Binary Arithmetic and Signed Numbers

EE 200

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

Binary Addition and Subtraction

Hexadecimal Addition and Subtraction

Binary Multiplication and Bit Shifting

Signed Binary Numbers

Addition/Subtraction of Signed 2's Complement

Binary Arithmetic and Signed Numbers

Adding Bits

1 + 1 = 2, but 2 should be represented as (10)₂ in binary
Adding two bits: the sum is S and the carry is C

Χ	0	0	1	1
<u>+ Y</u>	+ 0	+ 1	+ 0	<u>+ 1</u>
C S	00	0 1	0 1	10

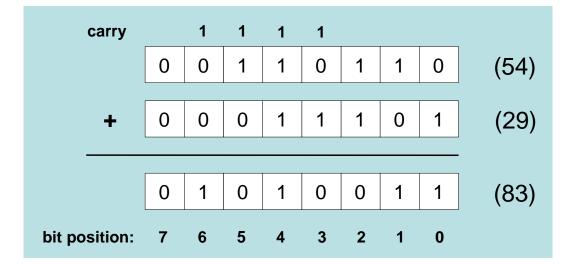
Adding three bits: the sum is S and the carry is C

0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1
+ 0	+ 1	+ 0	+ 1	+ 0	+ 1	+ 0	+ 1
00	01	01	10	01	10	10	11

Binary Addition

Start with the least significant bit (rightmost bit)

- ✤ Add each pair of bits
- Include the carry in the addition, if present



Subtracting Bits

Subtracting 2 bits (X – Y): we get the difference (D) and the borrow-out (B) shown as 0 or -1

X	0	0	1	1
- Y	- 0	- 1	- 0	_ 1
BD	00	-1 1	01	00

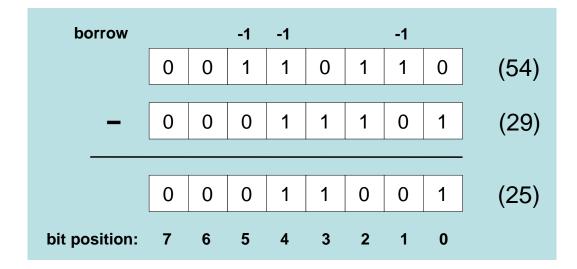
Subtracting two bits (X – Y) with a borrow-in = -1: we get the difference (D) and the borrow-out (B)

borrow-in	-1	-1	-1	-1	-1
	Χ	0	0	1	1
	<u> </u>	- 0	_ 1	- 0	_ 1
I	B D	-1 1	-1 0	00	-1 1

Binary Subtraction

Start with the least significant bit (rightmost bit)

- Subtract each pair of bits
- Include the borrow in the subtraction, if present



Hexadecimal Addition

- Start with the least significant hexadecimal digits
- Let Sum = summation of two hex digits
- ✤ If Sum is greater than or equal to 16

```
\diamond Sum = Sum – 16 and Carry = 1
```

Example:

$$\begin{array}{c} \text{carry} & 1 & 1 & 1 \\ \textbf{+} & \begin{array}{c} \textbf{9 C 3 7 2 8 6 5} \\ \textbf{1 3 9 5 E 8 4 B} \\ \hline \textbf{A F C D 1 0 B 0} \end{array} \begin{array}{c} 5 + B = 5 + 11 = 16 \\ \text{Since Sum} \ge 16 \\ \text{Sum} = 16 - 16 = 0 \\ \text{Carry} = 1 \end{array}$$

Hexadecimal Subtraction

- Start with the least significant hexadecimal digits
- Let Difference = subtraction of two hex digits
- ✤ If Difference is negative

 \Rightarrow Difference = 16 + Difference and Borrow = -1

Example:

borrow
$$-1$$
 -1 -1
 -1
9 C 3 7 2 8 6 5
1 3 9 5 E 8 4 B

8 8 A 1 4 0 1 A
$$Since 5 < B, Difference < 0$$
Difference = 16+5-11 = 10
Borrow = -1

Binary Multiplication

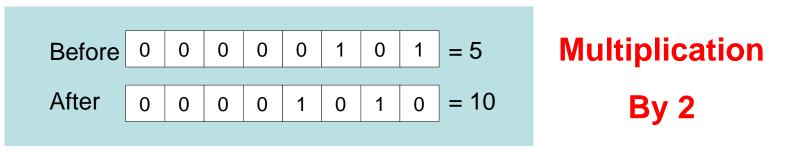
Binary Multiplication table is simple:

$0 \times 0 = 0$,	0×1=0,	$1 \times 0 = 0$,	1×1=1
Multiplica Multiplier	nd ×	$1100_2 = 1101_2 =$	
		1100 0000 100 .00	Binary multiplication is easy 0 × multiplicand = 0 1 × multiplicand = multiplicand
Product	100	$011100_2 =$	156

- ✤ *n*-bit multiplicand × *n*-bit multiplier = 2*n*-bit product
- Accomplished via shifting and addition

Shifting the Bits to the Left

What happens if the bits are shifted to the left by 1 bit position?



