
36

Designers of embedded processors
have typically optimized for low power con-
sumption and low design complexity to min-
imize cost. Performance was a secondary
consideration. Nowadays, many embedded
systems (set-top boxes, game consoles, per-
sonal digital assistants, and cell phones) com-
monly perform computation-intensive media
tasks such as video processing, speech
transcoding, graphics, and high-bandwidth
telecommunications. Consequently, modern
embedded processors must provide high per-
formance in addition to low cost. They must
also be easy to scale and customize to meet the
rigorous time-to-market requirements for
consumer electronic products.

The conventional wisdom for high-perfor-
mance embedded processors is to use the super-
scalar or very large instruction word (VLIW)
paradigms developed for desktop computing.
Both approaches exploit instruction-level par-
allelism (ILP) in applications in order to exe-
cute in parallel a few operations per cycle.
Superscalar processors detect ILP dynamically
with hardware, which leads to increased power
consumption and complexity. VLIW proces-
sors rely on the compiler to detect ILP, which

leads to increased code size. Both approaches
are difficult to scale because they require either
significant hardware redesign (superscalar) or
instruction-set redefinition (VLIW). Further-
more, scaling up either of the two exacerbates
their initial disadvantages.

This article advocates an alternative
approach to embedded processors that provides
high performance for critical tasks without sac-
rificing power efficiency or design simplicity.
The key observation is that multimedia and
telecommunications tasks contain large
amounts of data-level parallelism (DLP).
Hence, it’s not surprising that we revisit vector
architectures, the paradigm developed for high
performance with the large-scale DLP available
in scientific computations.1 Just as superscalar
and VLIW processors for desktop systems
adjusted to accommodate embedded designs,
we can revise vector architectures for super-
computers to serve in embedded applications.

To demonstrate that vector architectures
meet the requirements of embedded media
processing, we evaluate the Vector IRAM, or
VIRAM (pronounced “V-IRAM”), architec-
ture developed at UC Berkeley, using bench-
marks from the Embedded Microprocessor

Christoforos E.
Kozyrakis

Stanford University

David A. Patterson
University of California at

Berkeley

FOR EMBEDDED APPLICATIONS WITH DATA-LEVEL PARALLELISM, A VECTOR

PROCESSOR OFFERS HIGH PERFORMANCE AT LOW POWER CONSUMPTION

AND LOW DESIGN COMPLEXITY. UNLIKE SUPERSCALAR AND VLIW DESIGNS, A

VECTOR PROCESSOR IS SCALABLE AND CAN OPTIMALLY MATCH SPECIFIC

APPLICATION REQUIREMENTS.

SCALABLE VECTOR PROCESSORS
FOR EMBEDDED SYSTEMS

Published by the IEEE Computer Society 0272-1732/03/$17.00  2003 IEEE

Benchmark Consortium (EEMBC). Our
evaluation covers all three components of the
VIRAM architecture: the instruction set, the
vectorizing compiler, and the processor
microarchitecture. We show that a compiler
can vectorize embedded tasks automatically
without compromising code density. We also
describe a prototype vector processor that out-
performs high-end superscalar and VLIW
designs by 1.5× to 100× for media tasks, with-
out compromising power consumption.
Finally, we demonstrate that clustering and
modular design techniques let a vector proces-
sor scale to tens of arithmetic data paths before
wide instruction-issue capabilities become
necessary.

Vector instruction set for multimedia
The VIRAM architecture is a complete

load-store vector instruction set defined as a
coprocessor extension to the MIPS architec-
ture. VIRAM’s core features resemble those
of vector architectures for supercomputing.
The vector state includes a vector register file
(VRF) with 32 registers that can store integer
or floating-point elements, a 16-entry flag reg-
ister file that contains vectors with single-bit
elements, and a few scalar registers for control
values and base memory addresses. The num-
ber of elements per vector or flag register is
implementation dependent. The instruction
set contains integer and floating-point arith-
metic instructions that operate on vectors
stored in the register file, as well as logical
functions and operations such as population
count that use the flag registers. Vector load
and store instructions support the three com-
mon access patterns: unit stride, strided, and
indexed (scatter/gather).

