Integer Multiplication

and Division

ICS 233
Computer Architecture & Assembly Language
Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Presentation Outline

% Unsigned Integer Multiplication
+ Signed Integer Multiplication
+» Faster Integer Multiplication

+ Integer Division

+» Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar — slide 2

Unsigned Integer Multiplication

« Paper and Pencil Example:

Multiplicand 1100, =12
Multiplier x 1101, =13
1100 , ——
0000 Binary IjnL.J|tIp|IC_atI0n is easy
1100 0 x muIt!pI!cand : 0 .
1100 1 x multiplicand = multiplicand
Product 10011100 , =156

“* m-bit multiplicand x n-bit multiplier = (m+n)-bit product
s Accomplished via shifting and addition

% Consumes more time and more chip area than addition

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 3

Sequential Unsigned Multiplication
+ Initialize Product =0
%+ Check each bit of the Multiplier
« If Multiplier bit = 1 then Product = Product + Multiplicand
+ Rather than shifting the multiplicand to the left
Instead, Shift the Product to the Right
Has the same net effect and produces the same result
Minimizes the hardware resources

+“+ One cycle per iteration (for each bit of the Multiplier)

<~ Addition and shifting can be done simultaneously

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 4

Sequential Multiplication Hardware
% Initialize HI = 0

+ Initialize LO = Multiplier

| HI = 0, LO=Multiplier |

“ Final Product = HI and LO registers

“+ Repeat for each bit of Multiplier =1 Lo
|Mu|tip|icand|
32 bits 32 bits | HI = HI + Multiplicand |
LA |
32-bit ALU; add
-DILALU/ | shit (carry, HI, LO) Right 1 bit |
32 bits Y
carry o
y —> shift right 32" Repetition?
H | Lo
I 64 bits
LO[0]
Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 5

Sequential Multiplier Example

% Consider: 1100, x 1101, , Product = 10011100,
¢+ 4-bit multiplicand and multiplier are used in this example

¢ 4-bit adder produces a 5-bit sum (with carry)

Iteration Multiplicand | Carry | Product = HI, LO
0 | Initialize (HI = 0, LO = Multiplier) 1100 , 0000 1101
, [Loo1=1=>A0D L.l +0 [1100j1101

Shift Right (Carry, Hl, LO) by 1 bit 1100 0110 0110
) LO[0] = 0 => Do Nothing

Shift Right (Carry, Hl, LO) by 1 bit 1100 0011 0011
4 [LOO] = 1=>ADD L.Yl.0 | 1111]0011

Shift Right (Carry, Hl, LO) by 1 bit 1100 0111 1001
, [Lo01=1=>A0D L+l -1 [oo11)1001

Shift Right (Carry, Hl, LO) by 1 bit 1100 1001 1100

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 6

Next . ..

+« Unsigned Integer Multiplication
% Signed Integer Multiplication
+» Faster Integer Multiplication

+ Integer Division

+» Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 7

Signed Integer Multiplication

+ So far, we have dealt with unsigned integer multiplication

« First Attempt:
<~ Convert multiplier and multiplicand into positive numbers
= |If negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
<> Compute the sign of the product

< If product sign < 0 then obtain the 2's complement of the product

+ Better Version:
< Use the unsigned multiplication hardware
<> When shifting right, extend the sign of the product

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 8

Signed Multiplication (Pencil & Paper)

% Case 1: Positive Multiplier

Multiplicand 1100, =-4

Multiplier X 0101, =+5

Sign-extension { 111171100
1101100

Product 11101100, =-20

+ Case 2: Negative Multiplier

Multiplicand 1100,
Multiplier x 1101,

Sign-extension { Z;.-(]).(]).OO

00100 (2's complement of 1100)
Product 00001100 , =+12

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar — slide 9

-4
-3

Sequential Signed Multiplier
< ALU produces 32-bit result + Sign bit

+» Check for overflow | HI = 0, LO = Multiplier |

<~ No overflow = Extend sign-bit of result
=1

< Overflow = Invert sign bit

|Mu|tip|icand| First 31 iterations: HI = HI + Multiplicand

32 bits 32 bits Last iteration: HI = HI — Multiplicand
v v |
/ i
add, sub
)

| shit Right (Sign, HI, LO) 1 bit |

LO[0]?