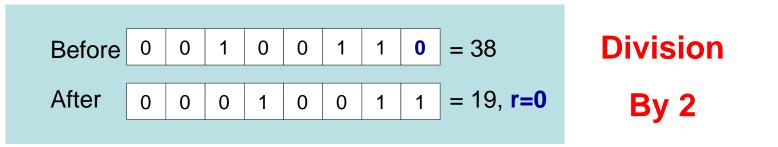
What happens if the bits are shifted to the left by 2 bit positions?

* Shifting the Bits to the Left by *n* bit positions is multiplication by 2^n

✤ As long as we have sufficient space to store the bits

Shifting the Bits to the Right

What happens if the bits are shifted to the right by 1 bit position?



What happens if the bits are shifted to the right by 2 bit positions?

Before
 0
 0
 1
 0

$$= 38$$
 Division

 After
 0
 0
 0
 1
 0
 $= 9, r=2$
 By 4

Shifting the Bits to the Right by *n* bit positions is division by 2ⁿ
The remainder r is the value of the bits that are shifted out

Next . . .

- Binary Addition and Subtraction
- Hexadecimal Addition and Subtraction
- Binary Multiplication and Bit Shifting
- Signed Binary Numbers

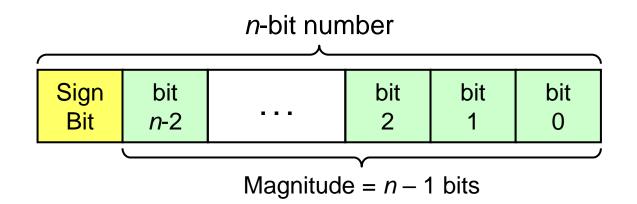
Addition/Subtraction of Signed 2's Complement

Signed Binary Numbers

Several ways to represent a signed binary number

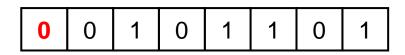
- ♦ Sign-Magnitude
- ♦ 1's complement
- \diamond 2's complement
- Divide the range of values into two parts
 - ↔ First part corresponds to the positive numbers (≥ 0)
 - \diamond Second part correspond to the negative numbers (< 0)
- The 2's complement representation is widely used
 - ♦ Has many advantages over other representations

Sign-Magnitude Representation

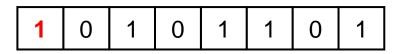


- Independent representation of the sign and magnitude
- Leftmost bit is the sign bit: 0 is positive and 1 is negative
- ↔ Using *n* bits, largest represented magnitude = $2^{n-1} 1$

Sign-magnitude 8-bit representation of +45



Sign-magnitude 8-bit representation of -45



Properties of Sign-Magnitude

Symmetric range of represented values:

For *n*-bit register, range is from $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$

For example, if n = 8 bits then range is -127 to +127

- Two representations for zero: +0 and -0
 NOT Good!
- Two circuits are needed for addition & subtraction NOT Good!
 - ♦ In addition to an adder, a second circuit is needed for subtraction
 - ♦ Sign and magnitude parts should be processed independently
 - ♦ Sign bit should be examined to determine addition or subtraction
 - ♦ Addition of numbers of different signs is converted into subtraction
 - ♦ Increases the cost of the add/subtract circuit

Sign-Magnitude Addition / Subtraction

Eight cases for Sign-Magnitude Addition / Subtraction

Operation	ADD	Subtract Ma	agnitudes
	Magnitudes	A >= B	A < B
(+A) + (+B)	+(A+B)		
(+A) + (-B)		+(A-B)	-(B-A)
(-A) + (+B)		-(A-B)	+(B-A)
(-A) + (-B)	-(A+B)		
(+A) - (+B)		+(A-B)	-(B-A)
(+A) - (-B)	+(A+B)		
(-A) - (+B)	-(A+B)		
(-A) - (-B)		-(A-B)	+(B-A)

1's Complement Representation

✤ Given a binary number A

The 1's complement of A is obtained by inverting each bit in A

- Example: 1's complement of $(01101001)_2 = (10010110)_2$
- ✤ If A consists of n bits then:

A + (1's complement of A) = $(2^{n} - 1) = (1...111)_{2}$ (all bits are 1's)

