
Cache CoherenceCache Coherence

CSE 661 – Parallel and Vector Architectures

Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Outline of this Presentation

 Shared Memory Multiprocessor Organizations

 Cache Coherence Problem

 Cache Coherence through Bus Snooping

 2-state Write-Through Invalidation Protocol

 Design Space for Snooping Protocols

 3-state (MSI) Write-Back Invalidation Protocol

Cache Coherence - 2 Muhamed Mudawar – CSE 661

 4-state (MESI) Write-Back Invalidation Protocol

 4-state (Dragon) Write-Back Update Protocol

Shared Memory Organizations

P1

$ $

Pn
P1

Switch

Pn

$

Interconnection network

$

Mem Mem

Dance Hall (UMA)

P1 PnP1 Pn

Main memory

Interleaved

Interleaved

Cache

Shared Cache

Cache Coherence - 3 Muhamed Mudawar – CSE 661

$

Interconnection network

$
Mem Mem

Distributed Shared Memory (NUMA)

$ $

Mem I/O devices

Bus-based Shared Memory

Bus-Based Symmetric Multiprocessors

 Symmetric access to main memory from any processor

 Dominate the server market
Building blocks for larger systems

 Attractive as throughput servers and for parallel programs

P1

M ltil l

Pn

Multilevel

Uniform access via loads/stores

Automatic data movement and
coherent replication in caches

Cheap and powerful extension to

Cache Coherence - 4 Muhamed Mudawar – CSE 661

I/O systemMain memory

Bus

Multilevel
Cache

Multilevel
Cacheuniprocessors

Key is extension of memory
hierarchy to support multiple
processors

Caches are Critical for Performance

 Reduce average latency
Main memory access costs from 100 to 1000 cycles

C h d l f lCaches can reduce latency to few cycles

 Reduce average bandwidth and demand to access main memory
Reduce access to shared bus or interconnect

 Automatic migration of data
Data is moved closer to processor

 A t ti li ti f d t

Cache Coherence - 5 Muhamed Mudawar – CSE 661

P P P

 Automatic replication of data
 Shared data is replicated upon need

 Processors can share data efficiently

 But private caches create a problem

Cache Coherence

What happens when loads & stores on different processors to
same memory location?

 P i h bl Private processor caches create a problem
 Copies of a variable can be present in multiple caches

 A write by one processor may NOT become visible to others

 Other processors keep accessing stale value in their caches

 Cache coherence problem

 Also in uniprocessors when I/O operations occur

Cache Coherence - 6 Muhamed Mudawar – CSE 661

 Also in uniprocessors when I/O operations occur
 Direct Memory Access (DMA) between I/O device and memory

 DMA device reads stale value in memory when processor updates cache

 Processor reads stale value in cache when DMA device updates memory

Example on Cache Coherence Problem

P1

h

P2 P3

5

u = ?

4

u = ? 3

h h

 Processors see different values for u after event 3

I/O devicesMemory

cache 54

u :5 2

u :5 u= 7

1

u :5
cache cache

Cache Coherence - 7 Muhamed Mudawar – CSE 661

With write back caches …
 Processes accessing main memory may see stale (old incorrect) value

Value written back to memory depends on sequence of cache flushes

 Unacceptable to programs, and frequent!

What to do about Cache Coherence?

 Organize the memory hierarchy to make it go away

Remove private caches and use a shared cache

 A switch is needed  added cost and latency

 Not practical for a large number of processors

Mark segments of memory as uncacheable

 Shared data or segments used for I/O are not cached

 Private data is cached only

We loose performance

Cache Coherence - 8 Muhamed Mudawar – CSE 661

We loose performance

 Detect and take actions to eliminate the problem

Can be addressed as a basic hardware design issue

 Techniques solve both multiprocessor as well as I/O cache coherence

Shared Cache Design: Advantages

 Cache placement identical to single cache
Only one copy of any cached block

No coherence problemNo coherence problem

 Fine-grain sharing
Communication latency is reduced when sharing cache

Attractive to Chip Multiprocessors (CMP), latency is few cycles

 Potential for positive interference
One processor prefetches data for another

P1

Switch

Pn

Cache Coherence - 9 Muhamed Mudawar – CSE 661

 Better utilization of total storage
Only one copy of code/data used

 Can share data within a block
 Long blocks without false sharing

Main memory

Shared Cache (Interleaved)

