
Boolean Algebra and

Logic Gates

EE 200

Digital Logic Circuit Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ Boolean Algebra

❖ Boolean Functions and Truth Tables

❖ DeMorgan's Theorem

❖ Algebraic manipulation and expression simplification

❖ Logic gates and logic diagrams

❖Minterms and Maxterms

❖ Sum-Of-Products and Product-Of-Sums

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 3

Boolean Algebra

❖ Introduced by George Boole in 1854

❖ A set of two values: B = {0, 1}

❖ Three basic operations: AND, OR, and NOT

❖ The AND operator is denoted by a dot (·)

 𝑥 · 𝑦 or 𝑥𝑦 is read: 𝑥 AND 𝑦

❖ The OR operator is denoted by a plus (+)

 𝑥 + 𝑦 is read: 𝑥 OR 𝑦

❖ The NOT operator is denoted by (') or an overbar (¯).

 𝑥′ or 𝑥 is the complement of 𝑥

❖ Today, Boolean algebra is being used to design digital circuits

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 4

Postulates of Boolean Algebra

1. Closure: the result of any Boolean operation is in B = {0, 1}

2. Identity element with respect to + is 0: 𝑥 + 0 = 0 + 𝑥 = 𝑥

Identity element with respect to · is 1: 𝑥 · 1 = 1 · 𝑥 = 𝑥

3. Commutative with respect to +: 𝑥 + 𝑦 = 𝑦 + 𝑥

Commutative with respect to ·: 𝑥 · 𝑦 = 𝑦 · 𝑥

4. · is distributive over +: 𝑥 · (𝑦 + 𝑧) = (𝑥 · 𝑦) + (𝑥 · 𝑧)

+ is distributive over ·: 𝑥 + (𝑦 · 𝑧) = (𝑥 + 𝑦) · (𝑥 + 𝑧)

5. For every 𝑥 in B, there exists 𝑥′ in B (called complement of 𝑥)

such that: 𝑥 + 𝑥′ = 1 and 𝑥 · 𝑥′ = 0

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 5

AND, OR, and NOT Operators

❖ The following tables define 𝑥 · 𝑦, 𝑥 + 𝑦, and 𝑥′

❖ 𝑥 · 𝑦 is the AND operator

❖ 𝑥 + 𝑦 is the OR operator

❖ 𝑥′ is the NOT operator

x y x·y

0 0 0

0 1 0

1 0 0

1 1 1

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

x x'

0 1

1 0

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 6

Boolean Functions

❖ Boolean functions are described by expressions that consist of:

 Boolean variables, such as: 𝑥, 𝑦, etc.

 Boolean constants: 0 and 1

 Boolean operators: AND (·), OR (+), NOT (')

 Parentheses, which can be nested

❖ Example: 𝑓 = 𝑥 𝑦 + 𝑤′𝑧

 The dot operator is implicit and need not be written

❖ Operator precedence: to avoid ambiguity in expressions

 Expressions within parentheses should be evaluated first

 The NOT (') operator should be evaluated second

 The AND (·) operator should be evaluated third

 The OR (+) operator should be evaluated last

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 7

Truth Table

❖ A truth table can represent a Boolean function

❖ List all possible combinations of 0's and 1's assigned to variables

❖ If n variables then 2n rows

❖ Example: Truth table for 𝑓 = 𝑥𝑦′ + 𝑥′𝑧

x y z y' xy' x' x'z f = xy'+ x'z

0 0 0 1 0 1 0 0

0 0 1 1 0 1 1 1

0 1 0 0 0 1 0 0

0 1 1 0 0 1 1 1

1 0 0 1 1 0 0 1

1 0 1 1 1 0 0 1

1 1 0 0 0 0 0 0

1 1 1 0 0 0 0 0

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 8

DeMorgan's Theorem

❖ (𝑥 + 𝑦)′ = 𝑥′ 𝑦′

❖ (𝑥 𝑦)′ = 𝑥′ + 𝑦′

x y x' y' x+y (x+y)' x'y' x y (x y)' x'+ y'

