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Types of Synchronization

% “A parallel computer is a collection of processing elements
thatcooperateand communicate to solve large problems fast”
% Types of Synchronization
» Mutual Exclusion
< Lock — Unlock
» Event synchronization
< Point-to-point
< Group
< Global (barriers)
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History and Perspectives

% Much debate over hardware primitives over the years

» High-level language advocates want hardware loeks#ys
< But it goes against the “RISC” philosophy and héeepproblems
> Speed versus flexibility

% But how much hardware support?
» Atomic read-modify-write instructions
» Separate lock lines on the bus (older computefiexible)
» Specialized lock registers shared by processoes/(EMP)
» Lock locations in memory

» Hardware full/empty bits (Tera)
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Role of User and System

+ User wants to use high-level synchronization operations
» Locks, barriers, . . . etc.
» Doesn't care about implementation
«»» System designer
» How much hardware support in implementation?
» Speed versus cost and flexibility
» Waiting algorithm difficult to implement in hardwer
% Popular trend:
» System provides simple atomic read-modify-writartives
» Software libraries implement lock, barrier algomih using these
» But some propose and implement full-hardware syordhation
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Atomic Read-Modify-Write Operations

+ Most modern methods use a form of atomic read-modify-write
< IBM 370

» Atomic compare&swap for multiprogramming

» Three operands: location, register to compare wéister to swap with
% Intel x86

» Instructions can be prefixed with@k modifier (atomic execution)
 SPARC

» Atomic register-memorgwapandcompare&swapinstructions
« MIPS and IBM Power: pair of instructions

» Load-Locked (LL) and Store-Conditional (SC)

» Later used by PowerPC and DEC Alpha too

» Allows a variety of higher-level RMW operationshie constructed
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Components of a Synchronization Event

¢+ Acquire method
» Acquire right to the synchronization
< Enter critical section or proceed past event syoruzation
+ Waiting algorithm
» Wait for synchronization to become available whiesn't
< Lock is not free, or event has not yet occurred
% Release method
> Enable other processors to acquire right to theragmization
< Implementation of unlock
< Notifying waiting process at a point-to-point evéimat event has occurred
<~ Last process arriving at a barrier to release thiéivg processes

+ Waiting algorithm is independent of type of synchronization
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Waiting Algorithms

+» Blocking
» Waiting process or thread is de-scheduled
» Overhead of context-switch, suspending/resumingpagss/thread
» Processor becomes available to other processhsecaids
% Busy-waiting
» Waiting process repeatedly test a location unthanges value
» Releasing process sets the location
» Consumes processor resources, cycles, and cactieiddn
+ Busy-waiting better when
» Scheduling overhead is larger than the expectettina
» Processor resources are not needed for other gexes

¢ Hybrid methods: busy-wait for a while, then block
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Mutual Exclusion: Hardware Locks

+» Separate lock lines on the bus
» Holder of a lock asserts the line

» Priority mechanism for multiple requestors

+ Inflexible, so not popular for general purpose use
» Few locks can be in use at a time (one per lo& lin
» Hardwired waiting algorithm

+» Lock registers (Cray XMP)
» Set of registers shared among processors

» Primarily used to provide atomicity for higher-léwoftware locks
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Simple Software Lock: First Attempt

lock: Id register, location /* load register< location */
bnz register, lock [* if register not 0, try again */
st location, #1 /* store 1 to mark it locked */
ret /* return control to caller */

unlock: st location, #0 [* store 0 to unlock location */
ret /* return control to caller */

+ Problem: lock needs atomicity in its own implementation

» Load (test) and Store (set) of lock variable by@cpss not atomic

+« Solution:atomic read-modify-write or exchangeinstructions

» Atomically test value of location and set it to #rer value
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Atomic Exchange Instructions

+» Test&Set register, location

» Value inlocationread into specifiedegister
» Constant 1 stored infocation

« Swap register, location
» Contents of memoripcationandregisterare exchanged
+» Fetch&Op register, location

» Value inlocationis read into specifietegister
» Apply operatiorOpin Fetch&Op and update memdncation
» ExamplesfFetch&lnc, Fetch&Dec, Fetch&Add, etc.

