Homework 3 Solution
CSE 661 - Parallel and Vector Architectures

5.3 (? pts) Given: 50% of instructions are loads and stores
Private reads = 70%, private writes = 20%, shared reads = 8%, shared writes = 2%
Cache block size = 16 bytes
Hit rates: private data = 97%, shared data = 95%, instructions = 98.5%
Bus has 64 data lines and 32 address lines
Processor clock twice as fast as that of a bus and CPI = 2.0 without memory penalties
Memory latency = 2 bus cycles
Probability of replacing a modified block = 0.3

(@) Write-through caches with write-allocate

Bus cycles for each type of hit and miss (ignoring cycles for cache consistency and bus
contention):

Read miss: 1-cycle address + 2-cycle memory latency (given) + 2-cycle data transfer
16 bytes are transferred with 8 bytes per cycle (64-bit data bus) = 2 bus-cycle transfer
Bus read = 5 bus cycles = 10 CPU cycles

Write miss (write-through + write allocate): 1-cycle address + 2-cycle memory
latency + 2-cycle read + 1-cycle write through = 6 bus cycles = 12 CPU cycles
Write miss is equivalent to a read miss + write through

Read hit: no bus transaction

Write hit (write-through): 1-cycle address overlapped with 1-cycle data transfer
Only word being written is transferred, not entire block
Write hit = 1 bus cycle = 2 CPU cycles.

Average bus cycles to execute 100 instructions

Instruction fetch cycles = 100 * (1 — 0.985) * 5 bus cycles = 7.50 bus cycles

Private data read miss cycles: 50 * 0.70 * (1 — 0.97) * 5 bus cycles = 5.25 bus cycles

Private data write miss cycles: 50 * 0.20 * (1 - 0.97) * 6 bus cycles = 1.80 bus cycles
Private data write hit cycles: 50 * 0.20 * 0.97 * 1 bus cycle = 9.70 bus cycles

Shared data read miss cycles: 50 * 0.08 * (1 — 0.95) * 5 bus cycles = 1.00 bus cycles

Shared data write miss cycles: 50 * 0.02 * (1 — 0.95) * 6 bus cycles = 0.30 bus cycles
Shared data write hit cycles: 50 * 0.02 * 0.95 * 1 bus cycle = 0.95 bus cycles

Total = 26.50 bus cycles = 53 CPU cycles per 100 instructions

Therefore, to execute 100 instructions, we have:

100 * 2 CPI = 200 CPU cycles without considering memory penalties +
53 CPU stall cycles to access memory = 253 cycles

So a single processor uses 53/253 = 20.9% of its time using the bus, or
At most 253/53 = 4.77 truncated to 4 processors can be supported

Prepared by Dr. Muhamed Mudawar — April 16, 2005 Page 1 of 4

(b)

5.4

Write-back caches:
The write hits take no bus cycles. Each cache miss though has the possibility of a
writeback (the whole cache line must be written back)

Read miss: 1-cycle address + 2-cycle memory latency + 2-cycle transfer = 5 bus cycles
Write miss: 1-cycle address + 2-cycle memory latency + 2-cycle transfer = 5 bus cycles
Writeback: 1-cycle address overlapped with 2-cycle data transfer = 2 bus cycles

Adjusted Read miss with Writeback: 5 + 0.3 * 2 = 5.6 bus cycles
Adjusted Write miss with Writeback: 5 + 0.3 * 2 = 5.6 bus cycles

Average bus cycles to execute 100 instructions:

Instruction fetch cycles = 100 * (1 — 0.985) * 5 bus cycles = 7.50 bus cycles

Private data read miss cycles: 50 * 0.70 * (1 — 0.97) * 5.6 bus cycles = 5.88 bus cycles

Private data write miss cycles: 50 * 0.20 * (1 - 0.97) * 5.6 bus cycles = 1.68 bus cycles
Shared data read miss cycles: 50 * 0.08 * (1 — 0.95) * 5.6 bus cycles = 1.12 bus cycles

Shared data write miss cycles: 50 * 0.02 * (1 — 0.95) * 5.6 bus cycles = 0.28 bus cycles

Total = 16.46 Bus cycles = 32.92 CPU cycles per 100 instructions

Therefore, to execute 100 instructions, we have:

100 * 2 CPI = 200 CPU cycles without considering memory penalties +
32.92 CPU stall cycles to access memory = 232.92 CPU cycles

So a single processor uses 32.92/232.92 = 14.1% of its time using the bus, or
At most 232.92/32.92 = 7.08 truncated to 7 processors can be supported

(? pts) Given the following cost model:

read/write cache hit = 1 cycle

misses requiring simple transaction on bus (BusUpgr, BusUpd) = 60 cycles
misses requiring whole cache block transfer = 90 cycles