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0

Can be verified

Using a Truth Table

Identical Identical

❖ Generalized DeMorgan's Theorem:

❖ 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
′ = 𝑥1

′ ∙ 𝑥2
′ ∙ ⋯ ∙ 𝑥𝑛

′

❖ 𝑥1 ∙ 𝑥2 ∙ ⋯ ∙ 𝑥𝑛
′ = 𝑥1

′ + 𝑥2
′ + ⋯+ 𝑥𝑛

′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 9

Complementing Boolean Functions

❖What is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

❖ Use DeMorgan's Theorem:

 Complement each variable and constant

 Interchange AND and OR operators

❖ So, what is the complement of 𝑓 = 𝑥′𝑦𝑧′ + 𝑥𝑦′𝑧′ ?

Answer: 𝑓′ = (𝑥 + 𝑦′ + 𝑧)(𝑥′ + 𝑦 + 𝑧)

❖ Example 2: Complement 𝑔 = (𝑎′ + 𝑏𝑐)𝑑′ + 𝑒

❖ Answer: 𝑔′ = (𝑎(𝑏′ + 𝑐′) + 𝑑)𝑒′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 10

Algebraic Manipulation of Expressions

❖ The objective is to acquire skills in manipulating Boolean

expressions, to transform them into simpler form.

❖ Example 1: prove 𝑥 + 𝑥𝑦 = 𝑥 (absorption theorem)

❖ Proof: 𝑥 + 𝑥𝑦 = 𝑥 · 1 + 𝑥𝑦 𝑥 · 1 = 𝑥

= 𝑥 · (1 + 𝑦) Distributive · over +

= 𝑥 · 1 = 𝑥 (1 + 𝑦) = 1

❖ Example 2: prove 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 (simplification theorem)

❖ Proof: 𝑥 + 𝑥′𝑦 = (𝑥 + 𝑥′)(𝑥 + 𝑦) Distributive + over ·

= 1 · (𝑥 + 𝑦) (𝑥 + 𝑥′) = 1

= 𝑥 + 𝑦

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 11

Consensus Theorem

❖ Prove that: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧 = 𝑥𝑦 + 𝑥′𝑧 (consensus theorem)

❖ Proof: 𝑥𝑦 + 𝑥′𝑧 + 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + 1 · 𝑦𝑧 𝑦𝑧 = 1 · 𝑦𝑧

= 𝑥𝑦 + 𝑥′𝑧 + (𝑥 + 𝑥′)𝑦𝑧 1 = (𝑥 + 𝑥′)

= 𝑥𝑦 + 𝑥′𝑧 + 𝑥𝑦𝑧 + 𝑥′𝑦𝑧 Distributive · over +

= 𝑥𝑦 + 𝑥𝑦𝑧 + 𝑥′𝑧 + 𝑥′𝑦𝑧 Associative commutative +

= 𝑥𝑦 · 1 + 𝑥𝑦𝑧 + 𝑥′𝑧 · 1 + 𝑥′𝑧𝑦 𝑥𝑦 = 𝑥𝑦 · 1, 𝑥′𝑦𝑧 = 𝑥′𝑧𝑦

= 𝑥𝑦(1 + 𝑧) + 𝑥′𝑧(1 + 𝑦) Distributive · over +

= 𝑥𝑦 · 1 + 𝑥′𝑧 · 1 1 + 𝑧 = 1, 1 + 𝑦 = 1

= 𝑥𝑦 + 𝑥′𝑧 𝑥𝑦 · 1 = 𝑥𝑦, 𝑥′𝑧 · 1 = 𝑥′𝑧

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 12

Summary of Boolean Algebra

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Null 𝑥 + 1 = 1 𝑥 · 0 = 0

Idempotence 𝑥 + 𝑥 = 𝑥 𝑥 · 𝑥 = 𝑥

Involution (𝑥′)′ = 𝑥

Commutative 𝑥 + 𝑦 = 𝑦 + 𝑥 𝑥 𝑦 = 𝑦 𝑥

Associative (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) 𝑥 𝑦 𝑧 = 𝑥 (𝑦 𝑧)