(Interleaved)

Shared-Cache Design: Disadvantages

 Fundamental bandwidth limitation

Can connect only a small number of processors
P1

Switch

Pn

 Increases latency of all accesses

Crossbar switch

Hit time increases

 Potential for negative interference

One processor flushes data needed by another

Main memory

Shared Cache (Interleaved)

(Interleaved)

Cache Coherence - 10 Muhamed Mudawar – CSE 661

 Share second-level (L2) cache:

Use private L1 caches but make the L2 cache shared

Many L2 caches are shared today

Intuitive Coherent Memory Model
 Caches are supposed to be transparent

What would happen if there were no caches?

All reads and writes would go to main memory

Reading a location should return last value written by any processor

What does last value written mean in a multiprocessor?

All operations on a particular location would be serialized

All processors would see the same access order to a particular location

 If h b h d h l i

Cache Coherence - 11 Muhamed Mudawar – CSE 661

 If they bother to read that location

 Interleaving among memory accesses from different processors

Within a processor  program order on a given memory location

Across processors  only constrained by explicit synchronization

Formal Definition of Memory Coherence

 A memory system is coherent if there exists a serial order of
memory operations on each memory location X, such that …

1. A read by any processor P to location X that follows a write by
processor Q (or P) to X returns the last written value if no other writes
to X occur between the two accesses

2. Writes to the same location X are serialized; two writes to same
location X by any two processors are seen in the same order by all
processors

Cache Coherence - 12 Muhamed Mudawar – CSE 661

 Two properties

 Write propagation: writes become visible to other processors

 Write serialization: writes are seen in the same order by all processors

Hardware Coherency Solutions

 Bus Snooping Solution
 Send all requests for data to all processors

 P if h h d d di l Processors snoop to see if they have a copy and respond accordingly

Requires broadcast, since caching information is in processors

Works well with bus (natural broadcast medium)

Dominates for small scale multiprocessors (most of the market)

 Directory-Based Schemes
Keep track of what is being shared in one logical place

Cache Coherence - 13 Muhamed Mudawar – CSE 661

Distributed memory  distributed directory

 Send point-to-point requests to processors via network

 Scales better than Snooping and avoids bottlenecks

Actually existed before snooping-based schemes

Cache Coherence Using a Bus

 Built on top of two fundamentals of uniprocessor systems
Bus transactions

 S i i di i h State transition diagram in a cache

 Uniprocessor bus transaction
 Three phases: arbitration, command/address, data transfer

All devices observe addresses, one is responsible

 Uniprocessor cache states
 Effectively, every block is a finite state machine

Cache Coherence - 14 Muhamed Mudawar – CSE 661

 Effectively, every block is a finite state machine

Write-through, write no-allocate has two states: Valid, Invalid

Writeback caches have one more state: Modified (or Dirty)

Multiprocessors extend both to implement coherence

Snoopy Cache-Coherence Protocols

State

Tag

Data

P1

$

Bus snoop

$

Pn

 Bus is a broadcast medium & caches know what they have
 Transactions on bus are visible to all caches

 Cache controllers snoop all transactions on the shared bus

I/O devicesMem

$ $

Cache-memory

transaction

Cache Coherence - 15 Muhamed Mudawar – CSE 661

Cac e co t o e s s oop a t a sact o s o t e s a ed bus
Relevant transaction if for a block it contains

 Take action to ensure coherence
 Invalidate, update, or supply value

Depends on state of the block and the protocol

Implementing a Snooping Protocol

 Cache controller receives inputs from two sides:
Requests from processor (load/store)