sign 32 bits
— 327 Repetition?
H | Lo ol
| eanis

LO[0]
Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli0

Signed Multiplication Example

% Consider: 1100, (-4) x 1101, (-3), Product = 00001100,
¢+ Check for overflow: No overflow =» Extend sign bit

+ Last iteration: add 2's complement of Multiplicand

Iteration Multiplicand | Sign | Product =HI, LO
0 | Initialize (HI = 0, LO = Multiplier) 1100 , 0000 1101
, [Loo1=1=>A0D L.i] -1 [1100j1101
Shift (Sign, HI, LO) right 1 bit 1100 1110 0110

) LO[0] = 0 => Do Nothing
Shift (Sign, HI, LO) right 1 bit 1100 1111 0011

4 [LOO] = 1=>ADD L.Yl.a | 1011]0011
Shift (Sign, HI, LO) right 1 bit 1100 1101 1001

, [LOI0) = 1=> SUB (ADD 2's compl) “0100 ¥+ [o0o001)1001
Shift (Sign, HI, LO) right 1 bit 0000 1100

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli1

Next . ..

+« Unsigned Integer Multiplication
+ Signed Integer Multiplication
% Faster Integer Multiplication

+¢ Integer Division

+» Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli2

Faster Integer Multiplier

*» Uses Multiple Adders (Cost vs. Performance)

Mplier31 » Mcand Mplier30 » Mcand Mplier29 » Mcand Mplier28 « Mcand Mplierd * Mcand Mplier2 * Mcand Mplier1 * Mcand Mplier0 * Mcand

32 bits 32 bits s 32 bits 32 bits
1 bit - 1 bit -+ 1bit-— 1 bit
Product63 Product62 - Product47..16 coe Productt ProductQ

Can be pipelined

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar desli3

Using Multiple Adders

¢+ 32-bit adder for each bit of the multiplier
<> AND multiplicand with each bit of multiplier
< Product = accumulated shifted sum
+«+ Each adder produces a 33-bit output
<~ Most significant bit is a carry bit
¢ Array multiplier can be optimized
< Additions can be done in parallel
<~ Multiple-level tree reduction to produce final product

< Carry save adders reduce delays

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli4

Carry Save Adders

% Used when adding multiple numbers (as in multipliers)

+ All the bits of a carry-save adder work in parallel

<~ The carry does not propagate as in a carry-propagate adder

<~ This is why a carry-save is faster than a carry-propagate adder
A carry-save adder has 3 inputs and produces two outputs

< It adds 3 numbers and produces partial sum and carry bits

g, by a; by a, b ag; b3 Cyy a; by ¢, 8y by C
¢ ' ' ' 0 ' '
Sa1 S1 So Ca1Sa €181 Co So
Carry-Propagate Adder Carry-Save Adder
Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar desli5

Tree Multiplier - 1 of 2

% Suppose we want to multiply two numbers A and B
< Example on 4-bit numbers: A = a; a, a; a; and B = b; b, b; b,
s Step 1: AND (multiply) each bit of A with each bit of B
< Requires n2 AND gates and produces n2 product bits
< Position of ajb; = (i+]). For example, Position of a,b; =2+3 =5

AxB

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar desli6

Tree Multiplier - 2 of 2

Step 2: Use carry save adders to add the partial products

<~ Reduce the partial products to just two numbers

Step 3: Add last two numbers using a carry-propagate adder

agh; ab, aghy ab; aby a;b; a;by agh; agh,

(! ! lap, 4 1ap |

+ + + +
T ab, v ab, ¥ agh, v |
+ |._I/_| + |.-|/-| + |.—|/-| + |] Carry Save Adder
s 7 7 7 ‘
| i i i
[E + + + +] Carry Propagate Adder
! ! ! !
P, Pg Ps P, P, P, P, Po
Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar desli7

Next . ..

