
1

MIPS Assembly Language

Programming

ICS 233
Computer Architecture & Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

2

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 3

Assembly Language Statements

� Three types of statements in assembly language
� Typically, one statement should appear on a line

1. Executable Instructions
� Generate machine code for the processor to execute at runtime

� Instructions tell the processor what to do

2. Pseudo-Instructions and Macros
� Translated by the assembler into real instructions

� Simplify the programmer task

3. Assembler Directives
� Provide information to the assembler while translating a program

� Used to define segments, allocate memory variables, etc.

� Non-executable: directives are not part of the instruction set

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 4

Instructions

� Assembly language instructions have the format:
[label:] mnemonic [operands] [#comment]

� Label: (optional)
� Marks the address of a memory location, must have a colon

� Typically appear in data and text segments

� Mnemonic
� Identifies the operation (e.g. add , sub , etc.)

� Operands
� Specify the data required by the operation

� Operands can be registers, memory variables, or constants

� Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0

3

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 5

Comments

� Comments are very important!

� Explain the program's purpose

� When it was written, revised, and by whom

� Explain data used in the program, input, and output

� Explain instruction sequences and algorithms used

� Comments are also required at the beginning of every procedure

� Indicate input parameters and results of a procedure

� Describe what the procedure does

� Single-line comment

� Begins with a hash symbol # and terminates at end of line

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 6

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

4

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 7

Program Template
Title: Filename:

Author: Date:

Description:

Input:

Output:

################# Data segment #################### #

.data

. . .

################# Code segment #################### #

.text

.globl main

main: # main program entry

. . .

li $v0, 10 # Exit program

syscall

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 8

.DATA, .TEXT, & .GLOBL Directives

� .DATA directive

� Defines the data segment of a program containing data

� The program's variables should be defined under this directive

� Assembler will allocate and initialize the storage of variables

� .TEXT directive

� Defines the code segment of a program containing instructions

� .GLOBL directive

� Declares a symbol as global

� Global symbols can be referenced from other files

� We use this directive to declare main procedure of a program

5

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 9

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved

0x04000000

0x10000000

0

Data Segment

Memory
Addresses

in Hex

Stack Grows
Downwards

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 10

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

6

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 11

Data Definition Statement

� Sets aside storage in memory for a variable

� May optionally assign a name (label) to the data

� Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

� All initializers become binary data in memory

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 12

Data Directives

� .BYTE Directive

� Stores the list of values as 8-bit bytes

� .HALF Directive

� Stores the list as 16-bit values aligned on half-word boundary

� .WORD Directive

� Stores the list as 32-bit values aligned on a word boundary

� .FLOAT Directive

� Stores the listed values as single-precision floating point

� .DOUBLE Directive

� Stores the listed values as double-precision floating point

7

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 13

String Directives

� .ASCII Directive

� Allocates a sequence of bytes for an ASCII string

� .ASCIIZ Directive

� Same as .ASCII directive, but adds a NULL char at end of string

� Strings are null-terminated, as in the C programming language

� .SPACE Directive

� Allocates space of n uninitialized bytes in the data segment

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 14

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

Array of 100 words

100 bytes (not initialized)

8

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 15

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 16

� Memory is viewed as an array of bytes with addresses

� Byte Addressing: address points to a byte in memory

� Words occupy 4 consecutive bytes in memory

� MIPS instructions and integers occupy 4 bytes

� Alignment: address is a multiple of size

� Word address should be a multiple of 4

� Least significant 2 bits of address should be 00

� Halfword address should be a multiple of 2

� .ALIGN n directive

� Aligns the next data definition on a 2n byte boundary

Memory Alignment

0

4

8

12

ad
d

re
ss

not aligned

. . .

aligned word

not aligned

Memory

9

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 17

� Assembler builds a symbol table for labels (variables)
� Assembler computes the address of each label in data segment

� Example Symbol Table

.DATA

var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

var3: .HALF 1000

Symbol Table

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0
0x123456780x10010010

var2 (aligned)

1000
var3 (address is multiple of 8)

0 0 Unused

0 00 0
Unused

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 18

� Processors can order bytes within a word in two ways

� Little Endian Byte Ordering
� Memory address = Address of least significant byte

� Example: Intel IA-32, Alpha

� Big Endian Byte Ordering
� Memory address = Address of most significant byte

� Example: SPARC, PA-RISC

� MIPS can operate with both byte orderings

Byte Ordering and Endianness

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB
.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB
.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

10

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 19

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 20

System Calls

� Programs do input/output through system calls

� MIPS provides a special syscall instruction

� To obtain services from the operating system

� Many services are provided in the SPIM and MARS simulators

� Using the syscall system services

� Load the service number in register $v0

� Load argument values, if any, in registers $a0, $a1, etc.