To enable vectorization of multimedia
tasks, VIRAM includes several media-specif-
ic enhancements. The elements in the vector
registers can be 64, 32, or 16 bits wide. Thus,
multiple narrow elements can occupy the stor-
age location for one wide element. Similarly,
we partitioned each 64-bit data path in the
processor implementation so that it can exe-
cute multiple narrow-element operations in
parallel. Instead of specifying the element and
operation width in the instruction opcode, we
use a control register typically set once per
group of nested loops.

Integer instructions support saturated and

fixed-point arithmetic. Specifically, VIRAM
includes a flexible multiply-add model that
supports arbitrary fixed-point formats with-
out using accumulators or extended-precision
registers. Three vector instructions implement
element permutations within vector registers.
We limit their scope to the vectorization of
dot products (reductions) and fast Fourier
transforms, which makes them regular and
simple to implement. Finally, VIRAM uses
the flag registers to support conditional (pred-
icated) execution of element operations for
virtually all vector instructions2 and to sup-
port speculative vectorization of loops with
data-dependent exit points.

The VIRAM architecture includes several
features that help in developing general-pur-
pose systems—features untypical of tradi-
tional vector supercomputers. It provides full
support for paged virtual addressing using a
separate translation look-aside buffer (TLB)
for vector memory accesses. It also provides a
mechanism that lets the operating system
defer the saving and restoring of vector state
during context switches until it knows that
the new process uses vector instructions.

Vectorizing compiler
The VIRAM compiler can automatically

vectorize C, C++, and Fortran 90 programs.
It’s based on the PDGCS compilation system
for Cray supercomputers such as the C90-
YMP, the T3E, and the X1. The optimizer has
extensive capabilities for automatic vectoriza-
tion, including outer-loop vectorization and
the handling of partially vectorizable language
constructs. For many multimedia codes,
including all those considered in this article,
vectorization is possible without modifications
to the original code; special function intrinsics
or custom libraries are not necessary for vec-
torization. However, for certain cases with
irregular scatter/gather patterns, the program-
mer must use a small set of pragmas to help
the compiler with data-dependence analysis.

The two main challenges in adapting a
supercomputing compiler to a multimedia
architecture were support for narrow data
types and the vectorization of dot products.
We modified the compiler to select the vector
element and operation width for each group
of nested loops in two passes. The compiler
also recognizes reductions with common

37NOVEMBER–DECEMBER 2003

arithmetic, logical, and comparison opera-
tions, and it uses the permutation instructions
to vectorize them.

Table 1 shows the results from using the
VIRAM compiler with the telecommunica-
tions and consumer benchmarks in the
EEMBC suite. Three benchmarks (Autocor,
Bital, and FFT) use permutation instructions,
and three other benchmarks (JPEG, Bital, and
Viterbi) require conditional vector execution.
The degree of vectorization—the percentage
of all operations specified by vector instruc-
tions—is greater than 90 percent for nine out
of 10 benchmarks; the 10th benchmark’s
degree of vectorization is 66 percent. The over-
all high degree of vectorization suggests that
the compiler is effective at discovering the DLP
in each benchmark and expressing it with vec-
tor instructions. It also indicates that using vec-
tor hardware can accelerate a significant portion
of the execution time.

Table 1 also shows the average vector length
for each benchmark. The maximum vector
length for this experiment is 64 elements for 32-
bit operations and 128 elements for 16-bit oper-
ations. Very long vectors, typical in scientific
computing, significantly simplify the processor
implementation. Embedded tasks, on the other
hand, involve an interesting mix of long and
short vectors. Hence, the vector processor must

provide high performance for both cases. Note
that even for the benchmark with the shortest
vectors (Viterbi), vectors are significantly longer
than those supported by 64- and 128-bit sin-
gle-instruction, multiple-data (SIMD) exten-
sions for superscalar and VLIW processors
(MMX, SSE-2, Altivec, or 3DNow).

