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� At Core of Parallel Computer Architecture

� Transfer data from any source to any destination

� Composed of links and switches
� Elegant mathematical structure (highly regular)

� Electrical / Optical link properties

� Managing many traffic flows

� Performance Goals
� Bandwidth

� As many concurrent
transfers as possible

� Latency: as small as possible

� Cost: as low as possible

Scalable Interconnection Network
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� Interconnection Network is a graph 

� Vertices V = {nodes, switches}

� Connected by communication channels C ⊆⊆⊆⊆ V × V

� A Channel is a physical link
� Includes buffers to hold data as it is being transferred

� Phit (Physical unit) is amount of data transferred per cycle 

� τ is the channel cycle: time to transmit one phit

� Channel has signaling rate f = 1/τ
� Channel has width w and bandwidth b = w × f

� Switch Degree: number of input (output) channels

� Path or Route: sequence of switches and links
� Followed by a message from its source until its destination

Formalism
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Network Characterization

� Topology (what structure)
� Physical interconnection structure of the network graph

� Direct: a switch is associated with each node

� Indirect: can have extra switches not connected to nodes

� Regular versus Irregular

� Most parallel machines employ highly regular topologies

� Routing Algorithm (which routes)
� Restricts the set of paths that messages may follow

� Between pairs of source and destination nodes

� Deterministic versus adaptive

� One or multiple routes for each pair of source/destination

� Many algorithms with different properties
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Network Characterization (2)

� Switching Strategy (how)
� How data in a message traverses a route

� Circuit switching versus packet switching

� In circuit switching, path is established and reserved

� Until message traverses over circuit

� In packet switching, message is broken into packets

� Packets contain routing/sequencing information, and data 

� Flow Control Mechanism (when)
� When a message or portions of it traverse a route

� What happens when messages compete for a channel?

� Blocked in place, buffered, detoured, dropped

� Flow control unit (Flit): unit of transfer across a link

� Can be as small as a phit or as large as a packet
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� Header
� Front end of the packet

� Routing and control info

� Used by switches to route
packet in network

� Data payload: data transmitted across network

� Trailer: end of packet
� Typically contains error-checking code

� Packet is further divided into flits and phits

� Example: Cray T3E
� Packet is 1-10 flits, and each flit is 5 phits

� Flit size = 70 bits = 64-bit data + 6-bit control
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Typical Packet Format
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� Switch Consists of:
� Set of input ports and output ports

� Internal crossbar connecting each input to every output

� Internal buffering

� Control logic for routing and scheduling

Cross-bar

Input
Buffer

Control

Output
Ports

Input 
Receiver Transmiter

Ports

Routing, Scheduling

Output
Buffer

Basic Switch Organization
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� Output ports
� Transmitter: typically drives clock and data

� Input ports
� Receiver aligns data signal with local clock
� Essentially FIFO buffer

� Buffering at input and/or output ports
� Crossbar

� Connects each input to any output
� Switch degree limited by number of I/O pins

� Control logic
� Complexity depends on routing and scheduling algorithm
� Determines output port for each incoming packet
� Arbitrates among inputs directed to same output

Switch Components
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Physical Channel Flow Control

� Asynchronous physical channel flow control

Request

Ack

Data
BufferBuffer

Physical
Channel data

Req

Ack

� Synchronous full-duplex channel flow control

Clock

Data/Cmd

BufferBuffer

Clock

Data/Cmd
BufferBuffer

Command is used for 
buffer management 

and flow control
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� Routing Distance
� Number of links on route between a pair of nodes

� Network Diameter
� Maximum shortest path between any two nodes

� Average Distance
� Average of the routing distance between all pairs of nodes

� Channel Bisection Width
� Minimum number of channels cut

� When a network is cut into two equal halves

� Wire Bisection Width
� Channel bisection width × channel width

� Reflects the wiring density of the network

Topological Properties
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� Each topology is a class of networks

� Scaling with number of nodes N

� Completely connected network

� Each node has a switch

� Directly connected to all other nodes

� Node Degree = N – 1

� Diameter = 1 link

� Links = N (N – 1) / 2

� Bisection width = (N/2)2

� Each of the (N/2) nodes in the first half is connected to all the 
(N/2) nodes in the second half

Interconnection Topologies
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� Switch associated with each node

� Connected by bidirectional links

� Number of links = N – 1

� Diameter = N – 1

� Average distance = (N+1)/3

� Node Degree = 2

� Bisection width = 1 link
� Removal of a single link partitions the network

� One route between a pair of nodes
� Route A → B is given by relative address R = B – A

Linear Array
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� Symmetric, Number of links =  N
� Bidirectional Links

� Diameter = N / 2

� Node Degree = 2

� Average distance = N2/ 4(N – 1)

� Bisection width = 2 links

� Two routes between a pair of nodes

� Unidirectional Links
� Diameter = N – 1

� Node Degree = 1

� Average distance = N / 2

� Bisection width = 1 link

� One route between a pair of nodes

Ring

arranged to use short wires
unidirectional links

switch associated with each node
bidirectional links
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� d-dimensional array
� N = k0 × ... × kd-1 nodes

