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Types of Synchronization

� “A parallel computer is a collection of processing elements 
that cooperateand communicate to solve large problems fast” 

� Types of Synchronization

� Mutual Exclusion

� Lock – Unlock

� Event synchronization

� Point-to-point

� Group

� Global (barriers)
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History and Perspectives

� Much debate over hardware primitives over the years

� High-level language advocates want hardware locks/barriers

�But it goes against the “RISC” philosophy and has other problems

� Speed versus flexibility

� But how much hardware support?

� Atomic read-modify-write instructions

� Separate lock lines on the bus (older computers, inflexible)

� Specialized lock registers shared by processors (Cray XMP)

� Lock locations in memory

� Hardware full/empty bits (Tera)
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Role of User and System

� User wants to use high-level synchronization operations
� Locks, barriers, . . . etc.

� Doesn’t care about implementation

� System designer
� How much hardware support in implementation?

� Speed versus cost and flexibility

� Waiting algorithm difficult to implement in hardware

� Popular trend:
� System provides simple atomic read-modify-write primitives

� Software libraries implement lock, barrier algorithms using these

� But some propose and implement full-hardware synchronization
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Atomic Read-Modify-Write Operations

� Most modern methods use a form of atomic read-modify-write

� IBM 370
� Atomic compare&swap for multiprogramming

� Three operands: location, register to compare with, register to swap with

� Intel x86
� Instructions can be prefixed with a lock modifier (atomic execution)

� SPARC
� Atomic register-memory swapand compare&swap instructions

� MIPS and IBM Power: pair of instructions
� Load-Locked (LL) and Store-Conditional (SC)

� Later used by PowerPC and DEC Alpha too

� Allows a variety of higher-level RMW operations to be constructed
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Components of a Synchronization Event

� Acquire method
� Acquire right to the synchronization

� Enter critical section or proceed past event synchronization

� Waiting algorithm
� Wait for synchronization to become available when it isn’t

� Lock is not free, or event has not yet occurred

� Release method
� Enable other processors to acquire right to the synchronization

� Implementation of unlock

� Notifying waiting process at a point-to-point event that event has occurred

� Last process arriving at a barrier to release the waiting processes

� Waiting algorithm is independent of type of synchronization
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Waiting Algorithms
� Blocking

� Waiting process or thread is de-scheduled

� Overhead of context-switch, suspending/resuming a process/thread

� Processor becomes available to other processes or threads

� Busy-waiting
� Waiting process repeatedly test a location until it changes value

� Releasing process sets the location

� Consumes processor resources, cycles, and cache bandwidth

� Busy-waiting better when
� Scheduling overhead is larger than the expected wait time

� Processor resources are not needed for other processes

� Hybrid methods: busy-wait for a while, then block
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Mutual Exclusion: Hardware Locks
� Separate lock lines on the bus

� Holder of a lock asserts the line

� Priority mechanism for multiple requestors

� Inflexible, so not popular for general purpose use

� Few locks can be in use at a time (one per lock line)

� Hardwired waiting algorithm

� Lock registers (Cray XMP)

� Set of registers shared among processors

� Primarily used to provide atomicity for higher-level software locks
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Simple Software Lock: First Attempt
lock: ld register, location /* load register ← location */

bnz register, lock /* if register not 0, try again */

st location, #1 /* store 1 to mark it locked */

ret /* return control to caller */

unlock: st location, #0 /* store 0 to unlock location */

ret /* return control to caller */

� Problem: lock needs atomicity in its own implementation

� Load (test) and Store (set) of lock variable by a process not atomic

� Solution: atomic read-modify-write or exchangeinstructions

� Atomically test value of location and set it to another value
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Atomic Exchange Instructions
� Test&Set register, location

� Value in locationread into specified register

� Constant 1 stored into location

� Swap register, location

� Contents of memory locationand registerare exchanged

� Fetch&Op register, location

� Value in locationis read into specified register

� Apply operation Op in Fetch&Op and update memory location

� Examples: Fetch&Inc, Fetch&Dec, Fetch&Add, etc.

