Floating Point

ICS 233
Computer Architecture & Assembly Language
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Presentation Outline

% Floating-Point Numbers

+ IEEE 754 Floating-Point Standard

+ Floating-Point Addition and Subtraction
+ Floating-Point Multiplication

+« MIPS Floating-Point Instructions

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 2

The World is Not Just Integers

“ Programming languages support numbers with fraction
< Called floating-point numbers
< Examples:
3.14159265... (n)
2.71828... (e
0.000000001 or 1.0 x 10~° (seconds in a nanosecond)
86,400,000,000,000 or 8.64 x 1013 (nanoseconds in a day)
last number is a large integer that cannot fit in a 32-bit integer
+ We use a scientific notation to represent
< Very small numbers (e.g. 1.0 x 10-9)
< Very large numbers (e.g. 8.64 x 1013)
<~ Scientific notation: + d. f;f,f5f, ... x 10 * €828

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 3

Floating-Point Numbers

< Examples of floating-point numbers in base 10 ...
< 5.341x10%, 0.05341x10%, —2.013x10-1, —201.3x10-3

i i . decimal point
« Examples of floating-point numbers in base 2 ...
< 1.00101x2%3, 0.0100101x225, —-1.101101x2-3, —1101,101x2-5
<~ Exponents are kept in decimal for clarity binary point

< The binary number (1101.101), = 23+22+20+2-1+2-3 = 13.625
+ Floating-point numbers should be normalized

< Exactly one non-zero digit should appear before the point
= |n a decimal number, this digit can be from 1 to 9
= |n a binary number, this digit should be 1
< Normalized FP Numbers: 5.341x10% and —-1.101101x2-3
< NOT Normalized: 0.05341x10° and —1101.101x2-5

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 4

Floating-Point Representation

+ A floating-point number is represented by the triple

< S is the Sign bit (0 is positive and 1 is negative)
= Representation is called sign and magnitude

< E is the Exponent field (signed)
= Very large numbers have large positive exponents
= Very small close-to-zero numbers have negative exponents
= More hits in exponent field increases range of values

< Fis the Fraction field (fraction after binary point)
= More hits in fraction field improves the precision of FP numbers

‘S‘ Exponent ‘ Fraction ‘

Value of a floating-point number = (-1)S x val(F) x 2val(E)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 5

Next . ..

+ Floating-Point Numbers

% IEEE 754 Floating-Point Standard

+ Floating-Point Addition and Subtraction
+ Floating-Point Multiplication

+« MIPS Floating-Point Instructions

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 6

IEEE 754 Floating-Point Standard

+ Found in virtually every computer invented since 1980
< Simplified porting of floating-point numbers
< Unified the development of floating-point algorithms
< Increased the accuracy of floating-point numbers
% Single Precision Floating Point Numbers (32 bits)
< 1-bit sign + 8-bit exponent + 23-bit fraction

‘S‘ Exponent® ‘ Fraction?? ‘

+« Double Precision Floating Point Numbers (64 bits)
< 1-bit sign + 11-bit exponent + 52-bit fraction

S‘ Exponent! ‘ Fraction52

(continued)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 7

Normalized Floating Point Numbers

 For a normalized floating point number (S, E, F)

s e | F=f,fff, ... |

% Significand is equal to (1.F), = (1.f,f,f5f,...),
< IEEE 754 assumes hidden 1. (not stored) for normalized numbers
<~ Significand is 1 bit longer than fraction

+ Value of a Normalized Floating Point Number is
(—1)S x (1.F), x 2val®
(—1)S x (L.f,f,f5f, ...), % oval(E)

(—1)S x (1 + fx20 + f,x22 + f;x23 + f,x24 ..), x 23

(-1)Sis 1 when S is 0 (positive), and —1 when S is 1 (negative)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 8

Biased Exponent Representation

“+ How to represent a signed exponent? Choices are ...
< Sign + magnitude representation for the exponent
<~ Two’'s complement representation
< Biased representation

« IEEE 754 uses biased representation for the exponent
< Value of exponent = val(E) = E — Bias (Bias is a constant)

+ Recall that exponent field is 8 bits for single precision
< E can be in the range 0 to 255
< E=0and E = 255 are reserved for special use (discussed later)
< E = 11to 254 are used for normalized floating point numbers
< Bias = 127 (half of 254), val(E) = E — 127
< val(E=1) =-126, val(E=127) =0, val(E=254) =127

