
Cache CoherenceCache Coherence

CSE 661 – Parallel and Vector Architectures

Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Outline of this Presentation

 Shared Memory Multiprocessor Organizations

 Cache Coherence Problem

 Cache Coherence through Bus Snooping

 2-state Write-Through Invalidation Protocol

 Design Space for Snooping Protocols

 3-state (MSI) Write-Back Invalidation Protocol

Cache Coherence - 2 Muhamed Mudawar – CSE 661

 4-state (MESI) Write-Back Invalidation Protocol

 4-state (Dragon) Write-Back Update Protocol

Shared Memory Organizations

P1

$ $

Pn
P1

Switch

Pn

$

Interconnection network

$

Mem Mem

Dance Hall (UMA)

P1 PnP1 Pn

Main memory

Interleaved

Interleaved

Cache

Shared Cache

Cache Coherence - 3 Muhamed Mudawar – CSE 661

$

Interconnection network

$
Mem Mem

Distributed Shared Memory (NUMA)

$ $

Mem I/O devices

Bus-based Shared Memory

Bus-Based Symmetric Multiprocessors

 Symmetric access to main memory from any processor

 Dominate the server market
Building blocks for larger systems

 Attractive as throughput servers and for parallel programs

P1

M ltil l

Pn

Multilevel

Uniform access via loads/stores

Automatic data movement and
coherent replication in caches

Cheap and powerful extension to

Cache Coherence - 4 Muhamed Mudawar – CSE 661

I/O systemMain memory

Bus

Multilevel
Cache

Multilevel
Cacheuniprocessors

Key is extension of memory
hierarchy to support multiple
processors

Caches are Critical for Performance

 Reduce average latency
Main memory access costs from 100 to 1000 cycles

C h d l f lCaches can reduce latency to few cycles

 Reduce average bandwidth and demand to access main memory
Reduce access to shared bus or interconnect

 Automatic migration of data
Data is moved closer to processor

 A t ti li ti f d t

Cache Coherence - 5 Muhamed Mudawar – CSE 661

P P P

 Automatic replication of data
 Shared data is replicated upon need

 Processors can share data efficiently

 But private caches create a problem

Cache Coherence

What happens when loads & stores on different processors to
same memory location?

 P i h bl Private processor caches create a problem
 Copies of a variable can be present in multiple caches

 A write by one processor may NOT become visible to others

 Other processors keep accessing stale value in their caches

 Cache coherence problem

 Also in uniprocessors when I/O operations occur

Cache Coherence - 6 Muhamed Mudawar – CSE 661

 Also in uniprocessors when I/O operations occur
 Direct Memory Access (DMA) between I/O device and memory

 DMA device reads stale value in memory when processor updates cache

 Processor reads stale value in cache when DMA device updates memory

Example on Cache Coherence Problem

P1

h

P2 P3

5

u = ?

4

u = ? 3

h h

 Processors see different values for u after event 3

I/O devicesMemory

cache 54

u :5 2

u :5 u= 7

1

u :5
cache cache

Cache Coherence - 7 Muhamed Mudawar – CSE 661

With write back caches …
 Processes accessing main memory may see stale (old incorrect) value

Value written back to memory depends on sequence of cache flushes

 Unacceptable to programs, and frequent!

What to do about Cache Coherence?

 Organize the memory hierarchy to make it go away

Remove private caches and use a shared cache

 A switch is needed added cost and latency

 Not practical for a large number of processors

Mark segments of memory as uncacheable

 Shared data or segments used for I/O are not cached

 Private data is cached only

We loose performance

Cache Coherence - 8 Muhamed Mudawar – CSE 661

We loose performance

 Detect and take actions to eliminate the problem

Can be addressed as a basic hardware design issue

 Techniques solve both multiprocessor as well as I/O cache coherence

Shared Cache Design: Advantages

 Cache placement identical to single cache
Only one copy of any cached block

No coherence problemNo coherence problem

 Fine-grain sharing
Communication latency is reduced when sharing cache

Attractive to Chip Multiprocessors (CMP), latency is few cycles

 Potential for positive interference
One processor prefetches data for another

P1

Switch

Pn

Cache Coherence - 9 Muhamed Mudawar – CSE 661

 Better utilization of total storage
Only one copy of code/data used

 Can share data within a block
 Long blocks without false sharing

Main memory

Shared Cache (Interleaved)

(Interleaved)

Shared-Cache Design: Disadvantages

 Fundamental bandwidth limitation

Can connect only a small number of processors
P1

Switch

Pn

 Increases latency of all accesses

Crossbar switch

Hit time increases

 Potential for negative interference

One processor flushes data needed by another

Main memory

Shared Cache (Interleaved)

(Interleaved)

Cache Coherence - 10 Muhamed Mudawar – CSE 661

 Share second-level (L2) cache:

Use private L1 caches but make the L2 cache shared

Many L2 caches are shared today

Intuitive Coherent Memory Model
 Caches are supposed to be transparent

What would happen if there were no caches?