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Absorption 𝑥 + 𝑥𝑦 = 𝑥 𝑥(𝑥 + 𝑦) = 𝑥

Simplification 𝑥 + 𝑥′𝑦 = 𝑥 + 𝑦 𝑥(𝑥′ + 𝑦) = 𝑥𝑦

De Morgan (𝑥 + 𝑦)′ = 𝑥′ 𝑦′ 𝑥 𝑦 ′ = 𝑥′ + 𝑦′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 13

Duality Principle

❖ The dual of a Boolean expression can be obtained by:

 Interchanging AND (·) and OR (+) operators

 Interchanging 0's and 1's

❖ Example: the dual of 𝑥(𝑦 + 𝑧′) is 𝑥 + 𝑦𝑧′

 The complement operator does not change

❖ The properties of Boolean algebra appear in dual pairs

 If a property is proven to be true then its dual is also true

Property Dual Property

Identity 𝑥 + 0 = 𝑥 𝑥 · 1 = 𝑥

Complement 𝑥 + 𝑥′ = 1 𝑥 · 𝑥′ = 0

Distributive 𝑥 (𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 14

Expression Simplification

❖ Using Boolean algebra to simplify expressions

❖ Expression should contain the smallest number of literals

❖ A literal is a variable that may or may not be complemented

❖ Example: simplify 𝑎𝑏 + 𝑎′𝑐𝑑 + 𝑎′𝑏𝑑 + 𝑎′𝑐𝑑′ + 𝑎𝑏𝑐𝑑

❖ Solution: 𝑎𝑏 + 𝑎′𝑐𝑑 + 𝑎′𝑏𝑑 + 𝑎′𝑐𝑑′ + 𝑎𝑏𝑐𝑑 (15 literals)

= 𝑎𝑏 + 𝑎𝑏𝑐𝑑 + 𝑎′𝑐𝑑 + 𝑎′𝑐𝑑′ + 𝑎′𝑏𝑑 (15 literals)

= 𝑎𝑏 + 𝑎𝑏(𝑐𝑑) + 𝑎′𝑐(𝑑 + 𝑑′) + 𝑎′𝑏𝑑 (13 literals)

= 𝑎𝑏 + 𝑎′𝑐 + 𝑎′𝑏𝑑 (7 literals)

= 𝑏𝑎 + 𝑏𝑎′𝑑 + 𝑎′𝑐 (7 literals)

= 𝑏(𝑎 + 𝑎′𝑑) + 𝑎′𝑐 (6 literals)

= 𝑏(𝑎 + 𝑑) + 𝑎′𝑐 (5 literals only)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 15

Importance of Boolean Algebra

❖ Our objective is to learn how to design digital circuits

❖ These circuits use signals with two possible values

❖ Logic 0 is a low voltage signal (around 0 volts)

❖ Logic 1 is a high voltage signal (e.g. 5 or 3.3 volts)

❖ The physical value of a signal is the actual voltage it carries,

while its logic value is either 0 (low) or 1 (high)

❖ Having only two logic values (0 and 1) simplifies the

implementation of the digital circuit

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 16

Next . . .

