in terms of the number of vias.

• Line search algorithms guarantee finding a path
if one exist; (not necessarily the shortest).
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• But they may require several backtracks for all
dead ends that are reached.

• In practice however line search algorithms can
be significantly faster than maze running algo-
rithms.

• The major advantage for which maze running
algorithms are preferred over line search algo-
rithms is that the former are grid-cell oriented.

• This gives more flexibility to the weighting of
routing area of the chip.

• This is of extreme importance since proper
weighting of cells enables finding superior routes.

• Both the maze router and line-search router
connect a single net at a time.

• Modifications to the basic routing technique
to accommodate multi-point nets are needed.



Algorithm Constraint Graph Compaction;
1. Construct the constraint graph G(V, E);
2. Apply the critical path algorithm and find for each ve
3. Move each element to within its range of tolerance;

End.