� Issue the syscall instruction

� Retrieve return values, if any, from result registers

11

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 21

Syscall Services

Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to print

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 Return integer value in $v0

Read Float 6 Return float value in $f0

Read Double 7 Return double value in $f0

Read String 8
$a0 = address of input buffer
$a1 = maximum number of characters to read

Allocate Heap
memory

9
$a0 = number of bytes to allocate
Return address of allocated memory in $v0

Exit Program 10

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 22

Syscall Services – Cont’d

Print Char 11 $a0 = character to print

Read Char 12 Return character read in $v0

Open File 13

$a0 = address of null-terminated filename string
$a1 = flags (0 = read-only, 1 = write-only)
$a2 = mode (ignored)
Return file descriptor in $v0 (negative if error)

Read
from File

14

$a0 = File descriptor
$a1 = address of input buffer
$a2 = maximum number of characters to read
Return number of characters read in $v0

Write to File 15

$a0 = File descriptor
$a1 = address of buffer
$a2 = number of characters to write
Return number of characters written in $v0

Close File 16 $a0 = File descriptor

12

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 23

Reading and Printing an Integer

################# Code segment #################### #

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

syscall

li $v0, 10 # Exit program

syscall

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 24

Reading and Printing a String
################# Data segment #################### #

.data

str: .space 10 # array of 10 bytes

################# Code segment #################### #

.text

.globl main

main: # main program entry

la $a0, str # $a0 = address of str

li $a1, 10 # $a1 = max string length

li $v0, 8 # read string

syscall

li $v0, 4 # Print string str

syscall

li $v0, 10 # Exit program

syscall

13

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 25

Program 1: Sum of Three Integers
Sum of three integers
#
Objective: Computes the sum of three integers.
Input: Requests three numbers.
Output: Outputs the sum.
################### Data segment ################## #
.data
prompt: .asciiz "Please enter three numbers: \n"
sum_msg: .asciiz "The sum is: "
################### Code segment ################## #
.text
.globl main
main:

la $a0,prompt # display prompt string
li $v0,4
syscall
li $v0,5 # read 1st integer into $t0
syscall
move $t0,$v0

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 26

Sum of Three Integers – Slide 2 of 2
li $v0,5 # read 2nd integer into $t1
syscall
move $t1,$v0

li $v0,5 # read 3rd integer into $t2
syscall
move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum
addu $t0,$t0,$t2

la $a0,sum_msg # write sum message
li $v0,4
syscall

move $a0,$t0 # output sum
li $v0,1
syscall

li $v0,10 # exit
syscall

14

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 27

Program 2: Case Conversion
Objective: Convert lowercase letters to uppercase
Input: Requests a character string from the u ser.
Output: Prints the input string in uppercase.
################### Data segment ################## ###
.data
name_prompt: .asciiz "Please type your name: "
out_msg: .asciiz "Your name in capitals is: "
in_name: .space 31 # space for input string
################### Code segment ################## ###
.text
.globl main
main:

la $a0,name_prompt # print prompt string
li $v0,4
syscall
la $a0,in_name # read the input string
li $a1,31 # at most 30 chars + 1 null char
li $v0,8
syscall

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 28

Case Conversion – Slide 2 of 2
la $a0,out_msg # write output message
li $v0,4
syscall
la $t0,in_name

loop:
lb $t1,($t0)
beqz $t1,exit_loop # if NULL, we are done
blt $t1,'a',no_change
bgt $t1,'z',no_change
addiu $t1,$t1,-32 # convert to uppercase: 'A'- 'a'=-32
sb $t1,($t0)

no_change:
addiu $t0,$t0,1 # increment pointer
j loop

exit_loop:
la $a0,in_name # output converted string
li $v0,4
syscall
li $v0,10 # exit
syscall

15

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 29

Example of File I/O
Sample MIPS program that writes to a new text fil e
.data
file: .asciiz "out.txt" # output filename
buffer: .asciiz "Sample text to write"

.text
li $v0, 13 # system call to open a file for writing
la $a0, file # output file name
li $a1, 1 # Open for writing (flags 1 = wri te)
li $a2, 0 # mode is ignored
syscall # open a file (file descriptor returned in $ v0)
move $s6, $v0 # save the file descriptor
li $v0, 15 # Write to file just opened
move $a0, $s6 # file descriptor
la $a1, buffer # address of buffer from which t o write
li $a2, 20 # number of characters to write = 20
syscall # write to file
li $v0, 16 # system call to close file
move $a0, $s6 # file descriptor to close
syscall # close file

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 30

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

16

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 31

� A procedure (or function) is a tool used by programmers
� Allows the programmer to focus on just one task at a time

� Allows code to be reused

� Procedure Call and Return
� Put parameters in a place where procedure can access