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 9

Biased Exponent - Cont'd

¢+ For double precision, exponent field is 11 bits
< E can be in the range 0 to 2047
<-E =0 and E = 2047 are reserved for special use
<~ E = 1 to 2046 are used for normalized floating point numbers
<~ Bias = 1023 (half of 2046), val(E) = E — 1023
< val(E=1) = —1022, val(E=1023) = 0, val(E=2046) = 1023

+ Value of a Normalized Floating Point Number is

(=1)S x (1.F), x 2E-Bias
(—1)S x (1.f,f,f5f,...), x 2E-Bias

(—1)S x (1 + fx2°0 + f,x22 + f;x23 + f,x24), x 2B~ Bias

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 10

Examples of Single Precision Float

“ What is the decimal value of this Single Precision float?

0lajai2zlolooolooplollopoploploplobloplof

+¢ Solution:
< Sign = 1 is negative
< Exponent = (01111100), = 124, E — bias = 124 — 127 = -3
< Significand = (1.0100 ... 0),= 1 + 22 = 1.25 (1. is implicit)
< Value in decimal = -1.25 x 2-3 = -0.15625

* What is the decimal value of?

oitololooito0}1/001 100000000000l

% Solution: implicit
< Value in decimal = +(1.01001100 ... 0), x 2130-127 =
(1.01001100 ... 0), x 28 =(1010.01100 ... 0), = 10.375

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 11

Examples of Double Precision Float

« What is the decimal value of this Double Precision float ?

0/1/0/0(0|0(0]0[0]1/0|11/0(0|1(0|1(0|1/0|0|0|0|0(0|0(0]O[0]O[0(O
0/0]0(0|0]0(0|0(0[0]0(0]0]0[0}0|0[0|0[0|0|0[0]0(0]0]0[0}0(0|0]0

+ Solution:
< Value of exponent = (10000000101), — Bias = 1029 — 1023 = 6
< Value of double float = (1.00101010 ... 0), x 26 (1. is implicit) =
(1001010.10 ... 0), = 74.5

+* What is the decimal value of ?

1(0j1/1{1(1|1|1{1]|0|0|0(1]|0|0|0|0]0|0(0]0|0|0(0]0|0[O|0]0[0(00
0/0/0(0]0|0|0(0]0|0(0|0]0[0(0|0]0[0(0]0|0[0(0]0|0(0]0|0[00]0|0

+« Do it yourself! (answer should be —1.5 x 27 = —0.01171875)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 12

Converting FP Decimal to Binary

s Convert —0.8125 to binary in single and double precision
++ Solution:
<~ Fraction bits can be obtained using multiplication by 2
= 0.8125x2 =1.625
= 0625x2 =1.25
= 025x2 =05
= 05x%x2 =1.0
= Stop when fractional part is 0

0.8125 = (0.1101), = Yo + ¥4 + 1/16 = 13/16

afftlafashfsloh o ooloololoolooloiololoolololdolo] . EET,
1jofajajafzjajajzfrja|oj1)o/1/0[ojojoojojojoojojoofofoj0[o0] pouble

ojojojoojojojojojojojojojojojojojolojojojojojojojojojojojojojo| Precision

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 13

Largest Normalized Float

“ What is the Largest normalized float?

++ Solution for Single Precision:
ofoffefaffaloy oo v oo fafriaa s iy

< Exponent — bias = 254 — 127 = 127 (largest exponent for SP)
< Significand = (1.111 ... 1), = almost 2
< Value in decimal = 2 x 2127 = 2128 = 3,4028 ... x 1038

+ Solution for Double Precision:

(060 b 0 A R R R R R
0 o R R R R R

< Value in decimal = 2 x 21023 = 21024 = 1 79769 ... x 10308
« Overflow: exponent is too large to fit in the exponent field

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 14

Smallest Normalized Float

“ What is the smallest (in absolute value) normalized float?
++ Solution for Single Precision:
olloldlololoofoloololofloldloolobloldololooflolo

< Exponent — bias =1 — 127 = -126 (smallest exponent for SP)
< Significand = (1.000 ... 0),=1
< Value in decimal = 1 x 2-126 = 1,17549 ... x 10-38

+ Solution for Double Precision:

0(0]0/0]0|0(0]0(0]0[0]1/0|0|0|0|0(0]0[0]0[0|0[0|0|0(0|0(0]0[0j0
0(0]0|0]0|0(0]0(0]0(0]0|0|0|0|0|0(0]0[0]0[0]0[0|0[0(0|0(0]0[0j0

< Value in decimal = 1 x 21022 = 2 22507 ... x 10308
« Underflow: exponent is too small to fit in exponent field

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 15

Zero, Infinity, and NaN

% Zero
< Exponent field E = 0 and fraction F =0
<~ +0 and -0 are possible according to sign bit S
% Infinity
< Infinity is a special value represented with maximum E and F = 0

= For single precision with 8-bit exponent: maximum E = 255
= For double precision with 11-bit exponent: maximum E = 2047

< Infinity can result from overflow or division by zero
< +% and — are possible according to sign bit S

% NaN (Not a Number)
< NaN is a special value represented with maximum E and F # 0
<~ Result from exceptional situations, such as 0/0 or sqrt(negative)
< Operation on a NaN results is NaN: Op(X, NaN) = NaN

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 16

Denormalized Numbers

+ |IEEE standard uses denormalized numbers to ...
<~ Fill the gap between 0 and the smallest normalized float
< Provide gradual underflow to zero
« Denormalized: exponent field E is 0 and fraction F # 0

< Implicit 1. before the fraction now becomes 0. (not normalized)

+ Value of denormalized number (S, 0, F)

Single precision: (1) S x (0.F), x 27126
Double precision: (-1) S x (0.F), x 271022

Negative Negative Positive Positive
Overflow Underflow | Underflow Overflow
— "
1
- Normalized (-ve) Denorm ' Denorm Normalized (+ve) +eo
-2128 -2-126 (’) 2-126 2128
Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 17

Summary of IEEE 754 Encoding

Single-Precision ‘ Exponent = 8 ‘ Fraction = 23 ‘ Value
Normalized Number 1to 254 Anything + (1.F), x 2B-127
Denormalized Number 0 nonzero +(0.F), x 2126
Zero 0 0 +0
Infinity 255 0 +

NaN 255 nonzero NaN
Double-Precision Exponent = 11 | Fraction = 52 ‘

Normalized Number 1to 2046 Anything t (1.F), x 28-1023
Denormalized Number 0 nonzero + (0.F), x 2-1022
Zero 0 0 0
Infinity 2047 0 +

NaN 2047 nonzero NaN

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 18

Floating-Point Comparison

< IEEE 754 floating point numbers are ordered
< Because exponent uses a biased representation ...
= Exponent value and its binary representation have same ordering
< Placing exponent before the fraction field orders the magnitude
= Larger exponent = larger magnitude
= For equal exponents, Larger fraction = larger magnitude
* 0<(0.F), x 2Fmn< (1.F), x 2E-8ias < 0 (E, . =1 — Bias)
< Because sign bit is most significant = quick test of signed <

+ Integer comparator can compare magnitudes

X=(Ey,Fy) — Integer [— X<Y
Magnitude — X =Y
Y =(Ey, Fy) — Comparator | , x5 vy

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 19

Next . ..

+ Floating-Point Numbers

+ IEEE 754 Floating-Point Standard

% Floating-Point Addition and Subtraction
+ Floating-Point Multiplication

+« MIPS Floating-Point Instructions

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 20

10

Floating Point Addition Example

+ Consider Adding (Single-Precision Floating-Point):
+ 1.11100100000000000000010 , x 24
+ 1.10000000000000110000101 , x 22
+ Cannot add significands ... Why?
< Because exponents are not equal
% How to make exponents equal?
< Shift the significand of the lesser exponent right

<~ Difference between the two exponents =4 -2 =2
< So, shift right second number by 2 bits and increment exponent

1.10000000000000110000101 , x 22
= 0.01100000000000001100001 01 , X 24

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 21

Floating-Point Addition - cont'd

% Now, ADD the Significands:
+1.11100100000000000000010 x 2 4

+ 1.10000000000000110000101 x 2 2

+ 1.11100100000000000000010 x 2 4
+ 0.01100000000000001100001 01 x 2 4 (shift right)

+10.01000100000000001100011 01 x 2 4 (result)

++ Addition produces a carry bit, result is NOT normalized

+» Normalize Result (shift right and increment exponent):
+ 10. 01000100000000001100011 01 x 2 4

=+ 1. 00100010000000000110001 101 x 2 >

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 22

11

Rounding

¢ Single-precision requires only 23 fraction bits
« However, Normalized result can contain additional bits