+« Unsigned Integer Multiplication
+ Signed Integer Multiplication
+» Faster Integer Multiplication

% Integer Division

+» Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli8

Unsigned Division (Paper & Pencil)

10011, =19 Quotient
Divisor 1011,) 11011001, =217 Dividend

-1011 |}
10 | ' Try to see how big a
10i P number can be
1016 subtracted, creating a
v digit of the quotient on
10100 each attempt
Dividend = -1011
Quotient x Divisor 1001 ; Binary d_ivision i_s
+ Remainder 10011 accomplished via
shifting and subtraction
217=19x11 +8 -1011 9
1000, =8 Remainder
Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desli9

Sequential Division

% Uses two registers: Hl and LO
+¢ Initialize: HI = Remainder = 0 and LO = Dividend
¢ Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
< Shift the remainder and dividend registers together LEFT
< Has the same net effect of shifting the divisor RIGHT
« Compute: Difference = Remainder — Divisor
+ If (Difference = 0) then
< Remainder = Difference
< Set Least significant Bit of Quotient
+ Observation to Reduce Hardware:

< LO register can be also used to store the computed Quotient

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar des20

10

Sequential Division Hardware
% Initialize: Cstart)

< HI =0, LO = Dividend
+» Results: 1. Shift (HI, LO) Left

. Difference = HI — Divisor
< HI = Remainder
<~ LO = Quotient

| Rl | 2. HI = Remainder = Difference

32 bits Set least significant bit of LO

32-bit ALU

sign

Difference 32"d Repetition?
«—
[m | 1o
- - shift left
32 bits I 32 bits
set Isb
Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desB1

Unsigned Integer Division Example
% Example: 1110, / 0011, (4-bit dividend & divisor)
* Result Quotient = 0100, and Remainder = 0010,
¢ 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration HI LO Divisor |Difference
0 | Initialize 0000 1110 0011

1: Shift Left, Diff = HI - Divisor 0001 «— 1100 0011 1110
! 2: Diff < 0 => Do Nothing

1: Shift Left, Diff = HI - Divisor 0011 <« 1000 0011 0000
2 2: Rem = Diff, setIsb of LO 0000 1001

1: Shift Left, Diff = HI - Divisor 0001 <« 0010 0011 1110
3 2: Diff < 0 => Do Nothing

1: Shift Left, Diff = HI - Divisor 0010 <« 0100 0011 1111
4 2: Diff < 0 => Do Nothing

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desB2

11

Signed Integer Division

% Simplest way is to remember the signs

% Convert the dividend and divisor to positive
<~ Obtain the 2's complement if they are negative
++ Do the unsigned division
% Compute the signs of the quotient and remainder

<~ Quotient sign = Dividend sign XOR Divisor sign

<~ Remainder sign = Dividend sign

+ Negate the quotient and remainder if their sign is negative

<~ Obtain the 2's complement to convert them to negative

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar des3

Signed Integer Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient =+5 Remainder = +2

2. Positive Dividend and Negative Divisor
< Example: +17 /-3 Quotient =-5 Remainder = +2

3. Negative Dividend and Positive Divisor
< Example: =17 / +3 Quotient =-5 Remainder = -2

4. Negative Dividend and Negative Divisor
< Example: =17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar des4

12

Next . ..