� Four argument registers: $a0 thru $a3 in which to pass parameters

� Transfer control to the procedure and save return address

� Jump-and-Link instruction: jal (Return Address saved in $ra)

� Perform the desired task

� Put results in a place where the calling procedure can access

� Two value registers to return results: $v0 and $v1

� Return to calling procedure: jr $ra (jump to return address)

Procedures

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 32

Parameters:

$a0 = Address of v[]

$a1 = k , and
Return address is in $ra

� Consider the following swap procedure (written in C)

� Translate this procedure to MIPS assembly language

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

Procedure Example

17

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 33

Call / Return Sequence

� Suppose we call procedure swap as: swap(a,10)

� Pass address of array a and 10 as arguments

� Call the procedure swap saving return address in $31 = $ra

� Execute procedure swap

� Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw $t1,0($t0)

lw $t2,4($t0)

sw $t2,0($t0)

sw $t1,4($t0)

jr $ra

la $a0, a

li $a1, 10

jal swap

return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 34

Register $31
is the return

address register

Details of JAL and JR
Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a
00400024 ori $4, $1, 0
00400028 ori $5, $0, 10 ori $a1,$0,10
0040002C jal 0x10000f jal swap
00400030 . . . # return here

swap:
0040003C sll $8, $5, 2 sll $t0,$a1,2

00400040 add $8, $8, $4 add $t0,$t0,$a0

00400044 lw $9, 0($8) lw $t1,0($t0)

00400048 lw $10,4($8) lw $t2,4($t0)

0040004C sw $10,0($8) sw $t2,0($t0)

00400050 sw $9, 4($8) sw $t1,4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct
Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

18

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 35

Instructions for Procedures

Instruction Meaning Format
jal label $31=PC+4, jump op6 = 3 imm26

jr Rs PC = Rs op6 = 0 rs5 0 0 0 8
jalr Rd, Rs Rd=PC+4, PC=Rs op6 = 0 rs5 0 rd5 0 9

� JAL (Jump-and-Link) used as the call instruction
� Save return address in $ra = PC+4 and jump to procedure

� Register $ra = $31 is used by JAL as the return address

� JR (Jump Register) used to return from a procedure
� Jump to instruction whose address is in register Rs (PC = Rs)

� JALR (Jump-and-Link Register)
� Save return address in Rd = PC+4, and

� Jump to procedure whose address is in register Rs (PC = Rs)

� Can be used to call methods (addresses known only at runtime)

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 36

Next . . .

� Assembly Language Statements

� Assembly Language Program Template

� Defining Data

� Memory Alignment and Byte Ordering

� System Calls

� Procedures

� Parameter Passing and the Runtime Stack

19

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 37

Parameter Passing

� Parameter passing in assembly language is different
� More complicated than that used in a high-level language

� In assembly language
� Place all required parameters in an accessible storage area

� Then call the procedure

� Two types of storage areas used
� Registers: general-purpose registers are used (register method)

� Memory: stack is used (stack method)

� Two common mechanisms of parameter passing
� Pass-by-value: parameter value is passed

� Pass-by-reference: address of parameter is passed

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 38

Parameter Passing – cont'd

� By convention, register are used for parameter passing
� $a0 = $4 .. $a3 = $7 are used for passing arguments

� $v0 = $2 .. $v1 = $3 are used for result values

� Additional arguments/results can be placed on the stack

� Runtime stack is also needed to …
� Store variables / data structures when they cannot fit in registers

� Save and restore registers across procedure calls

� Implement recursion

� Runtime stack is implemented via software convention
� The stack pointer $sp = $29 (points to top of stack)

� The frame pointer $fp = $30 (points to a procedure frame)

20

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 39

Stack Frame

� Stack frame is the segment of the stack containing …
� Saved arguments, registers, and local data structures (if any)

� Called also the activation frame

� Frames are pushed and popped by adjusting …
� Stack pointer $sp = $29 and Frame pointer $fp = $30

� Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows
downwards

$fp

$sp
Frame f()

Stack

allocate
stack frame

Frame g()
$fp

$sp

f
ca

lls
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack
frame

$fp

$sp
$fp

argument 5

saved
registers

local data
structures
& variables

$sp

argument 6

. . .

