
Prepared by Dr. Muhamed Mudawar Page 1 of 26

CSE 661 – Parallel and Vector Architectures

Research Project

Problem Statement
The main idea of this research project is to enable a parallel loop to execute across all cores,
taking advantage of the multiplicity of resources provided in a multicore processor. With the
introduction of few instructions and minimal extra hardware support, a thread running in a
single core will be able to broadcast a parallel loop to all cores. This mode of execution will
be supported completely in the microarchitecture. The operating system “sees” the parallel
loop as one thread, rather than multiple threads running on multiple cores.

A chip multiprocessor with N cores and a shared L2-cache is shown below. Each core is
capable of executing a thread scheduled by the operating system, referred here as a root
thread, plus few additional threads created by the hardware to speedup the execution of
parallel loops. An L2 cache is shared by all the cores. To optimize the bandwidth and latency,
the L2 cache is divided into M independent banks that operate in parallel. The N cores
communicate with the M cache banks using the on-chip interconnect. There is nothing new,
except the ability to execute parallel loop instructions across all cores. A parallel loop
instruction is effectively converted into N scalar instructions by distributing its work on the N
CPU cores.

CPU
Core 0

. . .

Interconnect Network

Shared L2 Cache

. . . CPU
Core 1

CPU
Core N-1

Cache
Bank 0

Main Memory I/O

Cache
Bank M-1

Figure 1: Chip multiprocessor with N cores and a shared L2 cache with M banks

Prepared by Dr. Muhamed Mudawar Page 2 of 26

Parallel Counter-Controlled Loops

Consider the execution of the following loop where x and y are vectors residing in memory
and a is a scalar value. This is the DAXPY loop that forms the inner loop of the Linpack
benchmark for performing Gaussian elimination:

for (i=0; i<n; i++) y[i] = a * x[i] + y[i];

The iterations of the above loop can be executed in parallel. Assume that the base addresses
of arrays x and y are in registers r2 and r3 respectively, and the scalar values n and a are
loaded in registers r1 and f1 respectively. Then, the above loop can be translated as follows:

 vp r0 = r1, L2 ; allocate virtual processors
 dup f1 = f1 ; duplicate f1 = a in all VPs
L1:
 lv f2 = [r2+] ; load vector x into f2 in all VPs
 lv f3 = [r3] ; load vector y into f3 in all VPs
 mul f4 = f1, f2 ; multiply: a * x[i] in all VPs
 add f4 = f4, f3 ; add: a * x[i] + y[i] in all VPs
 sv [r3+] = f4 ; store vector f4 at address y
 loop L1
L2:

The VP Instruction
The above loop appears to be sequential, but is in fact a parallel loop. The vp (Virtual
Processor) instruction allocates virtual processors to execute a parallel loop. Each virtual
processor is a hardware thread that includes integer and floating-point register files, a
program counter, and some additional control registers. The vp instruction specifies the
vector length and the label address at which to terminate parallel execution. It returns the
number of allocated virtual processors (NVP). The vp instruction enables the exploitation of
data-level parallelism across multiple cores.

In addition to allocating hardware contexts across all cores, the vp instruction initializes the
vector length (VL) register in all hardware contexts with the specified number of iterations,
the virtual processor identification (VPID) register with a unique number, the virtual
processor count (NVP) register with the count of VPs (a power of 2), and the Root register
with the root core number. The vp instruction also initializes the end program counter (EPC)
register in all the allocated VP contexts with the label address that marks the end of the
parallel loop, and the program counter (PC) registers with the address of next instruction to
launch parallel loop execution. This is illustrated in Figure 2, where Core 1 is the root core
that issued the execution of the vp instruction. The root core always have VPID = 0. The
instructions appearing after vp will be executed as asynchronous parallel threads (not in
lockstep) on all the virtual processors until the end label is reached. This mode of execution is
more flexible than the lockstep vector execution mode implemented in vector processors.

Prepared by Dr. Muhamed Mudawar Page 3 of 26

When the program counter (PC) reaches the end label program counter (EPC), the virtual
processor terminates execution and the hardware context is freed. Eventually all virtual
processors will free their hardware context, except for the root thread, which continues
normal execution after the end of the parallel loop. A special case occurs when the vector
length is equal to 0. In this case, no virtual processor is allocated and the vp instruction
simply becomes a jump to the end label, skipping all instructions in a parallel loop.