Bus requests/responses from snooperBus requests/responses from snooper

 Controller takes action in response to both inputs
Updates state of blocks

Responds with data

Generates new bus transactions

 Protocol is a distributed algorithm
C ti t t hi d ti

State Tag Data

Cache

ProcessorLd/St

Cache Coherence - 16 Muhamed Mudawar – CSE 661

Cooperating state machines and actions

 Basic Choices
Write-through versus Write-back

 Invalidate versus Update Snooper

° ° °

Write-through Invalidate Protocol

 Two states per block in each cache

 States similar to a uniprocessor cache V

PrRd/ --
PrWr / BusWr

 Hardware state bits associated with
blocks that are in the cache

 Other blocks can be seen as being in
invalid (not-present) state in that cache

Writes invalidate all other caches

I

BusWr / --

PrWr / BusWr

PrRd / BusRd

Cache Coherence - 17 Muhamed Mudawar – CSE 661

 No local change of state

 Multiple simultaneous readers of
block, but write invalidates them

I/O devicesMem

P
1

$ $

Pn

Bus

Example of Write-through Invalidate

P1 P2 P3

u = ?

4

u = ? 3

I/O devices

Memory

$ $ $54

u :5
1

u :5

2

u :5

u = 7

u = 7

Cache Coherence - 18 Muhamed Mudawar – CSE 661

 At step 4, an attempt to read u by P1 will result in a cache miss
Correct value of u is fetched from memory

Similarly, correct value of u is fetched at step 5 by P2

2-state Protocol is Coherent
 Assume bus transactions and memory operations are atomic

All phases of one bus transaction complete before next one starts

 Processor waits for memory operation to complete before issuing next Processor waits for memory operation to complete before issuing next

 Assume one-level cache
 Invalidations applied during bus transaction

 All writes go to bus + atomicity
Writes serialized by order in which they appear on bus  bus order

 Invalidations are performed by all cache controllers in bus order

 Read misses are serialized on the bus along with writes

Cache Coherence - 19 Muhamed Mudawar – CSE 661

 Read misses are serialized on the bus along with writes
Read misses are guaranteed to return the last written value

 Read hits do not go on the bus, however …
Read hit returns last written value by processor or by its last read miss

Write-through Performance

Write-through protocol is simple
 Every write is observable

 However, every write goes on the bus
Only one write can take place at a time in any processor

 Uses a lot of bandwidth!

 Example: 200 MHz dual issue, CPI = 1, 15% stores of 8 bytes
 0.15 * 200 M = 30 M stores per second per processor

 30 M stores * 8 bytes/store = 240 MB/s per processor

Cache Coherence - 20 Muhamed Mudawar – CSE 661

 30 M stores * 8 bytes/store = 240 MB/s per processor

 1GB/s bus can support only about 4 processors before saturating

Write-back caches absorb most writes as cache hits
But write hits don’t go on bus – need more sophisticated protocols

Write-back Cache
 Processor / Cache Operations

 PrRd, PrWr, block Replace

 States

PrRd/—

PrWr/—

 States
 Invalid, Valid (clean), Modified (dirty)

 Bus Transactions
 Bus Read (BusRd), Write-Back (BusWB)
 Only cache-block are transfered

 Can be adjusted for cache coherence
 Treat Valid as Shared

V

M

Replace/BusWB
PrWr/—

Replace/—

PrWr/BusRd

Cache Coherence - 21 Muhamed Mudawar – CSE 661

 Treat Valid as Shared
 Treat Modified as Exclusive

 Introduce one new bus transaction
 Bus Read-eXclusive (BusRdX)
 For purpose of modifying (read-to-own)

I

PrRd/BusRd

PrRd/—

MSI Write-Back Invalidate Protocol
 Three States:

Modified: only this cache has a modified valid
copy of this block

PrRd/—
PrWr/—

py

 Shared: block is clean and may be cached in
more than one cache, memory is up-to-date

