
1

Floating Point

ICS 233
Computer Architecture & Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Floating-Point Numbers

� IEEE 754 Floating-Point Standard

� Floating-Point Addition and Subtraction

� Floating-Point Multiplication

� MIPS Floating-Point Instructions

2

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 3

� Programming languages support numbers with fraction
� Called floating-point numbers

� Examples:

3.14159265… (π)

2.71828… (e)

0.000000001 or 1.0 × 10–9 (seconds in a nanosecond)

86,400,000,000,000 or 8.64 × 1013 (nanoseconds in a day)

last number is a large integer that cannot fit in a 32-bit integer

� We use a scientific notation to represent
� Very small numbers (e.g. 1.0 × 10–9)

� Very large numbers (e.g. 8.64 × 1013)

� Scientific notation: ± d . f1f2f3f4 … × 10 ± e1e2e3

The World is Not Just Integers

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 4

� Examples of floating-point numbers in base 10 …
� 5.341×103 , 0.05341×105 , –2.013×10–1 , –201.3×10–3

� Examples of floating-point numbers in base 2 …
� 1.00101×223 , 0.0100101×225 , –1.101101×2–3 , –1101.101×2–6

� Exponents are kept in decimal for clarity

� The binary number (1101.101)2 = 23+22+20+2–1+2–3 = 13.625

� Floating-point numbers should be normalized
� Exactly one non-zero digit should appear before the point

� In a decimal number, this digit can be from 1 to 9

� In a binary number, this digit should be 1

� Normalized FP Numbers: 5.341×103 and –1.101101×2–3

� NOT Normalized: 0.05341×105 and –1101.101×2–6

Floating-Point Numbers

decimal point

binary point

3

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 5

� A floating-point number is represented by the triple
� S is the Sign bit (0 is positive and 1 is negative)

� Representation is called sign and magnitude

� E is the Exponent field (signed)

� Very large numbers have large positive exponents

� Very small close-to-zero numbers have negative exponents

� More bits in exponent field increases range of values

� F is the Fraction field (fraction after binary point)

� More bits in fraction field improves the precision of FP numbers

Value of a floating-point number = (-1)S × val(F) × 2val(E)

Floating-Point Representation

S Exponent Fraction

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 6

Next . . .

� Floating-Point Numbers

� IEEE 754 Floating-Point Standard

� Floating-Point Addition and Subtraction

� Floating-Point Multiplication

� MIPS Floating-Point Instructions

4

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 7

IEEE 754 Floating-Point Standard

� Found in virtually every computer invented since 1980
� Simplified porting of floating-point numbers

� Unified the development of floating-point algorithms

� Increased the accuracy of floating-point numbers

� Single Precision Floating Point Numbers (32 bits)
� 1-bit sign + 8-bit exponent + 23-bit fraction

� Double Precision Floating Point Numbers (64 bits)
� 1-bit sign + 11-bit exponent + 52-bit fraction

S Exponent8 Fraction23

S Exponent11 Fraction52

(continued)

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 8

� For a normalized floating point number (S, E, F)

� Significand is equal to (1.F)2 = (1.f1f2f3f4…)2

� IEEE 754 assumes hidden 1. (not stored) for normalized numbers

� Significand is 1 bit longer than fraction

� Value of a Normalized Floating Point Number is

(–1)S × (1.F)2 × 2val(E)

(–1)S × (1.f1f2f3f4 …)2 × 2val(E)

(–1)S × (1 + f1×2-1 + f2×2-2 + f3×2-3 + f4×2-4 …)2 × 2val(E)

(–1)S is 1 when S is 0 (positive), and –1 when S is 1 (negative)

Normalized Floating Point Numbers

S E F = f1 f2 f3 f4 …

5

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 9

Biased Exponent Representation

� How to represent a signed exponent? Choices are …
� Sign + magnitude representation for the exponent

� Two’s complement representation

� Biased representation

� IEEE 754 uses biased representation for the exponent
� Value of exponent = val(E) = E – Bias (Bias is a constant)

� Recall that exponent field is 8 bits for single precision
� E can be in the range 0 to 255

� E = 0 and E = 255 are reserved for special use (discussed later)