All reads and writes would go to main memory

Reading a location should return last value written by any processor

What does last value written mean in a multiprocessor?

All operations on a particular location would be serialized

All processors would see the same access order to a particular location

 If h b h d h l i

Cache Coherence - 11 Muhamed Mudawar – CSE 661

 If they bother to read that location

 Interleaving among memory accesses from different processors

Within a processor program order on a given memory location

Across processors only constrained by explicit synchronization

Formal Definition of Memory Coherence

 A memory system is coherent if there exists a serial order of
memory operations on each memory location X, such that …

1. A read by any processor P to location X that follows a write by
processor Q (or P) to X returns the last written value if no other writes
to X occur between the two accesses

2. Writes to the same location X are serialized; two writes to same
location X by any two processors are seen in the same order by all
processors

Cache Coherence - 12 Muhamed Mudawar – CSE 661

 Two properties

 Write propagation: writes become visible to other processors

 Write serialization: writes are seen in the same order by all processors

Hardware Coherency Solutions

 Bus Snooping Solution
 Send all requests for data to all processors

 P if h h d d di l Processors snoop to see if they have a copy and respond accordingly

Requires broadcast, since caching information is in processors

Works well with bus (natural broadcast medium)

Dominates for small scale multiprocessors (most of the market)

 Directory-Based Schemes
Keep track of what is being shared in one logical place

Cache Coherence - 13 Muhamed Mudawar – CSE 661

Distributed memory distributed directory

 Send point-to-point requests to processors via network

 Scales better than Snooping and avoids bottlenecks

Actually existed before snooping-based schemes

Cache Coherence Using a Bus

 Built on top of two fundamentals of uniprocessor systems
Bus transactions

 S i i di i h State transition diagram in a cache

 Uniprocessor bus transaction
 Three phases: arbitration, command/address, data transfer

All devices observe addresses, one is responsible

 Uniprocessor cache states
 Effectively, every block is a finite state machine

Cache Coherence - 14 Muhamed Mudawar – CSE 661

 Effectively, every block is a finite state machine

Write-through, write no-allocate has two states: Valid, Invalid

Writeback caches have one more state: Modified (or Dirty)

Multiprocessors extend both to implement coherence

Snoopy Cache-Coherence Protocols

State

Tag

Data

P1

$

Bus snoop

$

Pn

 Bus is a broadcast medium & caches know what they have
 Transactions on bus are visible to all caches

 Cache controllers snoop all transactions on the shared bus

I/O devicesMem

$ $

Cache-memory

transaction

Cache Coherence - 15 Muhamed Mudawar – CSE 661

Cac e co t o e s s oop a t a sact o s o t e s a ed bus
Relevant transaction if for a block it contains

 Take action to ensure coherence
 Invalidate, update, or supply value

Depends on state of the block and the protocol

Implementing a Snooping Protocol

 Cache controller receives inputs from two sides:
Requests from processor (load/store)

Bus requests/responses from snooperBus requests/responses from snooper

 Controller takes action in response to both inputs
Updates state of blocks

Responds with data

Generates new bus transactions

 Protocol is a distributed algorithm
C ti t t hi d ti

State Tag Data

Cache

ProcessorLd/St

Cache Coherence - 16 Muhamed Mudawar – CSE 661

Cooperating state machines and actions

 Basic Choices
Write-through versus Write-back

 Invalidate versus Update Snooper

° ° °

Write-through Invalidate Protocol

 Two states per block in each cache

 States similar to a uniprocessor cache V

PrRd/ --
PrWr / BusWr

 Hardware state bits associated with
blocks that are in the cache

 Other blocks can be seen as being in
invalid (not-present) state in that cache

Writes invalidate all other caches

I

BusWr / --

PrWr / BusWr

PrRd / BusRd

Cache Coherence - 17 Muhamed Mudawar – CSE 661

 No local change of state

 Multiple simultaneous readers of
block, but write invalidates them

I/O devicesMem

P
1

$ $

Pn

Bus

Example of Write-through Invalidate

P1 P2 P3

u = ?