 Invalid: block is invalid

 Four bus transactions:
Bus Read: BusRd on a read miss

Bus Read Exclusive: BusRdX

M

S

PrWr/BusRdX

PrWr/BusRdX

BusRd/Flush

BusRdX/Flush
Replace/BusWB

Cache Coherence - 22 Muhamed Mudawar – CSE 661

 Obtain exclusive copy of cache block

Bus Write-Back: BusWB on replacement

 Flush on BusRd or BusRdX
 Cache puts data block on the bus, not memory

Cache-to-cache transfer and memory is updated

I

PrRd/BusRd
PrRd/—
BusRd/—

BusRdX/—
Replace/—

State Transitions in the MSI Protocol
 Processor Read

Cache miss  causes a Bus Read
Cache hit (S or M)  no bus activity

PrRd/—
PrWr/—

() y

 Processor Write
Generates a BusRdX when not Modified
 BusRdX causes other caches to invalidate

No bus activity when Modified block

 Observing a Bus Read
 If Modified, flush block on bus
 Picked by memory and requesting cache

M

S

PrWr/BusRdX

PrWr/BusRdX

BusRd/Flush

BusRdX/Flush
Replace/BusWB

Cache Coherence - 23 Muhamed Mudawar – CSE 661

 Picked by memory and requesting cache
 Block is now shared

 Observing a Bus Read Exclusive
 Invalidate block
 Flush data on bus if block is modified

I

PrRd/BusRd
PrRd/—
BusRd/—

BusRdX/—
Replace/—

Example on MSI Write-Back Protocol

P1 P2 P3

I/O devicesMemory

u:

u S 5 u S 5M 7u S 77

Processor Action State P1 State P2 State P3 Bus Action Data from

5 7

I SS

Cache Coherence - 24 Muhamed Mudawar – CSE 661

1. P1 reads u S BusRd Memory
2. P3 reads u S S BusRd Memory
3. P3 writes u I M BusRdX Memory
4. P1 reads u S S BusRd, Flush P3 cache
5. P2 reads u S S S BusRd Memory

Processor Action State P1 State P2 State P3 Bus Action Data from

Lower-level Design Choices

 Bus Upgrade (BusUpgr) to convert a block from state S to M
Causes invalidations (as BusRdX) but avoids reading of block

When BusRd observed in state M: what transition to make?When BusRd observed in state M: what transition to make?
M → S or M → I depending on expectations of access patterns

 Transition to state S
Assumption that I’ll read again soon, rather than others will write
 Good for mostly read data

 Transition to state I
 So I don’t have to be invalidated when other processor writes

Cache Coherence - 25 Muhamed Mudawar – CSE 661

 So I don t have to be invalidated when other processor writes
Good for “migratory” data
 I read and write, then another processor will read and write …

 Sequent Symmetry and MIT Alewife use adaptive protocols

 Choices can affect performance of memory system

Satisfying Coherence

Write propagation
A write to a shared or invalid block is made visible to all other caches
Using the Bus Read-exclusive (BusRdX) transactionUsing the Bus Read exclusive (BusRdX) transaction
 Invalidations that the Bus Read-exclusive generates
Other processors experience a cache miss before observing the value written

Write serialization
All writes that appear on the bus (BusRdX) are serialized by the bus
Ordered in the same way for all processors including the writer
Write performed in writer’s cache before it handles other transactions

However, not all writes appear on the bus

Cache Coherence - 26 Muhamed Mudawar – CSE 661

, pp
Write sequence to modified block must come from same processor, say P
Serialized within P: Reads by P will see the write sequence in the serial order
Serialized to other processors
 Read miss by another processor causes a bus transaction
 Ensures that writes appear to other processors in the same serial order

MESI Write-Back Invalidation Protocol

 Drawback of the MSI Protocol

 Read/Write of a block causes 2 bus transactions

 Read BusRd (I→S) followed by a write BusRdX (S→M)