� E = 1 to 254 are used for normalized floating point numbers

� Bias = 127 (half of 254), val(E) = E – 127

� val(E=1) = –126, val(E=127) = 0, val(E=254) = 127

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 10

Biased Exponent – Cont’d

� For double precision, exponent field is 11 bits
� E can be in the range 0 to 2047

� E = 0 and E = 2047 are reserved for special use

� E = 1 to 2046 are used for normalized floating point numbers

� Bias = 1023 (half of 2046), val(E) = E – 1023

� val(E=1) = –1022, val(E=1023) = 0, val(E=2046) = 1023

� Value of a Normalized Floating Point Number is

(–1)S × (1.F)2 × 2E – Bias

(–1)S × (1.f1f2f3f4 …)2 × 2E – Bias

(–1)S × (1 + f1×2-1 + f2×2-2 + f3×2-3 + f4×2-4 …)2 × 2E – Bias

6

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 11

Examples of Single Precision Float

� What is the decimal value of this Single Precision float?

� Solution:
� Sign = 1 is negative

� Exponent = (01111100)2 = 124, E – bias = 124 – 127 = –3

� Significand = (1.0100 … 0)2 = 1 + 2-2 = 1.25 (1. is implicit)

� Value in decimal = –1.25 × 2–3 = –0.15625

� What is the decimal value of?

� Solution:
� Value in decimal = +(1.01001100 … 0)2 × 2130–127 =

(1.01001100 … 0)2 × 23 = (1010.01100 … 0)2 = 10.375

1 0 1 1 1 1 1 0 0 0 1 0

0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

implicit

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 12

Examples of Double Precision Float
� What is the decimal value of this Double Precision float ?

� Solution:
� Value of exponent = (10000000101)2 – Bias = 1029 – 1023 = 6

� Value of double float = (1.00101010 … 0)2 × 26 (1. is implicit) =

(1001010.10 … 0)2 = 74.5

� What is the decimal value of ?

� Do it yourself! (answer should be –1.5 × 2–7 = –0.01171875)

0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

7

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 13

Converting FP Decimal to Binary

� Convert –0.8125 to binary in single and double precision
� Solution:

� Fraction bits can be obtained using multiplication by 2
� 0.8125 × 2 = 1.625
� 0.625 × 2 = 1.25
� 0.25 × 2 = 0.5
� 0.5 × 2 = 1.0
� Stop when fractional part is 0

� Fraction = (0.1101)2 = (1.101)2 × 2 –1 (Normalized)

� Exponent = –1 + Bias = 126 (single precision) and 1022 (double)

0.8125 = (0.1101)2 = ½ + ¼ + 1/16 = 13/16

1 0 1 1 1 1 1 1 0 1 0 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

Single
Precision

Double
Precision

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 14

Largest Normalized Float

� What is the Largest normalized float?

� Solution for Single Precision:

� Exponent – bias = 254 – 127 = 127 (largest exponent for SP)

� Significand = (1.111 … 1)2 = almost 2

� Value in decimal ≈ 2 × 2127 ≈ 2128 ≈ 3.4028 … × 1038

� Solution for Double Precision:

� Value in decimal ≈ 2 × 21023 ≈ 21024 ≈ 1.79769 … × 10308

� Overflow: exponent is too large to fit in the exponent field

0 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 0 1

1 1

8

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 15

Smallest Normalized Float

� What is the smallest (in absolute value) normalized float?

� Solution for Single Precision:

� Exponent – bias = 1 – 127 = –126 (smallest exponent for SP)

� Significand = (1.000 … 0)2 = 1

� Value in decimal = 1 × 2–126 = 1.17549 … × 10–38

� Solution for Double Precision:

� Value in decimal = 1 × 2–1022 = 2.22507 … × 10–308

� Underflow: exponent is too small to fit in exponent field

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 16

Zero, Infinity, and NaN

� Zero
� Exponent field E = 0 and fraction F = 0

� +0 and –0 are possible according to sign bit S

� Infinity
� Infinity is a special value represented with maximum E and F = 0

� For single precision with 8-bit exponent: maximum E = 255

� For double precision with 11-bit exponent: maximum E = 2047

� Infinity can result from overflow or division by zero

� +∞ and –∞ are possible according to sign bit S

� NaN (Not a Number)
� NaN is a special value represented with maximum E and F ≠ 0