+« Unsigned Integer Multiplication
+ Signed Integer Multiplication
+» Faster Multiplication

+ Integer Division

% Integer Multiplication and Division in MIPS

Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar desB5

Integer Multiplication in MIPS

¢+ Multiply instructions
< mult $s1,$s2 Signed multiplication
< multu $s1,$s2 Unsigned multiplication

++ 32-bit multiplication produces a 64-bit Product 3

%+ Separate pair of 32-bit registers

$31
I

< HI = high-order 32-bit of product
Multiply
<~ LO = low-order 32-bit of product Divi
ivide
+ MIPS also has a special mul instruction
| H || Lo |
< mul $s0,$s1,$s2 $s0 = $s1 x $s2
< Put low-order 32 bits into destination register
< HI & LO are undefined
Integer Multiplication and Division ICS 233 — KFUPM © Muhamed Mudawar des26

13

Integer Division in MIPS

+ Divide instructions
< div $s1,$s2 Signed division
< divu $s1,$s2 Unsigned division
++ Division produces quotient and remainder
¢+ Separate pair of 32-bit registers
< HI = 32-bit remainder
< LO = 32-bit quotient
< If divisor is 0 then result is unpredictable
% Moving data from HI/LO to MIPS registers

< mfhi Rd (move from HI to Rd)
< mflo Rd (move from LO to Rd)

Integer Multiplication and Division ICS 233 - KFUPM

$0
$1

$31
|

Multiply
Divide

© Muhamed Mudawar desB7

Integer Multiply/Divide Instructions

Instruction | Meaning | Format

mult Rs, Rt Hi,Lo=Rs xRt |op®=0| Rs® | Rt® 0 0 0x18
multu Rs, Rt Hi,Lo=Rs xRt |op®=0| Rs® | Rt® 0 0 0x19
mul Rd, Rs, Rt | Rd=Rs x Rt Oxlc | Rs® | Rt® | Rd® 0 0x02
div. Rs, Rt Hi,Lo=Rs/ Rt |op®=0| Rs5 | Rt® 0 0 Oxla
divu Rs, Rt Hi,Lo=Rs/ Rt |op®=0| Rs5 | Rt® 0 0 Ox1b
mfhi Rd Rd = Hi opé=0| O 0 Rd> 0 0x10
mflo Rd Rd =Lo opé=0| O 0 |Rd®| O 0x12

+ Signed arithmetic: mult, div (Rs and Rt are signed)
<~ LO = 32-bit low-order and HI = 32-bit high-order of multiplication
<~ LO = 32-bit quotient and HI = 32-bit remainder of division

+ Unsigned arithmetic: multu, divu (Rs and Rt are unsigned)

% NO arithmetic exception can occur

Integer Multiplication and Division ICS 233 - KFUPM

© Muhamed Mudawar des28

14

Integer to String Conversion

+ Objective: convert an unsigned 32-bit integer to a string

+“+ How to obtain the decimal digits of the number?
<~ Divide the number by 10, Remainder = decimal digit (O to 9)
<~ Convert decimal digit into its ASCII representation ('0' to '9")
< Repeat the division until the quotient becomes zero

< Digits are computed backwards from least to most significant

« Example: convert 2037 to a string
< Divide 2037/10 quotient =203 remainder =7 char="7'
< Divide 203/10 quotient =20 remainder =3 char="3'
< Divide 20/10 quotient = 2 remainder =0 char ="0'
< Divide 2/10 quotient =0 remainder =2 char ='2'

Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar des9

Integer to String Procedure

H o mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm— e

#

int2str: Converts an unsigned integer into a str ing
Input: $a0 = unsigned integer
In/Out: $al = address of string buffer (12 byte s)
e m e
int2str:
move $t0, $a0 # $t0 = dividend = unsigned integer
li $t1, 10 # $t1 = divisor = 10
addiu $al, $al, 11 # start at end of string buffer
sb $zero, 0($al) # store a NULL byte
convert:
divu $t0, $t1 #LO = quotient, HI = remainder
mflo $t0 # $t0 = quotient
mfhi $t2 # $t2 = remainder
addiu $t2, $t2, 0x30 # convert digit to a character
addiu $al, $ai, -1 # point to previous byte
sb $t2, 0($al) # store digit character
bnez $t0, convert # loop if quotient is not O
ir $ra # return to caller
Integer Multiplication and Division ICS 233 - KFUPM © Muhamed Mudawar desB0

15

