
1

Data Representation

ICS 233
Computer Architecture and Assembly Language

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 2

Presentation Outline
Positional Number Systems

Binary and Hexadecimal Numbers

Base Conversions

Integer Storage Sizes

Binary and Hexadecimal Addition

Signed Integers and 2's Complement Notation

Sign Extension

Binary and Hexadecimal subtraction

Carry and Overflow

Character Storage



2

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 3

Different Representations of Natural Numbers

XXVII Roman numerals (not positional)
27 Radix-10 or decimal number (positional)

110112 Radix-2 or binary number (also positional)

Fixed-radix positional representation with k digits

Number N in radix r = (dk–1dk–2 . . . d1d0)r

Value = dk–1×r k–1 + dk–2×r k–2 + … + d1×r + d0

Examples: (11011)2 = 1×24 + 1×23 + 0×22 + 1×2 + 1 = 27

(2103)4 = 2×43 + 1×42 + 0×4 + 3 = 147

Positional Number Systems

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 4

Binary Numbers
Each binary digit (called bit) is either 1 or 0

Bits have no inherent meaning, can represent

Unsigned and signed integers

Characters

Floating-point numbers

Images, sound, etc.

Bit Numbering

Least significant bit (LSB) is rightmost (bit 0)

Most significant bit (MSB) is leftmost (bit 7 in an 8-bit number)

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Most
Significant Bit

Least
Significant Bit



3

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 5

Converting Binary to Decimal
Each bit represents a power of 2

Every binary number is a sum of powers of 2

Decimal Value = (dn-1 × 2n-1) + ... + (d1 × 21) + (d0 × 20)

Binary (10011101)2 = 27 + 24 + 23 + 22 + 1 = 157

1 0 0 1 1 1 0 1

27 26 25 24 23 22 21 20

01234567

Some common 
powers of 2

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 6

Convert Unsigned Decimal to Binary
Repeatedly divide the decimal integer by 2

Each remainder is a binary digit in the translated value

37 = (100101)2

least significant bit

most significant bit

stop when quotient is zero



4

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 7

Hexadecimal Integers
16 Hexadecimal Digits: 0 – 9, A – F

More convenient to use than binary numbers

Binary, Decimal, and Hexadecimal Equivalents

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 8

Converting Binary to Hexadecimal
Each hexadecimal digit corresponds to 4 binary bits

Example:

Convert the 32-bit binary number to hexadecimal

1110 1011 0001 0110 1010 0111 1001 0100

Solution:

0100

4

1001

9

0111

7

1010

A

0110

6

0001

1

1011

B

1110

E



5

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 9

Multiply each digit by its corresponding power of 16

Value = (dn-1 × 16n-1) + (dn-2 × 16n-2) + ... + (d1 × 16) + d0

Examples:

(1234)16 = (1 × 163) + (2 × 162) + (3 × 16) + 4 =

Decimal Value 4660

(3BA4)16 = (3 × 163) + (11 × 162) + (10 × 16) + 4 =

Decimal Value 15268

Converting Hexadecimal to Decimal

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 10

Converting Decimal to Hexadecimal

Decimal 422 = 1A6 hexadecimal

stop when 
quotient is zero

least significant digit

most significant digit

Repeatedly divide the decimal integer by 16

Each remainder is a hex digit in the translated value



6

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 11

Integer Storage Sizes

What is the largest 20-bit unsigned integer?

Answer: 220 – 1 = 1,048,575

0 to (264 – 1)0 to 18,446,744,073,709,551,615Double Word
0 to (232 – 1)0 to 4,294,967,295Word
0 to (216 – 1)0 to 65,535Half Word
0 to (28 – 1)0 to 255Byte
Powers of 2Unsigned RangeStorage Type

Byte 8

16

32

64

Half Word

Word

Double Word

Storage Sizes

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 12

Binary Addition
Start with the least significant bit (rightmost bit)

Add each pair of bits

Include the carry in the addition, if present

0 0 0 1 1 1 0 1

0 0 1 1 0 1 1 0

+

(54)

(29)

(83)

1carry

01234bit position: 567

11 1

0 1 0 1 0 0 1 1



7

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 13

Hexadecimal Addition
Start with the least significant hexadecimal digits

Let Sum = summation of two hex digits

If Sum is greater than or equal to 16
Sum = Sum – 16 and Carry = 1

Example:

A F C D B0

1

1

1

1 C 3 7 2 8 6 A
9 3 9 5 E 8 4 B+ A + B = 10 + 11 = 21

Since 21 ≥ 16
Sum = 21 – 16 = 5
Carry = 15

1carry:

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 14

Signed Integers
Several ways to represent a signed number

Sign-Magnitude

Biased

1's complement

2's complement

Divide the range of values into 2 equal parts
First part corresponds to the positive numbers (≥ 0)

Second part correspond to the negative numbers (< 0)

Focus will be on the 2's complement representation
Has many advantages over other representations

Used widely in processors to represent signed integers



8

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 15

Two's Complement Representation

+12612601111110

+2200000010

. . .. . .. . .

-125511111111

-225411111110

. . .. . .. . .