� Atomicity of instruction is ensured
� The read and write components cannot be split

� Atomic instructions can be used to build locks
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Simple Test&Set Lock
lock: t&s register, location /* test-and-set location */

bnz register, lock /* if not 0, try again */

ret /* return control to caller */

unlock: st location, #0 /* store 0 into location */

ret /* return control to caller */

� Test&Set succeeds if a zero is loaded into register
� Otherwise, busy wait until lock is released by another process

� Performance: test&setgenerates bus traffic (for coherence)
� Happens when multiple processors compete to acquire the same lock

� Test&Setcauses bus transaction when cache block is shared or invalid

� Bus read-exclusive transaction that invalidates others (invalidation protocol)

� Bus-update transaction (update protocol)
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Test&Set Lock With Backoff
backoff: compute backoff delay

busy wait loop

lock: t&s register, location /* test-and-set location */

bnz register, backoff /* if not 0, try again */

ret /* return control to caller */

unlock: st location, #0 /* store 0 into location */

ret /* return control to caller */

� Basic Idea of Backoff
� Insert delay after an unsuccessful attempt to acquire lock

� Reduce frequency of issuing test&sets while waiting

� Linear backoff: unsuccessful ith time delay =  k × i (constant k)

� Exponential backoff: ith time delay =  k i (works quite well empirically)



Synchronization CSE 661 – Parallel and Vector Architectures – © Dr. Muhamed Mudawar – KFUPM Slide 13

Test&Set Lock Performance

� Same total number of lock calls, independent of # of processors p

� Measure time per lock transfer; time in critical section not counted

� Irregular nature is due to timing dependence of the bus contention effects
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lock(l);
critical_section(c);
unlock(l);

On SGI Challenge
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Performance Criteria for Locks
� Low Latency

� If a lock is free and no other processor is trying to acquire it

� Low Traffic
� If many processors are trying to acquire a lock

� Processors should do so with as little bus traffic as possible

� Contention can slow down lock acquisition and unrelated bus transactions

� Scalability
� Latency and bus traffic should not increase with number of processors

� Low Storage Cost
� Lock storage should be very small, independent of p

� Fairness
� Ideally, processors should acquire locks in same order as their requests
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Test-and-Test&Set Lock
lock: ld register, location /* load first from location*/

bnz register, lock /* if not 0, try again */
t&s register, location /* test-and-set */
bnz register, lock /* if not 0, try again */
ret /* return to caller */

unlock: st location, #0 /* write 0 to location */
ret /* return to caller */

� Improved busy-waiting with load rather than test&set

� Keep testing with ordinary load in cache ⇒ No bus transactions

� Cached lock variable will be invalidated when release occurs

� When value changes to 0, try to obtain lock with test&set

� Only one attempt will succeed; others will fail and start testing again
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Challenges
� Test-and-Test&Set Lock

� Slightly higher latency than simple Test&Set, but less traffic

� But still all processors rush out on release to …
� Read miss on loadand then test&set

� Traffic is O(p2) for p processors, each to acquire the lock once

� Each oneof the p releases causes an invalidation that results in 
� O(p) cache misses on load

� O(p) processes trying to perform the test&setresulting in O(p) transactions

� Synchronization may have different needs at different times
� Lock accessed with low or high contention

� Different requirements: low latency, high throughput, fairness

� Rich area of software-hardware interactions

� Luckily, better hardware primitives as well as algorithms exist
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Improved Hardware Primitives: LL-SC

� Load-Locked or Load-Linked (LL)
� Load variable into a register and keep track of address

� Address is saved in a lock address registerand a lock flag is set

� LL may be followed by instructions that modify the register value

� Store-Conditional (SC)
� Tries to store back the same memory location read by load-locked

� Provided no one has written to the variable since this processor’s LL

� Checks the lock flag and address registerfor an intervening write

� If the flag has been reset by another write, then SC fails

� If SC succeeds, instructions between LL-SC happened atomically

� If it fails, doesn’t write nor generate invalidations (need to retry LL)

� Success or failure indicated by a return value
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Load-Locked & Store-Conditional - contd

� Store-Conditional fails when

� Detects intervening write to same address (lock flag is reset)

� A context switch happened before SC (lock flag is reset)

� Cache block was replaced (lock flag is reset)

� However, failure of SC does not generate a bus transaction

� LL-SC are not lock-unlock respectively

� Completion of Load-Locked does not mean obtaining exclusive access

� Successful LL-SC pair does not even guarantee exclusive access

� Only guarantee no conflicting write to lock variable between them

� Failure of SC will have to retry the LL-SC code sequence
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Simple Lock with LL-SC
lock:  ll reg, location /* load locked reg← location */

bnz reg, lock /* try again if not zero */
move reg, #1 /* reg← 1 */
sc location, reg /* store cond location ← 1 */
beqz reg, lock /* try again if sc failed*/
ret

unlock: st location, #0 /* write 0 to location */
ret

� Test with LL, but failed SC attempts don’t generate invalidations

� Better than Test-and-Test&Set, but still not a fair lock
� Traffic is reduced from O(p2) to O(p) per lock acquisition for p processors