Finally, Table 1 shows the static code size
for the VIRAM instruction set and compares
it with the published code sizes for alternative
instruction-set architectures such as those for
the MIPS RISC, x86 CISC, Trimedia VLIW
(consumer benchmarks only), and TI
TMS320C6x VLIW (telecom benchmarks
only). The table presents the comparison as
the ratio of code size for each architecture to
that for VIRAM. A ratio larger than one sug-
gests that VIRAM has higher code density.
With the two VLIW architectures, we com-
pare code size after direct compilation of the
original source code in addition to the code
size after manual optimization for perfor-
mance (VLIW-opt), using SIMD and DSP
instructions when possible.

VIRAM’s average code density is similar to
that of the x86 and 80 percent better than that
of the MIPS ISA, which VIRAM is based on.
Vector instructions function as useful
macroinstructions, eliminating the loop over-
head for small, fixed-size loops. A single vec-

38

MICRO TOP PICKS

IEEE MICRO

Table 1. Vectorization and code size statistics for the EEMBC benchmarks.

Average MIPS/ x86/ VLIW/ VLIW-opt/
vector VIRAM VIRAM VIRAM VIRAM VIRAM

Vector length code code code code code
operations (element size size size size size

Benchmark (percentage) width) (bytes) ratio ratio ratio ratio
Consumer

Rgb2cmyk 99.6 128 (16b) 672 2.7 1.1 3.8 9.1
Rgb2yiq 98.9 64 (32b) 528 3.0 1.7 8.2 65.5
Filter 99.2 106 (16b) 1,328 1.5 0.7 3.5 2.7
JPEG 66.0 70 (16b) 65,280 0.9 0.5 1.8 2.6

13 (32b)
Telecom

Autocor 94.7 43 (32b) 1,072 1.1 0.5 0.9 1.4
Convenc 97.1 128 (16b) 704 2.3 1.1 1.6 2.9
Bital 95.7 38 (32b) 1,024 1.5 0.7 2.3 1.3
FFT 98.9 64 (32b) 3,312 1.7 4.7 0.9 1.1
Viterbi 92.1 18 (16b) 2,592 1.5 0.5 0.7 1.0

Average 93.8 86 (16b) NA 1.8 1.3 2.6 9.7
39 (32b)

tor load-store instruction captures the func-
tionality of multiple RISC or CISC instruc-
tions for address generation, striding, and
indexing. VIRAM’s code is 2.5 to 10 times
smaller than that of the VLIW architectures.
VIRAM’s main advantage is that the compil-
er needn’t use loop unrolling or software
pipelining for performance reasons, as it must
with VLIW processors. VLIW architectures
incur the additional penalty of empty slots in
their wide-instruction format.

Prototype vector processor
We implemented a prototype vector proces-

sor to validate the VIRAM architecture’s
potential for embedded media processing and
as a fast platform for software experimenta-
tion. The processor attaches a vector unit as a
coprocessor to a 64-bit MIPS core. The VRF
has a capacity of 8 Kbytes (32 64-bit, 64 32-
bit, or 128 16-bit elements per vector regis-
ter). There are two vector arithmetic
functional units, each with four 64-bit ALUs
for parallel element execution, and there’s a
vector load-store unit with four address gen-
erators and a hierarchical TLB. The prototype
is actually a system on a chip because it inte-
grates 13 Mbytes of DRAM organized in
eight independent banks.

A block diagram of the chip, shown in Fig-
ure 1, focuses on the vector hardware and the
memory system.3 This design partitions the
register and data path resources in the vector
coprocessor vertically into four identical vec-
tor lanes. Each lane contains several elements
from each vector and flag register, and a 64-bit
data path from each functional unit. The four
lanes receive identical control signals on each
clock cycle. The concept of parallel lanes is
fundamental for the vector microarchitecture,
as it leads to advantages in performance,
design complexity, and scalability. VIRAM
achieves high performance by using the par-
allel lanes to execute multiple element opera-
tions for each pending vector instruction.
Having four identical lanes significantly
reduces design and verification time. Lanes
also eliminate most long communication
wires that complicate scaling in CMOS tech-
nology.4 Executing an element operation for
all vector instructions, excluding memory ref-
erences and permutations, involves register
and data path resources within a single lane.