-12712910000001

-12812810000000

+12712701111111

+1100000001
0000000000

Signed
value

Unsigned
value

8-bit Binary
value

Positive numbers
Signed value = Unsigned value

Negative numbers
Signed value = Unsigned value – 2n

n = number of bits

Negative weight for MSB
Another way to obtain the signed 
value is to assign a negative weight 
to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 16

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

Another way to obtain the 2's complement:

Start at the least significant 1
Leave all the 0s to its right unchanged
Complement all the bits to its left

00100100 = +36starting value

11011011step1: reverse the bits (1's complement)

11011100 = -36sum = 2's complement representation

+      1step 2: add 1 to the value from step 1

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least
significant 1



9

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 17

Sign Bit
Highest bit indicates the sign

1 = negative

0 = positive

For Hexadecimal Numbers, check most significant digit

If highest digit is > 7, then value is negative

Examples: 8A and C5 are negative bytes

B1C42A00 is a negative word (32-bit signed integer)

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 18

Sign Extension
Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

This will ensure that both magnitude and sign are correct

Examples
Sign-Extend 10110011 to 16 bits

Sign-Extend 01100010 to 16 bits

Infinite 0s can be added to the left of a positive number

Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98



10

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 19

Two's Complement of a Hexadecimal
To form the two's complement of a hexadecimal

Subtract each hexadecimal digit from 15

Add 1

Examples:

2's complement of 6A3D = 95C2 + 1 = 95C3

2's complement of 92F15AC0 = 6D0EA53F + 1 = 6D0EA540

2's complement of FFFFFFFF = 00000000 + 1 = 00000001

No need to convert hexadecimal to binary

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 20

Binary Subtraction
When subtracting A – B, convert B to its 2's complement

Add A to (–B)

0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1

0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 (2's complement)

0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1  (same result)

Final carry is ignored, because
Negative number is sign-extended with 1's

You can imagine infinite 1's to the left of a negative number

Adding the carry to the extended 1's produces extended zeros

– +

borrow: carry:111 1111



11

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 21

Hexadecimal Subtraction

When a borrow is required from the digit to the left, then

Add 16 (decimal) to the current digit's value

Last Carry is ignored

Borrow:

-
576CF41B

742AE938

E2421BD2

16 + 5 = 21

111

EBD 4

1

2

1

+
576CF41B

9BD516C7 (2's complement)

(same result)

Carry:

2

1

1

1

2

1

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 22

Ranges of Signed Integers
For n-bit signed integers: Range is -2n–1 to (2n–1 – 1)

Positive range: 0 to 2n–1 – 1

Negative range: -2n–1 to -1

Practice: What is the range of signed values that may be stored in 20 bits?

–263 to (263 – 1)
–9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
Double Word

–231 to (231 – 1)–2,147,483,648 to +2,147,483,647Word
–215 to (215 – 1)–32,768 to +32,767Half Word
–27 to (27 – 1)–128 to +127Byte
Powers of 2Unsigned RangeStorage Type



12

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 23

Carry and Overflow
Carry is important when …

Adding or subtracting unsigned integers

Indicates that the unsigned sum is out of range

Either < 0 or >maximum unsigned n-bit value

Overflow is important when …
Adding or subtracting signed integers

Indicates that the signed sum is out of range

Overflow occurs when
Adding two positive numbers and the sum is negative

Adding two negative numbers and the sum is positive

Can happen because of the fixed number of sum bits

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 24

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143
(-113)

Carry = 0    Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1    Overflow = 1

111

Carry and Overflow Examples
We can have carry without overflow and vice-versa
Four cases are possible (Examples are 8-bit numbers)

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

248 (-8)

7

Carry = 1    Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0    Overflow = 0

1



13

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 25

Unsigned Integers: n-bit representation

Signed Integers: n-bit 2's complement representation

Range, Carry, Borrow, and Overflow

max = 2n–1min = 0

Carry = 1
Addition

Numbers > max

Borrow = 1
Subtraction

Numbers < min

Positive
Overflow

Numbers > max

Negative
Overflow

Numbers < min

max = 2n-1–1

Finite Set of Signed Integers

0min = -2n-1

Finite Set of Unsigned Integers

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 26

Character Storage
Character sets

Standard ASCII: 7-bit character codes (0 – 127)

Extended ASCII: 8-bit character codes (0 – 255)

Unicode: 16-bit character codes (0 – 65,535)

Unicode standard represents a universal character set
Defines codes for characters used in all major languages

Used in Windows-XP: each character is encoded as 16 bits

UTF-8: variable-length encoding used in HTML
Encodes all Unicode characters

Uses 1 byte for ASCII, but multiple bytes for other characters

Null-terminated String
Array of characters followed by a NULL character



14

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 27

Printable ASCII Codes

DEL~}|{zyxwvutsrqp7
onmlkjihgfedcba`6

_^]\[ZYXWVUTSRQP5

ONMLKJIHGFEDCBA@4
?>=<;:98765432103
/.-,+*)('&%$#"!space2
FEDCBA9876543210

Examples:
ASCII code for space character = 20 (hex) = 32 (decimal)

ASCII code for 'L' = 4C (hex) = 76 (decimal)

ASCII code for 'a' = 61 (hex) = 97 (decimal)

Data Representation ICS 233 – Computer Architecture and Assembly Language – KFUPM © Muhamed Mudawar – slide 28

Control Characters
The first 32 characters of ASCII table are used for control
Control character codes = 00 to 1F (hexadecimal)

Not shown in previous slide

Examples of Control Characters
Character 0 is the NULL character ⇒ used to terminate a string
Character 9 is the Horizontal Tab (HT) character
Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
The LF and CR characters are used together

They advance the cursor to the beginning of next line

One control character appears at end of ASCII table
Character 7F (hex) is the Delete (DEL) character


