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Boolean Algebra

❖ Introduced by George Boole in 1854

❖ A set of two values: B = {0, 1}

❖ Three basic operations: AND, OR, and NOT

❖ The AND operator is denoted by a dot (·)

 𝑥 · 𝑦 or 𝑥𝑦 is read: 𝑥 AND 𝑦

❖ The OR operator is denoted by a plus (+)

 𝑥 + 𝑦 is read: 𝑥 OR 𝑦

❖ The NOT operator is denoted by (') or an overbar (¯).

 𝑥′ or 𝑥 is the complement of 𝑥

❖ Today, Boolean algebra is being used to design digital circuits 
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Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. Identity element with respect to + is 0: 𝑥 + 0 = 0 + 𝑥 = 𝑥

Identity element with respect to · is 1: 𝑥 · 1 = 1 · 𝑥 = 𝑥

3. Commutative with respect to +: 𝑥 + 𝑦 = 𝑦 + 𝑥

Commutative with respect to ·: 𝑥 · 𝑦 = 𝑦 · 𝑥

4. · is distributive over +: 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧)

+ is distributive over ·: 𝑥 + (𝑦 · 𝑧) = (𝑥 + 𝑦) · (𝑥 + 𝑧)

5. For every 𝑥 in B, there exists 𝑥′ in B (called complement of 𝑥) 

such that: 𝑥 + 𝑥′ = 1 and 𝑥 · 𝑥′ = 0
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AND, OR, and NOT Operators

❖ The following tables define 𝑥 · 𝑦, 𝑥 + 𝑦, and 𝑥′

❖ 𝑥 · 𝑦 is the AND operator

❖ 𝑥 + 𝑦 is the OR operator

❖ 𝑥′ is the NOT operator

x y x·y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0
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Boolean Functions

❖ Boolean functions are described by expressions that consist of:

 Boolean variables, such as: 𝑥, 𝑦, etc.

 Boolean constants: 0 and 1

 Boolean operators: AND (·), OR (+), NOT (')

 Parentheses, which can be nested

❖ Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧

 The dot operator is implicit and need not be written

❖ Operator precedence: to avoid ambiguity in expressions

 Expressions within parentheses should be evaluated first

 The NOT (') operator should be evaluated second

 The AND (·) operator should be evaluated third

 The OR (+) operator should be evaluated last
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Truth Table

❖ A truth table can represent a Boolean function

❖ List all possible combinations of 0's and 1's assigned to variables

❖ If n variables then 2n rows

❖ Example: Truth table for 𝑓 = 𝑥𝑦′ + 𝑥′𝑧

x  y  z y' xy' x' x'z f = xy'+ x'z

0  0  0 1 0 1 0 0

0  0  1 1 0 1 1 1

0  1  0 0 0 1 0 0

0  1  1 0 0 1 1 1

1  0  0 1 1 0 0 1

1  0 1 1 1 0 0 1

1  1  0 0 0 0 0 0

1  1  1 0 0 0 0 0
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DeMorgan's Theorem

❖ (𝑥 + 𝑦)′ = 𝑥′ 𝑦′

❖ (𝑥 𝑦)′ = 𝑥′ + 𝑦′

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified

Using a Truth Table

Identical Identical

❖ Generalized DeMorgan's Theorem:

❖ 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1

′ ∙ 𝑥2
′ ∙ ⋯ ∙ 𝑥𝑛

′

❖ 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1

′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′
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Complementing Boolean Functions

❖What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

❖ Use DeMorgan's Theorem:

 Complement each variable and constant

 Interchange AND and OR operators

❖ So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧)

❖ Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒

❖ Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′
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Algebraic Manipulation of Expressions

❖ The objective is to acquire skills in manipulating Boolean 

expressions, to transform them into simpler form.