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 40

Procedure Calling Convention

� The Caller should do the following:

1. Pass Arguments
� First four arguments are passed in registers $a0 thru $a3

� Additional arguments are pushed on the stack

2. Save Registers $a0 - $a3 and $t0 - $t9 if needed
� Registers $a0 - $a3 and $t0 - $t9 should be saved by Caller

� To preserve their value if needed after a procedure call

� Called procedure is free to modify $a0 to $a3 and $t0 to $t9

3. Execute JAL Instruction
� Jumps to the first instruction inside the procedure

� Saves the return address in register $ra

21

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 41

Procedure Calling Convention - 2

� The Called procedure (Callee) should do the following:

1. Allocate memory for the stack frame
� $sp = $sp – n (n bytes are allocated on the stack frame)

� The programmer should compute n

� A simple leaf procedure might not need a stack frame (n = 0)

2. Save registers $ra, $fp, $s0 - $s7 in the stack frame
� $ra, $fp, $s0 - $s7 should be saved inside procedure (callee)

� Before modifying their value and only if needed

� Register $ra should be saved only if the procedure makes a call

3. Update the frame pointer $fp (if needed)
� For simple procedures, the $fp register is not be required

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 42

Procedure Return Convention

� Just before returning, the called procedure should:

1. Place the returned results in $v0 and $v1 (if any)

2. Restore all registers that were saved upon entry

� Load value of $ra, $fp, $s0 - $s7 if saved in the stack frame

3. Free the stack frame

� $sp = $sp + n (if n bytes are allocated for the stack frame)

4. Return to caller

� Jump to the return address: jr $ra

22

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 43

Preserving Registers

� Need to preserve registers across a procedure call

� Stack can be used to preserve register values

� Caller-Saved Registers

� Registers $a0 to $a3 and $t0 to $t9 should be saved by Caller

� Only if needed after a procedure call

� Callee-Saved Registers (Saved inside procedure)

� Registers $s0 to $s7, $sp, $fp, and $ra should be saved

� Only if used and modified inside procedure

� Should be saved upon procedure entry before they are modified

� Restored at end of procedure before returning to caller

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 44

Example on Preserving Register

� A function f calls g twice as shown below. We don't

know what g does, or which registers are used in g.

� We only know that function g receives two integer

arguments and returns one integer result.

� Translate f :

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}

23

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 45

Example on Preserving Registers
int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;
}

f: addiu $sp, $sp, -12 # frame = 12 bytes
sw $ra, 0($sp) # save $ra
sw $a0, 4($sp) # save argument a
sw $a1, 8($sp) # save argument b
jal g # call g(a,b)
lw $a0, 8($sp) # $a0 = b
move $a1, $v0 # $a1 = g(a,b)
jal g # call g(b, g(a,b))
lw $a0, 4($sp) # $a0 = a
addu $v0, $a0, $v0 # $v0 = a + d
lw $ra, 0($sp) # restore $ra
addiu $sp, $sp, 12 # free stack frame
jr $ra # return to caller

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 46

Selection Sort

� Example

first

last

Array

Unsorted

first

last

Array

max value

last value

max

Locate
Max

first

last

Array

max value

last valuemax

Swap Max
with Last

first

last

Array

max value

Decrement
Last

3
1
5
2
4last

max

first 3
1
4
2
5

last

max

first3
1
4
2
5

3
1
2
4
5

3
1
2
4
5

last

firstmax 2
1
3
4
5

2
1
3
4
5

last

firstmax 1
2
3
4
5

24

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 47

Selection Sort (Leaf Procedure)
Input: $a0 = pointer to first, $a1 = pointer to last

Output: array is sorted in place

#######

sort: beq $a0, $a1, ret # if (first == last) return

top: move $t0, $a0 # $t0 = pointer to max

lw $t1, ($t0) # $t1 = value of max

move $t2, $t0 # $t2 = array pointer

max: addiu $t2, $t2, 4 # $t2 = pointer to next A[i]

lw $t3, 0($t2) # $t3 = value of A[i]

ble $t3, $t1, skip # if (A[i] <= max) then skip

move $t0, $t2 # $t0 = pointer to new maximum

move $t1, $t3 # $t1 = value of new maximum

skip: bne $t2, $a1, max # loop back if more elements

sw $t1, 0($a1) # store max at last address

sw $t3, 0($t0) # store last at max address

addiu $a1, $a1, -4 # decrement pointer to last

bne $a0, $a1, top # more elements to sort

ret: jr $ra # return to caller

MIPS Assembly Language Programming ICS 233 – KFUPM © Muhamed Mudawar – slide 48

Example of a Recursive Procedure
int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

fact: slti $t0,$a0,2 # (n<2)?

beq $t0,$0,else # if false branch to else

li $v0,1 # $v0 = 1

jr $ra # return to caller

else: addiu $sp,$sp,-8 # allocate 2 words on stack

sw $a0,4($sp) # save argument n

sw $ra,0($sp) # save return address

addiu $a0,$a0,-1 # argument = n-1

jal fact # call fact(n-1)

lw $a0,4($sp) # restore argument

lw $ra,0($sp) # restore return address

mul $v0,$a0,$v0 # $v0 = n*fact(n-1)

addi $sp,$sp,8 # free stack frame

jr $ra # return to caller