1.00100010000000000110001 | L (Q:l: y X 25
RoundBit: R=1-% L StickyBit: S=1

+» Two extra bits are needed for rounding
<~ Round bit: appears just after the normalized result
<~ Sticky bit: appears after the round bit (OR of all additional bits)
% Since RS = 11, increment fraction to round to nearest
1.00100010000000000110001 x 2 5
+1

1.001000100000000001100 10 x 25 (Rounded)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 23

Floating-Point Subtraction Example

+» Sometimes, addition is converted into subtraction
<~ If the sign bits of the operands are different
% Consider Adding:

+ 1.00000000101100010001101 x 2 6
— 1.00000000000000010011010 x 2 -1

+ 0.00001000000001011000100 01101 x 2
— 1.00000000000000010011010 x 2

0.00001000000001011000100 01101 x 2 1
0.111112222122111101100110 x 21 (2's complement)

1.00001000000001000101010 01101 x 2 -1 (ADD)
- 0.111101211111110111010101 10011 x 21 (2's complement)

L (shift right 5 bits)
1

Rk O

¢ 2's complement of result is required if result is negative

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 24

12

Floating-Point Subtraction - cont'd

+ 1.00000000101100010001101 x 2 6
— 1.00000000000000010011010 x 2 -t

- 0.11110111111110111010101 10011 x 2 -1 (result is negative)

+» Result should be normalized

< For subtraction, we can have leading zeros. To normalize, count
the number of leading zeros, then shift result left and decrement

the exponent accordingly. Guard bit
- 0.11110111111110111010101 (1' 0011 x 2 1
- 1.1110111111110111010101 1¥ 0011 x 2 2 (Normalized)

% Guard bit: guards against loss of a fraction bit

<~ Needed for subtraction, when result has a leading zero and
should be normalized.

Floating Point ICS 233 — KFUPM © Muhamed Mudawar - slide 25

Floating-Point Subtraction - cont'd

«» Next, normalized result should be rounded
Guard bit
- 0.11110111111110111010101 (1 0011 x 2 -

- 1.1110111111110111010101 1* ©;011 x 22 (Normalized)
Round bit: R=0 -- - Sticky bit: S=1

+ Since R = 0, it is more accurate to truncate the result
even if S = 1. We simply discard the extra bits.

- 1.11101111111101110101011 0 011 x 2-2 (Normalized)
- 1.1110121211111101110101011 x 2 2 (Rounded to nearest)

« IEEE 754 Representation of Result

il o aj a0 3l

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 26

13

Rounding to Nearest Even

% Normalized result has the form: 1. f, f, ... fR S
< The round bit R appears after the last fraction bit f,
<~ The sticky bit S is the OR of all remaining additional bits

“ Round to Nearest Even: default rounding mode

% Four cases for RS:
< RS =00 =» Result is Exact, no need for rounding
< RS =01 = Truncate result by discarding RS
< RS =11 = Increment result: ADD 1 to last fraction bit

< RS =10 =» Tie Case (either truncate or increment result)
= Check Last fraction bit f, (f,5 for single-precision or f, for double)
= If f,is O then truncate result to keep fraction even
= If f,is 1 then increment result to make fraction even

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 27

Additional Rounding Modes

« IEEE 754 standard specifies four rounding modes:

1. Round to Nearest Even: described in previous slide

2. Round toward +Infinity: result is rounded up
Increment result if sign is positive and Ror S =1

3. Round toward -Infinity: result is rounded down
Increment result if sign is negative and R or S =1

4. Round toward 0: always truncate result

+ Rounding or Incrementing result might generate a carry

<> This occurs when all fraction bits are 1

<~ Re-Normalize after Rounding step is required only in this case

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 28

14

Example on Rounding

+ Round following result using IEEE 754 rounding modes:

-1.11111111111111111111111 - 1,0 x 27

. J L . .
< Round to Nearest Even: Round Bit Sticky Bit

< Increment result since RS =10 and f,; =1

< Incremented result: —10. 00000000000000000000000 x 2 -7

< Renormalize and increment exponent (because of carry)

< Final rounded result: —1. 00000000000000000000000 x 2 -6
% Round towards +: Truncate result since negative

< Truncated Result: -1. 1111111111121111121121111 % 2 7
“+ Round towards —: Increment since negative and R = 1

< Final rounded result: —1. 00000000000000000000000 x 2 -6

% Round towards 0: Truncate always

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 29

Floating Point Addition / Subtraction
Shift significand right by

1. Compare the exponents of the two numbers. Shift the d=|Ex—Ey|
smaller number to the right until its exponent would match
the larger exponent.

