Data-Level Parallelism
In Vector and GPU
Architectures

Muhamed Mudawar
Computer Engineering Department

King Fahd University of Petroleum and Minerals

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 1

Introduction

 SIMD architectures can exploit significant data-
level parallelism for:

» matrix-oriented scientific computing
» media-oriented image and sound processors

% SIMD is more energy efficient than MIMD
» Only needs to fetch one instruction per data operat ion
» Makes SIMD attractive for personal mobile devices

% SIMD allows programmer to continue to think
sequentially

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 2




SIMD Parallelism

“* Vector architectures
s SIMD extensions
¢ Graphics Processor Units (GPUSs)

+ For x86 processors:
» Expect two additional cores per chip per year
» SIMD width to double every four years

» Potential speedup from SIMD to be twice that from
MIMD!

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 3

Vector Architectures

 Basic idea:
» Read sets of data elements into “vector registers”
» Operate on those registers
» Disperse the results back into memory

¢ Registers are controlled by compiler
» Used to hide memory latency
» Leverage memory bandwidth

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 4




Vector Processing

¢ Vector processors have high-level operations that
work on linear arrays of numbers: "vectors"

SCALAR VECTOR
(1 operation) (N operations)

ax

[r3] 2

length

add r3,r1, r2 addv v3, v1, v2

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 5

Vector Supercomputers

Idealized by Cray-1, 1976:

Scalar Unit + Vector Extensions
% Load/Store Architecture

% Vector Registers

¢ Vector Instructions

+ Hardwired Control

% Highly Pipelined Functional Units
% Interleaved Memory System

% No Data Caches

% No Virtual Memory

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 6




Cray-1 (1976)

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 7

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words
+

8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

xg Vi [V_Mask |
Yl + V2 V.
oA Iemeht V3 J
\/ector Registers V4 Ve _
ToTETTTEYTRET V5
V6
L FP Add
) S; FP Mul
((Ap) +jkm) S1 : ,
S S2 Sy FP Recip
i S3
Ay [64 ' S Si Int Add
TR egs Ty |—s5 |
—S5— Int Logic
Int Shift
A0
((Ap) +ikm) AL Pop Cnt
A2
A; A3 Al
(Ao) 64 5 A4 A Addr Add
i A5
B Regs| Lk 26 A Addr Mul

CSE 661 - Paralle and Vector Architectures

Vector Computers— slide 8




Vector Programming Model

/" Scalar Registers

Vector Registers

r15 v15
. ® o W [VLRMAX-1]
Vector Arithmetic x%: S RS S ES—
Instructions AYOAr XY A ¥ A¥ ¥
[+ ) L+ L+ L+ L+ { )
ADDVVB VL V2 e
\Vector Length Register [0] [1] [VLR-1]

/" Vector Load and

Vector Register

Store Instructions vl w

e

~

N Bage, ri Stride, r2 Memory

CSE 661~ Parallel and Vector Archtetures Vector Computers—siide 9
Vector Instructions
Instr. Operands Operation Comment
ADDV  V1,v2,V3 V1=V2+V3 vector + vector
ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
MULTV V1V2,V3 V1=V2xV3 vector x vector
MULSV V1,F0O,v2 V1=FOxV2 scalar x vector
LV V1,R1 V1=M[R1..R1+63] load, stride=1
LVWS V1,R1,R2  V1=M[R1..R1+63*R2] load, stride=R2
LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] load, indexed
CeqV VM\V1V2 VMASKI = (V1i=V2i)? comp. setmask
MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
MOV VM,R1 Vec. Mask = R1 set vector mask

CSE 661 - Paralle and Vector Architectures

Vector Computers— slide 10




Properties of Vector Processors

+«+ Each result independent of previous result

» Long pipeline, compiler ensures no dependencies

> High clock rate

+“* Vector instructions access memory with known patter

» Highly interleaved memory

» Amortize memory latency of over 64 elements

> No (data) caches required! (Do use instruction cach  e)

+“ Reduces branches and branch problems in pipelines

++ Single vector instruction implies lots of work ( oo p)

» Fewer instruction fetches

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 11

Vector Code Example

# C code # Scalar Code
for (i=0; i<64; i++) LI R4, 64

CIi] = Ali] + Bi]; loop:
L.D FO, O(R1)
L.D F2, 0(R2)
ADD.D F4, F2, FO
S.D F4, O(R3)
ADDIURL1, 8
ADDIU R2, 8
ADDIU R3, 8
SUBIU R4, 1
BNEZ R4, loop