 This is the case even when a block is private to a process and not shared

 Most common when using a multiprogrammed workload

 To reduce bus transactions, add an exclusive state

 E l i i di h l hi h h l

Cache Coherence - 27 Muhamed Mudawar – CSE 661

 Exclusive state indicates that only this cache has clean copy

Distinguish between an exclusive clean and an exclusive modified state

A block in the exclusive state can be written without accessing the bus

Four States: MESI

M: Modified
Only this cache has copy and is modified
Main memory copy is staleMain memory copy is stale

 E: Exclusive or exclusive-clean
Only this cache has copy which is not modified
Main memory is up-to-date

 S: Shared
More than one cache may have copies, which are not modified
Main memory is up-to-date

Cache Coherence - 28 Muhamed Mudawar – CSE 661

 I: Invalid
 Know also as Illinois protocol

 First published at University of Illinois at Urbana-Champaign
Variants of MESI protocol are used in many modern microprocessors

Hardware Support for MESI

P1

Tag State Data

P2

Tag State Data

P3

Tag State Data

 New requirement on the bus interconnect
Additi l i l ll d th h d i l S t b il bl t ll t ll

Shared signal S
wired-OR

I/O devicesMemory

g g g

Cache Coherence - 29 Muhamed Mudawar – CSE 661

Additional signal, called the shared signal S, must be available to all controllers

 Implemented as a wired-OR line

 All cache controllers snoop on BusRd
Assert shared signal if block is present (state S, E, or M)

Requesting cache chooses between E and S states depending on shared signal

MESI State Transition Diagram

 Processor Read
Causes a BusRd on a read miss
BusRd(S) => shared line asserted

PrWr/—

M

PrRd

BusRd(S) > shared line asserted
 Valid copy in another cache
 Goto state S

BusRd(~S) => shared line not asserted
 No cache has this block
 Goto state E

No bus transaction on a read hit

 Processor Write

PrRd/—

E

S

BusRdX/
Flush

BusRd/—

PrWr/
BusUpgr

PrWr/
BusRdX

BusRd/
Flush

BusRdX/—

PrRd/
BusRd(~S)

PrWr/—

Replace/
BusWB

Replace/—

Cache Coherence - 30 Muhamed Mudawar – CSE 661

 Processor Write
 Promotes block to state M
Causes BusRdX / BusUpgr for states I / S
 To invalidate other copies

No bus transaction for states E and M
I

PrRd/
BusRd(S)

BusRdX or
BusUpgr/—

PrRd/—
BusRd/—

BusRd(~S)

Replace/—

MESI State Transition Diagram – cont’d

 Observing a BusRd
Demotes a block from E to S state
 Since another cached copy exists

PrWr/—

M

PrRd

 Since another cached copy exists

Demotes a block from M to S state
 Will cause modified block to be flushed

 Block is picked up by requesting cache
and main memory

 Observing a BusRdX or BusUpgr
Will invalidate block

PrRd/—

E

S

BusRdX/
Flush

BusRd/
C2C

PrWr/
BusUpgr

PrWr/
BusRdX

BusRd/
Flush

BusRdX/C2C
PrRd/
BusRd(~S)

PrWr/—

Replace/
BusWB

Replace/—

Cache Coherence - 31 Muhamed Mudawar – CSE 661

Will cause a modified block to be flushed

 Cache-to-Cache (C2C) Sharing
 Supported by original Illinois version

Cache rather than memory supplies data I

PrRd/
BusRd(S)

PrRd/—
BusRd/C2C

BusRd(~S)
BusRdX/—
BusUpgr/—
Replace/—

MESI Lower-level Design Choices
Who supplies data on a BusRd/BusRdX when in E or S state?