♣ Range of values is $-(2^{n-1} - 1)$ to $+(2^{n-1} - 1)$

For example, if n = 8 bits, range is -127 to +127

Two representations for zero: +0 and -0 **NOT Good!** 1's complement of $(0...000)_2 = (1...111)_2 = 2^n - 1$

 $-0 = (1...111)_2$ **NOT Good!**

2's Complement Representation

Standard way to represent signed integers in computers

✤ A simple definition for 2's complement:

Given a binary number A

The 2's complement of A = (1's complement of A) + 1

• Example: 2's complement of $(01101001)_2 =$

 $(10010110)_2 + 1 = (10010111)_2$

✤ If A consists of n bits then

```
A + (2's complement of A) = 2^n
```

```
2's complement of A = 2^n - A
```

Computing the 2's Complement

starting value	00100100 ₂ = +36
step1: Invert the bits (1's complement)	11011011 ₂
step 2: Add 1 to the value from step 1	+ 1 ₂
sum = 2's complement representation	$11011100_2 = -36$

2's complement of 11011100_2 (-36) = 00100011_2 + 1 = 00100100_2 = +36

The 2's complement of the 2's complement of A is equal to A

Another way to obtain the 2's complement: Start at the least significant 1 Leave all the 0s to its right unchanged Complement all the bits to its left

```
Binary Value
= 00100100 significant1
2's Complement
= 11011100
```

Properties of the 2's Complement

Ange of represented values: -2^{n-1} to $+(2^{n-1}-1)$

For example, if n = 8 bits then range is -128 to +127

- There is only **one zero** = $(0...000)_2$ (all bits are zeros)
- The 2's complement of A is the negative of A
- The sum of A + (2's complement of A) must be zero

The final carry is ignored

• Consider the 8-bit number $A = 00101100_2 = +44$

2's complement of $A = 11010100_2 = -44$

 $00101100_2 + 11010100_2 = 1 00000000_2$ (8-bit sum is 0)

2's Complement Signed Value

Positive numbers (sign-bit = 0)

♦ Signed value = Unsigned value

- Negative numbers (sign-bit = 1)
 - ♦ Signed value = Unsigned value -2^n

 \Rightarrow *n* = number of bits

- Negative weight for sign bit
 - The 2's complement representation assigns a negative weight to the sign bit (most-significant bit)

1	0	1	1	0	1	0	0
-128	64	32	16	8	4	2	1

8-bit Binary	Unsigned Value	Signed Value
00000000	0	0
00000001	1	+1
00000010	2	+2
• • •	• • •	• • •
01111101	125	+125
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
10000010	130	-126
• • •	• • •	• • •
11111101	253	-3
11111110	254	-2
11111111	255	-1

Values of Different Representations

8-bit Binary Representation	Unsigned Value	Sign Magnitude Value	1's Complement Value	2's Complement Value
00000000	0	+0	+0	0
00000001	1	+1	+1	+1
00000010	2	+2	+2	+2
• • •	• • •	• • •	• • •	• • •
01111101	125	+125	+125	+125
01111110	126	+126	+126	+126
0111111	127	+127	+127	+127
10000000	128	-0	-127	-128
10000001	129	-1	-126	-127
10000010	130	-2	-125	-126
• • •	• • •	• • •	• • •	• • •
11111101	253	-125	-2	-3
11111110	254	-126	-1	-2
11111111	255	-127	-0	-1

