
Homework 2 Solution
CSE 661 - Parallel and Vector Architectures

2.5 (4 pts) In a uniprocessor, we would use blocking instead of spinning to implement

event synchronization. When spinning is used, a process (the spinning process)
continually reads a flag until another process (the releasing process) writes that flag and
changes its value, releasing the spinning process. On a uniprocessor, both processes run
on the same processor. Thus, the spinning process must release the processor so that the
releasing process can run, before the releasing process can release the spinning process.
This will happen when the spinning process’s scheduling quantum times out, wasting
CPU cycles. (If there were no quantum-timeout context switches imposed by the
operating system, the spinning process would simply continue in an infinite loop on the
processor and no one would ever be able to release it.) If the process blocks when it
reaches the synchronization event, on the other hand, the releasing process will take over
the processor very quickly (after the context switch overhead is incurred), so it can
release the blocked process much more quickly.

In a multiprocessor, the releasing process is likely to be running on a different processor,
so the above issue is not serious unless the releasing process is not running in parallel.
The key tradeoff here is that a spinning process still consumes processor resources,
which could be used by another process that is perhaps unrelated or perhaps part of the
same application. On the other hand, the context switch required for blocking invokes
the operating system and is expensive. Usually, spinning is better than blocking if either
the spinning process is likely to be released soon or there is no other ready process to
run. Otherwise, blocking may be better since it frees up the processor for other tasks. A
commonly used solution that can be proved to be close to optimal is to spin for as long
as it takes to perform a context switch, and then if the process is not yet released then
block it (incurring the context switch cost).

2.6 (6 pts) The barrier in line 16a ensures that all processes have finished their initialization
of the global diff variable before any process starts performing the next iteration. The
reason is that otherwise some processes may perform their work for the next iteration,
including accumulating their private mydiff variables into the shared diff, but after that
another process that was slowed down somehow may set the shared diff to 0 at the
beginning of its iteration, thus wiping out the accumulations of the mydiffs of other
processes that had proceeded faster.

The barrier in line 25f ensures that no process initializes the shared diff variable to be
zero for the next iteration before all have tested its value for convergence in the current
iteration and reached a consistent verdict. Otherwise, some processes may think the
computation has not converged and will enter the next iteration, one of these may zero
out the diff variable, and then some processes that have not yet performed the test from
the previous iteration may read the zero or low value for diff, think the computation has
converged, and not enter the next iteration. The processes that entered the next iteration
will then hang waiting for others to arrive at the first barrier in that iteration (i.e. the
barrier in line 16a), but those others will never arrive.

Prepared by Dr. Muhamed Mudawar – March 19, 2005 Page 1 of 4

We can eliminate the first barrier in line 16a by doing some reordering of the
computation. First, done is declared as a global variable initialized to 0. Similarly, the
global variable diff is initialized to 0. Next, we eliminate the initialization of global
variable diff in line 16. This will eliminate the barrier in line 16a. Next, we allow only
process 0 to compute the value of done (line 25f) and to reset diff to 0 (line 25g) after the
first barrier. A second barrier is needed in line 25i to ensure that all processes wait for
the updated value of done and the reset of diff before starting the next iteration.

15. while (!done) do
16. mydiff = 0; /* remove initialization diff = 0 */
17. for i = mymin to mymax do
18. for j = 1 to n do
19. temp = A[i,j];
20. A[i,j]= 0.2 * (A[i,j]+A[i,j-1]+A[i-1,j]+
21. A[i,j+1]+A[i+1,j]);
22. mydiff += abs(A[i,j]-temp);
23. endfor
24. endfor
25a. LOCK(diff_lock);
25b. diff += mydiff;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs);
25e. if (pid == 0) then
25f. done = (diff/(n*n) < TOL);
25g. diff = 0;
25h. endif
25i. BARRIER(bar1, nprocs);
26. endwhile

2.9 a. (5 pts) The outer loop iterations indexed by k are assigned to processes in a cyclic
fashion. For example if number of processes is 4, process 0 is assigned iterations k = 0,
4, 8, …, etc. Process 1 is assigned iterations k = 1, 5, 9, …, and so on. To synchronize
the operation of processes on the various rows, a 1D array of integers called row[],
indexed by the row index, is used to signal the availability of a given row to a given
process. For example, if row[i] = pid then only process pid can compute row i and the
other processes have to wait to get their turn. Once process pid has finished computing
row i it assigns this row to next process (pid+1 mod nprocs) in a cyclic manner. Thus
the computation or rows flows among the processes in a pipelined manner.