Add significands when signs

— . - —— of X and Y are identical,
2. Add / Subtract the significands according to the sign bits. Subtract when different

' X —-Y becomes X+ (-Y)

3. Normalize the sum, either shifting right and incrementing
the exponent or shifting left and decrementing the exponent

1 Normalization shifts right by 1 if

there is a carry, or shifts left by
the number of leading zeros in
the case of subtraction

4. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Rounding either truncates
fraction, or adds a 1 to least
significant fraction bit

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 30

15

Floating Point Adder Block Diagram

1

) [F
Exponent sign ;1—0 D) | | i
Subtractor [

=
{

Swap |

d=]Ex-Ey|

add/sub ——»

Shift Right

add / subtract A\

Sign '\ Significand
Computation sign Adder/Subtractor
|

Floating Point

max (Ex, Ey) ‘

y

Detect carry, or
Count leading 0's | z

Inc / Dec [+

ICS 233 — KFUPM

Cc

Shift Right / Left

© Muhamed Mudawar — slide 31

Floating Point

Next . ..

+ Floating-Point Numbers

+ IEEE 754 Floating-Point Standard

+ Floating-Point Addition and Subtraction

% Floating-Point Multiplication

+« MIPS Floating-Point Instructions

ICS 233 — KFUPM

© Muhamed Mudawar — slide 32

16

Floating Point Multiplication Example

¢+ Consider multiplying:
-1.110 1000 0100 0000 1010 0001 , X 274
x 1.100 0000 0001 0000 0000 0000 , X 272

+ Unlike addition, we add the exponents of the operands
< Result exponent value = (-4) + (-2) = -6

“ Using the biased representation: E, = E, + E, — Bias
< Eyx = (-4) + 127 = 123 (Bias = 127 for single precision)
¢ Ey=(-2)+127 =125
< E, =123 + 125 - 127 = 121 (value = -6)

+¢ Sign bit of product can be computed independently

+ Sign bit of product = Sign, XOR Sign, = 1 (negative)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 33

Floating-Point Multiplication, cont'd

< Now multiply the significands:

(Multiplicand) ~ 1.11010000100000010100001
(Multiplier) x 1.100000PED0100000000P000

111010000100000010100001
111010000100000010100001
1.11010000100000010100001

10.1011100011111011111100110010100001000000000000
s 24 bits x 24 bits =» 48 bits (double number of bits)
% Multiplicand x 0 =0 Zero rows are eliminated
¢+ Multiplicand x 1 = Multiplicand (shifted left)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 34

17

Floating-Point Multiplication, cont'd
+ Normalize Product:
-10. 10111000111110111111001100... x 2 -6
Shift right and increment exponent because of carry bit
=-1.010111000111110111111001100... x 2 -5
“ Round to Nearest Even: (keep only 23 fraction bits)
1.01011100011111011111100 | ()f00..] x 2%
Round bit = 1, Sticky bit = 1, so increment fraction
Final result =-1. 0101110001111101111110 1 x 25

s IEEE 754 Representation
[alfrffrlsfofrioolyofjrfololoi ol sifriloly

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 35

Floating Point Multiplication
Biased Exponent Addition

1. Add the biased exponents of the two numbers, subtracting E; = Ex + Ey —Bias
the bias from the sum to get the new biased exponent

i Result sign S, = Sy xor Sy can
2. Multiply the significands. Set the result sign to positive if be computed independently
operands have same sign, and negative otherwise
¥ Since the operand significands
3. Normalize the product if necessary, shifting its significand 1.Fy and 1.F,are 21 and < 2,
right and incrementing the exponent their product is = 1 and < 4.
i To normalize product, we need
4. Round the significand to the appropriate number of bits, and to shift right at most by 1 bit and
renormalize if rounding generates a carry increment exponent

Rounding either truncates
fraction, or adds a 1 to least
significant fraction bit

Overflow or
underflow?

no

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 36

18

Extra Bits to Maintain Precision

¢ Floating-point numbers are approximations for ...
<~ Real numbers that they cannot represent