¢+ Atomicity of instruction is ensured
» The read and write components cannot be split

«» Atomic instructions can be used to build locks
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Simple Test&Set Lock

lock: t&s register, location /* test-and-set location */
bnz register, lock /*if not O, try again */
ret /* return control to caller */
unlock: st location, #0 /* store 0 into location */
ret /* return control to caller */

% Test&Set succeeds if a zero is loaded into register
> Otherwise, busy wait until lock is released by aeotprocess

« Performancetest&setgenerates bus traffic (for coherence)
» Happens when multiple processors compete to actidreame lock
> Test&Setcauses bus transaction when cache block is shaiadatid

< Bus read-exclusive transaction that invalidategmtifinvalidation protocol)
< Bus-update transaction (update protocol)
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Test&Set Lock With Backoff

backoff: comput e backoff del ay
busy wait | oop

lock: t&s register, location [* test-and-set location */
bnz register, backoff [* if not O, try again */
ret [* return control to caller */
unlock: st location, #0 [* store 0 into location */
ret [* return control to caller */

+ Basic Idea of Backoff
» Insert delay after an unsuccessful attempt to aedock
» Reduce frequency of issuing test&sets while waiting
> Linear backoff: unsuccessfiif time delay =k x i (constank)
> Exponential backoffith time delay =k ' (works quite well empirically)
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Test&Set Lock Performance

20 —

—+ Test&set,c=0
18 —| —e— Test&set, exponential backoff, c = 3.64

7
-=— Test&set, exponential backoff, c = 0 /\/?A//
16 | _e-Ideal
14 > On SGI Challenge
12 /\ M/
[ / | ///// look();

critical_section(c);
o unlock(l);

Time (us)

Number of processors

» Same total number of lock calls, independent of grocessorg

» Measure time per lock transfer; time in criticattéen not counted

» Irregular nature is due to timing dependence obile contention effects
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Performance Criteria for Locks

¢ Low Latency

> If a lock is free and no other processor is trfimgcquire it
* Low Traffic

> If many processors are trying to acquire a lock

» Processors should do so with as little bus traffipossible

» Contention can slow down lock acquisition and watesd bus transactions
¢+ Scalability

» Latency and bus traffic should not increase witmbar of processors
¢ Low Storage Cost

> Lock storage should be very small, independeipt of
% Fairness

> ldeally, processors should acquire locks in sardercas their requests
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Test-and-Test&Set Lock

lock: Id register, location * load first from location*/
bnz register, lock [* if not O, try again */
t&s register, location [* test-and-set */
bnz register, lock [* if not O, try again */
ret * return to caller */
unlock: st location, #0 * write O to location */
ret * return to caller */

+« Improved busy-waiting witlhoad rather thartest&set
» Keep testing with ordinary load in cacheNo bus transactions
» Cached lock variable will be invalidated when rekeaccurs
» When value changes to 0, try to obtain lock wékt&set

» Only one attempt will succeed; others will fail astdrt testing again
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Challenges

% Test-and-Test&Set Lock
» Slightly higher latency than simplest&Set but less traffic
» But still all processors rush out on release to ...
< Read miss oitbad and thertest&set
» Traffic is O(p?) for p processors, each to acquire the lock once
» Each oneof thep releases causes an invalidation that results in
< O(p) cache misses on load
< O(p) processes trying to perform ttest&setresulting inO(p) transactions
+« Synchronization may have different needs at different times
» Lock accessed with low or high contention
» Different requirements: low latency, high throughgairness

+ Rich area of software-hardware interactions
¢ Luckily, better hardware primitives as well as algorithms exist
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Improved Hardware Primitives: LL-SC

¢+ Load-Locked or Load-Linked (LL)
> Load variable into a register and keep track ofreskl
» Address is saved inlack address registerand aock flag is set
> LL may be followed by instructions that modify tregister value
++ Store-Conditional (SC)
> Tries to store back the same memory location rgdddd-locked
< Provided no one has written to the variable siheegrocessor’s LL
» Checks théock flag andaddress registerfor an intervening write
> If the flag has been reset by another write, thérfels
» If SC succeeds, instructions between LL-SC happetaaically
> If it fails, doesn’t write nor generate invalidat® (need to retry LL)
» Success or failure indicated by a return value
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Load-Locked & Store-Conditional - contd

+ Store-Conditional fails when
» Detects intervening write to same address (loak iBareset)
» A context switch happened before SC (lock flageiset)
» Cache block was replaced (lock flag is reset)

» However, failure of SC does not generate a busaetion

+ LL-SC are not lock-unlock respectively

» Completion of Load-Locked does not mean obtainkgusive access

» Successful LL-SC pair does not even guarantee sixellaccess
» Only guarantee no conflicting write to lock variatdetween them