The scalar core in VIRAM is a single-issue,
in-order MIPS core with first-level caches of
8 Kbytes each. The MIPS core supplies the
vector instructions to the vector lanes for in-
order execution. Vector load and store instruc-

39NOVEMBER–DECEMBER 2003

Memory crossbar

DRAM
bank

0

256 bytes

DRAM
bank

1

256 bytes

DRAM
bank

7

256 bytes

64 bits

Lane 0

Flags

Vector
register

elements

ALU0

ALU1

Load-
store
unit

Lane 1

Flags

Vector
register

elements

ALU0

ALU1

Load-
store
unit

Lane 2

Flags

Vector
register

elements

ALU0

ALU1

Load-
store
unit

Lane 3

Flags

Vector
register

elements

ALU0

ALU1

Load-
store
unit

Vector
control

MIPS
cache

$I

$I
$D

Instruction cache
Data cache

I/O

$D

(a) (b)

Figure 1. VIRAM prototype processor: block diagram (a), die photo (b).

tions access DRAM-based main memory
directly without using SRAM caches. Embed-
ded DRAM is faster than commodity DRAM
but still significantly slower than a first-level
SRAM cache.

The processor operates at a modest 200
megahertz (MHz). The intentionally low clock
frequency, along with the in-order, cacheless
organization for the vector unit results in a
power consumption of only 2 W. These fea-
tures also contribute to reduced design com-
plexity. Three full-time and three part-time
graduate students designed the 125-million-
transistor chip over three years. To hide DRAM
latency, both load-store and arithmetic vector
instructions are deeply pipelined (15 stages).

Prototype processor evaluation
Table 2 compares the VIRAM prototype

with three embedded processors whose fea-
tures represent the great variety in high-per-
formance embedded designs: two basic
architectures (out-of-order superscalar and in-
order VLIW), a range of instruction issue rates
(4 to 8 instructions per clock cycle), varying
clock rates (166 MHz to 1 GHz), and differ-
ences in power dissipation (1.7 W to 21.3 W).
The only common feature of the three embed-
ded processors is their use of SRAM caches
for low memory latency.

Before comparing performance, let’s look
at power consumption and design complexi-
ty. The typical power dissipation numbers in
Table 2 are not directly comparable because
these processors represent different CMOS
manufacturing technologies. The VIRAM
power figure includes the power for main
memory accesses, which is not the case for any
other design. In addition, the VIRAM circuits
were generated with a standard synthesis flow
and were not optimized for low power con-
sumption in any way. The VIRAM chip’s

power characteristics are entirely due to its
microarchitecture.

Nevertheless, we can draw some general
conclusions about power consumption. Super-
scalar, out-of-order processors like the
MPC7455 consume the most power because
of their high clock rates and the complexity of
their control logic. VLIW processors’ simplic-
ity and lower clock frequencies result in
reduced power consumption despite their high
instruction issue rates. The VIRAM proces-
sor’s microarchitecture permits additional
power savings. Low clock frequency and the
use of exclusively static circuits make the par-
allel vector lanes power efficient. The simple
single-issue, in-order control logic must fetch
and decode only one vector instruction to exe-
cute tens of element operations, so it dissipates
a minimum amount of power. Finally, the on-
chip main memory provides high bandwidth
without wasting power for driving off-chip
interfaces or for accessing caches for applica-
tions with limited temporal locality.

Design complexity is also difficult to com-
pare unless the same work group implements
all processors in the same technology with the
same tools. However, we believe the VIRAM
microarchitecture is significantly less complex
than superscalar processors. Both the vector
coprocessor and the main-memory system are
modular, the control logic is simple, and there
is no need for caches or circuit design for high
clock frequency.

Superscalar processors, on the other hand,
include complicated control logic for out-of-
order execution, and this is difficult to design
at high clock rates. Although VLIW proces-
sors for embedded applications are simpler
than superscalar designs, the high instruction
issue rate makes them more complicated than
single-issue vector processors. In addition,
VLIW architectures introduce significant

40

MICRO TOP PICKS

IEEE MICRO

Table 2. Characteristics of the embedded processors compared in this study.