# Vector Code

LI VLR, 64

LV V1, R1

LV V2, R2

ADDV V3, V1, V2
SV V3, R3

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 12




Vector Instruction Set Advantages

s Compact
»one short instruction encodes N operations

“ Expressive, tells hardware that these N operations:
» Are independent
» Use the same functional unit
» Access disjoint registers
» Access registers in the same pattern as previous in structions
» Access a contiguous block of memory (unit-stride lo ad/store)

» Access memory in a known pattern (strided load/stor e)

«» Scalable

» Can run same object code on more parallel pipelines or lanes

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 13

Components of a Vector Processor

* Vector Register File
» Has at least 2 read and 1 write ports
» Typically 8-32 vector registers
» Each holding 64 (or more) 64-bit elements
¢ Vector Functional Units (FUS)
» Fully pipelined, start new operation every clock
» Typically 4 to 8 FUs: FP add, FP mult, FP reciproca |
» Integer add, logical, shift (multiple of same unit)
¢ Vector Load-Store Units (LSUS)
» Fully pipelined unit to load or store a vector
» May have multiple LSUs
% Scalar registers
» Single element for FP scalar or address

% Cross-bar to connect FUs , LSUs, registers

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 14




Examples of Vector Machines

Machine Year Clock Regs Elements F Us LSUs

Cray 1 1976 80 MHz 8 64 6 1
Cray XMP 1983 120 MHz 8 64 8 2L,1S
Cray YMP 1988 166 MHz 8 64 8 2L,1S
Cray C-90 1991 240 MHz 8 128 8 4
Cray T-90 1996 455 MHz 8 128 8 4
Conv. C-1 1984 10 MHz 8 128 4 1
Conv.C-4 1994 133 MHz 16 128 3 1
Fuj. VP200 1982 133 MHz 8-256 32-1024 3 2
Fuj. VP300 1996 100 MHz 8-256 32-1024 3 2
NEC SX/2 1984 160 MHz 8+8K 256+var 16 8

NEC SX/3 1995 400 MHz 8+8K 256+var 16 8

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 15

Vector Arithmetic Execution

* Use deep pipeline (=> fast clock)
to execute element operations \1/ \2/ \3/
% Simplifies control of deep
pipeline because elements in H;i
vector are independent :}
» No hazards! E
Six stage multiply pipeline z
]
V3 <- vl *v2

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 16




Vector Memory System

% Cray-1: 16 banks

» 4 cycle bank busy time
= Bank busy time: Cycles between accesses to same bank

» 12 cycle latency Base Stride
Vector Registers
Address \
Generator N+ /

Memory Banks

Vector Computers— slide 17

CSE 661 - Parallel and Vector Architectures

Interleaved Memory Layout

C C C C C C C C
S S S S S S S S
g7, g3, g3, g3, g3, g3, g3, g7,
Xo oo o o o Xo Xo oo
SBR[ (3R] |BR| [ZR]| B8] |ER]| [ZR]| (3R
=S5 |=5 =5 =5 =5 =5 =5 =5
® ® ® ® ® ® ® ®
a a a a a a a a
Addr+0 Addr+1 Addr+2 Addr+3 Addr+4 Addr+5 Addr+6 Addr+7

+« Great for unit stride:
» Contiguous elements in different DRAMs

> Startup time for vector operation is latency of sin gle read
“ What about non-unit stride?
» Above good for strides that are relatively prime to 8
iple of 8

> Bad for strides = 2, 4 and worse for strides = mult

» Better: prime number of banks...!