» Failure of SC will have to retry the LL-SC code sence
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Simple Lock with LL-SC

lock: Il reg, location /* load locked reg— location */
bnz reg, lock /* try again if not zero */
move  reg, #1 *reg«— 1%/
sc location, reg /* store cond location— 1 */
beqz reg, lock /* try again if sc failed*/
ret

unlock: st location, #0 /* write O to location */
ret

« Test with LL, but failed SC attempts don’'t generatealidations

% Better than Test-and-Test&Set, but still not a Fadk
> Traffic is reduced from O(p?) to O(p) per lock acquisition for p processors
» Each oneof thep releases causes an invalidation that results in
<> O(p) bus read transactions to shalechtion
= Separate read misses to same block can be combined iffedlscaleserve bus read
<> Only one bus transaction for successful SC thatesinvalidations
< Failed SC do not generate bus transactions (adyatzertest&se}
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Implementing Atomic Operations

+ LL-SC pair can be used to implement atomic r-m-w operations

» Test&SetSwap Fetch&Op and other custom operations
» Better than to build a lock-unlock around simplargil variable update

+«» Example on Implementingetch&Inc with LL-SC pair:
Fetch&lnc:

I reg, location /* load locked reg— location */
add reg, reg, #1 [* increment register */

sc location, reg [* store cond locatior— reg */
beqz reg, Fetch&Inc [* retry if sc failed*/

ret
+» But keep it small so SC is likely to succeed

«» Don’t include store instructions between LL & SC
» Cannot be undone
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Advanced Locking Algorithms

¢+ Problem with Simple LL-SC lock
> Doesn't reduce traffic to minimum and not a faicko
» Read misses by all waiting processes after lodass and SC by winner
» Can use backoff with LL-SC to reduce bursty bus rteaffic

“+ Advanced algorithms (useful for test&set and LL-SC)
> Only one process to attempt to acquire lock uptease
< Rather than all processes rushing to do test&setssu@ invalidations
» Only one process to have read miss when a loakessed
< Rather than all processes rushing to read thevadkble (useful for LL-SC)
» Ticket lock achieves first
» Array-based lock achieves both, but with a cost in memory space
» Both are fair (FIFO) locks as well
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Ticket Lock

+» Works like waiting line at bank
» Two shared counters per lock:
< next_ticket andnow_serving
» Acquire:fetch&inc my_private_ticket < next_ticket
< Atomic operation when acquiring lock only, can bwliemented with LL-SC
» Waiting: busy wait untimy_private_ticket is equal tanow_serving
<~ No atomic operation for checking since each probassa unique ticket
» Releaseincrement now_serving

+¢ Fair FIFO order
+ O(p) read misses at release, since all spin@n-serving
» Like simple LL-SC lock, but key difference is fa@iss

» Backoff can reduce number of read misses on release
< Backoff proportional tany_private_ticket — now_servingmay work well
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Array-Based Lock

++ Waiting processes poll on different locations in an array ofsize
» Requires a shared arriek| | and a sharedext_addressper lock
» Distantlock| | elements in different cache blocks to avoid fatsriang

« Acquire:
» fetch&add my_address — next_address, block_size

s Wait until lock[my_address] ==

000
+ Release: Om @ 00
> lock[my_address] = 0;
» lock[my_address + block_size] = 1; // to wakeup next

% Performance:
» O(1)traffic per acquire with coherent caches
» FIFO ordering as in ticket lock, b@(p) space per lock
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Lock Performance on SGI Challenge

¢ All locks are implemented using LL-SC
+« Delays are inserted as processor cycles, converieskts

Loop: lock(l);
critical_section(c);
unlock(l);
delay(d);

L)

*0

» Fixed number of lock calls are executed, independent of
+ Delaysc andd are subtracted out of total time
» So that only time for lock acquisition, releaseq @ontention is measured
¢ Three scenarios:
(1)c=0,d=0(2)c=3.64us,d=0, and (3¢ = 3.64us,d = 1.29us

*0
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Lock Performance on SGI Challenge

Loop |OCk(|), —e__ Array-based
critical_section(c); —— ti-sc
. —a_ LL-SC, exponential
unlock(l)., e
dEIay(d)v — Ticket, proportional
7 7 7

Time (us)

Time (ps)

1

[~ L !
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1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Number of processors Number of processors

Number of processors

(@) Null (c=0,d=0) (b) Critical-section (c = 3.64 s, d = 0) (c) Delay (c =3.64 ps, d = 1.29 ps)
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Lock Performance — cont'd

+ Simple LL-SC lock seems to perform better

¢ LL-SC does best at smalldue to unfairness
> Especially when same processor does SC followextttiirby LL
» Same processor acquires the lock before anotheegsor gets chance
> With delay after release, performance of simpleSC-deteriorates
» LL-SC with exponential backoff performs best, bat necessarily fair
+ Ticket lock with proportional backoff scales well
» Backoff duration proportional tanyTicketNumber — nowServing
¢ Array-based lock also scales well
» Only correct processor issues a read
> Time per lock acquire is constant and does notas® withp

