
Prepared by Dr. Muhamed Mudawar Page 1 of 4

ICS 233 – Computer Architecture &

Assembly Language
Assignment 7: Pipelined Processor

Solution
1. (4 pts) Identify all the RAW data dependencies in the following code. Which dependencies are

data hazards that will be resolved by forwarding? Which dependencies are data hazards that will
cause a stall? Using a graphical representation of the pipeline, show the forwarding paths and
stalled cycles if any.

 add $3, $4, $2
 sub $5, $3, $1
 lw $6, 200($3)
 add $7, $3, $6

Solution:

RAW dependencies:

 add $3, $4, $2 and sub $5, $3, $1 (forwarding)
 add $3, $4, $2 and lw $6, 200($3) (forwarding)
 lw $6, 200($3) and add $7, $3, $6 (stall 1, forward)
 add $3, $4, $2 and add $7, $3, $6 (from register)

2. (4 pts) We have a program of 106 instructions in the format of “lw,add,lw,add,…”. The
add instruction depends only on the lw instruction right before it. The lw instruction also
depends only on the add instruction right before it. If this program is executed on the 5-stage
MIPS pipeline:

 a) Without forwarding, what would be the actual CPI?
 b) With forwarding, what would be the actual CPI?

IM

DM

CC2

Reg

CC3

add $7, $3, $6

ALU

CC6 CC7 CC8

add $3, $4, $2 IM

CC1 CC4

Reg

CC5

Reg

DM RegALU

sub $5, $3, $1 IM

bubbl

Reg RegALU DM

lw $6, 200($3) IM Reg Reg ALU DM

CC9

Prepared by Dr. Muhamed Mudawar Page 2 of 4

Solution:

a) Without forwarding, the value being written into a register can only be read in the same

cycle. As a result, there will be a bubble of 2 cycles between a LW and the dependent
ADD to allow the LW to progress through the MEM and WB stages. Similarly, there
will be a bubble of 2 cycles between an ADD and the dependent LW.

 Therefore, it takes 6 cycles on average to complete one LW and one ADD.
 1 cycle (to complete LW) + 2 cycles (bubbles) + 1 cycle (to complete ADD) + 2 cycles

(bubbles) = 6 cycles

 So, it takes 6 cycles to complete 2 instructions
 Average CPI = 6/2 = 3.

b) With forwarding, there will be a bubble of 1 cycle between a LW and the dependent

ADD. However, no bubble exists between an ADD and the dependent LW.

 Therefore, it takes only 3 cycles on average to to complete one LW and one ADD.
 1 cycle (to complete LW) + 1 cycle (bubble) + 1 cycle (to complete ADD) = 3 cycles

 So, it takes 3 cycles to complete 2 instructions
 Average CPI = 3/2 = 1.5.

3. (4 pts) A 10-stage instruction pipeline runs at a clock rate of 1 GHz. The instruction mix is such
that 15% of instructions cause one bubble to be inserted into the pipeline, and 10% of
instructions cause two bubbles to be inserted. The equivalent single-cycle implementation would
lead to a clock rate of 150 MHz.

 a) What is the increase in the pipeline CPI over the ideal CPI as a result of bubbles?
 b) What is the speedup of pipelined implementation over single-cycle?

Solution:

a) Ideal pipeline CPI = 1 cycle per instruction (if no bubbles)

 Increase in CPI due to bubbles = 0.15 * 1 + 0.1 * 2 = 0.35 cycles per instruction

 Pipeline CPI with bubbles = 1 + 0.35 = 1.35 (35% increase over ideal CPI)

b) Speedup of pipelined implementation =

(Pipeline Clock Rate / Single-Cycle Clock) * (Single-Cycle CPI / Pipeline CPI) =

(1000 MHz / 150 MHz) * (1 / 1.35) = 4.94

Prepared by Dr. Muhamed Mudawar Page 3 of 4

4. (4 pts) Store-after-load data dependence. Consider copying an array of n words from one
address in memory to another. This can be accomplished by placing a sequence of lw and sw
instructions in a loop, with each loop iteration copying one word. In the current pipelined
implementation shown in the lecture slides, this leads to one bubble (stall cycle) between lw and
sw. Is it possible to avoid this stalling via additional data forwarding hardware? Discuss how this
can be done or explain how the bubble is unavoidable.