Vector Computers— slide 18

CSE 661 - Parallel and Vector Architectures




Vector Instruction Execution

ADDV C,AB

‘-

/'/ Execution using Execution using
{ one pipelined ) four pipelined

. functionalunit = . functional units -

~
N

Al6]  B[6] Al24] B[24] A[25] B[25] A[26] B[26] A27] B[27]
AS]  B[S] A20] B[20] A[21] B[21] A[22] B[22] A[23] B[23]
A4l B4] A16] B[16] A[17] B[17] A[18] B[18] A[19] BI19]
Al3] B3] Al12] B[12] A[13] B[13] A[14] B[14] A[15] B[15]
ca | c8l /‘F cl9] /‘F C[10] /}" CILL] /‘F

ca [ cEl [ cel|  cm]
- == \ ‘
C[o] C[0] C[1] C[2] C[3]
CSE 661 - Parallel and Vector Architectures Vector Computers— slide 19

Vector Unit Structure

_Functional Unit

[ [ — — ] ==
Vector ' Ly ! : : s | |
Reglsteg Elements Elements Elements Elements
0,4,8, ... 15,9, ... 2,6,10, ... 3,7,11, ...
E ;‘f “““‘ c‘f ““s
Lane _/

Memory Subsystem

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 20




Vector Unit Implementation

« Vector register file
» Each register is an array of elements

» Size of each register determines maximum
vector length

» Vector length register determines vector length for a
particular operation

+ Multiple parallel execution units =“  |anes”

» Sometimes called “ pipelines " or “ pipes”

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 21 33

TO Vector Microprocessor (1995)

See http://lwww.icsi.berkeley.edu/real/spert/t0-
intro.html

Vector register
elements striped
over lanes

R

[3] MEINIE

o

ARFARAIARARAARRA AR AR AR R AR

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 22




Automatic Code Vectorization

for (i=0; i < N; i++) C[i] = A[i] + B[i];

Scalar Sequential Code

Vectorized Code

Time

1 2 Vector Instruction

Vectorization is a massive compile-time
reordering of operation sequencing
= requires extensive loop dependence analysis

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 23

Vector Stripmining

“+ Problem: Vector registers have fixed length
% What to do if Vector Length > Max Vector Length?

«+ Stripmining : generate code such that each vector
operation is done for a size < MVL

» First loop iteration: do short piece (n mod MVL)
» Remaining iterations: VL = MVL

index = 0; /* start at index 0 */
VL = (n mod MVL) /* find the odd size piece */
while (n > 0) {
/* do vector instructions on VL elements */
n=n- VL
index = index + VL;
VL = MVL /* reset the length to max */
}

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 24




Vector Stripmining Example

for (i=0; i<N; i++)

Clil = Ali+BIil;
AB C
"+ ‘{ Remainder
s { 64 elements
s

ANDI R1, RN, 63 # N mod 64

MOV VLR, R1 # Do remainder
loop:

LV V1, RA

SLL R2,R1, 3 # Multiply by 8

ADDU RA, RA, R2 # Advance pointer

LV V2,RB

ADDU RB, RB, R2

ADDV V3, V1, V2

SV V3,RC

ADDU RC, RC, R2

SUBU RN, RN, R1 # Subtract elements

LI R1,64

MOV VLR, R1 # Reset full length

BGTZ N, loop # Any more to do?

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 25

Vector Chaining

++ Vector version of register bypassing

» Introduced with Cray-1

LV vi, r1
V VIV \Y V
MULVV3,\\:1,V2 1 >l 3 4 5
ADDV v5,v3,v4
Chain Chain
Load
Unit
i
\ \
Memory [ = [ =
T

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 26




Vector Chaining Advantage

+«+ Without chaining, must wait for last element of res ult
to be written before starting dependent instruction

Time —

“+ With chaining, can start dependent instruction as s oon
as first result appears

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 27

Vector Instruction Parallelism

Can overlap execution of multiple vector instructio ns
Example: 32 elements per vector register and 8 lane s

Load Unit

load X*3ToTe o 0 —I Multiply Unit ‘ _

ole[e[e[o[ L™ faTalalalals Add Unit
o oo oe[eeblalajajaa[|add falmmm/mmE]E
—\eleleee[eeplaalalaaaakln/mm/n/nn/nn
BBl EIEEI e NNV CIOOICICIOOE
0 [l /laala A4 4 Nunnn/nnnn
iimel [ SR NNV EEEY OO00000C
BEIEEEEEE NN 00000000
NSNS OO000000C
OOOO000n

Instruction
issue

Complete 24 operations/cycle while issuing
1 short instruction/cycle

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 28




Vector Execution Time

+» Vector Execution Time depends on:

» Vector length, data dependences, and structural haz  ards
« Initiation rate

> Rate at which a vector unit consumes vector element s

» Typically, initiation rate = number of lanes

> Execution time of a vector instruction = VL / Initi ation Rate
< Convoy

> Set of vector instructions that can execute in same clock

» No structural or data hazards (similar to VLIW conc  ept)
s Chime

» Execution time of one convoy

»m convoys take m chimes = approximately m x n cycles
= |f each chime takes n cycles and no overlapping convoys

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 29

Example on Convoys and Chimes

LVV1, Rx ;Load vector X

MULVS V2,V1, FO ;vector-Scalar multiply
LVV3, Ry ;Load vectorY

ADDV V4,V2,V3 ; Add vectors

SVRy, V4 ; Store result in vector Y

% 4 Convoys =>4 Chimes

1. LV

2. MULVS, LV Suppose VL=64 |

3. ADDV For 1 Lane: Chime = 64 cycles
4. SV For 2 Lanes: Chime = 32 cycles

For 4 Lanes: Chime =16 cycles

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 30




Vector Startup

¢+ Vector startup comes from pipeline latency

« Important source of overhead, so far ignored

< Startup time = depth of pipeline

 Increases the effective time to execute a convoy

% Time to complete a convoy depends
» Vector startup, vector length, number of lanes

Operation Start-up penalty (from CRAY-1)
Vector load/store 12 cycles
Vector multiply 7 cycles
Vector add 6 cycles

Startup penalty for load/store can be very high (10 0 cycles)

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 31

Example on Vector Startup

+ Consider same example with 4 convoys
+« Vector length = n
+ Assume Convoys don’t overlays

++ Show the time of each convoy assuming 1 lane

Convoy Start time __ First result Last result
1.V 0 12 11 +n
2. MULVS, LV 12 +n 12+n+12 23 +2n
3. ADDV 24 +2n 24+2n+6 29 + 3n
4. SV 30 +3n 30+3n+12 41 + 4n

«»Total cycles = 42 + 4n (with extra 42 startup cycle s)

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 32




Vector Chaining

* Suppose:
MULV V1,Vv2,V3
ADDV V4,V1,V5 ; RAW dependence

% Chaining : Allow a vector operation to start as
soon as the individual elements of the vector
source operands become available. Forward
individual elements of a vector register.

+ Dependent instructions can be placed in the
same convoy (if no structural hazard)

Unchained = 2 convoys Chained = 1 convoy

7] 64 |6] 64 | IL 64 | Total = 77 cycles
I 1 muLtv | | ADDV | MULTV 1.66 Flops/cycle
Total = 141 cycles .ﬁ.'_ﬁﬁ_l
128/141 = 0.91 Flops/cycle ADDV
CSE 661 - Parallel and Vector Architectures Vector Computers— slide 33

Vector Stride

+ Adjacent elements are not sequential in memory

do 10i = 1,100
do 10j= 1,100
Ai,j) = 0.0
do 10 k = 1,100
10 Adi,j) = Ai,j) +B(i, k) * C(k,))

¢ Either B or C accesses are not adjacent
»800 bytes between adjacent vector elements

< Stride : distance separating elements that are to
be merged into a single vector

»Caches do unit stride
»LVW(load vector with stride) instruction
+ Think of addresses per vector element

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 34




Memory Addressing Modes

+ Load/store operations move groups of data
between registers and memory

% Three types of vector addressing
» Unit stride
= Contiguous block of information in memory
= Fastest: always possible to optimize this

» Non-unit_(constant) stride

= Harder to optimize memory system for all possibles  trides

= Prime number of data banks makes it easier to suppo  rt different
strides at full bandwidth

» Indexed (gather-scatter)
= Vector equivalent of register indirect
= Good for sparse arrays of data
= |ncreases number of programs that vectorize

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 35

Vector Scatter/Gather

Want to vectorize loops with indirect accesses
for (i=0; i<N; i++)
Ali] = B[i] + C[DI[i]]
Indexed load instruction (Gather)
LV vD,rD  # Load D vector (indices)
LVIvC, rC, vD # Load C vector indexed
LV vB,rB  # Load B vector
ADDV VA, vB, vC # Add Vectors
SV VA, rA # Store A vector

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 36




Vector Scatter/Gather

Scatter example:
for (i=0; i<N; i++) A[B[i]]++;
Vector Translation:
LV vB,rB # Load B vector (indices)
LVI VA, rA, vB # Load A vector indexed