Instruction Cache size Clock Power
Architecture issue Execution (Kbytes) frequency dissipation Technology

Processor type rate style L1I L1D L2 (MHz) (W) (µm)
VIRAM Vector 1 In order 8 NA NA 200 2.0 0.18
MPC7455 PowerPC Superscalar 4 Out of order 32 32 256 1,000 21.3 0.18
Trimedia TM1300 VLIW with SIMD 5 In order 32 16 NA 166 2.7 0.25
TI TMS320C6203 VLIW plus DSP 8 In order 96 512 NA 300 1.7 0.13

complexity into compiler development.
Figure 2 compares performance per MHz,3

where performance is inversely proportional
to the execution time for each benchmark. We
normalize the performance for each processor
to that of the MPC7455 superscalar processor.
We compare performance per MHz because
we have no fundamental reason to believe that
these processors couldn’t be clocked at the
same frequency, given similar design efforts.
If raw performance is of interest, it’s easy to
scale the results in Figure 2 by the corre-
sponding clock frequency for each design.
Interestingly, Figure 2 would look nearly iden-
tical if we plotted performance per watt.
Along with showing the performance of the
actual VIRAM chip with four lanes (VIRAM-
4L), Figure 2 presents simulated performance
for two scaled-down variations of the design,
with one and two lanes (VIRAM-1L and
VIRAM-2L), and a scaled-up version with
eight lanes (VIRAM-8L). Excluding the num-
ber of lanes, all parameters are identical. We
used the same VIRAM executables with all
versions of the VIRAM processor; there was
no lane-specific recompilation.

For highly vectorizable benchmarks with
long vectors, such as Filter and Convenc,
VIRAM-4L is up to 100 times faster than

MPC7445. Each vector instruction defines
tens of independent element operations,
which can use the parallel data paths in the
vector lanes for several clock cycles. A super-
scalar processor, on the other hand, can extract
a much smaller amount of ILP from its
sequential instruction streams. For bench-
marks with strided and indexed memory
accesses, such as Rgb2cmyk and Rgb2yiq,
VIRAM-4L outperforms MPC7455 by a fac-
tor of 10. In this case, VIRAM-4L’s restriction
is its address generation throughput for strid-
ed and indexed accesses to narrow data types.

For partially vectorizable benchmarks with
short vectors, such as JPEG and Viterbi,
VIRAM-4L maintains a 3× to 5× performance
advantage over MPC7455. Even with just 13
elements per vector, simple vector hardware is
more efficient with DLP than aggressive, wide-
issue, superscalar organizations.

With the original benchmark code, the two
VLIW processors’ performance is similar to
or worse than the MPC7455’s. Source code
optimizations and the manual insertion of
SIMD and DSP instructions lead to signifi-
cant improvements and enable the VLIW
designs with optimized code to be within 50
percent of VIRAM’s performance. TM1300
outperforms VIRAM-4L only for JPEG, for

41NOVEMBER–DECEMBER 2003

0

5

10

15

20

25

30

0

60

90

120

150

180

P
er

fo
rm

an
ce

/M
H

z

Rgb2cmyk Rgb2yiq JPEG Autocor

Benchmarks Benchmarks

Bital Filter FFT ConvencViterbi

Superscalar VLIW VLIW-opt VIRAM-1L VIRAM-2L VIRAM-4L VIRAM-8L

(a)

P
er

fo
rm

an
ce

/M
H

z

(b)

Figure 2. Performance-per-MHz comparison, normalized to the performance of the MPC7455 superscalar processor. Note
the change of scale between the benchmarks in (a) and those in (b).

which the TM1300’s performance improves
considerably once its designers restructured
the benchmark code to eliminate the function
call within the nested loop for the discrete
cosine transform. The same manual transfor-
mation would have benefited VIRAM-4L
because it would allow outer-loop vectoriza-
tion and result in long vectors.

