Analysis of Clocked Sequential Circuits

EE 200

Digital Logic Circuit Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

- Analysis of Clocked Sequential circuits
 - ♦ State and Output Equations
 - ♦ State Table
 - ♦ State Diagram
- Mealy versus Moore Sequential Circuits
 - ♦ State and Timing Diagrams
- State Reduction and Assignment

Analysis of Clocked Sequential Circuits

Analysis is describing what a given circuit will do

The output of a clocked sequential circuit is determined by

- 1. Inputs
- 2. State of the Flip-Flops

Analysis Procedure:

- 1. Obtain the equations at the inputs of the Flip-Flops
- 2. Obtain the output equations
- 3. Fill the state table for all possible input and state values
- 4. Draw the state diagram

Analysis Example

✤ Is this a clocked sequential circuit?

YES!

- What type of Memory?
 D Flip-Flops
- How many state variables?

Two state variables: A and B

What are the Inputs?

One Input: *x*

What are the Outputs?

One Output: y

Flip-Flop Input Equations

✤ What are the equations on the *D* inputs of the flip-flops?

Next State and Output Equations

The next state equations define the next state

State Table

- State table shows the Next State and Output in a tabular form
- Next State Equations: A(t + 1) = A x + B x and B(t + 1) = A' x
- Output Equation: y = (A + B) x'

Pres Sta	sent ate	Input	Ne Sta	ext ate	Output		Anoth	er form of the state table					
Α	B	X	A *	B *	y								
0	0	0	0	0	0			N	ext	Stat	e	Out	tput
0	0	1	0	1	0	Pre	sent		-				
0	1	0	0	0	1	St	ate	<i>x</i> =	0	<i>x</i> =	: 1	$\mathbf{x} = 0$	$\mathbf{x} = 1$
0	1	1	1	1	0	Α	В	A *	B *	A *	B *	y	y
1	0	0	0	0	1	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	1	0	0	1	1	1	0
1	1	0	0	0	1	1	0	0	0	1	0	1	0
1	1	1	1	0	0	1	1	0	0	1	0	1	0

State Diagram

- State diagram is a graphical representation of a state table
- The circles are the states
- **\bullet** Two state variable **\rightarrow** Four states (ALL values of *A* and *B*)

Y

Arcs are the state transitions
Labeled with: Input *x* / Output *y*

Present	Next State	Output
State	x = 0 $x = 1$	x = 0 $x = 1$

B*

A

B

y

Combinational versus Sequential Analysis

Analysis of Combinational Circuits

- Obtain the Boolean Equations
- Fill the Truth Table

Output is a function of input only

Analysis of Sequential Circuits

- Obtain the Next State Equations
- Obtain the Output Equations
- Fill the State Table
- Draw the State Diagram

Next state is a function of input and current state

Output is a function of input and current state

Example with Output = Current State

- Analyze the sequential circuit shown below
- **\bigstar** Two inputs: *x* and *y*
- One state variable A
- No separate output \rightarrow Output = current state *A*
- Obtain the next state equation, state table, and state diagram

Example with Output = Current State

Sequential Circuit with T Flip-Flops

Analysis of Clocked Sequential Circuits

Recall: Flip-Flop Characteristic Equation

• For D Flip-Flop: Q(t+1) = D

♦ For T Flip-Flop: $Q(t+1) = T \oplus Q$

These equations define the Next State

♦ For JK Flip-Flop: Q(t + 1) = J Q' + K' Q

DF	Flip-FlopT Flip-FlopJK Flip-Flop			JK Flip-Flop			
D	Q(t+1)	Т	Q(t+1)	JK	Q(t+1)		
0	0 Reset	0	Q No change	00	Q No change		
1	1 Set	1	Q' Complement	01	Ø Reset		
				10	1 Set		
				1 1 O' Compleme			

Sequential Circuit with T Flip-Flops

T Flip-Flop Input Equations:

$$T_A = B x$$

$$T_B = x$$

Next State Equations:

y

 $A(t+1) = T_A \oplus A = (B x) \oplus A$

$$B(t+1) = T_B \oplus B = x \oplus B$$

Output Equation:

y = A B

From Next State Equations to State Table

T Flip-Flop Input Equations:

 $T_A = B x$ $T_B = x$ Next State Equations: $A(t+1) = (B x) \oplus A$ $B(t+1) = x \oplus B$ Output Equation:

y = x	A	В
-------	---	---

Present State A B		Input	Ne Sta	xt ite	Output	
		X	A *	B *	y	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Notice that the output is a function of the present state only. It does **NOT** depend on the input *x*

From State Table to State Diagram

• Four States: AB = 00, 01, 10, 11 (drawn as circles)

- Output Equation: y = A B (does not depend on input x)
- Output y is shown inside the state circle (AB/y)

Sequential Circuit with a JK Flip-Flops

One Input x and two state variables: A and B (outputs of Flip-Flops)

No separate output \rightarrow Output = Current state *A B*

JK Input and Next State Equations

JK Flip-Flop Input Equations:

 $B(t + 1) = x'B' + (A \oplus x)'B = B'x' + A B x + A'B x'$

From JK Input Equations to State Table

JK Input Equations:
$$J_A = B$$
, $K_A = B x'$, $J_B = x'$ and $K_B = A \oplus x$

Present State		Input	Next State		Flip-Flop Inputs				
Α	В	x A * B		B *	J _A	K _A	J _B	K _B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

From State Table to State Diagram

Four states: A B = 00, 01, 10, and 11 (drawn as circles)

Arcs show the input value *x* on the state transition

Mealy versus Moore Sequential Circuits

There are two ways to design a clocked sequential circuit:

- 1. Mealy Machine: Outputs depend on present state and inputs
- 2. Moore Machine: Outputs depend on present state only

Analysis of Clocked Sequential Circuits

Mealy Machine

- The outputs are a function of the present state and Inputs
- The outputs are NOT synchronized with the clock
- The outputs may change if inputs change during the clock cycle
- The outputs may have momentary false values (called glitches)
- The correct outputs are present just before the edge of the clock

Analysis of Clocked Sequential Circuits

Mealy State Diagram

- An example of a Mealy state diagram is shown on the right
- Each arc is labeled with: Input / Output
- The output is shown on the arcs of the state diagram
- The output depends on the current state and input
- Notice that State 11 cannot be reached from the other states

Tracing a Mealy State Diagram

✤ When the circuit is powered, the initial state (AB) is unknown

- Even though the initial state is unknown, the input x = 0 forces a transition to state AB = 00, regardless of the present state
- Sometimes, a reset input is used to initialize the state to 00

False Output in the Timing Diagram

Moore Machine

- The outputs are a function of the Flip-Flop outputs only
- The outputs depend on the current state only
- The outputs are synchronized with the clock
- Glitches cannot appear in the outputs (even if inputs change)
- ✤ A given design might mix between Mealy and Moore

Moore State Diagram

- An example of a Moore state diagram is shown on the right
- Arcs are labeled with input only
- The output is shown inside the state: (State / Output)
- The output depends on the current state only

Tracing a Moore State Diagram

- When the circuit is powered, the initial state (AB) and output are unknown
- Input x = 0 resets the state AB to 00.
 Can also be done with a reset signal.

Cycle	0	1	2	3	4	5	6	7	8
Input <i>x</i>	0	1	1	0	1	1	1	1	0
Present	?	0	0	1	0	0	1	1	1
State A B	?	0	1	0	0	1	0	1	1
Output z	?	0	0	0	0	0	0	1	1

Timing Diagram of a Moore Machine

State Reduction

- Two sequential circuits may exhibit the same input/output behavior, but have a different number of states
- State Reduction is concerned with reducing the total number of states but without altering the input/output behavior
- State Reduction does not always mean a reduction in the number of flip-flops
- ✤ With *m* flip-flops, we can have at most 2^m states
- Sometimes, state reduction with fewer flip flops might lead to more combinational logic

Example on State Reduction

- ✤ Seven states: *a* to *g*
- Which states are equivalent?
- To determine the equivalent states we should observe the input/output behavior
- Equivalent states can be detected in the state table
- If two states are equivalent, then only one is needed and the second can be removed

Equivalent States

- Consider the input sequence: x = 01010110100
- The output is shown below starting in a

Cycle	0	1	2	3	4	5	6	7	8	9	10	11
Input x	0	1	0	1	0	1	1	0	1	0	0	
State	а	а	b	С	d	е	f	f	g	f	g	а
Output	0	0	0	0	0	1	1	0	1	0	0	

- Two states are said to be equivalent, if for each set of inputs
 - \diamond They give the same output and
 - ♦ They transition to the same state or to an equivalent state
- If two states are equivalent, one of them can be removed
 - ♦ Without altering the input/output behavior of the sequential circuit

Detecting Equivalent States

- Equivalent States can be detected in the state table
- Which states are equivalent?
 - \diamond Clearly, states *e* and *g* are equivalent
 - \diamond Remove state *g* and keep *e*

	Next	State	Output			
Present State	$\mathbf{x} = 0$	<i>x</i> = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
е	а	f	0	1		
f	g	f	0	1		
g	а	f	0	1		

Reduced State Table

- States e and g are equivalent
- Keep state *e* and Remove state *g*
- Rename any state g in the table to e
- More equivalent states?
- Yes! States *d* and *f* are also equivalent

	Next	State	Out	Output		
Present State	$\boldsymbol{x} = \boldsymbol{0}$	<i>x</i> = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
е	а	f	0	1		
f	g	f	0	1		
g	a	f	0	1		
	Next	State	Out	put		
Present State	x = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1		
a	a	b	0	0		
	u	D	0	U		
b	u C	d	0	0		
b c	c a	d d	0 0 0	0 0		
b c d	и С а е	d d f	0 0 0	0 0 0		
b c d e	а С а е а	b d d f f	0 0 0 0	0 0 1 1		

More State Table Reduction

- States d and f are also equivalent
- Keep state d and Remove state f
- Rename any state f in the table to d
- Any more equivalent states?
- No! This is the final reduced state table

	Next	State	Output			
Present State	<i>x</i> = 0	<i>x</i> = 1	<i>x</i> = 0	<i>x</i> = 1		
a	а	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	f	0	1		
е	а	ſ	0	1		
f	е	f	0	1		

	Next	State	Output			
Present State	<i>x</i> = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1		
а	а	b	0	0		
b	С	d	0	0		
С	a	d	0	0		
d	е	d	0	1		
е	а	d	0	1		

Summary

- ✤ To analyze a clocked sequential circuit:
- 1. Obtain the equations at the **Inputs** of the flip-flops
- 2. Obtain the **Next State** equations
 - \diamond For a D Flip-Flop, the Next State = D input equation
 - ♦ For T and JK, use the characteristic equation of the Flip-Flop
- 3. Obtain the **Output** equations
- 4. Fill the **State Table**
 - ♦ Put all the combinations of current state and input
 - ♦ Fill the next state and output columns
- 5. Draw the **State Diagram**
- Two types of clocked sequential circuits: Mealy versus Moore