ADDV VA, VA, 1 # Increment
SVI VA, rA, vB # Store A vector indexed

Load Vector Indexed (Gather)

Store Vector Indexed (Scatter)

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 37

Memory Banks

¢ Most vector processors support large number of
independent memory banks
% Memory banks are need for the following reasons
» Multiple Loads/Stores per cycle
» Memory bank cycle time > CPU cycle time
» Ability to load/store non-sequential elements
» Multiple processors sharing the same memory

» Each processor generates its stream of load/store
instructions

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 38




Example on Memory Banks

% The Cray T90 has a CPU cycle = 2.167 ns
% The cycle of the SRAM in memory system = 15 ns
¢ Cray T90 can support 32 processors
» Each processor is capable of generating 4 loads
and 2 stores per CPU clock cycle
% What is the number of memory banks required to
allow all CPUs to run at full memory bandwidth
+* Solution:
» Maximum number of memory references per cycle
32 CPUs x 6 references per cycle = 192
» Each SRAM busy is busy for 15/2.167 =6.92 =7 cycles
» To handle 192 requests per cycle requires
192 x 7 = 1344 memory banks
» Cray T932 actually has 1024 memory banks

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 39

Vector Conditional Execution

Problem: Want to vectorize loops with conditional cod e:
for (i=0; i<N; i++)

if (A[i]>0) then A[i] = Bi]

Solution: Add vector mask registers

» Vector version of predicate registers, 1 bit perel  ement

> Vector operation becomes NOP at elements where mask bit is 0

Code example:

CVM # Turn on all bits in Vector Mask
LV VA, rA # Load entire A vector

SGTV VA, 0 # Set bits in mask register where A>0
LV VA, IB # Load B vector into A under mask

SV VA, rA # Store A back to memory under mask

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 40




Vector Masks

¢ Vector masks have two important uses

» Conditional execution and arithmetic exceptions

¢ Alternative is conditional move/merge

+* More efficient than conditional moves

> No need to perform extra instructions

» Avoid exceptions

+» Downside is:

> Extra bits in instruction to specify the mask regis ter

= For multiple mask registers

» Extra interlock early in the pipeline for RAW hazar  ds

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 41

Masked Vector Instructions

Simple Implementation
Execute all N operations
Turn off result writeback
according to mask

M[7]=1 A[7]  B[7]
M[6]=0 A[6] B[6]
M[5]=1 A[5] B[5]
M[4]=1 A[4]  B[4]
M[3]=0 A[3] B[3]

o
M[2]=0 | C[2] |

M[1]=1 E cl |

M[0]=0 —l C[0]
Write Enable Write data port

Density-Time Implementation

Scan mask vector and
Execute only elements
with Non-zero masks

M[7]=1

M0 A7) BI7]
MISIL 4

M[4]=1 ——
M[3]:0\ Ciel
M[2]=0 cl |

M[1]=1  —

M[0]=0 \

Write data port

Cl1

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 42




Compress/Expand Operations

s Compress:

» Packs non-masked elements from one vector register
contiguously at start of destination vector registe r

» Population count of mask vector gives packed vector length
» Used for density-time conditionals and for general selection
% Expand: performs inverse operation

M[7=1 — A[7] | Al7] |+~ M[7]=1

M[6]=0 AB] B[6] M[6]=0

M[5]=1 — Al5] |\ \ Al5] |+ M[5]=1

M[4]=1 —> Al4] |\ | Al4] |+~ M[4]=1

M[3]=0 Al3] < Al7] B[3] M[3]=0

M[2]=0 Al2] Al5] B[2] M[2]=0

M[1]=1 — A[1] Al4] All] |+~ M[1]=1

MO]=0  A[0] N All] 7 BO]  M[0]=0

Compress Expand

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 43

Vector Reductions

Problem: Loop-carried dependence on reduction varia bles
sum = 0;
for (i=0; i<N; i++)
sum += A[i]; # Loop-carried dependence on sum
Solution: Use binary tree to perform reduction
# Rearrange as:
sum[O:VL-1]=0 # Vector of VL partial sums
for(i=0; i<N; i+=VL) # Stripmine VL-sized chunks
sum[0:VL-1] += A[i:i+VL-1]; # Vector sum
# Now have VL partial sums in one vector register
do {
VL = VL/2; # Halve vector length
sum[0:VL-1] += sum[VL:2*VL-1]
} while (VL>1)

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 44




New Architecture Direction?

s “...media processing will become the dominant
force in computer architecture & microprocessor
design.”