� Result from exceptional situations, such as 0/0 or sqrt(negative)

� Operation on a NaN results is NaN: Op(X, NaN) = NaN

9

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 17

Denormalized Numbers

� IEEE standard uses denormalized numbers to …
� Fill the gap between 0 and the smallest normalized float

� Provide gradual underflow to zero

� Denormalized: exponent field E is 0 and fraction F ≠ 0
� Implicit 1. before the fraction now becomes 0. (not normalized)

� Value of denormalized number (S, 0, F)

Single precision: (–1) S × (0.F)2 × 2–126

Double precision: (–1) S × (0.F)2 × 2–1022

Denorm Denorm +∞

Positive
Overflow

-∞

Negative
Overflow

Negative
Underflow

Positive
Underflow

Normalized (–ve) Normalized (+ve)

2–126 2128 0-2128 -2–126

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 18

Summary of IEEE 754 Encoding

Single-Precision Exponent = 8 Fraction = 23 Value

Normalized Number 1 to 254 Anything ± (1.F)2 × 2E – 127

Denormalized Number 0 nonzero ± (0.F)2 × 2–126

Zero 0 0 ± 0

Infinity 255 0 ± ∞

NaN 255 nonzero NaN

Double-Precision Exponent = 11 Fraction = 52 Value

Normalized Number 1 to 2046 Anything ± (1.F)2 × 2E – 1023

Denormalized Number 0 nonzero ± (0.F)2 × 2–1022

Zero 0 0 ± 0

Infinity 2047 0 ± ∞

NaN 2047 nonzero NaN

10

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 19

� IEEE 754 floating point numbers are ordered

� Because exponent uses a biased representation …

� Exponent value and its binary representation have same ordering

� Placing exponent before the fraction field orders the magnitude

� Larger exponent ⇒ larger magnitude

� For equal exponents, Larger fraction ⇒ larger magnitude

� 0 < (0.F)2 × 2Emin < (1.F)2 × 2E–Bias < ∞ (Emin = 1 – Bias)

� Because sign bit is most significant ⇒ quick test of signed <

� Integer comparator can compare magnitudes

Integer

Magnitude

Comparator

X < Y

X = Y

X > Y

X = (EX , FX)

Y = (EY , FY)

Floating-Point Comparison

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 20

Next . . .

� Floating-Point Numbers

� IEEE 754 Floating-Point Standard

� Floating-Point Addition and Subtraction

� Floating-Point Multiplication

� MIPS Floating-Point Instructions

11

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 21

Floating Point Addition Example

� Consider Adding (Single-Precision Floating-Point):

+ 1.11100100000000000000010 2 × 24

+ 1.10000000000000110000101 2 × 22

� Cannot add significands … Why?
� Because exponents are not equal

� How to make exponents equal?
� Shift the significand of the lesser exponent right

� Difference between the two exponents = 4 – 2 = 2

� So, shift right second number by 2 bits and increment exponent

1.10000000000000110000101 2 × 22

= 0.01100000000000001100001 01 2 × 24

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 22

Floating-Point Addition – cont'd

� Now, ADD the Significands:
+ 1.11100100000000000000010 × 2 4

+ 1.10000000000000110000101 × 2 2

+ 1.11100100000000000000010 × 2 4

+ 0.01100000000000001100001 01 × 2 4 (shift right)

+10.01000100000000001100011 01 × 2 4 (result)

� Addition produces a carry bit, result is NOT normalized

� Normalize Result (shift right and increment exponent):
+ 10. 01000100000000001100011 01 × 2 4

= + 1. 00100010000000000110001 101 × 2 5

12

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 23

Rounding
� Single-precision requires only 23 fraction bits

� However, Normalized result can contain additional bits

1.00100010000000000110001 | 1 01 × 25

� Two extra bits are needed for rounding
� Round bit: appears just after the normalized result

� Sticky bit: appears after the round bit (OR of all additional bits)