+ Real benchmarks required for better comparisons
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Point-to-Point Event Synchronization

% Software Methods:

» Busy-waiting: use ordinary variables as flags

» Blocking: use semaphores and system support
+ Software Algorithms:

» Flags as control variables

P1 P2
a=f(x); //seta while (flag == 0) ; // do nothing — busy wait
flag = 1; b =g(a); /l use a

» Value to control synchronization: when initial val(say 0) changes

P1 P2
a=f(x); //seta while (a==0); /I do nothing — busy wait
b =g(a); /l use a
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Hardware Support

% Full/Empty bit with each word in memory
» Fine-grained word-level producer-consumer synclzaion
» Set to “full” when word is written (special stomsith produced data
< Producer does so when bit is “empty” and thentgdet‘ffull”
» Clear to “empty” when word is consumed (speciatijoa
< Consumer reads word if “full” and then clears itémpty”
» Hardware preserves atomicity of bit manipulatiothwead or write
» Concerns about flexibility
< Single-producer-multiple-consumer synchronization
< Multiple writes before consumer reads

< Language/compiler support for the use of the spéxaal/store
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Global Barrier Event Synchronization

% Hardware barriers
» Wired-AND line separate from address/data bus
» Set input high when arrive, wait for output to bghhto leave
» In practice, multiple wires to allow reuse
» Useful when barriers are global and very frequent
» Difficult to support arbitrary subset of processors
< even harder with multiple processes per processor

» Difficult to dynamically change number and identiiyparticipants
< e.g. latter due to process migration

» Not common today on bus-based machines

+» Software algorithms implemented using locks, flags, counters
» Let’s look at software algorithms with simple hasede primitives
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A Simple Centralized Software Barrier

struct bar_type {
int counter = 0; lock_type lock; int flag = 0;
}

BARRIER (bar, p) {
LOCK(bar.lock);
if (bar.counter == 0)

bar.flag = 0; I reset flag if first to reach
mycount = bar.counter++; /[l mycount is private
UNLOCK((bar.lock);
if (mycount == p) { /l'last to arrive
bar.counter = 0; /I reset for next barrier
bar.flag = 1; / release waiters
}
else while (bar.flag == 0) {}; /I busy wait for release

}
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Simple Centralized Barrier — cont’d

¢ Barriercountercounts number of processes that have arrived
» Lock barrier and increment counter when a procesgea
> First process to arrive resets flag on which to/buait
» Last process resets counter and sets flag to eghedswaiting processes
+» However, there is one problem with titey
some computation ...
BARRIER(bar,p)
some more computation ...
BARRIER(bar,p)
+» First process to exit first barrier enters second barrier
» Resetdar.flagto 0 when other processes did not exit first barrie
» Some processes might get stuck and will never ketalleave first barrier
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Centralized Barrier with Sense Reversal

+ Sense reversal: toggles flag value (0 and 1) in consecutive times
» Waiting condition changes in consecutive instarofdsarrier

BARRIER (bar, p) {

local_sense = !(bar.flag); /I private sense variable
LOCK(bar.lock);
mycount = bar.counter++; /I private variable
UNLOCK(bar.lock);
if (mycount ==p){ /I last process to arrive
bar.counter = 0;
bar.flag =local_sense; Il release waiters
else {
} while (bar.flag !=local_sense); I/ busy wait

}
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Improving Barrier Algorithms

% Centralized Barrier: afp processors contend for same lock-flag
++ Software Combining Tree

» Only 2 processors access the same location inaaybiree

> Valuable in distributed network: communicate al@agallel paths

» Ordinary reads/writes instead of locks at each node

O Contention Little contention
oo/vo/ &\% C{'Qg ;’Q\O

Tree structured
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Barrier Performance on SGI Challenge

35

30 | Centralized
—é— Combining tree
25
il //‘\(//
15

5

Time (is)

1 1 1 1 1 1 J
0 1 2 3 1 5 6 7 8 Number of processors

+» Centralized barrier involving processors does quite well
» RequiresO(p) bus transactions

+« Combining tree has similar total number of bus transactions
» Can perform much better in a distributed networthvparallel paths
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Synchronization Summary

++ Rich interaction of hardware-software tradeoffs
» Hardware support still subject of debate

+» Flexibility of LL and SC made them increasingly popular
+ Must evaluate hardware primitives/software algorithms together
» Primitives determine which algorithms perform well

+« Evaluation methodology is challenging
» Use of delays in micro-benchmarks
» Should use both micro-benchmarks and real workloads
+ Simple software algorithms do well on a bus
» Algorithms that ensure constant-time access dd,dxis more complex
» More sophisticated techniques for distributed maehi
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