4

u = ? 3

I/O devices

Memory

$ $ $54

u :5
1

u :5

2

u :5

u = 7

u = 7

Cache Coherence - 18 Muhamed Mudawar – CSE 661

 At step 4, an attempt to read u by P1 will result in a cache miss
Correct value of u is fetched from memory

Similarly, correct value of u is fetched at step 5 by P2

2-state Protocol is Coherent
 Assume bus transactions and memory operations are atomic

All phases of one bus transaction complete before next one starts

 Processor waits for memory operation to complete before issuing next Processor waits for memory operation to complete before issuing next

 Assume one-level cache
 Invalidations applied during bus transaction

 All writes go to bus + atomicity
Writes serialized by order in which they appear on bus bus order

 Invalidations are performed by all cache controllers in bus order

 Read misses are serialized on the bus along with writes

Cache Coherence - 19 Muhamed Mudawar – CSE 661

 Read misses are serialized on the bus along with writes
Read misses are guaranteed to return the last written value

 Read hits do not go on the bus, however …
Read hit returns last written value by processor or by its last read miss

Write-through Performance

Write-through protocol is simple
 Every write is observable

 However, every write goes on the bus
Only one write can take place at a time in any processor

 Uses a lot of bandwidth!

 Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes
 0.15 * 200 M = 30 M stores per second per processor

 30 M stores * 8 bytes/store = 240 MB/s per processor

Cache Coherence - 20 Muhamed Mudawar – CSE 661

 30 M stores * 8 bytes/store = 240 MB/s per processor

 1GB/s bus can support only about 4 processors before saturating

Write-back caches absorb most writes as cache hits
But write hits don’t go on bus – need more sophisticated protocols

Write-back Cache
 Processor / Cache Operations

 PrRd, PrWr, block Replace

 States

PrRd/—

PrWr/—

 States
 Invalid, Valid (clean), Modified (dirty)

 Bus Transactions
 Bus Read (BusRd), Write-Back (BusWB)
 Only cache-block are transfered

 Can be adjusted for cache coherence
 Treat Valid as Shared

V

M

Replace/BusWB
PrWr/—

Replace/—

PrWr/BusRd

Cache Coherence - 21 Muhamed Mudawar – CSE 661

 Treat Valid as Shared
 Treat Modified as Exclusive

 Introduce one new bus transaction
 Bus Read-eXclusive (BusRdX)
 For purpose of modifying (read-to-own)

I

PrRd/BusRd

PrRd/—

MSI Write-Back Invalidate Protocol
 Three States:

Modified: only this cache has a modified valid
copy of this block

PrRd/—
PrWr/—

py

 Shared: block is clean and may be cached in
more than one cache, memory is up-to-date

 Invalid: block is invalid

 Four bus transactions:
Bus Read: BusRd on a read miss

Bus Read Exclusive: BusRdX

M

S

PrWr/BusRdX

PrWr/BusRdX

BusRd/Flush

BusRdX/Flush
Replace/BusWB

Cache Coherence - 22 Muhamed Mudawar – CSE 661

 Obtain exclusive copy of cache block

Bus Write-Back: BusWB on replacement

 Flush on BusRd or BusRdX
 Cache puts data block on the bus, not memory

Cache-to-cache transfer and memory is updated

I

PrRd/BusRd
PrRd/—
BusRd/—

BusRdX/—
Replace/—

State Transitions in the MSI Protocol
 Processor Read

Cache miss causes a Bus Read
Cache hit (S or M) no bus activity

PrRd/—
PrWr/—

() y

 Processor Write
Generates a BusRdX when not Modified
 BusRdX causes other caches to invalidate

No bus activity when Modified block

 Observing a Bus Read
 If Modified, flush block on bus
 Picked by memory and requesting cache

M

S

PrWr/BusRdX

PrWr/BusRdX

BusRd/Flush

BusRdX/Flush
Replace/BusWB

Cache Coherence - 23 Muhamed Mudawar – CSE 661

 Picked by memory and requesting cache
 Block is now shared

 Observing a Bus Read Exclusive
 Invalidate block
 Flush data on bus if block is modified

I

PrRd/BusRd
PrRd/—
BusRd/—

BusRdX/—
Replace/—

Example on MSI Write-Back Protocol

P1 P2 P3

I/O devicesMemory

u:

u S 5 u S 5M 7u S 77

Processor Action State P1 State P2 State P3 Bus Action Data from

5 7

I SS

Cache Coherence - 24 Muhamed Mudawar – CSE 661

1. P1 reads u S BusRd Memory
2. P3 reads u S S BusRd Memory
3. P3 writes u I M BusRdX Memory
4. P1 reads u S S BusRd, Flush P3 cache
5. P2 reads u S S S BusRd Memory