❖ Boolean Algebra

❖ Boolean Functions and Truth Tables

❖ DeMorgan's Theorem

❖ Algebraic manipulation and expression simplification

❖ Logic gates and logic diagrams

❖Minterms and Maxterms

❖ Sum-Of-Products and Product-Of-Sums

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 17

Logic Gates and Symbols

𝑥

𝑦
𝑥 · 𝑦

AND gate

𝑥

𝑦
𝑥 + 𝑦

OR gate

𝑥′𝑥

NOT gate (inverter)

❖ In the earliest computers, relays were used as mechanical

switches controlled by electricity (coils)

❖ Today, tiny transistors are used as electronic switches that

implement the logic gates (CMOS technology)

AND: Switches in series

logic 0 is open switch

OR: Switches in parallel

logic 0 is open switch

NOT: Switch is normally

closed when x is 0

𝑥 𝑦
𝑥

𝑦

𝑥′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 18

Truth Table and Logic Diagram

❖ Given the following logic function: 𝑓 = 𝑥(𝑦′ + 𝑧)

❖ Draw the corresponding truth table and logic diagram

Truth Table

x y z y'+ z f = x(y'+ z)

0 0 0 1 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Truth Table and Logic Diagram

describe the same function 𝑓.

Truth table is unique, but logic

expression and logic diagram

are not. This gives flexibility in

implementing logic functions.

𝑥

𝑦

𝑓 = 𝑥(𝑦′ + 𝑧)

𝑧

Logic Diagram

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 19

Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 20

Example of a Simple Combinational Circuit

❖ The above circuit has:

 Three inputs: 𝑥, 𝑦, and 𝑧

 Two outputs: 𝑓 and 𝑔

❖What are the logic expressions of 𝑓 and 𝑔 ?

❖ Answer: 𝑓 = 𝑥𝑦 + 𝑧′

𝑔 = 𝑥𝑦 + 𝑦𝑧

𝑥

𝑦 𝑓

𝑔

𝑧

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 21

From Truth Tables to Gate Implementation

❖ Given the truth table of a Boolean function 𝑓, how do we

implement the truth table using logic gates?

Truth Table

x y z f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

What is the logic expression of 𝑓?

What is the gate implementation of 𝑓?

To answer these questions, we need

to define Minterms and Maxterms

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 22

Minterms and Maxterms

❖Minterms are AND terms with every variable present in either

true or complement form

❖Maxterms are OR terms with every variable present in either

true or complement form

Minterms and Maxterms for 2 variables 𝑥 and 𝑦

❖ For n variables, there are 2n Minterms and Maxterms

x y index Minterm Maxterm

0 0 0 𝑚0 = 𝑥′𝑦′ 𝑀0 = 𝑥 + 𝑦

0 1 1 𝑚1 = 𝑥′𝑦 𝑀1 = 𝑥 + 𝑦′

1 0 2 𝑚2 = 𝑥𝑦′ 𝑀2 = 𝑥′ + 𝑦

1 1 3 𝑚3 = 𝑥𝑦 𝑀3 = 𝑥′ + 𝑦′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 23

Minterms and Maxterms for 3 Variables

Maxterm 𝑀𝑖 is the complement of Minterm 𝑚𝑖

𝑀𝑖 = 𝑚𝑖′ and 𝑚𝑖 = 𝑀𝑖′

x y z index Minterm Maxterm

0 0 0 0 𝑚0 = 𝑥′𝑦′𝑧′ 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 1 𝑚1 = 𝑥′𝑦′𝑧 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 2 𝑚2 = 𝑥′𝑦𝑧′ 𝑀2 = 𝑥 + 𝑦′ + 𝑧

0 1 1 3 𝑚3 = 𝑥′𝑦𝑧 𝑀3 = 𝑥 + 𝑦′ + 𝑧′

1 0 0 4 𝑚4 = 𝑥𝑦′𝑧′ 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 5 𝑚5 = 𝑥𝑦′𝑧 𝑀5 = 𝑥′ + 𝑦 + 𝑧′

1 1 0 6 𝑚6 = 𝑥𝑦𝑧′ 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 7 𝑚7 = 𝑥𝑦𝑧 𝑀7 = 𝑥′ + 𝑦′ + 𝑧′