� Each oneof the p releases causes an invalidation that results in 
� O(p) bus read transactions to shared location

� Separate read misses to same block can be combined if all caches observe bus read

� Only one bus transaction for successful SC that causes invalidations

� Failed SC do not generate bus transactions (advantage over test&set)

Synchronization CSE 661 – Parallel and Vector Architectures – © Dr. Muhamed Mudawar – KFUPM Slide 20

Implementing Atomic Operations
� LL-SC pair can be used to implement atomic r-m-w operations 

� Test&Set, Swap, Fetch&Op, and other custom operations
� Better than to build a lock-unlock around simple shared variable update

� Example on Implementing Fetch&Inc with LL-SC pair:
Fetch&Inc:

ll reg, location /* load locked reg ← location */
add reg, reg, #1 /* increment register */
sc location, reg /* store cond location ← reg */
beqz reg, Fetch&Inc /* retry if sc failed*/
ret

� But keep it small so SC is likely to succeed

� Don’t include store instructions between LL & SC
� Cannot be undone
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Advanced Locking Algorithms
� Problem with Simple LL-SC lock

� Doesn’t reduce traffic to minimum and not a fair lock 

� Read misses by all waiting processes after lock release and SC by winner

� Can use backoff with LL-SC to reduce bursty bus read traffic

� Advanced algorithms (useful for test&set and LL-SC)
� Only one process to attempt to acquire lock upon release

� Rather than all processes rushing to do test&set and issue invalidations

� Only one process to have read miss when a lock is released

� Rather than all processes rushing to read the lock variable (useful for LL-SC)

� Ticket lock achieves first

� Array-based lock achieves both, but with a cost in memory space

� Both are fair (FIFO) locks as well
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Ticket Lock
� Works like waiting line at bank

� Two shared counters per lock: 
� next_ticket and now_serving

� Acquire: fetch&inc my_private_ticket ← next_ticket
� Atomic operation when acquiring lock only, can be implemented with LL-SC

� Waiting: busy wait until my_private_ticket is equal to now_serving
� No atomic operation for checking since each process has a unique ticket

� Release: increment now_serving

� Fair FIFO order

� O(p) read misses at release, since all spin on now-serving
� Like simple LL-SC lock, but key difference is fairness

� Backoff can reduce number of read misses on release
� Backoff proportional to my_private_ticket – now_serving may work well
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Array-Based Lock
� Waiting processes poll on different locations in an array of size p

� Requires a shared array lock[ ] and a shared next_addressper lock

� Distantlock[ ] elements in different cache blocks to avoid false sharing

� Acquire:
� fetch&add my_address ← next_address, block_size

� Wait until lock[my_address] == 1

� Release:
� lock[my_address] = 0; 

� lock[my_address + block_size] = 1; // to wakeup next

� Performance:
� O(1) traffic per acquire with coherent caches

� FIFO ordering as in ticket lock, but O(p) space per lock
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Lock Performance on SGI Challenge
� All locks are implemented using LL-SC

� Delays are inserted as processor cycles, converted to µsecs

� Fixed number of lock calls are executed, independent of p

� Delays c and d are subtracted out of total time
� So that only time for lock acquisition, release, and contention is measured

� Three scenarios:
(1) c = 0, d = 0 (2) c = 3.64 µs, d = 0, and (3) c = 3.64 µs, d = 1.29 µs

Loop: lock(l); 
critical_section(c); 
unlock(l); 
delay(d);
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Lock Performance on SGI Challenge

Loop: lock(l); 
critical_section(c); 
unlock(l); 
delay(d);
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Lock Performance – cont’d
� Simple LL-SC lock seems to perform better

� LL-SC does best at small p due to unfairness
� Especially when same processor does SC followed directly by LL

� Same processor acquires the lock before another processor gets chance

� With delay after release, performance of simple LL-SC deteriorates

� LL-SC with exponential backoff performs best, but not necessarily fair

� Ticket lock with proportional backoff scales well
� Backoff duration proportional to: myTicketNumber – nowServing