� Since RS = 11, increment fraction to round to nearest

1.00100010000000000110001 × 2 5

+1

1.001000100000000001100 10 × 25 (Rounded)

Round Bit: R = 1 Sticky Bit: S = 1

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 24

Floating-Point Subtraction Example
� Sometimes, addition is converted into subtraction

� If the sign bits of the operands are different

� Consider Adding:

+ 1.00000000101100010001101 × 2 -6

– 1.00000000000000010011010 × 2 -1

+ 0.00001000000001011000100 01101 × 2 -1 (shift right 5 bits)
– 1.00000000000000010011010 × 2 -1

0 0.00001000000001011000100 01101 × 2 -1

1 0.11111111111111101100110 × 2-1 (2's complement)

1 1.00001000000001000101010 01101 × 2 -1 (ADD)

- 0.11110111111110111010101 10011 × 2-1 (2's complement)

� 2's complement of result is required if result is negative

13

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 25

Floating-Point Subtraction – cont'd

+ 1.00000000101100010001101 × 2 -6

– 1.00000000000000010011010 × 2 -1

- 0.11110111111110111010101 10011 × 2 -1 (result is negative)

� Result should be normalized
� For subtraction, we can have leading zeros. To normalize, count

the number of leading zeros, then shift result left and decrement
the exponent accordingly.

- 0. 11110111111110111010101 1 0011 × 2 -1

- 1. 1110111111110111010101 1 0011 × 2 -2 (Normalized)

Guard bit

� Guard bit: guards against loss of a fraction bit
� Needed for subtraction, when result has a leading zero and

should be normalized.

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 26

Floating-Point Subtraction – cont'd

� Next, normalized result should be rounded

- 0. 11110111111110111010101 1 0 011 × 2 -1

- 1. 1110111111110111010101 1 0 011 × 2-2 (Normalized)

Guard bit

Round bit: R=0 Sticky bit: S = 1

� Since R = 0, it is more accurate to truncate the result
even if S = 1. We simply discard the extra bits.

- 1.11101111111101110101011 0 011 × 2-2 (Normalized)

- 1.11101111111101110101011 × 2 -2 (Rounded to nearest)

� IEEE 754 Representation of Result

1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1

14

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 27

Rounding to Nearest Even

� Normalized result has the form: 1. f1 f2 … fl R S
� The round bit R appears after the last fraction bit fl

� The sticky bit S is the OR of all remaining additional bits

� Round to Nearest Even: default rounding mode

� Four cases for RS:
� RS = 00 � Result is Exact, no need for rounding

� RS = 01 � Truncate result by discarding RS

� RS = 11 � Increment result: ADD 1 to last fraction bit

� RS = 10 � Tie Case (either truncate or increment result)

� Check Last fraction bit fl (f23 for single-precision or f52 for double)

� If fl is 0 then truncate result to keep fraction even

� If fl is 1 then increment result to make fraction even

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 28

Additional Rounding Modes

� IEEE 754 standard specifies four rounding modes:

1. Round to Nearest Even: described in previous slide

2. Round toward +Infinity: result is rounded up

Increment result if sign is positive and R or S = 1

3. Round toward -Infinity: result is rounded down

Increment result if sign is negative and R or S = 1

4. Round toward 0: always truncate result

� Rounding or Incrementing result might generate a carry

� This occurs when all fraction bits are 1

� Re-Normalize after Rounding step is required only in this case

15

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 29

� Round following result using IEEE 754 rounding modes:
–1. 11111111111111111111111 1 0 × 2-7

� Round to Nearest Even:
� Increment result since RS = 10 and f 23 = 1
� Incremented result: –10. 00000000000000000000000 × 2 -7

� Renormalize and increment exponent (because of carry)

� Final rounded result: –1. 00000000000000000000000 × 2 -6

� Round towards +∞:
� Truncated Result: –1. 11111111111111111111111 × 2 -7

� Round towards –∞:
� Final rounded result: –1. 00000000000000000000000 × 2 -6

� Round towards 0:

Example on Rounding

Round Bit Sticky Bit

Truncate result since negative

Increment since negative and R = 1

Truncate always

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 30

Floating Point Addition / Subtraction

1. Compare the exponents of the two numbers. Shift the
smaller number to the right until its exponent would match
the larger exponent.