� ki nodes in dimension i

� Node degree is between d and 2d

� Each node identified by d-vector of coordinates (x0, … , xd-1)

� Where 0 ≤ xi ≤ ki – 1 for 0 ≤ i ≤ d – 1

� If number of nodes is same (k) in all dimensions …
� Then d-dimensional k-ary mesh

� N = kd

� Network diameter = d(k–1)

� Bisection width = kd–1

Multidimensional Meshes
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� Symmetric with wrap around edges

� Node degree = 2d

� N = k0 × ... × kd-1 nodes

� ki nodes in dimension i
� Each node identified by d-vector of coordinates (x0, ... , xd-1)

� Where 0 ≤ xi ≤ ki – 1 for 0 ≤ i ≤ d – 1

� If number of nodes is same (k) in all dimensions …
� Then d-dimensional k-ary torus

� N = kd

� Network diameter = d k/2

� Number of links = d N

� Bisection width = 2 kd–1

Multidimensional Tori
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� Special case of d-dimensional k-ary mesh

� Called also d-cube

� d dimensions

� Two nodes along each dimension

� Node degree = d

� N = 2d nodes

� Network diameter = d

� Number of links = d N / 2

� Bisection width = N / 2

Hypercube

4-cube
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Latency

� Time to transfer n bytes from source to destination

Overhead + Unloaded Network Latency + Contention Delay

� Overhead
� Time to get message into and out of network

� Node-to-network interface

� Unloaded Network Latency
� Time to transfer a packet through network

� Assuming no contention in the network

� Further divided into: channel occupancy + routing delay

� Contention Delay
� Contention adds queuing delays (waiting time in buffers)
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� Entire packet is received at a switch and then …
� Forwarded on the next link along the path

Store-and-Forward Routing

Source Dest

0123
0123

0123
0123

0123
0123

0123
0123

0123
0123

0123
0123

0123

4-flit packet 
traverses 3 hops 
from source to 

destination
Packet = n bytes
Routing distance = h
Additional Switch Delay = ∆
Link bandwidth = b bytes/sec

Unloaded network latency:
TSF (n, h) = h (n/b + ∆)
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� Transmission of a single packet is pipelined
� Switch makes it decision after examining header flit

� Advances header before receiving remaining flits

� Header establishes route from source to destination
� A single packet may occupy entire route

� Tail (last) flit clears route as it moves through

Cut-through Routing

Packet = n bytes
Routing distance = h
Routing delay per hop = ∆
Link bandwidth = b bytes/s

Unloaded network latency:
TCT (n, h) = n/b + h∆

Source Dest

0123
0123
123
23
3

0
01

012
0123

0
1
2
3
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Channel Occupancy

� Time for a packet to cross a channel

� Channel Occupancy = n/b = (nD + nE)/b
� Packet = n bytes = nD + nE (data + envelop)

� Packet envelop include the header and trailer flits
� Typically discarded when a packet reaches its destination

� Counted as an overhead (routing info, error codes, etc.)

� Packet efficiency = nD / (nD + nE)

� Channel bandwidth b = w f = w / τ

� Channel Occupancy for store-and-forward = h × n / b
� Not overlapped along route, multiplied by distance h

� Channel Occupancy for cut-through routing = n / b
� Overlapped in time and does not depend on distance h
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Routing Delay

� Time to route header flit  from source to destination

� Is a function of
� Routing distance h and

� Routing delay ∆ incurred at each hop along the path

� Routing Delay = h ∆
� For both store-and-forward and cut-through routing

� ∆ is the routing delay per hop, which includes
� Routing logic delay to determine output port for a header flit

� Crossbar delay to advance header flit from input to output

� Once a path has been established for a header flit

� All remaining flits will simply follow with no additional delay
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Real Machines

Cycle Channel Routing
Time Width Delay Flit

Machine Topology (ns) (bits) (cycles) (bits)

nCube/2 Hypercube 25 1 40 32
TMC CM-5 Fat-Tree 25 4 10 4
IBM SP-2 Banyan 25 8 5 16
Intel Paragon 2D Mesh 11.5 16 2 16
Meiko CS-2 Fat-Tree 20 8 7 8
CRAY T3D 3D Torus 6.67 16 2 16
DASH Torus 30 16 2 16
J-Machine 3D Mesh 31 8 2 8
Monsoon Butterfly 20 16 2 16
SGI Origin Hypercube 2.5 20 16 160
Myricom Arbitrary 6.25 16 50 16
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� Two packets trying to use same link at same time

� Depends on topology, destination, and routing algorithm

� Contention adds queuing delay to basic routing delay

� Mechanism for dealing with contention

� Means of buffering

� Buffer entire packet

� Buffer few flits of a packet

� What happens when buffer is full?