If all hardware contexts are allocated and the vp instruction fails to allocate new ones, then
the parallel loop will be executed sequentially in the root core, rather than as parallel threads
in virtual processors.

Figure 2: Executing a parallel loop on four cores

 dup f1=f1
L1: lv f2=[r2+]
 lv f3=[r3]
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv [r3+]=f4
 loop L1
L2:

Core 1 = Root

dup f1=f1
L1: lv f2=[r2+]
 lv f3=[r3]
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv [r3+]=f4
 loop L1
L2:

Core 2

dup f1=f1
L1: lv f2=[r2+]
 lv f3=[r3]
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv [r3+]=f4
 loop L1
L2:

Core 3

 dup f1=f1
L1: lv f2=[r2+]
 lv f3=[r3]
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv [r3+]=f4
 loop L1
L2:

Core 0

PC EPC = L2

VL = n

VPID = 3 NVP = 4

General

Purpose

Registers

Floating

Point

Registers

Root = 1

PC EPC = 0

VL = n

VPID = 0 NVP = 4

General

Purpose

Registers

Floating

Point

Registers

Root = 1

PC EPC = L2

VL = n

VPID = 1 NVP = 4

General

Purpose

Registers

Floating

Point

Registers

Root = 1

PC EPC = L2

VL = n

VPID = 2 NVP = 4

General

Purpose

Registers

Floating

Point

Registers

Root = 1

Prepared by Dr. Muhamed Mudawar Page 4 of 26

Support for Packed Data Types
64-bit registers can pack multiple data of smaller sizes. This packing optimizes the use of
registers and adds sub-register data parallelism. Four integer register formats, specified as
opcode extensions, are defined: long word (.l extension), packed words (.w extension),
packed half words (.h extension), and packed bytes (.b extension).

There is no distinction between scalar and vector instructions. The same integer arithmetic
instruction can operate on all packed formats, in addition to the long word format. Consider
the add instruction. Four executions can result depending on the register format, as shown
below. The same 64-bit datapath can be internally partitioned inside the ALU to produce
different results, depending on the register format. If the register format is not specified, it
defaults to long word (.l extension).

For floating-point instructions, two register formats are defined as opcode extensions: double-
precision (.d extension) and packed single-precision (.s extension). Consider the floating-
point add instruction. Two executions can result depending on the register format.

 Two executions of the floating-point add instruction based on the floating-point register format

add.d f2 = f0, f1 # double float

Single-precision float 1

Single-precision float 1

+

=

Single-precision float 0

Single-precision float 0

+

=

Single-precision float 0Single-precision float 1f2

f1

f064-bit double-precision float

64-bit double-precision float

+

=

64-bit double-precision float f2

f1

f0

add.s f2 = f0, f1 # packed floats

Byte0 Byte1Byte2Byte3Byte4Byte5Byte6 Byte7

Half word 3 Half word 0 Half word 1 Half word 2

32-bit Word 1 32-bit Word 0

64-bit Long word

Four integer register formats are given to the same general-purpose register

add.l r3 = r1, r2 # long words

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7

+ + + + + + + +

= = = = = = = =

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7r3

r2

r1Halfword 3

Halfword 3

+

=

Halfword 0

Halfword 0

+

=

Halfword 0

Halfword 1

Halfword 1

+

=

Halfword 1

Halfword 2

Halfword 2

+

=

Halfword 2 Halfword 3 r3

r2

r1

32-bit Word 1

32-bit Word 1

+

=

32-bit Word 0

32-bit Word 0

+

=

32-bit Word 032-bit Word 1r3

r2

r164-bit Long word

64-bit Long word

+

=

64-bit Long word r3

r2

r1

add.w r3 = r1, r2 # packed words

add.h r3 = r1, r2 # half words add.b r3 = r1, r2 # packed bytes

Four executions of the add instruction based on the register format

Prepared by Dr. Muhamed Mudawar Page 5 of 26

The DUP Instruction
In its simplest form, the dup (duplicate) instruction broadcasts a register from a root thread
to and all the allocate VP threads. The dup instruction accomplishes register-to-register
communication. It acts as a non-blocking send and injects a token into the network when
issued by a root thread. It acts as a blocking-receive in all the allocated VP threads.