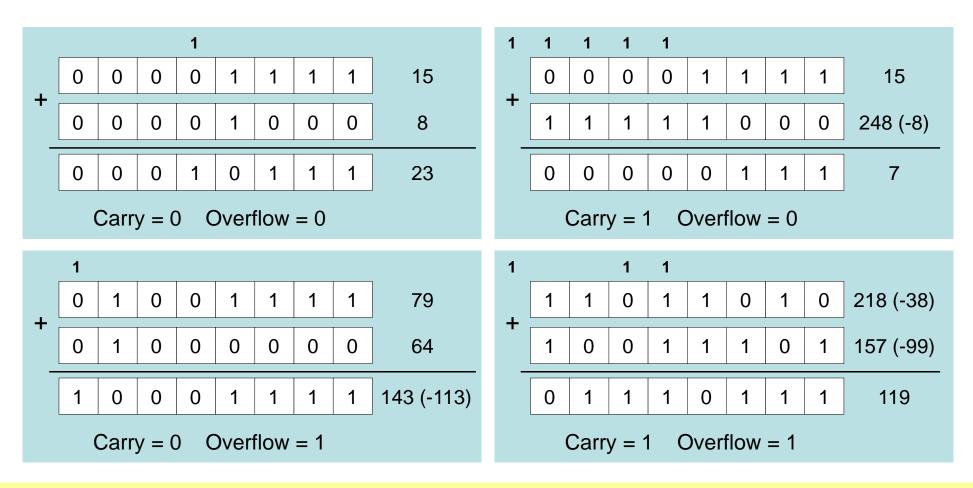
Binary Arithmetic and Signed Numbers

Carry versus Overflow

- ✤ Carry is important when …
 - Adding unsigned integers
 - ♦ Indicates that the unsigned sum is out of range
 - ♦ Sum > maximum unsigned *n*-bit value
- ✤ Overflow is important when …
 - ♦ Adding or subtracting signed integers
 - ♦ Indicates that the signed sum is out of range
- ✤ Overflow occurs when …
 - $\diamond\,$ Adding two positive numbers and the sum is negative
 - \diamond Adding two negative numbers and the sum is positive
- ↔ Simplest way to detect Overflow: $V = C_{n-1} \oplus C_n$
 - \diamond **C**_{*n*-1} and **C**_{*n*} are the carry-in and carry-out of the most-significant bit

Carry and Overflow Examples

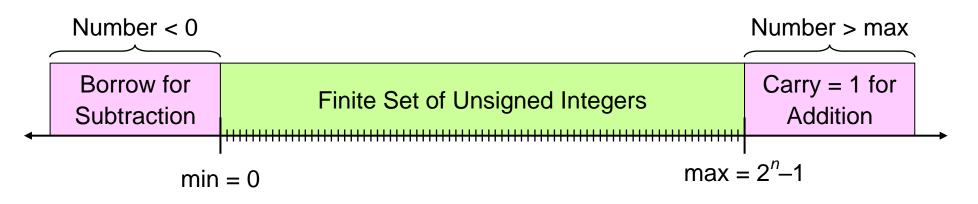
- We can have carry without overflow and vice-versa
- Four cases are possible (Examples on 8-bit numbers)



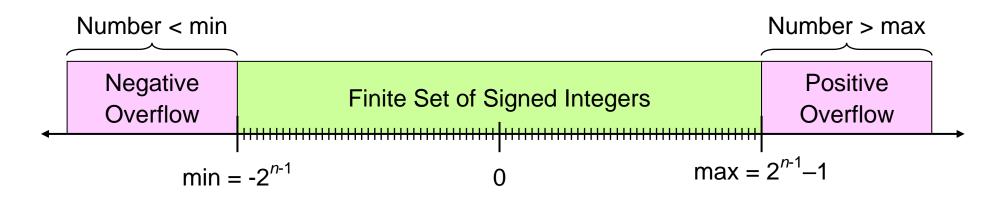
Binary Arithmetic and Signed Numbers

Range, Carry, Borrow, and Overflow

Unsigned Integers: n-bit representation



Signed Integers: 2's complement representation



Binary Arithmetic and Signed Numbers

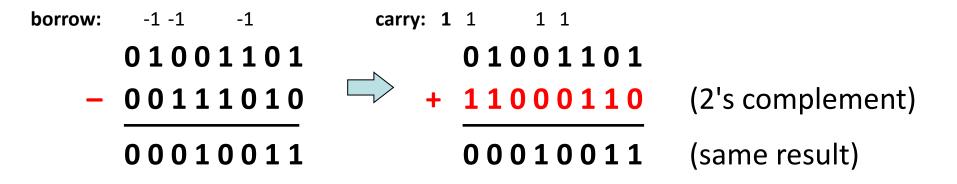
Converting Subtraction into Addition

✤ When computing A – B, convert B to its 2's complement

A - B = A + (2's complement of B)

Same adder is used for both addition and subtraction

This is the biggest advantage of 2's complement



Final carry is ignored, because

A + (2's complement of B) = A + $(2^n - B) = (A - B) + 2^n$ Final carry = 2^n , for *n*-bit numbers

Radix Complement

- ✤ 9's Complement of 012398 is 999999 012398 = 987601
- 10's Complement = 9's Complement + 1
- ✤ 10's Complement of 012398 = 10⁶ 012398 = 987602
- ✤ For Radix *r*, the *r*'s complement of *N* with *n* digits = $r^n N$
- Subtraction is converted into addition to the *r*'s complement:

$$\Rightarrow M - N = M + (r^n - N) = M - N + r^n$$

♦ If $M \ge N$, subtraction produces an end carry = r^n , which is ignored

♦ If M < N, $M - N = r^n - (N - M)$ which is the *r*'s complement of (N - M)

Example 1	<mark>1</mark> 111	Example 2	9421
76583	76583	9421	+ 23417
- 9421	↓ + <u>90579</u>	- 76583	
67162	67162	-67162	-67162

Binary Arithmetic and Signed Numbers

EE 200 – Digital Logic Circuit Design