Original, Illinois MESI: cache, since assumed faster than memory

 But cache to cache sharing adds complexity But cache-to-cache sharing adds complexity
 Intervening is more expensive than getting data from memory

How does memory know it should supply data (must wait for caches)

 Selection algorithm if multiple caches have shared data

 Flushing data on the bus when block is Modified
Data is picked up by the requesting cache and by main memory

B t i i l th ti h th bl k i ht b

Cache Coherence - 32 Muhamed Mudawar – CSE 661

But main memory is slower than requesting cache, so the block might be
picked up only by the requesting cache and not by main memory

 This requires a fifth state: Owned state  MOESI Protocol

Owned state is a Shared Modified state where memory is not up-to-date
 The block can be shared in more than one cache but owned by only one

Dragon Write-back Update Protocol
 Four states

Exclusive-clean (E)
 My cache ONLY has the data block and memory is up-to-date

 Shared clean (Sc)
 My cache and other caches have data block and my cache is NOT owner
 Memory MAY or MAY NOT be up-to-date

 Shared modified (Sm)
 My cache and other caches have data block and my cache is OWNER
 Memory is NOT up-to-date
 Sm and Sc can coexist in different caches, with only one cache in Sm state

M difi d (M)

Cache Coherence - 33 Muhamed Mudawar – CSE 661

Modified (M)
 My cache ONLY has data block and main memory is NOT up-to-date

 No Invalid state
Blocks are never invalidated, but are replaced
 Initially, cache misses are forced in each set to bootstrap the protocol

Dragon State Transition Diagram
 Cache Miss Events

 PrRdMiss, PrWrMiss
 Block is not present in cache PrRdMiss/

BusRd(S)
PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

p

 New Bus Transaction
Bus Update: BusUpd
Broadcast single word on bus
Update other relevant caches

 Read Hit: no action required
 Read Miss: BusRd Transaction

E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 34 Muhamed Mudawar – CSE 661

Block loaded into E or Sc state
 Depending on shared signal S

 If block exists in another cache
 If in M or Sm state then cache

supplies data & changes state to Sm

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon State Transition Diagram - cont’d
Write Hit:

 If Modified, no action needed

 If Exclusive then
PrRdMiss/
BusRd(S)

PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

 If Exclusive then
 Make it Modified

 No bus action needed

 If shared (Sc or Sm)
 Bus Update transaction

 If any other cache has a copy
 It asserts the shared signal S


E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 35 Muhamed Mudawar – CSE 661

 Updates its block

 Goto Sc state

 Issuing cache goes to
 Sm state if block is shared

 M state if block is not shared

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon State Transition Diagram - cont’d
Write Miss:

 First, a BusRd is generated

 Shared signal S is examined
PrRdMiss/
BusRd(S)

PrRdMiss/
BusRd(~S) BusRd/

PrRd/— PrRd/—
BusUpd/Update

 Shared signal S is examined

 If block is found is other caches
 Block is loaded in Sm state

 Bus update is also required

 2 bus transactions needed

 If the block is not found
 Block is loaded in M state

E Sc
BusRd(S)BusRd(~S)

PrWr/—

BusRd/—

BusRd/C2C

PrWr/
BusUpd(~S)

Replace/— Replace/—PrWr/
BusUpd(S)

Replace/
BusWB

BusUpd/
Update

Replace/
BusWB

Cache Coherence - 36 Muhamed Mudawar – CSE 661

 No Bus update is required

 Replacement:
Block is written back if modified
 M or Sm state only

Sm M

PrRd/—
PrWr/—

PrRd/—
PrWr/BusUpd(S)
BusRd/C2C

PrWrMiss/
BusRd(S);
BusUpd

PrWrMiss/
BusRd(~S)PrWr/BusUpd(~S)

Dragon’s Lower-level Design Choices

 Shared-modified state can be eliminated
Main memory is updated on every Bus Update transaction

 DEC Fi fl lti DEC Firefly multiprocessor

However, Dragon protocol does not update main memory on Bus Update

 Only caches are updated

 DRAM memory is slower to update than SRAM memory in caches

 Should replacement of an Sc block be broadcast to other caches?
Allow last copy to go to E or M state and not to generate future updates

Cache Coherence - 37 Muhamed Mudawar – CSE 661

 Can local copy be updated on write hit before controller gets bus?
Can mess up write serialization

A write to a non-exclusive block must be “seen” (updated) in all other
caches BEFORE the write can be done in the local cache