(@) Hlinois MESI protocol

Stream 1:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Writel M 1
Readl M 1
Writel M 1
Read2 S S BusRd(S), Flush 90
Write2 | M BusUpgr 60
Read2 [M 1
Write2 I M 1
Read3 I S S BusRd(S), Flush 90
Write3 I I M BusUpgr 60
Read3 I I M 1
Write3 I I M 1

Total 397

Prepared by Dr. Muhamed Mudawar — April 16, 2005 Page 2 of 4

Stream 2:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Read?2 S S BusRd(S) 90
Read3 S S S BusRd(S) 90
Writel M I I BusUpgr 60
Write2 I M I BusRdX, Flush 90
Write3 I I M BusRdX, Flush 90
Readl S I S BusRd(S), Flush 90
Read? S S S BusRd(S), Flush 90
Read3 S S S 1
Write3 | | M BusUpgr 60
Writel M I I BusRdX, Flush 90

Total 841
Stream 3:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Read?2 S S BusRd(S) 90
Read3 S S S BusRd(S) 90
Read3 S S S 1
Writel M [I BusUpgr 60
Writel M I I 1
Writel M [[1
Writel M I I 1
Write2 I M I BusRdX, Flush 90
Write3 I I M BusRdX, Flush 90

Total 514
(b) Dragon protocol:
Stream 1:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Writel M 1
Readl M 1
Writel M 1
Read?2 Sm | Sc BusRd(S), C2C 90
Write2 Sc | Sm BusUpd(S) 60
Read2 Sc | Sm 1
Write2 Sc | Sm BusUpd(S) 60
Read3 Sc | Sm | Sc | BusRd(S), C2C 90
Write3 Sc | Sc | Sm BusUpd(S) 60
Read3 Sc | Sc | Sm 1
Write3 Sc | Sc | Sm BusUpd(S) 60

Total 515

Prepared by Dr. Muhamed Mudawar — April 16, 2005

Page 3 of 4

Stream 2:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Read2 Sc | Sc BusRd(S) 90
Read3 Sc | Sc | Sc BusRd(S) 90
Writel Sm| Sc | Sc BusUpd(S) 60
Write2 Sc | Sm | Sc BusUpd(S) 60
Write3 Sc | Sc | Sm BusUpd(S) 60
Readl Sc | Sc | Sm 1
Read2 Sc | Sc | Sm 1
Read3 Sc | Sc | Sm 1
Write3 Sc | Sc | Sm BusUpd(S) 60
Writel Sm| Sc | Sc BusUpd(S) 60

Total 573
Stream 3:

Operation | P1 | P2 | P3 Bus Action Cycles
Readl E BusRd(~S) 90
Read2 Sc | Sc BusRd(S) 90
Read3 Sc | Sc | Sc BusRd(S) 90
Read3 Sc | Sc | Sc 1
Writel Sm| Sc | Sc BusUpd(S) 60
Writel Sm| Sc | Sc BusUpd(S) 60
Writel Sm| Sc | Sc BusUpd(S) 60
Writel Sm| Sc | Sc BusUpd(S) 60
Write2 Sc | Sm | Sc BusUpd(S) 60
Write3 Sc | Sc | Sm BusUpd(S) 60

Total 631

5.10 (? pts) Four-processor bus-based multiprocessor
Each processor executes test&set lock to gain access to a null critical section
Test&set always goes on the bus and it takes the same time as a normal read transaction.
Initial condition: processorl has the lock and processors 2, 3, 4 are spinning on their
caches waiting for the lock to be released.

Test-and-Test&Set algorithm is used

(a) Best-case number of bus transactions = 7

Trans Action Pl1| P2 | P3| P4 Comment
S| S|S | S Initial State
1: BusUpgr P1: st loc, #0 M| I I P1 releases lock
2: BusRd, Flush | P2: Id reg, loc S| S I I P2 reads lock and finds it 0
3: BusUpgr P2:t&sreg, loc | | M I I P2 acquires lock
P2: st loc, #0 I | M| | I P2 releases — No transaction
4: BusRd, Flush | P3: Id reg, loc I S| S I P3 reads lock and finds it 0
5: BusUpgr P3: t&sreg, loc | | I M I P3 acquires lock
P3: st loc, #0 I I | M| | P3 releases — No transaction