2. Add / Subtract the significands according to the sign bits.

3. Normalize the sum, either shifting right and incrementing
the exponent or shifting left and decrementing the exponent

4. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Start

Done

Overflow or
underflow?

Exception
yes

no

Shift significand right by

d = | EX – EY |

Add significands when signs

of X and Y are identical,

Subtract when different

X – Y becomes X + (–Y)

Normalization shifts right by 1 if
there is a carry, or shifts left by
the number of leading zeros in

the case of subtraction

Rounding either truncates
fraction, or adds a 1 to least

significant fraction bit

16

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 31

Floating Point Adder Block Diagram

c

z

EZ

EX

FX

Shift Right / Left

Inc / Dec

EY

Swap

FY

Shift Right

Exponent
Subtractor

Significand

Adder/Subtractor

1 1
sign

Sign

Computation

d = | EX – EY |

max (EX , EY)

add / subtract

Rounding Logic

sign
SY

add/sub

FZSZ

c

SX

z
Detect carry, or

Count leading 0’s

c

0 1

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 32

Next . . .

� Floating-Point Numbers

� IEEE 754 Floating-Point Standard

� Floating-Point Addition and Subtraction

� Floating-Point Multiplication

� MIPS Floating-Point Instructions

17

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 33

Floating Point Multiplication Example
� Consider multiplying:

-1.110 1000 0100 0000 1010 0001 2 × 2–4

× 1.100 0000 0001 0000 0000 0000 2 × 2–2

� Unlike addition, we add the exponents of the operands
� Result exponent value = (–4) + (–2) = –6

� Using the biased representation: EZ = EX + EY – Bias
� EX = (–4) + 127 = 123 (Bias = 127 for single precision)

� EY = (–2) + 127 = 125

� EZ = 123 + 125 – 127 = 121 (value = –6)

� Sign bit of product can be computed independently

� Sign bit of product = SignX XOR SignY = 1 (negative)

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 34

Floating-Point Multiplication, cont'd

� Now multiply the significands:

(Multiplicand) 1.11010000100000010100001

(Multiplier) × 1.10000000001000000000000

111010000100000010100001

111010000100000010100001

1.11010000100000010100001

10.1011100011111011111100110010100001000000000000

� 24 bits × 24 bits � 48 bits (double number of bits)

� Multiplicand × 0 = 0 Zero rows are eliminated

� Multiplicand × 1 = Multiplicand (shifted left)

18

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 35

Floating-Point Multiplication, cont'd

� Normalize Product:

- 10. 10111000111110111111001100... × 2 -6

Shift right and increment exponent because of carry bit

= - 1. 010111000111110111111001100... × 2 -5

� Round to Nearest Even: (keep only 23 fraction bits)

1. 01011100011111011111100 | 1 100... × 2-5

Round bit = 1, Sticky bit = 1, so increment fraction

Final result = -1. 0101110001111101111110 1 × 2-5

� IEEE 754 Representation

1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 36

Floating Point Multiplication

1. Add the biased exponents of the two numbers, subtracting
the bias from the sum to get the new biased exponent

2. Multiply the significands. Set the result sign to positive if
operands have same sign, and negative otherwise

3. Normalize the product if necessary, shifting its significand
right and incrementing the exponent

4. Round the significand to the appropriate number of bits, and
renormalize if rounding generates a carry

Start

Done

Overflow or
underflow?

Exception
yes

no

Biased Exponent Addition

EZ = EX + EY – Bias

Result sign SZ = SX xor SY can
be computed independently

Since the operand significands
1.FX and 1.FY are ≥ 1 and < 2,

their product is ≥ 1 and < 4.