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 24

Purpose of the Index

❖Minterms and Maxterms are designated with an index

❖ The index for the Minterm or Maxterm, expressed as a

binary number, is used to determine whether the variable

is shown in the true or complemented form

❖ For Minterms:

 ‘1’ means the variable is Not Complemented

 ‘0’ means the variable is Complemented

❖ For Maxterms:

 ‘0’ means the variable is Not Complemented

 ‘1’ means the variable is Complemented

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 25

Sum-Of-Minterms (SOM) Canonical Form

Sum of Minterm entries

that evaluate to ‘1’

Truth Table

x y z f Minterm

0 0 0 0

0 0 1 0

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

Focus on the ‘1’ entries

𝑓 = 𝑚2 +𝑚3 +𝑚5 +𝑚7

𝑓 =෍ 2, 3, 5, 7

𝑓 = 𝑥′𝑦𝑧′ + 𝑥′𝑦𝑧 + 𝑥𝑦′𝑧 + 𝑥𝑦𝑧

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 26

Examples of Sum-Of-Minterms

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = σ(2, 3, 6, 10, 11)

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚2 +𝑚3 +𝑚6 +𝑚10 +𝑚11

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐𝑑′ + 𝑎′𝑏′𝑐𝑑 + 𝑎′𝑏𝑐𝑑′ + 𝑎𝑏′𝑐𝑑′ + 𝑎𝑏′𝑐𝑑

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = σ(0, 1, 12, 15)

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑚0 +𝑚1 +𝑚12 +𝑚15

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = 𝑎′𝑏′𝑐′𝑑′ + 𝑎′𝑏′𝑐′𝑑 + 𝑎𝑏𝑐′𝑑′ + 𝑎𝑏𝑐𝑑

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 27

Product-Of-Maxterms (POM) Canonical Form

Truth Table

x y z f Maxterm

0 0 0 0 𝑀0 = 𝑥 + 𝑦 + 𝑧

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1

0 1 1 1

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1

Product of Maxterm entries

that evaluate to ‘0’

Focus on the ‘0’ entries

𝑓 = 𝑀0 · 𝑀1 · 𝑀4 · 𝑀6

𝑓 =ෑ 0, 1, 4, 6

𝑓 = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 + 𝑧′)(𝑥′ + 𝑦 + 𝑧)(𝑥′ + 𝑦′ + 𝑧)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 28

Examples of Product-Of-Maxterms

❖ 𝑓 𝑎, 𝑏, 𝑐, 𝑑 = ς(1, 3, 11)

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀1 ∙ 𝑀3 ∙ 𝑀11

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑′ 𝑎 + 𝑏 + 𝑐′ + 𝑑′ (𝑎′ + 𝑏 + 𝑐′ + 𝑑′)

❖ 𝑔 𝑎, 𝑏, 𝑐, 𝑑 = ς(0, 5, 13)

❖ 𝑔(𝑎, 𝑏, 𝑐, 𝑑) = 𝑀0 ∙ 𝑀5 ∙ 𝑀13

❖ 𝑓(𝑎, 𝑏, 𝑐, 𝑑) = 𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 + 𝑏′ + 𝑐 + 𝑑′ (𝑎′ + 𝑏′ + 𝑐 + 𝑑′)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 29

Conversions between Canonical Forms

❖ The same Boolean function 𝑓 can be expressed in two ways:

 Sum-of-Minterms 𝑓 = 𝑚0 +𝑚2 +𝑚3 +𝑚5 +𝑚7 = σ(0, 2, 3, 5, 7)

 Product-of-Maxterms 𝑓 = 𝑀1 ∙ 𝑀4 ∙ 𝑀6 = ς(1, 4, 6)

x y z f Minterms Maxterms

0 0 0 1 𝑚0 = 𝑥′𝑦′𝑧′

0 0 1 0 𝑀1 = 𝑥 + 𝑦 + 𝑧′

0 1 0 1 𝑚2 = 𝑥′𝑦𝑧′

0 1 1 1 𝑚3 = 𝑥′𝑦𝑧

1 0 0 0 𝑀4 = 𝑥′ + 𝑦 + 𝑧

1 0 1 1 𝑚5 = 𝑥𝑦′𝑧

1 1 0 0 𝑀6 = 𝑥′ + 𝑦′ + 𝑧

1 1 1 1 𝑚7 = 𝑥𝑦𝑧

To convert from one canonical

form to another, interchange

the symbols  and  and list

those numbers missing from

the original form.