Scaling for data-level parallelism
Organizing the vector hardware in lanes pro-

vides a simple mechanism for scaling perfor-
mance, power consumption, and area (cost).
With each extra lane, we can execute more ele-
ment operations per cycle for each vector
instruction. This is a balanced scaling method:
Each lane includes both register and data path
resources. Figure 2 shows the VIRAM proces-
sor’s performance as we scale the number of
lanes from one to eight, without modifying the
scalar core or the memory system. Except for
JPEG, performance scales linearly for up to
four lanes. Eight lanes are useful for bench-
marks with long vectors (Rgb2cmyk, Convenc,
and FFT). For benchmarks with medium-
length or short vectors (Viterbi and Bital), eight
lanes execute vector instructions so quickly that
we can no longer hide the overhead of scalar
operations and vector-scalar communication.
In other words, VIRAM-8L, a vector configu-
ration with 16 64-bit integer ALUs, is often
limited by instruction-issue bandwidth.

Comparable scaling results are difficult to
achieve with other architectures. Scaling a
four-way superscalar processor to eight-way,
for example, would probably lead to a small
overall performance improvement. It’s diffi-
cult to extract such a high amount of ILP, and
the wide out-of-order logic’s complexity
would slow the clock frequency.5 A VLIW
processor could achieve similar scaling after
recompilation and manual code reoptimiza-
tion. The cost in this case would be even larg-
er code and increased power consumption for
the wide instruction fetch.

Clustered vector processor
Although the VIRAM processor demon-

strates vector architectures’ great potential for
embedded media processing, VIRAM is still
susceptible to the basic limitations of traditional
vector designs. The complexity of the VRF par-
tition within each lane is the most significant

limitation.6 To support the one load-store and
two arithmetic vector units, the 2-Kbyte parti-
tion requires nine access ports. In general, with
N functional units, the VRF partition requires
approximately 3N ports. Its area, power con-
sumption, and access latency are roughly pro-
portional to N2, logN, and N.7 To avoid this
complexity, most vector processors include up
to four units. However, a larger number of
functional units is desirable for applications
with short and medium-length vectors, for
which multiple lanes do not help with perfor-
mance. With more functional units, multiple
vector instructions could execute in a parallel or
overlapped manner, even if their correspond-
ing vectors were relatively short.

To alleviate the problem of VRF complexi-
ty, we propose replacing the centralized vec-
tor-lane organization in the VIRAM processor
with a clustered arrangement. Figure 3a shows
the centralized organization. In the clustered
organization (Figure 3b), each cluster contains
a data path for a single vector functional unit
and a few vector registers. A separate inter-
cluster network moves vectors between func-
tional units when needed. The local register
file block within each cluster provides operands
to one data path and one network interface.
Hence, the number of access ports for each
block is small (four to five) and independent of
the number of vector functional units in the
system. In other words, the area, power con-
sumption, access latency, and design com-
plexity of each VRF block are constant.

To use the clustered organization without
modifying the VIRAM instruction set, we
employ renaming in the vector hardware’s
control logic. A renaming table identifies the
cluster that stores the source and destination
registers for a vector instruction and indicates
whether an intercluster transfer is necessary,
given the cluster that will execute the instruc-
tion. Renaming also lets us implement more
than the 32 vector registers defined in the
instruction set architecture. Extra registers
make it possible to tolerate long memory
latencies or to implement precise exceptions.

The vector unit’s control logic must also
select the cluster to execute each vector
instruction. If multiple cluster assignments
are possible, the control logic tries to mini-
mize the number of transfers without creat-
ing a significant load imbalance across clusters.

42

MICRO TOP PICKS

IEEE MICRO

Overall, the new control logic’s functionality
resembles that of multicluster superscalar
processors.8 It is much simpler, however,
because maintaining an issue rate of one vec-
tor instruction per cycle is sufficient. A super-
scalar processor, on the other hand, must issue
one instruction per functional unit per cycle.

The clustered organization in Figure 3b
associates a small instruction queue with each
cluster. Instruction queues permit decoupled
execution.9 As long as there are no data depen-
dencies among the instructions assigned to
different clusters, the clusters can execute
instructions independently of stalls in other
clusters. Decoupled execution can hide mem-
ory stalls and the latency of intercluster trans-
fers. Data queues for decoupled execution are
not necessary in this case because the vector
registers within each cluster provide similar
functionality.