+ Infinite variety of real numbers exist between 1.0 and 2.0
< However, exactly 223 fractions represented in Single Precision
< Exactly 252 fractions can be represented in Double Precision

«+ Extra bits are generated in intermediate results when ...
< Shifting and adding/subtracting a p-bit significand
< Multiplying two p-bit significands (product is 2p bits)

« But when packing result fraction, extra bits are discarded

% Few extra bits are needed: guard, round, and sticky bits

+* Minimize hardware but without compromising accuracy

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 37

Advantages of IEEE 754 Standard

+ Used predominantly by the industry
“ Encoding of exponent and fraction simplifies comparison
< Integer comparator used to compare magnitude of FP numbers

+ Includes special exceptional values: NaN and +«

<~ Special rules are used such as:

= 0/0is NaN, sqgrt(—1) is NaN, 1/0 is =, and 1/~ is O

<~ Computation may continue in the face of exceptional conditions
+ Denormalized numbers to fill the gap

$ Between smallest normalized number 1.0 x 25m and zero

$ Denormalized numbers , values 0.F x 25" | are closer to zero

< Gradual underflow to zero

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 38

19

Floating Point Complexities

+* Operations are somewhat more complicated
+* In addition to overflow we can have underflow

¢+ Accuracy can be a big problem
< Extra bits to maintain precision: guard, round, and sticky
<~ Four rounding modes
<~ Division by zero yields Infinity
< Zero divide by zero yields Not-a-Number
<~ Other complexities

« Implementing the standard can be tricky
< See text for description of 80x86 and Pentium bug!
+ Not using the standard can be even worse

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 39

Accuracy can be a Big Problem

Valuel Value2 Value3 Value4 Sum

1.0E+30 -1.0E+30 9.5 -2.3 7.2
1.0E+30 9.5 -1.0E+30 -2.3 -2.3
1.0E+30 9.5 -2.3 -1.0E+30 0

¢ Adding double-precision floating-point numbers (Excel)
+* Floating-Point addition is NOT associative
¢ Produces different sums for the same data values

+ Rounding errors when the difference in exponent is large

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 40

20

Next . ..

+ Floating-Point Numbers

+ IEEE 754 Floating-Point Standard

+» Floating-Point Addition and Subtraction
+» Floating-Point Multiplication

% MIPS Floating-Point Instructions

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 41

MIPS Floating Point Coprocessor

++ Called Coprocessor 1 or the Floating Point Unit (FPU)
% 32 separate floating point registers: $f0, $f1, ..., $f31
“ FP registers are 32 bits for single precision numbers
« Even-odd register pair form a double precision register

++ Use the even number for double precision registers
< $f0, $f2, $f4, ..., $f30 are used for double precision
¢ Separate FP instructions for single/double precision
<~ Single precision: add.s, sub.s, mul.s, div.s (.s extension)
< Double precision: add.d, sub.d, mul.d, div.d (.d extension)
« FP instructions are more complex than the integer ones

<- Take more cycles to execute

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 42

21

FP Arithmetic Instructions

Instruction ‘ Meaning ‘ Format

add.s fd,fs, ft | (fd) = (fs) + (ft) ox11 fts | fs5 | fdS
add.d fd,fs, ft | (fd) = (fs) + (ft) 0x11 fts | fs5 | fdS
sub.s fd, fs, ft | (fd) = (fs) — (ft) ox11 fts | fs5 | fdS
sub.d fd, fs, ft | (fd) = (fs) — (ft) 0x11 fts | fs5 | fd®
mul.s fd, fs, ft (fd) = (fs) x (ft) 0x11 ftd fsd | fd°
muld fd,fs, ft | (fd) = (fs) x (ft) 0x11 fts | fs5 | fd®

P O|IRP|IO|FP|O|RP|O|FR|[O|FR|O|F|O
=2
&

N NO|O[BRDRWIWININ|[FR|P|O|O

divs fd,fs, ft | (fd) = (fs)/ (ft) 0x11 fs5 | fd®
divd fd,fs, ft | (fd) = (fs)/ (ft) 0x11 ft5 | fs5 | fd°
sqrt.s fd, fs (fd) = sqrt (fs) 0x11 0 fsd | fd°
sgrt.d fd, fs (fd) = sqrt (fs) 0x11 0 fs5 | fd°
abs.s fd,fs (fd) = abs (fs) 0x11 0 fsd | fd°
abs.d fd,fs (fd) = abs (fs) 0x11 0 fs5 | fd°
neg.s fd,fs (fd) = — (fs) 0x11 0 fsd | fd°
neg.d fd,fs (fd) = — (fs) 0x11 0 fs5 | fd°
Floating Point ICS 233 - KFUPM © Muhamed Mudawar — slide 43