The dup instruction is also used to replicate a narrow data element and pack it in a
destination register at the root thread, and then broadcast the destination register to the
allocated VP threads. The .f extension is used to specify the narrow data type: dup.b
(duplicate byte), .h (duplicate half word), .w (duplicate word), or .l (duplicate long word).
If the .f extension is not specified, it is assumed to be .l, which duplicates a general-
purpose register. For floating-point registers, the .f extension can be .s (duplicate single-
precision float), or .d (duplicate double-precision float). If omitted, it is assumed to be .d.
Duplicating a narrow data element is useful even if no VP thread is allocated. The dup
instruction becomes a simple register-to-register move instruction within the root VP.

Another use of the dup instruction is to broadcast a different computed value to each VP
thread. A second source operand is used to compute a series of values. For example, if r0 is
100 then dup r1 = r0,5 produces the following series: 100, 105, 110, 115 across all
VPs. The value 100 is broadcast to all VPs and computed as 100 + VPID × 5 at each VP.

A more general example is: dup.h r1 = r0, 5. First, r1 is computed from r0=100 at
the root VP as r1=[115,110,105,100]. Four half words are packed into r1 because the
.h extension is used. Then, r1 at the root is broadcast to all VPs and added to VPID×5<<2.
The constant 5 is shifted left 2 bits (multiplied by 4) because the .h extension is used. This
produces the following computed values of r1: [135,130,125,120](VPID=1),
[155,150,145,140](VPID=2), and [175,170,165,160](VPID=3).

The syntax of the dup instruction is: dup.f rd = rs, rt|im

The computed values are: rd = rs + VPID × (rt|im) << f

110

VPID = 0 (Root)

dup r1 = r0,5
. . .

Broadcasting and computing a series of values across all VPs

100
100r1

r0

VPID = 1

dup r1 = r0,5
. . .

r0

VPID = 2

dup r1 = r0,5
. . .

r0

VPID = 3

dup r1 = r0,5
. . .

r0

dup

105115

r0

VPID = 0 (Root)

dup.h r1 = r0
. . .

Duplicating the least-significant half-word of r0 into r1 at root and broadcasting r1 to all VP threads

5
555 5

r0

VPID = 1

dup.h r1 = r0
. . .

5555
r0

VPID = 2

dup.h r1 = r0
. . .

5 5 5 5

VPID = 3

dup.h r1 = r0
. . .

r1 5 5 5 5
r0 r0

dup

Prepared by Dr. Muhamed Mudawar Page 6 of 26

Vector Load and Store
The load and store vector instructions are defined as follows:
 lv.f rd = [rs] # load vector
 sv.f [rs] = rt # store vector

The .f extension can be .b (byte), .h (half word), .w (word), or .l (long word). For
floating-point, the .f extension can be .s (single-precision) or .d (double-precision).
Destination register rd is replaced by fd, and source register rt is replaced by ft.

The lv (load vector) instruction loads a contiguous block of memory and distributes the
vector elements onto the virtual processor registers. Register [rs] specifies the vector
address. Each VP receives one element of the vector. The lv instruction is issued only by the
root VP. The other VPs act as receivers as shown below. The elements are received in the
order specified by VPID. The root VP (with VPID = 0) receives the first element.

The sv (store vector) instruction gathers the vector elements and stores them in a contiguous
block of memory at the specified vector address. Register [rs] at the root specifies the
vector address. The elements of the vector are gathered in the order specified by VPID. They
can be gathered at the root core or in the L2-Cache depending on implementation.

It is also possible to load/store vectors of narrow elements such as bytes, half words, and
words. The following example shows how the sv instruction can store a vector of half words,
whose elements are distributed onto the virtual processor registers. The .h extension is used
to store the least-significant half word of each register in memory.

The lv and sv instruction make use of the VL (Vector Length) and NVP (Number of Virtual
Processors) registers. If VL >= NVP then NVP elements are loaded/stored. If VL < NVP then
VL elements are loaded/stored.

VPID = 0 (Root) VPID = 1 VPID = 2

 sv.h [r1] = r3
 . . .