Solution: Yes, forwarding is possible and we can avoid stalling the pipeline. Consider:

 LW $8, ... # LW instruction writes $8
 SW $8, ... # SW instruction uses $8

 We need a multiplexer at the input of EX/MEM.B register as show below. The data read from the
data memory in the MEM stage should be fed back at the input of this multiplexer. A control
signal “ForwardC” is needed to control the selection of this multiplexer. The Forwarding unit in
the DECODE stage will generate the “ForwardC” signal and pipeline it, after detecting the
dependency between a SW and a previous LW instruction. The SW instruction is currently in the
DECODE stage (MemWrite = 1). The LW instruction is in the EXE stage (ID/EX.MemRead = 1).
The ID/EX.RW register for the LW instruction contains the same register number as Rt for the
SW instruction. The Forwarding Unit can detect this situation and generate the ForwardC signal.

Rd

Rs

Rt

Register
File

A
L
U

Data
Memory

ALU

IF/ID ID/EX

EX/MEM MEM/WB

R
w

Imm2
ALUSrc

A
LU

 r
e

su
lt

B

B

A

Im
m

26

R
w

m
u
x

m
u
x W

ri
te

D
a

ta

R
w

 m
u
x

In
st

ru
ct

io
n

MemtoReg

m
u
x

m
u
x

ForwardB

Forwarding Unit

ForwardA

Ex
t

 Data_in
m
u
x

ForwardC ForwardC

Control
Unit

Op

MemWrite

MemRead

MemRead

Prepared by Dr. Muhamed Mudawar Page 4 of 4

5. (4 pts) We have a program core consisting of five conditional branches. The program core will
be executed millions of times. Below are the outcomes of each branch for one execution of the
program core (T for taken and N for not taken).

 Branch 1: T-T-T
 Branch 2: N-N-N-N
 Branch 3: T-N-T-N-T-N
 Branch 4: T-T-T-N-T
 Branch 5: T-T-N-T-T-N-T

 Assume that the behavior of each branch remains the same for each program core execution. For
dynamic branch prediction schemes, assume that each branch has its own prediction buffer and
each buffer is initialized to the same state before each execution. List the predictions and the
accuracies for each of the following branch prediction schemes:

 a) Always taken
 b) Always not taken
 c) 1-bit predictor, initialized to predict taken
 d) 2-bit predictor, initialized to weakly predict taken
Solution:

Prediction accuracy = 100% * Correct Predictions / Total Branches
a) Branch 1: prediction: T-T-T, right = 3, wrong = 0
 Branch 2: prediction: T-T-T-T, right = 0, wrong = 4
 Branch 3: prediction: T-T-T-T-T-T, right = 3, wrong = 3
 Branch 4: prediction: T-T-T-T-T, right = 4, wrong = 1
 Branch 5: prediction: T-T-T-T-T-T-T, right = 5, wrong = 2
 Total right = 15, Total wrong = 10, Accuracy = 100% * 15/25 = 60%

b) Branch 1: prediction: N-N-N, right = 0, wrong = 3
 Branch 2: prediction: N-N-N-N, right = 4, wrong = 0
 Branch 3: prediction: N-N-N-N-N-N, right = 3, wrong = 3
 Branch 4: prediction: N-N-N-N-N, right = 1, wrong = 4
 Branch 5: prediction: N-N-N-N-N-N-N, right = 2, wrong = 5
 Total right = 10, Total wrong = 15, Accuracy = 100% * 10/25 = 40%

c) Branch 1: prediction: T-T-T, right = 3, wrong = 0
 Branch 2: prediction: T-N-N-N, right = 3, wrong = 1
 Branch 3: prediction: T-T-N-T-N-T, right = 1, wrong = 5
 Branch 4: prediction: T-T-T-T-N, right = 3, wrong = 2
 Branch 5: prediction: T-T-T-N-T-T-N, right = 3, wrong = 4
 Total right = 13, Total wrong = 12, Accuracy = 100% * 13/25 = 52%

d) Branch 1: prediction: T-T-T, right = 3, wrong = 0
 Branch 2: prediction: T-N-N-N, right = 3, wrong = 1
 Branch 3: prediction: T-T-T-T-T-T, right = 3, wrong = 3
 Branch 4: prediction: T-T-T-T-T, right = 4, wrong = 1
 Branch 5: prediction: T-T-T-T-T-T-T, right = 5, wrong = 2

 Total right = 18, Total wrong = 7, Accuracy = 100% * 18/25 = 72%