To normalize product, we need
to shift right at most by 1 bit and

increment exponent

Rounding either truncates
fraction, or adds a 1 to least

significant fraction bit

19

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 37

Extra Bits to Maintain Precision

� Floating-point numbers are approximations for …
� Real numbers that they cannot represent

� Infinite variety of real numbers exist between 1.0 and 2.0
� However, exactly 223 fractions represented in Single Precision

� Exactly 252 fractions can be represented in Double Precision

� Extra bits are generated in intermediate results when …
� Shifting and adding/subtracting a p-bit significand

� Multiplying two p-bit significands (product is 2p bits)

� But when packing result fraction, extra bits are discarded

� Few extra bits are needed: guard, round, and sticky bits

� Minimize hardware but without compromising accuracy

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 38

Advantages of IEEE 754 Standard

� Used predominantly by the industry

� Encoding of exponent and fraction simplifies comparison
� Integer comparator used to compare magnitude of FP numbers

� Includes special exceptional values: NaN and ±∞
� Special rules are used such as:

� 0/0 is NaN, sqrt(–1) is NaN, 1/0 is ∞, and 1/∞ is 0

� Computation may continue in the face of exceptional conditions

� Denormalized numbers to fill the gap
� Between smallest normalized number 1.0 × 2Emin and zero

� Denormalized numbers , values 0.F × 2Emin , are closer to zero

� Gradual underflow to zero

20

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 39

� Operations are somewhat more complicated

� In addition to overflow we can have underflow

� Accuracy can be a big problem
� Extra bits to maintain precision: guard, round, and sticky

� Four rounding modes

� Division by zero yields Infinity

� Zero divide by zero yields Not-a-Number

� Other complexities

� Implementing the standard can be tricky
� See text for description of 80x86 and Pentium bug!

� Not using the standard can be even worse

Floating Point Complexities

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 40

Accuracy can be a Big Problem

Value1 Value2 Value3 Value4 Sum

1.0E+30 -1.0E+30 9.5 -2.3 7.2

1.0E+30 9.5 -1.0E+30 -2.3 -2.3

1.0E+30 9.5 -2.3 -1.0E+30 0

� Adding double-precision floating-point numbers (Excel)

� Floating-Point addition is NOT associative

� Produces different sums for the same data values

� Rounding errors when the difference in exponent is large

21

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 41

Next . . .

� Floating-Point Numbers

� IEEE 754 Floating-Point Standard

� Floating-Point Addition and Subtraction

� Floating-Point Multiplication

� MIPS Floating-Point Instructions

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 42

� Called Coprocessor 1 or the Floating Point Unit (FPU)

� 32 separate floating point registers: $f0, $f1, …, $f31

� FP registers are 32 bits for single precision numbers

� Even-odd register pair form a double precision register

� Use the even number for double precision registers
� $f0, $f2, $f4, …, $f30 are used for double precision

� Separate FP instructions for single/double precision
� Single precision: add.s, sub.s, mul.s, div.s (.s extension)

� Double precision: add.d, sub.d, mul.d, div.d (.d extension)

� FP instructions are more complex than the integer ones
� Take more cycles to execute

MIPS Floating Point Coprocessor

22

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 43

FP Arithmetic Instructions
Instruction Meaning Format
add.s fd, fs, ft (fd) = (fs) + (ft) 0x11 0 ft5 fs5 fd5 0

add.d fd, fs, ft (fd) = (fs) + (ft) 0x11 1 ft5 fs5 fd5 0

sub.s fd, fs, ft (fd) = (fs) – (ft) 0x11 0 ft5 fs5 fd5 1

sub.d fd, fs, ft (fd) = (fs) – (ft) 0x11 1 ft5 fs5 fd5 1

mul.s fd, fs, ft (fd) = (fs) × (ft) 0x11 0 ft5 fs5 fd5 2

mul.d fd, fs, ft (fd) = (fs) × (ft) 0x11 1 ft5 fs5 fd5 2

div.s fd, fs, ft (fd) = (fs) / (ft) 0x11 0 ft5 fs5 fd5 3

div.d fd, fs, ft (fd) = (fs) / (ft) 0x11 1 ft5 fs5 fd5 3

sqrt.s fd, fs (fd) = sqrt (fs) 0x11 0 0 fs5 fd5 4

sqrt.d fd, fs (fd) = sqrt (fs) 0x11 1 0 fs5 fd5 4

abs.s fd, fs (fd) = abs (fs) 0x11 0 0 fs5 fd5 5

abs.d fd, fs (fd) = abs (fs) 0x11 1 0 fs5 fd5 5

neg.s fd, fs (fd) = – (fs) 0x11 0 0 fs5 fd5 7

neg.d fd, fs (fd) = – (fs) 0x11 1 0 fs5 fd5 7

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 44

� Separate floating point load/store instructions
� lwc1: load word coprocessor 1