VPID = 3

 sv.h [r1] = r3
 . . .

sv.h [r1] = r3
 . . .

sv.h [r1] = r3
 . . .

r3 r3 r3 r3

Memory (L2-Cache)

VPID = 0 (Root) VPID = 1 VPID = 2

 lv.d f2 = [r2]
 . . .

VPID = 3

 lv.d f2 = [r2]
 . . .

lv.d f2 = [r2]
 . . .

lv.d f2 = [r2]
 . . .

f2 f2 f2 f2

Memory (L2-Cache)

Prepared by Dr. Muhamed Mudawar Page 7 of 26

Addressing Modes
The lv and sv instructions use the register-indirect addressing mode. Register [rs] at the
root core specifies the memory address. No immediate can be specified as a displacement.

Two update addressing modes are also defined:

[rs+] notation indicates that the address should be updated as: rs = rs + NVP<<f.

[rs-] notation indicates that the address should be updated as: rs = rs - NVP<<f.

Where NVP is the number of allocated VPs and f is a scale factor specified by the .f
extension: f=0 for .b, 1 for .h, 2 for .w or .s, and 3 for .l or .d.

The last addressing mode can be used to load or store vectors in reverse order.

Vectors of Different Element Sizes
There are situations in which vectors processed in a given loop have different element sizes.
For example, suppose we want to add A = A + B, where A is a vector of half words and B is
a vector of bytes. We can load, compute, and store the vectors as shown below, where r1
contains the address of array A and r2 contains the address of array B.
lv.h r3 = [r1] # load vector A: 1 half word per VP
lv.b r4 = [r2] # load vector B: 1 byte per VP
add r5 = r3, r4 # do the addition
sv.h [r3] = r5 # store 1 half word from each VP

The above code will load one half-word element of vector A into register r3 in each virtual
processor. The number of elements loaded simultaneously and processed in parallel is equal
to the number of virtual processors. A half-word element occupies the lower 16 bits of a
register. It is sign-extended to fill the entire register. Similarly, one byte element of vector B
is loaded into register r4 in each virtual processor and is also sign-extended.

We can do better by loading multiple packed vector elements into each register. We use
lv.l to load a long word which packs four half words of vector A into register r3 in each
virtual processor. Similarly, we use lv.w to load a word which packs four bytes of vector B
into register r4 in each virtual processor. The four packed bytes, which occupy the lower half
of r4, can be unpacked to become four packed half words. The unpk.h instruction is used
for this purpose. The add.h instruction is used to carry the addition in parallel on four
packed half words in register r3 and r4.
lv.l r3 = [r1] # load vector A: 4 half words per register
lv.w r4 = [r2] # load vector B: 4 bytes per register
unpk.h r4 = r4 # Unpack 4 bytes into 4 signed half words
add.h r5 = r3, r4 # add four packed bytes in parallel
sv.l [r3] = r5 # store 4 half words from each register

The speedup of a parallel loop comes from two factors: the packing done at the level of
registers and the number of cores (or virtual processors) involved in the parallel execution.

Prepared by Dr. Muhamed Mudawar Page 8 of 26

Vectors with a Non-Unit Stride
The lv and sv instructions can load and store only contiguous vectors. The implementation
of these two instructions can always be optimized at the hardware level. Pre-fetching
techniques can reduce the load delay. The vector length is a hint to stream the load from
memory for long vectors. The cache footprint can be minimized or eliminated if the vector is
loaded once, or stored with no future use.

To handle vectors with a non-unit stride, one can define special load/store instructions that
can transfer vectors with a non stride. However, such instructions will add more complexity
to the hardware. Instead, scalar load/store instructions can be executed in parallel in all VPs.