Evaluation of clustered vector processor
Figure 4 shows the simulated performance

improvement if we replace the centralized lane
in the VIRAM with the clustered-lane organi-
zation. Each lane has four clusters: two for the
arithmetic units, one for the load-store unit, and
one that provides additional register storage.
The intercluster network’s bandwidth is two
words per cycle; its latency is two cycles. We
assume the new design will have the same clock
frequency as the original, despite the much sim-
pler VRF. In theory, the original VIRAM design
should always be faster. It uses a centralized VRF

and communicates vector results between func-
tional units without incurring a penalty. The
intercluster network, on the other hand, can
become a latency or bandwidth bottleneck for
a clustered design.10 Nevertheless, Figure 4
shows that the clustered organization is actual-
ly faster than the centralized one for many
benchmarks. Decoupled execution hides most
intercluster transfer latency. It also hides a sig-
nificant portion of the memory latency for vec-
tor accesses that run into memory bank conflicts
or address generation limitations (as in
Rgb2cmyk, for example). On average, the clus-
tered organization outperforms the centralized
one by 21 percent to 42 percent, depending on
the number of lanes in the system.

The clustered vector organization provides
a second scaling dimension for the vector
processor. We can scale both the number of
lanes and the number of vector functional
units (clusters) without complicating the VRF
design. Figure 5 presents the benefits from
these two scaling techniques. We measure
speedup over a clustered vector design with
one lane and four clusters (Figure 3b).

When increasing the number of function-
al units, we maintain approximately a 2:1 ratio
between arithmetic and load-store vector
functional units. Every cluster includes eight
vector registers; hence, all configurations with
more than four clusters implement more than
32 physical vector registers.

Increasing the number of lanes enables the
execution of multiple element operations per

43NOVEMBER–DECEMBER 2003

Instructions

32 vector
registers

Instructions

Intercluster network

ALU ALU ALU ALU Load-
store
unit

To/from memory

Load-
store
unit

To/from memory
(a) (b)

8 vector
registers

8 vector
registers

8 vector
registers

8 vector
registers

Figure 3. Vector lane organization: centralized (a) and clustered (b) lane organizations.

cycle for each vector instruction in progress.
Two lanes lead to a nearly perfect speedup of 2.
Four and eight lanes lead to speedups of 3.1 and
4.8. In general, efficiency drops significantly as
the number of lanes grows. Applications with
very short vectors (for example, Viterbi) cannot
efficiently use a large number of data paths. For
programs with longer vectors, multiple lanes
decrease the execution time of each vector
instruction, so hiding the overhead of scalar
instructions, intercluster communication, and
memory latency becomes more difficult.

Increasing the number of clusters permits
parallel execution of multiple vector instruc-
tions. Using eight clusters provides a 50 percent

to 75 percent performance improvement over
the four-cluster case, depending on the num-
ber of lanes. Yet performance improves little
with more than eight clusters, for two reasons.
Primarily, it is not possible to use more than
eight clusters efficiently with single-instruction
issue, especially in the case of multiple lanes.
Furthermore, data dependencies and an
increased number of memory system conflicts
limit the possibilities for concurrent instruction
execution. Overall, combining the two scaling
techniques improves performance by a factor of
approximately 7, using eight clusters and eight
lanes (or 42 arithmetic data paths), before it
becomes instruction bandwidth limited.

44

MICRO TOP PICKS

IEEE MICRO

−50

0

50

100

150

200

250

300

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

V
ite

rb
i

F
F

T

B
ita

l

C
on

ve
nc

A
ut

oc
or

JP
E

G

F
ilt

er

R
gb

2y
iq

R
gb

2c
m

yk

1 lane 2 lanes 4 lanes 8 lanes

Figure 4. Performance improvement with the clustered vector organization. The FFT bench-
mark shows a 0 percent performance degradation.

1

2

3

4

5

6

7

8

4 6 8

No. of clusters

12 16

S
pe

ed
up

1 lane 2 lanes 4 lanes 8 lanes

Figure 5. Average speedup for the EEMBC benchmarks with scaling of the clustered vector
processor.