Processor Action State P1 State P2 State P3 Bus Action Data from

Lower-level Design Choices

 Bus Upgrade (BusUpgr) to convert a block from state S to M
Causes invalidations (as BusRdX) but avoids reading of block

When BusRd observed in state M: what transition to make?When BusRd observed in state M: what transition to make?
M → S or M → I depending on expectations of access patterns

 Transition to state S
Assumption that I’ll read again soon, rather than others will write
 Good for mostly read data

 Transition to state I
 So I don’t have to be invalidated when other processor writes

Cache Coherence - 25 Muhamed Mudawar – CSE 661

 So I don t have to be invalidated when other processor writes
Good for “migratory” data
 I read and write, then another processor will read and write …

 Sequent Symmetry and MIT Alewife use adaptive protocols

 Choices can affect performance of memory system

Satisfying Coherence

Write propagation
A write to a shared or invalid block is made visible to all other caches
Using the Bus Read-exclusive (BusRdX) transactionUsing the Bus Read exclusive (BusRdX) transaction
 Invalidations that the Bus Read-exclusive generates
Other processors experience a cache miss before observing the value written

Write serialization
All writes that appear on the bus (BusRdX) are serialized by the bus
Ordered in the same way for all processors including the writer
Write performed in writer’s cache before it handles other transactions

However, not all writes appear on the bus

Cache Coherence - 26 Muhamed Mudawar – CSE 661

, pp
Write sequence to modified block must come from same processor, say P
Serialized within P: Reads by P will see the write sequence in the serial order
Serialized to other processors
 Read miss by another processor causes a bus transaction
 Ensures that writes appear to other processors in the same serial order

MESI Write-Back Invalidation Protocol

 Drawback of the MSI Protocol

 Read/Write of a block causes 2 bus transactions

 Read BusRd (I→S) followed by a write BusRdX (S→M)

 This is the case even when a block is private to a process and not shared

 Most common when using a multiprogrammed workload

 To reduce bus transactions, add an exclusive state

 E l i i di h l hi h h l

Cache Coherence - 27 Muhamed Mudawar – CSE 661

 Exclusive state indicates that only this cache has clean copy

Distinguish between an exclusive clean and an exclusive modified state

A block in the exclusive state can be written without accessing the bus

Four States: MESI

M: Modified
Only this cache has copy and is modified
Main memory copy is staleMain memory copy is stale

 E: Exclusive or exclusive-clean
Only this cache has copy which is not modified
Main memory is up-to-date

 S: Shared
More than one cache may have copies, which are not modified
Main memory is up-to-date

Cache Coherence - 28 Muhamed Mudawar – CSE 661

 I: Invalid
 Know also as Illinois protocol

 First published at University of Illinois at Urbana-Champaign
Variants of MESI protocol are used in many modern microprocessors

Hardware Support for MESI

P1

Tag State Data

P2

Tag State Data

P3

Tag State Data

 New requirement on the bus interconnect
Additi l i l ll d th h d i l S t b il bl t ll t ll

Shared signal S
wired-OR

I/O devicesMemory

g g g

Cache Coherence - 29 Muhamed Mudawar – CSE 661

Additional signal, called the shared signal S, must be available to all controllers

 Implemented as a wired-OR line

 All cache controllers snoop on BusRd
Assert shared signal if block is present (state S, E, or M)

Requesting cache chooses between E and S states depending on shared signal

MESI State Transition Diagram

 Processor Read
Causes a BusRd on a read miss
BusRd(S) => shared line asserted

PrWr/—

M

PrRd

BusRd(S) > shared line asserted
 Valid copy in another cache
 Goto state S

BusRd(~S) => shared line not asserted
 No cache has this block
 Goto state E

No bus transaction on a read hit

 Processor Write

PrRd/—

E

S

BusRdX/
Flush

BusRd/—

PrWr/
BusUpgr

PrWr/
BusRdX

BusRd/
Flush

BusRdX/—

PrRd/
BusRd(~S)

PrWr/—

Replace/
BusWB

Replace/—

Cache Coherence - 30 Muhamed Mudawar – CSE 661

 Processor Write
 Promotes block to state M
Causes BusRdX / BusUpgr for states I / S
 To invalidate other copies

No bus transaction for states E and M
I

PrRd/
BusRd(S)

BusRdX or
BusUpgr/—

PrRd/—
BusRd/—

BusRd(~S)

Replace/—

MESI State Transition Diagram – cont’d

 Observing a BusRd
Demotes a block from E to S state
 Since another cached copy exists

