
Prepared by Dr. Muhamed Mudawar Page 1 of 9

CSE 661

Parallel and Vector Architectures

Midterm Exam – Fall 2007

Tuesday, April 4, 2007

7:00 – 9:30 pm

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name: SOLUTION

Student ID:

Q1 / 20 Q2 / 35

Q3 / 25 Q4 / 25

Total / 100

 Page 2 of 9

Q1. (20 pts) In the Illinois MESI cache coherence protocol, when a block is modified in one
cache and there is a Bus Read request from a second cache on a read miss, the cache
block is flushed on the bus by the first cache. The data is picked up by the requesting
cache and is written as well to memory. The cache block is now shared in both caches
and memory is up-to-date.

 The problem here is that main memory is much slower than the requesting cache.
Cache-to-cache transfer is very desirable, but we should avoid updating memory.
Therefore, we need to modify the MESI protocol to become MOESI, where a fifth state
(O = Owned) is introduced. The Owned state is a shared modified state indicating that
memory is NOT up-to-date, but will be updated on a writeback transaction when the
block in the Owned state is replaced inside the cache.

 Draw the MOESI state diagram, showing all transitions on processor read (PrRd),
processor write (PrWr), on a block replacement (Replace), as well as observing a bus
read (BusRd), bus read exclusive (BusRdX), and bus upgrade (BusUpgr). Cache-to-
Cache transfer (C2C) should be supported only, but Not cache flushing. Bus writeback
(BusWB) should happen only when a modified or owned block is replaced.

M

O

E

I

PrRd /
BusRd(S)

PrRd /
BusRd(~S)

PrWr /
BusRdX

PrRd/—

PrWr / —

PrRd/—

PrWr /
BusUpgr

PrRd/—

PrRd / —
PrWr / —

PrWr /
BusUpgr

BusRd/
C2C

BusRdX/
C2C

Replace/
BusWB

Replace/
BusWB

BusRdX/
C2C

BusRd/—
BusRd/
C2C

Replace/—

BusRdX/—
BusUpgr/—

S Replace/—
BusRdX/C2C

BusUpgr/—

BusRd/C2C

 Page 3 of 9

Q2. (35 pts) Consider the execution of a parallel loop on a bus-based multiprocessor with 2
processors. Processor P0 executes the even iterations and Processor P1 executes the odd
one. For each iteration, each processor reads elements A[i] and B[i], does the addition,
and then writes element A[i], generating two memory reads and one memory write.

 Original Loop:
for (i=0; i<N; i++) A[i] = A[i] + B[i];

 Processor P0 executes even iterations:
 for (i=0; i<N; i=i+2) A[i] = A[i] + B[i];

 Processor P1 executes odd iterations:
 for (i=1; i<N; i=i+2) A[i] = A[i] + B[i];

Each processor has a private data cache with 32-byte blocks. Each cache block can fit 8
array elements, where each element is 4 bytes. Assume a cold start. The caches blocks
are initially invalid forcing initial cache misses to read the blocks from memory.

a) (10 pts) Assuming that the caches implement the Illinois MESI coherence protocol,
consider the worst-case scenario that results in the worst number of bus transactions.
Complete the table (next page) showing the execution of 5 iterations in P0 and in P1.
Compute the bus transactions issued by P0 and P1 for all N iterations, where N is even.

b) (10 pts) Repeat part (a), assuming that the caches now implement the Dragon update
coherence protocol. Complete the table showing the execution of 5 iterations in P0 and
in P1. Compute the number of bus transactions issued by P0 and P1 for all N iterations.

c) (15 pts) Modify the code executed by P0 and P1 to minimize the cache misses and bus
transactions. Complete the table showing the execution of 2 iterations only in P0 and in
P1 for the MESI and Dragon coherence protocols. Re-compute the total bus transactions
issued by P0 and P1 for all N iterations for the MESI and Dragon protocols.

 Answer the three parts of this question on the next three pages.

 Page 4 of 9

Part (a) Solution: MESI Cache Coherence Protocol

Read/Write Operation Bus Transaction P0 Cache
State

P1 Cache
State

Initial Cold Start I I

P0 reads A[0] Bus Read E I

P1 reads A[1] Bus Read S S

P0 reads B[0] Bus Read E I

P1 reads B[1] Bus Read S S

P0 writes A[0] Bus Upgrade M I

P1 writes A[1] Bus Read X, Flush I M

P0 reads A[2] Bus Read, Flush S S

P1 reads A[3] S S

P0 reads B[2] S S

P1 reads B[3] S S

P0 writes A[2] Bus Upgrade M I

P1 writes A[3] Bus Read X, Flush I M

P0 reads A[4] Bus Read, Flush S S

P1 reads A[5] S S

P0 reads B[4] S S

P1 reads B[5] S S

P0 writes A[4] Bus Upgrade M I

P1 writes A[5] Bus Read X, Flush I M

P0 reads A[6] Bus Read, Flush S S

P1 reads A[7] S S

P0 reads B[6] S S

P1 reads B[7] S S

P0 writes A[6] Bus Upgrade M I

P1 writes A[7] Bus Read X, Flush I M

P0 reads A[8] Bus Read (new block) E I

P1 reads A[9] Bus Read (new block) S S

P0 reads B[8] Bus Read (new block) E I

P1 reads B[9] Bus Read (new block) S S

P0 writes A[8] Bus Upgrade M I

P1 writes A[9] Bus Read X, Flush I M

Total number of bus transactions (all iterations) =
15 bus transactions (to process 8 elements) × N/8 = 15 N / 8