shared int n, nprocs;

main()
begin
 read (n); read(nprocs);
 float A[][] = G_MALLOC(n by n floats);
 read(A);
 int row[] = G_MALLOC(n) initialized to 0;
 CREATE(nprocs-1, Eliminate, A);
 Eliminate(A);
 WAIT_FOR_END(nprocs-1);
end main

Prepared by Dr. Muhamed Mudawar – March 19, 2005 Page 2 of 4

procedure Eliminate(float A[][])
begin
 int i, j, k, pid=getpid();
 for k = pid to n-1 step nprocs do
 begin
 // Busy wait until row[k] is made available to process pid
 while (row[k] != pid);
 for j = k+1 to n-1 do
 A[k][j] = A[k][j] / A[k][k];
 endfor
 A[k][k]=1;
 for i = k+1 to n-1 do
 // Busy wait until row[i] is made available to pid
 while (row[i] != pid);
 for j = k+1 to n-1 do
 A[i][j] = A[i][j] – A[i][k] * A[k][j];
 endfor
 A[i][k] = 0;
 // Make row i available to next process in cycle
 row[i] = pid+1 mod nprocs;
 endfor
 endfor
end procedure

k = 5
pid=1

k = 4
pid=0

k = 3
pid=3

k = 2
pid=2

k = 1
pid=1

k = 0
pid=0

 b. (5 pts) For message-passing, we will partition the rows of the 2D matrix in a cyclic
manner among the processes. For example, if 4 processes exist then process 0 will
allocate space for rows 0, 4, 8, etc. Process 1 will allocate space for rows 1, 5, 9, and so
on. The last process (pid = nprocs – 1) will read matrix A row by row and send each row
as a message to process 0. Each process receives all the sent rows from the previous
process, computes and stores the pivot row in its address space, and then computes and
sends the remaining rows to the next process. The rows are received and sent one by one
in a pipelined manner. At some given time, all processes will be simultaneously active
computing different rows of the matrix. The best combination of SEND and RECEIVE
primitives is to have a non-blocking asynchronous SEND with a blocking synchronous
RECEIVE, so that a process will synchronize its row computation with the arrival of the
row.

int n, nprocs;

main()
begin
 read (n); read(nprocs);
 CREATE(nprocs-1, Eliminate);
 Eliminate();
 WAIT_FOR_END(nprocs-1);
end main

Prepared by Dr. Muhamed Mudawar – March 19, 2005 Page 3 of 4

procedure Eliminate()
begin
 int i, j, k, pid=getpid();
 int prevpid = (pid == 0 ? nprocs-1 : pid-1);

 int nextpid = (pid == nprocs-1 ? 0 : pid+1);

 float onerow[] = malloc(n);
float myA[][] = malloc(n/nprocs by n);

 // Last process will read matrix A
 // And will send its rows one by one to process 0
 if (pid == nprocs – 1) then
 for (i=0 to n-1) do
 read(&onerow[], n);
 SEND(&onerow, n*sizeof(float), 0, i);
 endfor
 endif

 for k = pid to n-1 step nprocs do
 begin
 // Receive pivot row k from previous process
 RECEIVE(&onerow[k], (n-k)*sizeof(float), prevpid, k);
 for j = k+1 to n-1 do
 // Compute and store pivot row k
 // Map pivot row k to myA at row index [k/nprocs]
 myA[k/nprocs][j] = onerow[j] / onerow[k];
 endfor
 myA[k/nprocs][k]=1;
 for i = k+1 to n-1 do
 // Receive rows k+1 to n-1 one by one
 RECEIVE(&onerow[k], (n-k)*sizeof(float), prevpid, i);
 for j = k+1 to n-1 do
 onerow[j] = onerow[j] – onerow[k] * myA[k/nprocs][j];
 endfor
 // Send row i to next process
 SEND(&onerow[k+1], (n-k-1)*sizeof(float), nextpid, i);
 endfor
 endfor
end procedure

Prepared by Dr. Muhamed Mudawar – March 19, 2005 Page 4 of 4