% “... new media-rich applications... involve
significant real-time processing of continuous
media streams, and make heavy use of vectors of
packed 8-, 16-, and 32-bit integer and FP”

% Needs include high memory BW, high network
BW, continuous media data types, real-time
response, fine grain parallelism

» “How Multimedia Workloads Will Change Processor
Design”, Diefendorff & Dubey, |EEE Computer (9/97)

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 45

SIMD Extensions

* Media applications operate on data types

narrower than the native word size

» Example: disconnect carry chains to “partition” ad der

% Limitations, compared to vector instructions:
» Number of data operands encoded into op code
» No sophisticated addressing modes
= No strided, No scatter-gather memory access

» No mask registers

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 46




SIMD Implementations

% Intel MMX (1996)

» Eight 8-bit integer ops or four 16-bit integer ops

+» Streaming SIMD Extensions (SSE) (1999)
» Eight 16-bit integer ops

» Four 32-bit integer/fp ops or two 64-bit integer/fp o ps

+ Advanced Vector Extensions (2010)

= Four 64-bit integer/fp ops

% Operands must be consecutive and aligned
memory locations

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 47

Example SIMD Code

s Example DAXPY:

L.D
MOV
MOV
MOV
DADDIU
Loop:
MUL.4D
L.4D
ADD.4D
S.4D
DADDIU
DADDIU
DSUBU
BNEZ

FO,a

F1, FO

F2, FO

F3, FO
R4,Rx,512
L.4D F4,0[Rx]
F4,F4,F0
F8,0[Ry]
F8,F8,F4
O[Ry],F8
Rx,Rx,32
Ry,Ry,32
R20,R4,Rx
R20,Loop

:load scalar a

;copy ainto F1 for SIMD MUL
;copy ainto F2 for SIMD MUL
;copy ainto F3 for SIMD MUL

:last address to load

;load X[i], X[i+1], X[i+2], X[i+3 ]
;axX[i],axX[i+1],axX[i+2],axX[i+3]
;load YIi], Y[i+1], Y[i+2], Y[i+3]
;axX[i]+Y[il, ..., axX][i+3]+Y[i+3]

;store into YTi], Y[i+1], Y[i+2], Y[i+3 ]

:increment index to X
:increment index to Y
;compute bound

:check if done

CSE 661 - Parallel and Vector Architectures

Vector Computers— slide 48




Roofline Performance Model

++ Basic idea:

» Plot peak floating-point throughput as a function o f
arithmetic intensity

» Ties together floating-point performance and memory
performance for a target machine

¢ Arithmetic intensity
» Floating-point operations per byte read

o1 QO(N]
) (1) Otoghyy A .
Is - ~
Arithmetic Intensity
[ [} . . .
Spectral
‘ Sp?r.se ‘ m‘;;:o’:s Dense N-body
maitrix
FFTs) matrix (Particle
(SpMV) ( (BLAS3)
Structured | Structured methods)
grids grids
(Stencils, (Lattice
PDEs) methods)
CSE 661 - Parallel and Vector Architectures Vector Computers— slide 49

Examples

+ Attainable GFLOPs/sec Min = (Peak Memory BW
x Arithmetic Intensity, Peak Floating Point Perf.)

Intel Core i7 920
- NEC SX-9 CPU 256 (Nehalem)

o | \ I
% 128 +——+——102.4GFLOP/s $ 128
5 o 5
5 6 e o 64 42.66 GFLOP/s
[0} A o
g 32 < s 32
@ ’ 2 27
2 16 : 8 16 65(,@ z@
| b

5 8 o 8 e
3 3
g 2 4| 4

2 2 :

18 14 12 1 2 4 8 16 8 14 12 1 2 4 8 16

Arithmetic intensity Arithmetic intensity

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 50




GPU Architectures

¢ Processing is highly data-parallel
»GPUs are highly multithreaded

»Use thread switching to hide memory latency
» Less reliance on multi-level caches

»Graphics memory is wide and high-bandwidth

+ Trend toward general purpose GPUs
»Heterogeneous CPU/GPU systems
»CPU for sequential code, GPU for parallel code