� ldc1: load double coprocessor 1

� swc1: store word coprocessor 1

� sdc1: store double coprocessor 1

� Better names can be used for the above instructions
� l.s = lwc1 (load FP single), l.d = ldc1 (load FP double)

� s.s = swc1 (store FP single), s.d = sdc1 (store FP double)

FP Load/Store Instructions

Instruction Meaning Format
lwc1 $f2, 40($t0) ($f2) = Mem[($t0)+40] 0x31 $t0 $f2 im16 = 40
ldc1 $f2, 40($t0) ($f2) = Mem[($t0)+40] 0x35 $t0 $f2 im16 = 40
swc1 $f2, 40($t0) Mem[($t0)+40] = ($f2) 0x39 $t0 $f2 im16 = 40
sdc1 $f2, 40($t0) Mem[($t0)+40] = ($f2) 0x3d $t0 $f2 im16 = 40

General purpose
register is used as
the base register

23

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 45

� Moving data between general purpose and FP registers

� mfc1: move from coprocessor 1 (to general purpose register)

� mtc1: move to coprocessor 1 (from general purpose register)

� Moving data between FP registers

� mov.s: move single precision float

� mov.d: move double precision float = even/odd pair of registers

FP Data Movement Instructions

Instruction Meaning Format
mfc1 $t0, $f2 ($t0) = ($f2) 0x11 0 $t0 $f2 0 0

mtc1 $t0, $f2 ($f2) = ($t0) 0x11 4 $t0 $f2 0 0

mov.s $f4, $f2 ($f4) = ($f2) 0x11 0 0 $f2 $f4 6

mov.d $f4, $f2 ($f4) = ($f2) 0x11 1 0 $f2 $f4 6

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 46

FP Convert Instructions

Instruction Meaning Format
cvt.s.w fd, fs to single from integer 0x11 0 0 fs5 fd5 0x20
cvt.s.d fd, fs to single from double 0x11 1 0 fs5 fd5 0x20
cvt.d.w fd, fs to double from integer 0x11 0 0 fs5 fd5 0x21
cvt.d.s fd, fs to double from single 0x11 1 0 fs5 fd5 0x21
cvt.w.s fd, fs to integer from single 0x11 0 0 fs5 fd5 0x24
cvt.w.d fd, fs to integer from double 0x11 1 0 fs5 fd5 0x24

� Convert instruction: cvt.x.y
� Convert to destination format x from source format y

� Supported formats
� Single precision float = .s (single precision float in FP register)

� Double precision float = .d (double float in even-odd FP register)

� Signed integer word = .w (signed integer in FP register)

24

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 47

FP Compare and Branch Instructions

Instruction Meaning Format
c.eq.s fs, ft cflag = ((fs) == (ft)) 0x11 0 ft5 fs5 0 0x32
c.eq.d fs, ft cflag = ((fs) == (ft)) 0x11 1 ft5 fs5 0 0x32
c.lt.s fs, ft cflag = ((fs) <= (ft)) 0x11 0 ft5 fs5 0 0x3c
c.lt.d fs, ft cflag = ((fs) <= (ft)) 0x11 1 ft5 fs5 0 0x3c
c.le.s fs, ft cflag = ((fs) <= (ft)) 0x11 0 ft5 fs5 0 0x3e
c.le.d fs, ft cflag = ((fs) <= (ft)) 0x11 1 ft5 fs5 0 0x3e
bc1f Label branch if (cflag == 0) 0x11 8 0 im16

bc1t Label branch if (cflag == 1) 0x11 8 1 im16

� FP unit (co-processor 1) has a condition flag
� Set to 0 (false) or 1 (true) by any comparison instruction

� Three comparisons: equal, less than, less than or equal

� Two branch instructions based on the condition flag

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 48

Example 1: Area of a Circle
. data

pi: .double 3.1415926535897924

msg: .asciiz "Circle Area = "