❖ Example 1: prove 𝑥 + 𝑥𝑦 = 𝑥 (absorption theorem)

❖ Proof: 𝑥 + 𝑥𝑦 = 𝑥 · 1 + 𝑥𝑦 𝑥 · 1 = 𝑥

= 𝑥 · (1 + 𝑦) Distributive · over +

= 𝑥 · 1 = 𝑥 (1 + 𝑦) = 1

❖ Example 2: prove 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 (simplification theorem)

❖ Proof: 𝑥 + 𝑥′𝑦 = (𝑥 + 𝑥′)(𝑥 + 𝑦) Distributive + over ·

= 1 · (𝑥 + 𝑦) (𝑥 + 𝑥′) = 1

= 𝑥 + 𝑦
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Consensus Theorem

❖ Prove that: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧 = 𝑥𝑦 + 𝑥′𝑧 (consensus theorem)

❖ Proof: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + 1 · 𝑦𝑧 𝑦𝑧 = 1 · 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + (𝑥 + 𝑥′)𝑦𝑧 1 = (𝑥 + 𝑥′)

= 𝑥𝑦 + 𝑥′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧 Distributive · over +

= 𝑥𝑦 + 𝑥𝑦𝑧 + 𝑥′𝑧 + 𝑥′𝑦𝑧 Associative commutative +

= 𝑥𝑦 · 1 + 𝑥𝑦𝑧 + 𝑥′𝑧 · 1 + 𝑥′𝑧𝑦 𝑥𝑦 = 𝑥𝑦 · 1, 𝑥′𝑦𝑧 = 𝑥′𝑧𝑦

= 𝑥𝑦(1 + 𝑧) + 𝑥′𝑧(1 + 𝑦) Distributive · over +

= 𝑥𝑦 · 1 + 𝑥′𝑧 · 1 1 + 𝑧 = 1, 1 + 𝑦 = 1

= 𝑥𝑦 + 𝑥′𝑧 𝑥𝑦 · 1 = 𝑥𝑦, 𝑥′𝑧 · 1 = 𝑥′𝑧
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Summary of Boolean Algebra

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Null 𝑥 + 1 = 1 𝑥 · 0 = 0

Idempotence 𝑥 + 𝑥 = 𝑥 𝑥 · 𝑥 = 𝑥

Involution (𝑥′)′ = 𝑥

Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 𝑥 𝑦 = 𝑦 𝑥

Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 𝑥 𝑦 𝑧 = 𝑥 (𝑦 𝑧)

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Absorption 𝑥 + 𝑥𝑦 = 𝑥 𝑥(𝑥 + 𝑦) = 𝑥

Simplification 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 𝑥(𝑥′ + 𝑦) = 𝑥𝑦

De Morgan (𝑥 + 𝑦)′ = 𝑥′ 𝑦′ 𝑥 𝑦 ′ = 𝑥′ + 𝑦′
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Duality Principle

❖ The dual of a Boolean expression can be obtained by:

 Interchanging AND (·) and OR (+) operators

 Interchanging 0's and 1's

❖ Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′

 The complement operator does not change

❖ The properties of Boolean algebra appear in dual pairs

 If a property is proven to be true then its dual is also true

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)
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Expression Simplification

❖ Using Boolean algebra to simplify expressions

❖ Expression should contain the smallest number of literals

❖ A literal is a variable that may or may not be complemented

❖ Example: simplify 𝑎𝑏 + 𝑎′𝑐𝑑 + 𝑎′𝑏𝑑 + 𝑎′𝑐𝑑′ + 𝑎𝑏𝑐𝑑

❖ Solution: 𝑎𝑏 + 𝑎′𝑐𝑑 + 𝑎′𝑏𝑑 + 𝑎′𝑐𝑑′ + 𝑎𝑏𝑐𝑑 (15 literals)

= 𝑎𝑏 + 𝑎𝑏𝑐𝑑 + 𝑎′𝑐𝑑 + 𝑎′𝑐𝑑′ + 𝑎′𝑏𝑑 (15 literals)

= 𝑎𝑏 + 𝑎𝑏(𝑐𝑑) + 𝑎′𝑐(𝑑 + 𝑑′) + 𝑎′𝑏𝑑 (13 literals)

