
Prepared by Dr. Muhamed Mudawar Page 1 of 4

ICS 233 – Computer Architecture &

Assembly Language

Assignment 2 Solution: MIPS Instructions and Assembly Language

1. (2 pts) Bits have no inherent meaning. Given the 32-bit pattern:

 1010 1101 0001 0000 0000 0000 0000 0010

 What does it represent, assuming it is …

a) A 2's complement signed integer?
b) A MIPS instruction?

Solution:

a) -1,391,460,350

b) Op = 1010112 = 0x2b = sw - store word (I-Type format)

rs = 010002 = r8 = $t0

rt = 100002 = r16 = $s0

immediate16 = 0000 0000 0000 00102 = 2

MIPS instruction = sw $s0, 2($t0)

2. (2 pts) Find the shortest sequence of MIPS instructions to:

a) Determine if there is a carry out from the addition of two registers $t3 and $t4. Place
the carry out (0 or 1) in register $t2. It can be done in two instructions.

b) Determine the absolute value of a signed integer. Show the implementation of the
following pseudo-instruction using three real instructions:

 abs $t1, $t2

Solution:

a) addu $t5, $t3, $t4

 sltu $t2, $t5, $t3 # there is carry if sum < any operand

b) addu $t1, $t2, $zero

 bgez $t2, next

 subu $t1, $zero, $t2

next:

Prepared by Dr. Muhamed Mudawar Page 2 of 4

3. (4 pts) For each pseudo-instruction in the following table, produce a minimal sequence of
actual MIPS instructions to accomplish the same thing. You may use the $at for some of
the sequences. In the following table, imm32 refers to a 32-bit constant.

Pseudo-instruction Solution

move $t1, $t2 addu $t1, $t2, $zero

clear $t5 addu $t5, $zero, $zero

li $t5, imm32 lui $t5, upper16
ori $t5, $t5, lower16

addi $t5, $t3, imm32 lui $at, upper16
ori $at, $at, lower16
add $t5, $t3, $at

beq $t5, imm32, Label lui $at, upper16
ori $at, $at, lower16
beq $t5, $at, Label

ble $t5, $t3, Label slt $at, $t3, $t5
beq $at, $zero, Label

bgt $t5, $t3, Label slt $at, $t3, $t5
bne $at, $zero, Label

bge $t5, $t3, Label slt $at, $t5, $t3
beq $at, $zero, Label

4. (2 pts) Translate the following statements into MIPS assembly language. Assume that a,
b, c, and d are allocated in $s0, $s1, $s2, and $s3. All values are signed 32-bit integers.

a) if ((a > b) || (b > c)) {d = 1;}

Solution:

 bgt $s0, $s1, L1
 ble $s1, $s2, next
L1:
 ori $s3, $zero, 1
next:

b) if ((a <= b) && (b > c)) {d = 1;}

Solution:

 bgt $s0, $s1, next
 ble $s1, $s2, next
 ori $s3, $zero, 1
next:

Prepared by Dr. Muhamed Mudawar Page 3 of 4

5. (3 pts) Consider the following fragment of C code:

 for (i=0; i<=100; i=i+1) { a[i] = b[i] + c; }

 Assume that a and b are arrays of words and the base address of a is in $a0 and the base

address of b is in $a1. Register $t0 is associated with variable i and register $s0 with
c. Write the code in MIPS.

Solution:

 addu $t0, $zero, $zero # i = 0
 addu $t1, $a0, $zero # $t1 = address a[i]
 addu $t2, $a1, $zero # $t2 = address b[i]
 addiu $t3, $zero, 101 # $t3 = 101 (max i)
loop: lw $t4, 0($t2) # $t4 = b[i]
 addu $t5, $t4, $s0 # $t5 = b[i] + c
 sw $t5, 0($t1) # a[i] = b[i] + c
 addiu $t0, $t0, 1 # i++
 addiu $t1, $t1, 4 # address of next a[i]
 addiu $t2, $t2, 4 # address of next b[i]
 bne $t0, $t3, loop # exit if (i == 101)

6. (3 pts) Add comments to the following MIPS code and describe in one sentence what it

computes. Assume that $a0 is used for the input and initially contains n, a positive
integer. Assume that $v0 is used for the output.

begin: addi $t0, $zero, 0 # $t0 = sum = 0
 addi $t1, $zero, 1 # $t1 = i = 1
loop: slt $t2, $a0, $t1 # (n<i)? or (i>n)?
 bne $t2, $zero, finish # exit loop if (i>n)
 add $t0, $t0, $t1 # sum = sum + i
 addi $t1, $t1, 2 # i = i + 2
 j loop # repeat loop
finish: add $v0, $t0, $zero # result = sum

 Result $v0 is the sum of the odd positive integers 1 + 3 + 5 + … which are less
than or equal to n.

Prepared by Dr. Muhamed Mudawar Page 4 of 4

7. (4 pts) The following code fragment processes an array and produces two important
values in registers $v0 and $v1. Assume that the array consists of 5000 words indexed 0
through 4999, and its base address is stored in $a0 and its size (5000) in $a1. Describe in
one sentence what this code does. Specifically, what will be returned in $v0 and $v1?

 add $a1, $a1, $a1 # $a1 = 5000 * 2
 add $a1, $a1, $a1 # $a1 = 5000 * 4
 add $v0, $zero, $zero # $v0 = 0
 add $t0, $zero, $zero # $t0 = 0
outer: add $t4, $a0, $t0 # $t4 = address A[i]
 lw $t4, 0($t4) # $t4 = A[i]
 add $t5, $zero, $zero # $t5 = count = 0
 add $t1, $zero, $zero # $t1 = 0
inner: add $t3, $a0, $t1 # $t3 = address A[j]
 lw $t3, 0($t3) # $t3 = A[j]
 bne $t3, $t4, skip # if (A[i]!=A[j]) skip
 addi $t5, $t5, 1 # count++
skip: addi $t1, $t1, 4 # j = j+4
 bne $t1, $a1, inner # inner loop = 5000
 slt $t2, $t5, $v0 # if (count < $v0)
 bne $t2, $zero, next # then goto next
 add $v0, $t5, $zero # $v0 = count
 add $v1, $t4, $zero # $v1 = A[i]
next: addi $t0, $t0, 4 # i = i+4
 bne $t0, $a1, outer # outer loop = 5000

This code compares every element in the array against all elements for identical
matches. It counts the frequency of occurrence of each value in the array. The
count of the most frequently used value is returned in $v0 and the value itself is
returned in $v1.