.text

main:

ldc1 $f2, pi # $f2,3 = pi

li $v0, 7 # read double (radius)

syscall # $f0,1 = radius

mul.d $f12, $f0, $f0 # $f12,13 = radius*radius

mul.d $f12, $f2, $f12 # $f12,13 = area

la $a0, msg

li $v0, 4 # print string (msg)

syscall

li $v0, 3 # print double (area)

syscall # print $f12,13

25

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 49

Example 2: Matrix Multiplication
void mm (int n, double x[n][n], y[n][n], z[n][n]) {

for (int i=0; i!=n; i=i+1)

for (int j=0; j!=n; j=j+1) {

double sum = 0.0;

for (int k=0; k!=n; k=k+1)

sum = sum + y[i][k] * z[k][j];

x[i][j] = sum;
}

}

� Matrices x , y , and z are n×n double precision float

� Matrix size is passed in $a0 = n

� Array addresses are passed in $a1 , $a2 , and $a3

� What is the MIPS assembly code for the procedure?

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 50

Address Calculation for 2D Arrays

� Row-Major Order: 2D arrays are stored as rows

� Calculate Address of: X[i][j]

= Address of X + (i×n+j)×8 (8 bytes per element)

row 0

row i-1
row i

i × n
elements

n elements per row

j elements

X[i][j]

n elements per row

� Address of Y[i][k] =

� Address of Z[k][j] =

Address of Y + (i×n+k)×8

Address of Z + (k×n+j)×8

26

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 51

Matrix Multiplication Procedure – 1/3

� Initialize Loop Variables
mm: addu $t1, $0, $0 # $t1 = i = 0; for 1 st loop

L1: addu $t2, $0, $0 # $t2 = j = 0; for 2 nd loop

L2: addu $t3, $0, $0 # $t3 = k = 0; for 3 rd loop

sub.d $f0, $f0, $f0 # $f0 = sum = 0.0

� Calculate address of y[i][k] and load it into $f2,$f3

� Skip i rows (i×n) and add k elements
L3: mul $t4, $t1, $a0 # $t4 = i*size(row) = i*n

addu $t4, $t4, $t3 # $t4 = i*n + k

sll $t4, $t4, 3 # $t4 =(i*n + k)*8

addu $t4, $a2, $t4 # $t4 = address of y[i][k]

l.d $f2, 0($t4) # $f2 = y[i][k]

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 52

Matrix Multiplication Procedure – 2/3

� Similarly, calculate address and load value of z[k][j]

� Skip k rows (k×n) and add j elements
mul $t5, $t3, $a0 # $t5 = k*size(row) = k*n

addu $t5, $t5, $t2 # $t5 = k*n + j

sll $t5, $t5, 3 # $t5 =(k*n + j)*8

addu $t5, $a3, $t5 # $t5 = address of z[k][j]

l.d $f4, 0($t5) # $f4 = z[k][j]

� Now, multiply y[i][k] by z[k][j] and add it to $f0

mul.d $f6, $f2, $f4 # $f6 = y[i][k]*z[k][j]

add.d $f0, $f0, $f6 # $f0 = sum

addiu $t3, $t3, 1 # k = k + 1

bne $t3, $a0, L3 # loop back if (k != n)

27

Floating Point ICS 233 – KFUPM © Muhamed Mudawar – slide 53

Matrix Multiplication Procedure – 3/3

� Calculate address of x[i][j] and store sum
mul $t6, $t1, $a0 # $t6 = i*size(row) = i*n

addu $t6, $t6, $t2 # $t6 = i*n + j

sll $t6, $t6, 3 # $t6 =(i*n + j)*8

addu $t6, $a1, $t6 # $t6 = address of x[i][j]

s.d $f0, 0($t6) # x[i][j] = sum

� Repeat outer loops: L2 (for j = …) and L1 (for i = …)
addiu $t2, $t2, 1 # j = j + 1

bne $t2, $a0, L2 # loop L2 if (j != n)

addiu $t1, $t1, 1 # i = i + 1

bne $t1, $a0, L1 # loop L1 if (i != n)

� Return:
jr $ra # return