Truth Table

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 30

Function Complement

Given a Boolean function 𝑓

𝑓(𝑥, 𝑦, 𝑧) =෍ 0, 2, 3, 5, 7 =ෑ(1, 4, 6)

Then, the complement 𝑓′ of function 𝑓

𝑓′(𝑥, 𝑦, 𝑧) =ෑ 0, 2, 3, 5, 7 =෍(1, 4, 6)

x y z f f'

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 0 1

1 1 1 1 0

The complement of a function expressed by a

Sum of Minterms is the Product of Maxterms

with the same indices. Interchange the symbols

 and , but keep the same list of indices.

Truth Table

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 31

Summary of Minterms and Maxterms

❖ There are 2n Minterms and Maxterms for Boolean functions with

n variables, indexed from 0 to 2n – 1

❖Minterms correspond to the 1-entries of the function

❖Maxterms correspond to the 0-entries of the function

❖ Any Boolean function can be expressed as a Sum-of-Minterms

and as a Product-of-Maxterms

❖ For a Boolean function, given the list of Minterm indices one can

determine the list of Maxterms indices (and vice versa)

❖ The complement of a Sum-of-Minterms is a Product-of-Maxterms

with the same indices (and vice versa)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 32

Sum-of-Products and Products-of-Sums

❖ Canonical forms contain a larger number of literals

 Because the Minterms (and Maxterms) must contain, by definition, all

the variables either complemented or not

❖ Another way to express Boolean functions is in standard form

❖ Two standard forms: Sum-of-Products and Product-of -Sums

❖ Sum of Products (SOP)

 Boolean expression is the ORing (sum) of AND terms (products)

 Examples: 𝑓1 = 𝑥𝑦′ + 𝑥𝑧 𝑓2 = 𝑦 + 𝑥𝑦′𝑧

❖ Products of Sums (POS)

 Boolean expression is the ANDing (product) of OR terms (sums)

 Examples: 𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′) 𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 33

Two-Level Gate Implementation

𝑓1 = 𝑥𝑦′ + 𝑥𝑧

𝑥

𝑦′
𝑓1

𝑥

𝑧

𝑓2 = 𝑦 + 𝑥𝑦′𝑧

𝑦

𝑦′

𝑓2𝑥

𝑧 3-input AND gateAND-OR

implementations

𝑓3 = (𝑥 + 𝑧)(𝑥′ + 𝑦′)

𝑥

𝑧
𝑓3

𝑥′

𝑦′

𝑓4 = 𝑥(𝑥′ + 𝑦′ + 𝑧)

𝑥

𝑓4𝑥′
𝑦′
𝑧 3-input OR gateOR-AND

implementations

Boolean Algebra and Logic Gates EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 34

Two-Level vs. Three-Level Implementation

❖ ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒 (6 literals) is a sum-of-products

❖ ℎ may also be written as: ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) (5 literals)

❖ However, ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is a non-standard form

 ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒) is not a sum-of-products nor a product-of-sums

2-level implementation

ℎ = 𝑎𝑏 + 𝑐𝑑 + 𝑐𝑒

3-level implementation

ℎ = 𝑎𝑏 + 𝑐(𝑑 + 𝑒)

𝑎

𝑏

ℎ
𝑐

𝑑

𝑐

𝑒 3-input OR gate

𝑎

𝑏

ℎ𝑐

𝑑

𝑒