Prepared by Dr. Muhamed Mudawar — April 16, 2005

Page 4 of 4

6: BusRd, Flush | P4: 1d reg, loc I I S| S P4 reads lock and finds it 0
7: BusUpgr P4:t&sreg, loc | | I I | M P4 acquires lock
P4: st loc, #0 I I | | M | P4releases — No transaction
(b) Worst-case number of bus transactions = 15
Transaction Action P1| P2 | P3| P4 Comment
S| S|S|S Initial State
1: BusUpgr P1: st loc, #0 M| I I I P1 releases lock
2: BusRd, Flush | P2: Id reg, loc S| S I I P2 reads lock and finds it 0
3: BusRd P3: Id reg, loc S| S| S I P3 reads lock and finds it 0
4: BusRd P4: 1d reg, loc S|S|S|S P4 reads lock and finds it 0
5: BusUpgr P2:t&sreg,loc | | | M | | I P2 acquires lock
6: BusRdT, Flush | P3: t&sreg, loc | | S| S I P3 fails to acquire lock
7: BusRdT P4:t&sreg, loc | | S| S| S P4 fails to acquire lock
8: BusUpgr P2: st loc, #0 I | M| | I P2 releases lock
9: BusRd, Flush | P3: Id reg, loc I S| S I P3 reads lock and finds it 0
10: BusRd P4: 1d reg, loc I S| S| S P4 reads lock and finds it 0
11: BusUpgr | P3:t&sreg, loc | | I | M| P3 acquires lock
12:BusRdT ,Flush | P4: t&sreg, loc | | I S| S P4 fails to acquires lock
13: BusUpgr | P3: st loc, #0 I I | M| | P3 releases lock
14: BusRd, Flush | P4: Id reg, loc I I S| S P4 reads lock and finds it 0
15: BusUpgr | P4:t&sreg, loc | | I Il | M P4 acquires lock
P4: st loc, #0 I I | | M | P4releases — No transaction

The assumption here is that a miss on a test&set generates a single BusRdT (Bus Read
for Test&Set) that invalidates other caches (equivalent to Bus read exclusive BusRdX)
when it succeeds, but is equivalent to a Bus Read BusRd when it fails.

(c) Dragon Protocol

Best-case = 7 transactions

Trans Action P1| P2 | P3| P4 Comment
Sm| Sc | Sc | Sc Initial State
1: BusUpd P1: st loc, #0 Sm| Sc | Sc | Sc P1 releases lock
P2:1dreg,loc | Sm | Sc | Sc | Sc P2 reads lock and finds it 0
2: BusUpd P2:t&sreg,loc | Sc | Sm | Sc | Sc P2 acquires lock
3: BusUpd P2: st loc, #0 Sc | Sm| Sc | Sc P2 releases lock
P3: Id reg, loc Sc | Sm | Sc | Sc | P3reads lock and finds it O
4: BusUpd P3:t&sreg,loc | Sc | Sc | Sm| Sc P3 acquires lock
5: BusUpd P3: st loc, #0 Sc | Sc | Sm| Sc P3 releases lock
P4: 1d reg, loc Sc | Sc | Sm| Sc P4 reads lock and finds it 0
6: BusUpd P4:t&sreg,loc | Sc | Sc | Sc | Sm P4 acquires lock
7: BusUpd P4: st loc, #0 Sc | Sc | Sc | Sm P4 releases lock

Worst-case = 7 transactions

Prepared by Dr. Muhamed Mudawar — April 16, 2005

Page 5 of 4

Trans Action P1|P2| P3| P4 Comment

Sm| Sc | Sc | Sc Initial State

1: BusUpd P1: st loc, #0 Sm| Sc | Sc | Sc P1 releases lock

P2:1dreg,loc | Sm | Sc | Sc | Sc | P2reads lock and finds it 0

P3:1dreg,loc | Sm | Sc | Sc | Sc P3 reads lock and finds it 0

P4:1dreg,loc | Sm | Sc | Sc | Sc P4 reads lock and finds it 0

2: BusUpd P2:t&sreg,loc | Sc | Sm | Sc | Sc P2 acquires lock

P3:t&sreg,loc | Sc | Sm| Sc | Sc P3 fails to acquires lock

P4:t&sreg,loc | Sc | Sm | Sc | Sc P4 fails to acquires lock

3: BusUpd P2: st loc, #0 Sc | Sm| Sc | Sc P2 releases lock

P3: Id reg, loc Sc | Sm | Sc | Sc | P3reads lock and finds it O

P4: 1d reg, loc Sc | Sm| Sc | Sc P4 reads lock and finds it 0

4: BusUpd P3:t&sreg,loc | Sc | Sc | Sm| Sc P3 acquires lock
P4:t&sreg,loc | Sc | Sc | Sm | Sc P4 fails to acquires lock
5: BusUpd P3: st loc, #0 Sc | Sc | Sm| Sc P3 releases lock
P4: 1d reg, loc Sc | Sc | Sm| Sc | P4 reads lock and finds it O
6: BusUpd P4:t&sreg,loc | Sc | Sc | Sc | Sm P4 acquires lock
7: BusUpd P4: st loc, #0 Sc | Sc | Sc | Sm P4 releases lock

The assumption here is that test&set generates a bus update transaction when it succeeds
but does nothing when it fails.

Prepared by Dr. Muhamed Mudawar — April 16, 2005 Page 6 of 4