FP Load/Store Instructions

% Separate floating point load/store instructions

< lwcl: load word coprocessor 1

General purpose

register is used as
< swcl: store word coprocessor 1 the base register

<-1ldcl: load double coprocessor 1

<-sdcl: store double coprocessor 1

Instruction \ Meaning | Format

lwel $f2, 40($t0) | ($f2) = Mem[($t0)+40] | 0x31 | $t0 | $f2 | im6=40
Idcl $f2, 40($t0) | ($f2) = Mem|[($t0)+40] | 0x35 | $t0 | $f2 | im16 =40
swcl $f2, 40(3t0) | Mem([($t0)+40] = ($f2) | 0x39 | $t0 | $f2 | im26 =40
sdcl $f2, 40(3t0) | Mem[($t0)+40] = ($f2) | Ox3d | $t0 | $f2 | im6 =40

«» Better names can be used for the above instructions

< l.s = lwcl (load FP single), I.d =1dcl (load FP double)
< s.s = swcl (store FP single), s.d = sdcl (store FP double)
Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 44

22

FP Data Movement Instructions

“ Moving data between general purpose and FP registers
<-mfcl: move from coprocessor 1 (to general purpose register)
<-mtcl: move to coprocessor 1 (from general purpose register)

“ Moving data between FP registers

<~ mov.s: move single precision float

<- mov.d: move double precision float = even/odd pair of registers

Instruction | Meaning | Format
mfcl $t0, $f2 | ($t0)=($f2) | Ox11 | O | $t0 | $f2 | © 0
mtcl $t0, $f2 | ($f2)=($t0) | Ox11 | 4 | $t0O | $f2 | © 0
mov.s $f4, $f2 | ($f4)=($f2) | Ox11 | O 0 | $2 | $f4 | 6
mov.d $f4, $f2 | ($f4)=($f2) | Ox11 | 1 0 | $2 | $f4 | 6

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 45

FP Convert Instructions

+« Convert instruction: cvt.x.y
< Convert to destination format x from source formaty
+ Supported formats

<~ Single precision float

.S (single precision float in FP register)

< Double precision float =.d (double float in even-odd FP register)

<~ Signed integer word W (signed integer in FP register)

Instruction | Meaning | Format

cvt.s.w fd, fs |to single from integer | Ox11 | O 0 fs® | fd> | 0x20
cvt.s.d fd, fs |to single from double | Ox11 | 1 0 fs® | fd> | 0x20
cvt.d.w fd, fs |to double from integer| Ox11 | O 0 fs® | fd> | Ox21
cvt.d.s fd, fs |to double from single | Ox11 | 1 0 fs® | fd> | Ox21
cvt.w.s fd, fs |to integer from single | Ox11 | O 0 fs® | fd> | Ox24
cvt.w.d fd, fs |to integer from double | Ox11 | 1 0 fs® | fd> | Ox24
Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 46

23

FP Compare and Branch Instructions

+« FP unit (co-processor 1) has a condition flag

< Set to O (false) or 1 (true) by any comparison instruction
+« Three comparisons: equal, less than, less than or equal

+« Two branch instructions based on the condition flag

Instruction Meaning Format

c.eq.s fs,ft cflag = ((fs) == (ft)) 0x11 | 0 | ft5 | fs> | O | Ox32
c.eqd fs,ft cflag = ((fs) == (ft)) 0x11 1 | ft5 | fs5 | 0 | Ox32
clts fs, ft cflag = ((fs) < (ft)) 0x11 | 0 | ft5 | fs> | O | Ox3c
cltd fs, ft cflag = ((fs) < (ft)) 0x11 1 | ft5 | fs5| 0 | Ox3c
cles fs,ft cflag = ((fs) <= (ft)) 0x11 | 0 | ft5 | fs> | O | Ox3e
cled fs,ft cflag = ((fs) <= (ft)) 0x11 1 | ft5 | fs5 | O | Ox3e
bclf Label branch if (cflag == 0) | 0x11 8 0 im16