 Page 5 of 9

Part (b) Solution: Dragon Cache Coherence Protocol

Read/Write Operation Bus Transaction P0 Cache
State

P1 Cache
State

Initial Cold Start X X

P0 reads A[0] Bus Read E X

P1 reads A[1] Bus Read Sc Sc

P0 reads B[0] Bus Read E X

P1 reads B[1] Bus Read Sc Sc

P0 writes A[0] Bus Update Sm Sc

P1 writes A[1] Bus Update Sc Sm

P0 reads A[2] Sc Sm

P1 reads A[3] Sc Sm

P0 reads B[2] Sc Sc

P1 reads B[3] Sc Sc

P0 writes A[2] Bus Update Sm Sc

P1 writes A[3] Bus Update Sc Sm

P0 reads A[4] Sc Sm

P1 reads A[5] Sc Sm

P0 reads B[4] Sc Sc

P1 reads B[5] Sc Sc

P0 writes A[4] Bus Update Sm Sc

P1 writes A[5] Bus Update Sc Sm

P0 reads A[6] Sc Sm

P1 reads A[7] Sc Sm

P0 reads B[6] Sc Sc

P1 reads B[7] Sc Sc

P0 writes A[6] Bus Update Sm Sc

P1 writes A[7] Bus Update Sc Sm

P0 reads A[8] Bus Read (new block) E X

P1 reads A[9] Bus Read (new block) Sc Sc

P0 reads B[8] Bus Read (new block) E X

P1 reads B[9] Bus Read (new block) Sc Sc

P0 writes A[8] Bus Update Sm Sc

P1 writes A[9] Bus Update Sc Sm

Total number of bus transactions (all iterations) =
12 bus transactions (to process 8 elements) × N/8 = 12 N / 8

 Page 6 of 9

Part (c) Solution:

Modified Code for P0 and P1

Processor P0 executes first N/2 iterations:
for (i=0; i<N/2; i++) A[i] = A[i] + B[i];

Processor P1 executes last N/2 iterations:
for (i=N/2; i<N; i++) A[i] = A[i] + B[i];

Executing 2 iterations in P0 and in P1 using the MESI and Dragon Coherence Protocols
 MESI Coherence Protocol Dragon Coherence Protocol

Read/Write
Operation

Bus
Transaction

P0
Cache
State

P1
Cache
State

Bus
Transaction

P0
Cache
State

P1
Cache
State

Cold Start I I X X

P0 reads A[0] Bus Read E I Bus Read E X

P1 read A[N/2] Bus Read I E Bus Read X E

P0 reads B[0] Bus Read E I Bus Read E X

P1 read B[N/2] Bus Read I E Bus Read X E

P0 writes A[0] M I M X

P1 writes A[N/2] I M X M

P0 reads A[1] M I M X

P1 read A[N/2+1] I M X M

P0 reads B[1] E I E X

P1 read B[N/2+1] I E X E

P0 writes A[1] M I M X

P1 writes A[N/2+1] I M X M

 Number of bus transactions for MESI (all iterations) =
4 bus transactions (to process 8 elements) × N/8 = 4 N / 8 = N/2

Number of bus transactions for Dragon (all iterations) =
4 bus transactions (to process 8 elements) × N/8 = 4 N / 8 = N/2

No difference between MESI and Dragon in this case

 Page 7 of 9

Q3. (25 pts) Consider the following nested loops, where A and B are 2-dimensional arrays
with 64×64 elements.

 for (i=1; i<64; i++)

 for (j=0; j<64; j++)

 A[i][j] = B[i][j] + A[i-1][j] * B[i-1][j];

(a) (5 pts) Draw matrix A showing the data dependences among its elements and
indicate whether the outer or inner loop can be vectorized.

 Each row in matrix A depends on the previous one.