The clustered organization also allows for
precise exceptions in the vector processor at a
negligible performance cost. Furthermore,
clustering permits high performance with
main memory systems that exhibit higher
access latencies than the embedded DRAM
used in the VIRAM prototype. We earlier pre-
sented these experimental results in detail.6

The VIRAM architecture demonstrates the
great potential of vector processors with

high-end embedded systems. It exploits DLP
to provide high performance with simple hard-
ware and low power consumption. Our current
work focuses on architectures that combine vec-
tor techniques for DLP and multithreading
techniques for task-level parallelism, the other
major type of parallelism in embedded appli-
cations. Hardware and software development
for such hybrid architectures poses a number of
exciting research challenges. MICRO

Acknowledgments
We thank all the members of the IRAM

research group at the University of California
at Berkeley. IBM, MIPS Technologies, Cray,
and Avanti made significant hardware and
software contributions to the IRAM project.
This work was supported by DARPA
(DABT63-96-C-0056) and by an IBM PhD
fellowship.

References
1. R. Espasa, M. Valero, and J.E. Smith, “Vec-

tor Architectures: Past, Present and Future,”
Proc. 12th Int’l Conf. Supercomputing, 1998,
ACM Press, pp. 425-432.

2. J. Smith, G. Faanes, and R. Sugumar, “Vec-
tor Instruction Set Support for Conditional
Operations,” Proc. 27th Int’l Symp. Com-
puter Architecture (ISCA 2000), IEEE CS
Press, 2000, pp. 260-269.

3. C. Kozyrakis and D. Patterson, “Vector ver-
sus Superscalar and VLIW Architectures for
Embedded Multimedia Benchmarks,” Proc.
35th Ann. Int’l Symp. Microarchitecture
(Micro-35), ACM Press, 2002, pp. 283-293.

4. R. Ho, K. Mai, and M. Horowitz, “The Future
of Wires,” Proc. IEEE, vol. 89, no. 4, Apr.
2001, pp. 490-504.

5. V. Agarwal et al., “Clock Rate vs IPC: The
End of the Road for Conventional Microar-
chitectures,” Proc. 27th Int’l Symp. Com-

puter Architecture (ISCA 2000), IEEE CS
Press, 2000, pp. 248-259.

6. C. Kozyrakis and D. Patterson, “Overcoming
the Limitations of Conventional Vector
Processors,” Proc. 30th Int’l Symp. Com-
puter Architecture (ISCA 2003), ACM Press,
2003, pp. 283-293.

7. S. Rixner et al., “Register Organization for
Media Processing,” Proc. 6th Int’l Conf.
High-Performance Computer Architecture
(HPCA 6), IEEE CS Press, 2000, pp. 375-386.

8. K. Farkas et al., “The Multicluster Architec-
ture: Reducing Processor Cycle Time
Through Partitioning,” Proc. 30th Ann. Int’l
Symp. Microarchitecture (Micro-30), IEEE
CS Press, 1997, pp. 327-356.

9. J. Smith, “Decoupled Access/Execute Com-
puter Architecture,” ACM Trans. Computer
Systems, vol. 2, no. 4, Nov. 1984, pp. 289-308.

10. J. Fisher et al., Clustered Instruction-Level
Parallel Processors, tech. report HPL-98-204,
HP Labs, Dec. 1998.

Christoforos E. Kozyrakis is an assistant pro-
fessor of electrical engineering and computer
science at Stanford University. His research
interests include parallel architectures and com-
pilation techniques for systems ranging from
supercomputers to deeply embedded devices.
Kozyrakis has a PhD in computer science from
the University of California at Berkeley, where
he was the architect of the VIRAM processor.
He is a member of the IEEE and the ACM.

David A. Patterson teaches computer archi-
tecture at the University of California at
Berkeley, and holds the Pardee Chair of Com-
puter Science. His work has included the
design and implementation of RISC I and the
redundant arrays of inexpensive disks (RAID)
project. Patterson has a PhD in computer sci-
ence from the University of California at Los
Angeles. He is a fellow of the IEEE Comput-
er Society and the ACM, and a member of the
National Academy of Engineering.

Direct questions and comments about this
article to Christoforos Kozyrakis, Stanford
University, Electrical Engineering Depart-
ment, Stanford, CA 94304-9030; christos@
ee.stanford.edu.

45NOVEMBER–DECEMBER 2003