� Array-based lock also scales well
� Only correct processor issues a read

� Time per lock acquire is constant and does not increase with p

� Real benchmarks required for better comparisons
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Point-to-Point Event Synchronization

� Software Methods:

� Busy-waiting: use ordinary variables as flags

� Blocking: use semaphores and system support

� Software Algorithms:

� Flags as control variables

� Value to control synchronization: when initial value (say 0) changes

P1 P2

a = f(x); // set a while (a == 0) ; // do nothing – busy wait
b = g(a); // use a

P1 P2

a = f(x); // set a while (flag == 0) ; // do nothing – busy wait
flag = 1; b = g(a); // use a
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Hardware Support

� Full/Empty bit with each word in memory

� Fine-grained word-level producer-consumer synchronization

� Set to “full” when word is written (special store) with produced data

� Producer does so when bit is “empty” and then set it to “full”

� Clear to “empty” when word is consumed (special load)

� Consumer reads word if “full” and then clears it to “empty”

� Hardware preserves atomicity of bit manipulation with read or write

� Concerns about flexibility

� Single-producer-multiple-consumer synchronization

� Multiple writes before consumer reads

� Language/compiler support for the use of the special load/store
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Global Barrier Event Synchronization
� Hardware barriers

� Wired-AND line separate from address/data bus

� Set input high when arrive, wait for output to be high to leave

� In practice, multiple wires to allow reuse

� Useful when barriers are global and very frequent

� Difficult to support arbitrary subset of processors

� even harder with multiple processes per processor

� Difficult to dynamically change number and identity of participants

� e.g. latter due to process migration

� Not common today on bus-based machines

� Software algorithms implemented using locks, flags, counters
� Let’s look at software algorithms with simple hardware primitives
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struct bar_type {
int counter = 0; lock_type lock; int flag = 0;

}

BARRIER (bar, p) {
LOCK(bar.lock);
if (bar.counter == 0) 

bar.flag = 0; // reset flag if first to reach
mycount = bar.counter++; // mycount is private
UNLOCK(bar.lock);
if (mycount == p) { // last to arrive

bar.counter = 0; // reset for next barrier
bar.flag = 1; // release waiters

}
else while (bar.flag == 0) {}; // busy wait for release

}

A Simple Centralized Software Barrier
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Simple Centralized Barrier – cont’d
� Barrier countercounts number of processes that have arrived

� Lock barrier and increment counter when a process arrives

� First process to arrive resets flag on which to busy-wait

� Last process resets counter and sets flag to release p–1 waiting processes 

� However, there is one problem with the flag
some computation …

BARRIER(bar,p)

some more computation …

BARRIER(bar,p)

� First process to exit first barrier enters second barrier
� Resets bar.flag to 0 when other processes did not exit first barrier

� Some processes might get stuck and will never be able to leave first barrier
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Centralized Barrier with Sense Reversal
� Sense reversal: toggles flag value (0 and 1) in consecutive times

� Waiting condition changes in consecutive instances of barrier

BARRIER (bar, p) {
local_sense = !(bar.flag); // private sense variable
LOCK(bar.lock);
mycount = bar.counter++; // private variable
UNLOCK(bar.lock);
if (mycount == p) { // last process to arrive

bar.counter = 0;
bar.flag = local_sense; // release waiters

}
else {

while (bar.flag != local_sense); // busy wait
}

}
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Improving Barrier Algorithms

Centralized 

Contention

Tree structured

Little contention

� Centralized Barrier: all p processors contend for same lock-flag

� Software Combining Tree
� Only 2 processors access the same location in a binary tree

� Valuable in distributed network: communicate along parallel paths

� Ordinary reads/writes instead of locks at each node
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Barrier Performance on SGI Challenge

� Centralized barrier involving p processors does quite well
� Requires O(p) bus transactions

� Combining tree has similar total number of bus transactions
� Can perform much better in a distributed network with parallel paths
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Synchronization Summary

� Rich interaction of hardware-software tradeoffs
� Hardware support still subject of debate

� Flexibility of LL and SC made them increasingly popular

� Must evaluate hardware primitives/software algorithms together
� Primitives determine which algorithms perform well

� Evaluation methodology is challenging
� Use of delays in micro-benchmarks

� Should use both micro-benchmarks and real workloads

� Simple software algorithms do well on a bus
� Algorithms that ensure constant-time access do exist, but more complex

� More sophisticated techniques for distributed machines