bclt Label branch if (cflag == 1) | 0x11 8 1 im16

Floating Point ICS 233 - KFUPM © Muhamed Mudawar — slide 47

Example 1: Area of a Circle

. data
pi: .double 3.1415926535897924
msg: .asciiz "Circle Area ="

text

main:
Idcl $f2, pi # $f2,3 = pi
li $v0, 7 # read double (radius)
syscall # $f0,1 = radius

mul.d $f12, $f0, $f0 # $f12,13 = radius*radius
mul.d $f12, $f2, $f12 # $f12,13 = area

la $a0, msg

li $v0, 4 # print string (msg)
syscall

li $v0, 3 # print double (area)
syscall # print $f12,13

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 48

Example 2: Matrix Multiplication
void mm (int n, double x[n][n], y[n][n], z[n][n]) {
for (int i=0; il=n; i=i+1)
for (int j=0; j!=n; j=j+1) {
double sum = 0.0;
for (int k=0; k!=n; k=k+1)
sum = sum + y[i][K] * z[K][]];
X[i][j] = sum;

}

“* Matrices x, y, and z are nxn double precision float
% Matrix size is passed in $a0 = n

“ Array addresses are passed in $al, $a2, and $a3

s What is the MIPS assembly code for the procedure?

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 49

Address Calculation for 2D Arrays
s Row-Major Order: 2D arrays are stored as rows
+¢ Calculate Address of: X]i][j]

= Address of X + (ixn+j)x8 (8 bytes per element)

row 0 n elements per row
ixn
elements

row i-1 n elements per row
row i jelements | |

X[

% Address of Y[i][k] = Address of Y + (ixn+k)x8
¢ Address of Z[K][]] = Address of Z + (kxn+j)x8

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 50

25

Matrix Multiplication Procedure - 1/3

+¢ Initialize Loop Variables

mm: addu $t1, $0, $0 #$t1=i=0;forl st loop
L1: addu $t2, $0, $0 #$t2=j=0;for2 nd Joop
L2: addu $t3, $0, $0 #$t3=k=0; for 3 d loop

sub.d $f0, $f0, $f0 # $f0 = sum =0.0
% Calculate address of y[i][K] and load it into $f2,$f3

s Skip i rows (ixn) and add k elements

L3: mul $t4, $t1, $a0 # $t4 = i*size(row) = i*n
addu $t4, $t4, $t3 # $t4 =i*n + k
sl $t4, $t4, 3 # $t4 =(i*n + k)*8
addu $t4, $a2, $t4 # $t4 = address of y[iJ[K]
Ld $f2, 0($t4) #$f2 = y[i][K]

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 51

Matrix Multiplication Procedure - 2/3

+« Similarly, calculate address and load value of z[k][j]

¢ Skip k rows (kxn) and add j elements

mul $t5, $t3, $a0 # $t5 = k*size(row) = k*n
addu $t5, $t5, $t2 # $t5 = k*n +

sl $t5, $t5, 3 # $t5 =(k*n +j)*8

addu $t5, $a3, $t5 # $t5 = address of z[K][j]
ld $f4, 0($t5) # $f4 = z[K][]]

& Now, multiply y[il[k] by zK][] and add it to $f0

mul.d $f6, $2, $f4 # $6 = y[il[k]*z[KI[i]
add.d $f0, $f0, $f6 # $f0 = sum
addiu $t3, $t3, 1 #k=k+1
bne $t3,$a0,L3 # loop back if (k !=n)

Floating Point ICS 233 — KFUPM © Muhamed Mudawar — slide 52

26

Matrix Multiplication Procedure - 3/3

+» Calculate address of x]i][j] and store sum
mul $t6, $t1, $a0 # $t6 = i*size(row) = i*n
addu $t6, $t6, $t2 # $t6 = i*n +j

sl $t6, $t6, 3

$t6 =(i*n + j)*8

addu $t6, $al, $t6 # $t6 = address of x]i][j]

s.d $f0, O($t6) # x[i][j] = sum
+ Repeat outer loops: L2 (forj=...) and L1 (fori=...)
addiu $t2, $t2, 1 #ji=j+1
bne $t2,$a0,L2 #loop L2 if (j!=n)
addiu $t1, $t1, 1 #i=zi+1

bne $t1, $a0, L1
% Return:
jr $ra

Floating Point

#loop L1 if (i 1= n)

return

ICS 233 — KFUPM © Muhamed Mudawar — slide 53

27