PrWr/—

M

PrRd

 Since another cached copy exists

Demotes a block from M to S state
 Will cause modified block to be flushed

 Block is picked up by requesting cache
and main memory

 Observing a BusRdX or BusUpgr
Will invalidate block

PrRd/—

E

S

BusRdX/
Flush

BusRd/
C2C

PrWr/
BusUpgr

PrWr/
BusRdX

BusRd/
Flush

BusRdX/C2C
PrRd/
BusRd(~S)

PrWr/—

Replace/
BusWB

Replace/—

Cache Coherence - 31 Muhamed Mudawar – CSE 661

Will cause a modified block to be flushed

 Cache-to-Cache (C2C) Sharing
 Supported by original Illinois version

Cache rather than memory supplies data I

PrRd/
BusRd(S)

PrRd/—
BusRd/C2C

BusRd(~S)
BusRdX/—
BusUpgr/—
Replace/—

MESI Lower-level Design Choices
Who supplies data on a BusRd/BusRdX when in E or S state?

Original, Illinois MESI: cache, since assumed faster than memory

 But cache to cache sharing adds complexity But cache-to-cache sharing adds complexity
 Intervening is more expensive than getting data from memory

How does memory know it should supply data (must wait for caches)

 Selection algorithm if multiple caches have shared data

 Flushing data on the bus when block is Modified
Data is picked up by the requesting cache and by main memory

B t i i l th ti h th bl k i ht b

Cache Coherence - 32 Muhamed Mudawar – CSE 661

But main memory is slower than requesting cache, so the block might be
picked up only by the requesting cache and not by main memory

 This requires a fifth state: Owned state MOESI Protocol

Owned state is a Shared Modified state where memory is not up-to-date
 The block can be shared in more than one cache but owned by only one

Dragon Write-back Update Protocol
 Four states

Exclusive-clean (E)
 My cache ONLY has the data block and memory is up-to-date

 Shared clean (Sc)
 My cache and other caches have data block and my cache is NOT owner
 Memory MAY or MAY NOT be up-to-date

 Shared modified (Sm)
 My cache and other caches have data block and my cache is OWNER
 Memory is NOT up-to-date
 Sm and Sc can coexist in different caches, with only one cache in Sm state

M difi d (M)

Cache Coherence - 33 Muhamed Mudawar – CSE 661

Modified (M)
 My cache ONLY has data block and main memory is NOT up-to-date

 No Invalid state
Blocks are never invalidated, but are replaced
 Initially, cache misses are forced in each set to bootstrap the protocol

Dragon State Transition Diagram
 Cache Miss Events

 PrRdMiss, PrWrMiss
 Block is not present in cache PrRdMiss/

BusRd(S)
PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

p

 New Bus Transaction
Bus Update: BusUpd
Broadcast single word on bus
Update other relevant caches

 Read Hit: no action required
 Read Miss: BusRd Transaction

E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 34 Muhamed Mudawar – CSE 661

Block loaded into E or Sc state
 Depending on shared signal S

 If block exists in another cache
 If in M or Sm state then cache

supplies data & changes state to Sm

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon State Transition Diagram - cont’d
Write Hit:

 If Modified, no action needed

 If Exclusive then
PrRdMiss/
BusRd(S)

PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

 If Exclusive then
 Make it Modified

 No bus action needed

 If shared (Sc or Sm)
 Bus Update transaction

 If any other cache has a copy
 It asserts the shared signal S

E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 35 Muhamed Mudawar – CSE 661

 Updates its block

 Goto Sc state

 Issuing cache goes to
 Sm state if block is shared

 M state if block is not shared

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon State Transition Diagram - cont’d
Write Miss:

 First, a BusRd is generated

 Shared signal S is examined
PrRdMiss/
BusRd(S)

PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

 Shared signal S is examined

 If block is found is other caches
 Block is loaded in Sm state

 Bus update is also required

 2 bus transactions needed

 If the block is not found
 Block is loaded in M state

E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 36 Muhamed Mudawar – CSE 661

 No Bus update is required

 Replacement:
Block is written back if modified
 M or Sm state only

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon’s Lower-level Design Choices

 Shared-modified state can be eliminated
Main memory is updated on every Bus Update transaction

 DEC Fi fl lti DEC Firefly multiprocessor

However, Dragon protocol does not update main memory on Bus Update

 Only caches are updated

 DRAM memory is slower to update than SRAM memory in caches

 Should replacement of an Sc block be broadcast to other caches?
Allow last copy to go to E or M state and not to generate future updates

Cache Coherence - 37 Muhamed Mudawar – CSE 661

 Can local copy be updated on write hit before controller gets bus?
Can mess up write serialization

A write to a non-exclusive block must be “seen” (updated) in all other
caches BEFORE the write can be done in the local cache