 Inner loop can be vectorized
(b) (10 pts) Translate the above nested loops to VMIPS assembly code (see Figure G.3

for the VMIPS vector instructions). The VMIPS vector registers have 64 elements,
which match the number of elements along each dimension of matrices A and B.
Here is a sample of VMIPS instructions that you might find useful:

ADDV.D V3, V1, V2 # V3 = V1+V2 (64-element vector registers)
MULV.D V3, V1, V2 # V3 = V1*V2 (64-element vector registers)
LV V1, R1 # Load V1 from memory starting at address R1
SV R1, V1 # Store V1 into memory starting at address R1

Each row consists of 64 elements * 8 bytes = 512 bytes
Initially R1 & R2 contain addresses of Matrices A & B
LV V1, R1 # load vector A[0][0:63]
LV V2, R2 # load vector B[0][0:63]
LI R3, 63 # 63 iterations in the outer loop

loop:
ADDI R1, R1, 512 # R1 = pointer to next row in A
ADDI R2, R2, 512 # R2 = pointer to next row in B
MULV.D V1, V1, V2 # V1 = A[i-1][0:63] * B[i-1][0:63]
LV V2, R2 # load vector B[i][0:63]
ADDV.D V1, V1, V2 # V1 = V1 + B[i][0:63]
SV R1, V1 # store vector A[i][0:63]
ADDI R3, R3, -1 # R3 = loop counter
BNE R3, 0, loop # loop back if R3 != 0

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

 Page 8 of 9

(c) (10 pts) Estimate the execution time of the above nested loops on a VMIPS vector
processor. The VMIPS is a single-issue processor that can issue one instruction per
clock cycle and has only one lane. It has one FP add/subtract unit, one FP multiply
unit, and one vector load/store unit. The functional units are deeply pipelined and
have a startup latency overhead equal to 6 cycles for the FP add/subtract unit, 5
cycles for the FP multiply unit, and 20 cycles for the vector load/store unit. There is
also an integer ALU for executing scalar instructions at the rate of 1 cycle per scalar
instruction.

If no chaining is provided, how many cycles does it take to compute all elements of
matrix A?

Solutions will vary depending on the code in part (b)
Cycles outside loop = 168 cycles because there is only one load/store unit
2 LV = 2 × (20 (startup cycles) + 64 (load cycles)) = 168 cycles
Cycles per iteration = 84 + 70 + 84 = 238 cycles
MULV + LV are placed in the same convoy = 20 + 64 = 84 cycles
ADDV = 6 + 64 = 70 cycles
SV = 20 + 64 = 84 cycles
Scalar instruction execution is overlapped with vector instruction execution
Total cycles = 168 + 63 * 238 = 15,162 cycles

If chaining is now supported, how many cycles does it take to compute all elements
of matrix A?

Cycles outside loop = 168 cycles (same as above)

Inside loop:
LV and ADDV can be chained
However LV and SV cannot be chained (only one Load/Store unit)
Cycles per iteration = 20 + 64 + 20 + 64 = 168 cycles
Total cycles = 168 + 63 * 168 = 10,752 cycles
Scalar instructions are overlapped with vector instructions (as above)

20 64

ADDV
SV

Inside loop
6 64

5 64MULV

LV

20 64

LV

20 64 20 64

LV

Before loop

MULV,LV

20 64 6 64

ADDV

20 64

SV

Inside loop

 Page 9 of 9

Q4. (25 pts) Consider the following pseudocode describing sequential Gaussian elimination:
procedure Eliminate(A)
begin
 for k = 0 to n – 1 do
 begin
 for j = k+1 to n – 1 do
 A[k][j] = A[k][j] / A[k][k];
 end for
 A[k][k] = 1;
 for i = k+1 to n – 1 do
 for j = k+1 to n – 1 do
 A[i][j] = A[i][j] – A[i][k] * A[k][j];
 end for
 A[i][k] = 0;
 end for
 end for
end procedure

Assuming a decomposition into rows and an assignment into blocks of adjacent rows,
write a shared address space parallel version using LOCK and BARRIER primitives
for synchronization. Assume the existence of P processes executing Eliminate(A) in
parallel. Indicate which variables are shared and which ones are private to each process.

Answer:

The Array A, the number of processes P, and the barrier bar are shared by all
processes. The local variables declared inside the procedure Eliminate are private
in each process. The pid variable is assumed to be unique in each process and
assumes the values 0 through P – 1.
procedure Eliminate(A)
begin
 pid = getrank(); // unique number = 0 to P-1
 for k = 0 to n – 1 do
 begin
 if (pid == 0) then // done only by first process
 for j = k+1 to n – 1 do
 A[k][j] = A[k][j] / A[k][k];
 end for
 A[k][k] = 1;
 end if
 BARRIER(bar, P); // All processes wait for P0
 rows = (n-k-1)/P; // rows assigned per processor
 min = k+1 + rows * pid
 max = min + rows – 1;
 if (pid == P-1) max = n-1; end if

 for i = min to max do // rows are partitioned here
 for j = k+1 to n – 1 do
 A[i][j] = A[i][j] – A[i][k] * A[k][j];
 end for
 A[i][k] = 0;
 end for
 BARRIER(bar, P); // All processes wait here
 end for
end procedure