* Programming languages/APIs

»OpenGL
»Compute Unified Device Architecture (CUDA)

NVIDIA GPU Architecture

% Similarities to vector machines:
» Works well with data-level parallel problems
» Scatter-gather transfers
» Mask registers

» Large register files

+ Differences:
» No scalar processor
» Uses multithreading to hide memory latency

» Has many functional units, as opposed to a few deep  ly
pipelined units like a vector processor

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 52




Threads and Blocks

+» A thread is associated with each data element
* Threads are organized into blocks

% Blocks are organized into a grid

% GPU hardware handles thread management, not
applications or OS

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 53

Example: NVIDIA Fermi

+ NVIDIA GPU has 32,768 registers
> Divided into lanes
» Each thread is limited to 64 registers
» Each thread has up to:
= 64 registers of 32 32-bit elements
= 32 registers of 32 64-bit elements

» Fermi has 16 physical lanes, each containing 2048
registers

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 54




Fermi Streaming Multiprocessor

SIND thread scheduler | [ SIMD thread scheduler |

[ Dispatch unit | [ Dispatch unit |

HEREEEEEEEEEEEEE

Fermi streaming multiprocessor (SM)

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 55

Fermi Architecture Innovations

+« Each streaming multiprocessor has

» Two SIMD thread schedulers, two instruction dispatc h
units

» 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16
load-store units, 4 special function units

» Thus, two threads of SIMD instructions are schedule d
every two clock cycles

+» Fast double precision

+ Caches for GPU memory

+» 64-bit addressing and unified address space
«» Error correcting codes

+» Faster context switching

+ Faster atomic instructions

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 56




NVIDIA Instruction Set Arch.

ISA is an abstraction of the hardware instruction s et
> “Parallel Thread Execution (PTX)”
» Uses virtual registers

» Translation to machine code is performed in softwar e

» Example:

shl.s32 R8, blockldx, 9 ; Thread Block ID * Block siz e (512)
add.s32 R8, R8, threadldx ;R8 =i=my CUDA thread| D
Id.global.f64 RDO, [X+R8] ; RDO = X[i]

Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 ( scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (Y[i] )

st.global.f64 [Y+R8], RDO Y[ =sum (X[il*a+ Y[i ])

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 57

Conditional Branching

«» Like vector architectures, GPU branch hardware
uses internal masks

s Also uses
» Branch synchronization stack
= Entries consist of masks for each SIMD lane

= |.e. which threads commit their results (all thread s
execute)

» Instruction markers to manage when a branch diverge S
into multiple execution paths

= Push on divergent branch
» ...and when paths converge
= Act as barriers
= Pops stack
+ Per-thread-lane 1-bit predicate register, specified
by programmer

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 58




Example

if (X[i] !=0)
X[i] = X[i] - Y[IT;
else X[i] = Z[iJ;
Id.global.f64  RDO, [X+R8] ; RDO = X[i]
setp.neq.s32 P1, RDO, #0 ; P1is predicate register 1
@'P1, bra ELSE1, *Push ; Push old mask, set new mask bits
; iIf P1 false, go to ELSE1
Id.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RDO, RDO, RD2 ; Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp ; complement mask bits
; if P1 true, go to ENDIF1
ELSE1L: Id.global.f64 RDO, [Z+R8]  ; RDO = Z][i]
st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop ; pop to restore old mask
CSE 661 - Parallel and Vector Architectures Vector Computers— slide 59

NVIDIA GPU Memory Structures

% Each SIMD Lane has private section of off-chip
DRAM
» “Private memory”

» Contains stack frame, spilling registers, and priva te
variables

s Each multithreaded SIMD processor also has
local memory
» Shared by SIMD lanes / threads within a block
% Memory shared by SIMD processors is GPU
Memory
» Host can read and write GPU memory

CSE 661 - Paralle and Vector Architectures Vector Computers— slide 60




Summary

+ Vector is a model for exploiting Data Parallelism

+ If code is vectorizable, then simpler hardware,
more energy efficient, and better real-time model
than Out-of-order machines

+» Design issues include number of lanes, number of
functional units, number of vector registers, lengt h
of vector registers, exception handling, and
conditional operations

+ Fundamental design issue is memory bandwidth
» With virtual address translation and caching

CSE 661 - Parallel and Vector Architectures Vector Computers— slide 61