� Discard packet

� Back pressure toward the source

� Means of arbitration for the output channels

Contention
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Mechanisms for Contention

� Store-and-forward
� Entire packet is blocked in buffer until arbiter selects it

� What happens to incoming packets when buffer is full?
� Handshake between output and input port across a link 
� Packet heading to a full buffer is blocked in place
� Discarded in traditional networks because of long links

� Cut-through: two mechanisms exist for contention
� Virtual Cut-through

� Buffer space is large enough to store the entire blocked packet
� Frees previous buffers along the route

� Wormhole
� Buffer space can hold one of few flits of a packet
� Packet is blocked in all buffers along its route

� Eventually the source experiences back pressure
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� Routing algorithm determines 
� Which of the possible paths are used as routes

� Routing algorithm is a function R : V × V → C

� At each switch ∈ V, routing function maps 
� Destination node ∈ V to next channel ∈ C on route

� Routing mechanisms
� Simple Arithmetic: minimal computation in few cycles

� Works in most regular topologies

� Source-Based Routing
� Source builds a header consisting of the output port numbers
� Each switch simply removes one port number from header flit

� Routing Table R
� Header contains a routing field i, output port o = R [ i ]
� Routing table also gives the routing field for next step j = R [ i ]

Routing

Interconnection Networks COE 502 KFUPM, Muhamed Mudawar Slide 26

Routing Mechanisms – cont’d
�Source-based

� Routing algorithm is applied at source node, not in switches 

� Source node computes a series of output port selects

� Ports are carried in message header

� Used by switches and stripped en route

� Very simple switch design but header tends to be large

� Examples: CS-2, Myrinet, MIT Artic

�Table-driven
� Message header carries routing index for next switch

� Routing table is indexed to obtain output port and next index
( o , j ) = R [ i ], where o = output port and j = next index

� Example: ATM - Not common in interconnection networks

� Fairly large tables even for simple routing algorithms

P0P1P2P3
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Deterministic Routing
� Unique path between every source and destination

� Dimension-Order Routing (DOR) in 2D Mesh
� Each packet carries a signed distance [∆x, ∆y] in its header

� Route along X dimension first, then along Y dimension

Condition Direction (Output port) and Action
∆x < 0 West (-X), Increment ∆x
∆x > 0 East (+X), Decrement ∆x
∆x = 0, ∆y < 0 South (-Y), Increment ∆y
∆x = 0, ∆y > 0 North (+Y), Decrement ∆y
∆x = 0, ∆y = 0 Processor

� Can be generalized to k-ary d-dimensional meshes and tori

� Similar e-cube routing in d-dimensional hypercube
� One routing bit per dimension

Interconnection Networks COE 502 KFUPM, Muhamed Mudawar Slide 28

DOR and E-Cube Routing Examples

� Examples on Dimension Order Routing (DOR)

� Examples on e-Cube Routing
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Adaptive Routing

� Multiple paths may exit between source & destination

� Routing algorithm determines multiple output ports
� For an incoming packet based on destination address

� Selection function is used to select an output port
� Based on traffic and contention to output ports

� Minimal adaptive routing
� Minimal paths are chosen between source & destination

� Example showing 5 minimal paths between 2 nodes
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� How can it arise?
� Necessary conditions:

� Shared resources

� Channels and buffers

� Incrementally allocated

� When header flit arrives

� No preemption

� Remain allocated until last flit

� Cyclic dependencies

� Messages are waiting on each other in a cyclic manner

� How to prevent deadlock?
� Break cyclic dependencies by

� Constraining resource allocation

Deadlock

4 messages waiting on each 
other in a cyclic manner
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Deadlock-Free Routing

� Deadlocks are a disaster for a parallel machine
� Once a deadlock happens, no progress can take place

� Until machine is restarted and buffers are reset and cleared

� Packets introduce dependences between channels
� As they move forward between source and destination

� Channel Dependence Graph
� Describes dependences between channels

� For a given topology and routing algorithm

� Has a node for every unidirectional link in the network

� Arc from node a to node b if …
� It is possible for a packet to traverse from channel a to b

� No cycles in graph ⇒ Deadlock-free routing
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DOR in 2D Mesh
� To Prove: DOR in 2D Mesh is Deadlock Free

� Assign Channel Numbers
� Such that every legal route follows an ordered sequence

� Either monotonically increasing or decreasing

� In this example, k = 4 and N = 16
� Channel Numbering

+X : (x, y) → (x+1, y) gets 2 k y + x

–X : (x, y) → (x–1, y) gets 2 k (y + 1) – x

+Y : (x, y) → (x, y+1) gets 2 (N + k x) + y

–Y : (x, y) → (x, y–1) gets 2 (N + k x + k) – y

� Any routing sequence: X turn Y
is always increasing
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Channel Dependence Graph
� Channel dependency 

graph shows all 
possible routes for DOR 
in a 2D Mesh network

� No cycles => DOR in 
2D mesh is deadlock 
free
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