= 𝑎𝑏 + 𝑎′𝑐 + 𝑎′𝑏𝑑 (7 literals)

= 𝑏𝑎 + 𝑏𝑎′𝑑 + 𝑎′𝑐 (7 literals)

= 𝑏(𝑎 + 𝑎′𝑑) + 𝑎′𝑐 (6 literals)

= 𝑏(𝑎 + 𝑑) + 𝑎′𝑐 (5 literals only)
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Importance of Boolean Algebra

❖ Our objective is to learn how to design digital circuits

❖ These circuits use signals with two possible values

❖ Logic 0 is a low voltage signal (around 0 volts)

❖ Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

❖ The physical value of a signal is the actual voltage it carries, 

while its logic value is either 0 (low) or 1 (high)  

❖ Having only two logic values (0 and 1) simplifies the 

implementation of the digital circuit
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Next . . .

❖ Boolean Algebra

❖ Boolean Functions and Truth Tables

❖ DeMorgan's Theorem

❖ Algebraic manipulation and expression simplification

❖ Logic gates and logic diagrams

❖Minterms and Maxterms

❖ Sum-Of-Products and Product-Of-Sums
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Logic Gates and Symbols

𝑥

𝑦
𝑥 · 𝑦

AND gate

𝑥

𝑦
𝑥 + 𝑦

OR gate

𝑥′𝑥

NOT gate (inverter)

❖ In the earliest computers, relays were used as mechanical 

switches controlled by electricity (coils)

❖ Today, tiny transistors are used as electronic switches that 

implement the logic gates (CMOS technology)

AND: Switches in series

logic 0 is open switch

OR: Switches in parallel

logic 0 is open switch

NOT: Switch is normally

closed when x is 0

𝑥 𝑦
𝑥

𝑦

𝑥′
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Truth Table and Logic Diagram

❖ Given the following logic function: 𝑓 = 𝑥(𝑦′ + 𝑧)

❖ Draw the corresponding truth table and logic diagram

Truth Table

x y z y'+ z f = x(y'+ z)

0 0 0 1 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Truth Table and Logic Diagram

describe the same function 𝑓.

Truth table is unique, but logic

expression and logic diagram

are not. This gives flexibility in

implementing logic functions.

𝑥

𝑦

𝑓 = 𝑥(𝑦′ + 𝑧)

𝑧

Logic Diagram
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Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs
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Example of a Simple Combinational Circuit

❖ The above circuit has:

 Three inputs: 𝑥, 𝑦, and 𝑧

 Two outputs: 𝑓 and 𝑔

❖What are the logic expressions of 𝑓 and 𝑔 ?

❖ Answer: 𝑓 = 𝑥𝑦 + 𝑧′

𝑔 = 𝑥𝑦 + 𝑦𝑧

𝑥

𝑦 𝑓

𝑔

𝑧
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From Truth Tables to Gate Implementation

❖ Given the truth table of a Boolean function 𝑓, how do we 

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of 𝑓?

What is the gate implementation of 𝑓?

To answer these questions, we need 

to define Minterms and Maxterms
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Minterms and Maxterms

❖Minterms are AND terms with every variable present in either 

true or complement form

❖Maxterms are OR terms with every variable present in either 

true or complement form

Minterms and Maxterms for 2 variables 𝑥 and 𝑦

❖ For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′
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Minterms and Maxterms for 3 Variables

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖

𝑀𝑖 = 𝑚𝑖′ and  𝑚𝑖 = 𝑀𝑖′

x y z index Minterm Maxterm

0 0 0 0 𝑚0 = 𝑥′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦′ + 𝑧′

1 0 0 4 𝑚4 = 𝑥𝑦′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 5 𝑚5 = 𝑥𝑦′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦′ + 𝑧′
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Purpose of the Index

❖Minterms and Maxterms are designated with an index

❖ The index for the Minterm or Maxterm, expressed as a 

binary number, is used to determine whether the variable 

is shown in the true or complemented form

❖ For Minterms:

 ‘1’ means the variable is Not Complemented

 ‘0’ means  the variable is Complemented

❖ For Maxterms:

 ‘0’ means  the variable is Not Complemented

 ‘1’ means the variable is Complemented
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Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries 

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries 

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7

𝑓 =෍ 2, 3, 5, 7

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧
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Examples of Sum-Of-Minterms

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(2, 3, 6, 10, 11)

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(0, 1, 12, 15)

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑
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Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1

0 1 1 1

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1

Product of Maxterm entries 

that evaluate to ‘0’

Focus on the ‘0’ entries 

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6

𝑓 =ෑ 0, 1, 4, 6

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧)
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Examples of Product-Of-Maxterms

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = ς(1, 3, 11)

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′ (𝑎′ + 𝑏 + 𝑐′ + 𝑑′)

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = ς(0, 5, 13)

❖ 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′ (𝑎′ + 𝑏′ + 𝑐 + 𝑑′)
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Conversions between Canonical Forms

❖ The same Boolean function 𝑓 can be expressed in two ways:

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 = σ(0, 2, 3, 5, 7)

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 = ς(1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 𝑚0 = 𝑥′𝑦′𝑧′

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

To convert from one canonical 

form to another, interchange 

the symbols  and  and list 

those numbers missing from 

the original form.

Truth Table
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Function Complement

Given a Boolean function 𝑓

𝑓(𝑥, 𝑦, 𝑧) =෍ 0, 2, 3, 5, 7 =ෑ(1, 4, 6)

Then, the complement 𝑓′ of function 𝑓

𝑓′(𝑥, 𝑦, 𝑧) =ෑ 0, 2, 3, 5, 7 =෍(1, 4, 6)

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a 

Sum of Minterms is the Product of Maxterms 

with the same indices. Interchange the symbols 

 and , but keep the same list of indices.

Truth Table
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Summary of Minterms and Maxterms

❖ There are 2n Minterms and Maxterms for Boolean functions with 

n variables, indexed from 0 to 2n – 1

❖Minterms correspond to the 1-entries of the function

❖Maxterms correspond to the 0-entries of the function

❖ Any Boolean function can be expressed as a Sum-of-Minterms 

and as a Product-of-Maxterms

❖ For a Boolean function, given the list of Minterm indices one can 

determine the list of Maxterms indices (and vice versa)

❖ The complement of a Sum-of-Minterms is a Product-of-Maxterms 

with the same indices (and vice versa)
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Sum-of-Products and Products-of-Sums

❖ Canonical forms contain a larger number of literals

 Because the Minterms (and Maxterms) must contain, by definition, all 

the variables either complemented or not

❖ Another way to express Boolean functions is in standard form

❖ Two standard forms: Sum-of-Products and Product-of -Sums

❖ Sum of Products (SOP)

 Boolean expression is the ORing (sum) of AND terms (products)

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧

❖ Products of Sums (POS)

 Boolean expression is the ANDing (product) of OR terms (sums)

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)
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Two-Level Gate Implementation

𝑓1 = 𝑥𝑦′ + 𝑥𝑧

𝑥

𝑦′
𝑓1

𝑥

𝑧

𝑓2 = 𝑦 + 𝑥𝑦′𝑧

𝑦

𝑦′

𝑓2𝑥

𝑧 3-input AND gateAND-OR

implementations

𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′)

𝑥

𝑧
𝑓3

𝑥′

𝑦′

𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)

𝑥

𝑓4𝑥′
𝑦′
𝑧 3-input OR gateOR-AND

implementations
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Two-Level vs. Three-Level Implementation

❖ ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products

❖ ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals)

❖ However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums

2-level implementation

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒

3-level implementation

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒)

𝑎

𝑏

ℎ
𝑐

𝑑

𝑐

𝑒 3-input OR gate

𝑎

𝑏

ℎ𝑐

𝑑

𝑒