For example, consider taking the sum of elements in a vector with a non-unit stride. If the
starting address of the column is loaded into register r1, the stride (distance in bytes between
two elements) is loaded into r2, and the number of vector elements is loaded into r3, then
the parallel loop can be written as:
 vp r0 = r3, L2 # allocate VPs, r0 = NVP
 set r6 = 0 # r4 = partial sum in each VP
 dup r2 = r2 # r2 = stride
 dup r3 = r1, r2 # r3 = element address in each VP
 mul r4 = r2, r0 # r5 = stride * NVP
L1:
 ld r5 = [r3] # r6 = loaded value
 add r3 = r3, r4 # advance pointer in each VP
 add r6 = r6, r5 # accumulate partial sum in each VP
 loop L1
 sum r7 = r4 # r7 = reduced partial sums
L2:

The LOOP Instruction

The loop instruction is used for executing a counter-controlled loop. It does the following:

if (VL > NVP + VPID) { VL = VL – NVP; jump label; }
else VL = 0;

Suppose VL = 10 and NVP = 4. After executing the first iteration, VL becomes 6 and the
loop instruction jumps to label to start the second iteration in all virtual processors. After
executing the second iteration, VL becomes 2 and the loop instruction starts a third iteration
in the first two virtual processors (VPID = 0 and 1), while the loop terminates (VL = 0) in the
last two virtual processors (VPID = 2 and 3). Therefore, three iterations are executed in the
first two virtual processors (VPID = 0 and 1) and two iterations are executed in the last two
virtual processors (VPID = 2 and 3). This is equivalent to executing ten iterations if the loop
is executed only by the root thread. The loop instruction guarantees that VL = 0 in all
virtual processors when the loop terminates.

r1 = starting address
r2 = strider4 = stride × NVP

r3 r3 r3 r3 r3 r3 r3

Prepared by Dr. Muhamed Mudawar Page 9 of 26

Reduction Instructions
The sum instruction is a reduction instruction that initiates the transfer and reduction of a
source register rs from all VPs into a destination register rd at the root VP. It acts as a send
and injects a token into the network when issued by any VP. The injected token carries the
opcode (sum), the root id, root, the source register number rs, the data value, and the
initial count = 1. Tokens injected into the network can be merged with other tokens
carrying the same reduction opcode, the same root id, and the same register number. When
merged, the token values are reduced according to the opcode, and the counts are added.
At the root, the sum instruction acts as a blocking-receive. After receiving a merged token
holding count=NVP, register rd is updated and instruction execution is resumed. The exact
implementation can vary. One choice is to have reduction implemented in the network itself.
Another possibility is to use binary tree reduction in the VP threads.
sum rd = rs

token = <op = sum, root, rs, value, count>

Reduction is also used to reduce the packed elements of a source register. The .f extension
specifies the packed register format. For example, prod.h r3 = r2 computes the product
of half words packed in r2 and stores the result in r3. This is useful even if only one thread
is executing the reduction instruction. The result is a long word, regardless of the source
register packed format.

In general, a reduction instruction is computed at two levels. First, each VP thread computes
the reduction operation on the packed elements of a source register, if a packed format is
specified. Then all the partial results are reduced into one final result at the root VP.

The list of reduction instructions include:
sum.f rd = rs # reduced sum
min.f rd = rs # reduced minimum
max.f rd = rs # reduced maximum
prod.f rd = rs # reduced product
sumu.f rd = rs # reduced sum (unsigned)
minu.f rd = rs # reduced minimum (unsigned)
maxu.f rd = rs # reduced maximum (unsigned)
produ.f rd = rs # reduced product (unsigned)

Reduction instructions apply to integer as well as to floating-point registers. The last four
unsigned reduction instructions apply only to integer registers.

long word

× ×

h0 h1 h2h3r2

×

r3

prod.h r3 = r2

r1

sum r2 = r1

r1
r2

VPID=6

r2

VPID=7
r1
r2

Root
r1
r2

VPID=1
r1
r2

VPID=2
r1
r2

VPID=3
r1
r2

VPID=5
r1
r2

VPID=4

+ + + + + +

sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1

Prepared by Dr. Muhamed Mudawar Page 10 of 26

Predication
All instructions specify a qualifying predicate register. The general syntax of an integer
instruction is given below, where (p) is the qualifying predicate, op is the operation, and .f
represents the register format (with .l as a default value).
(p) op.f rd = rs, rt|im8

Because there are eight packed byte elements per 64-bit register, each predicate register (p)
consists of 8 bits, with one bit per byte. The 8-bit predicate register (p) controls the writing
of the individual bytes in register rd. If all the bits of predicate (p) are zeros then there is no
need to issue the instruction for execution. The instruction can be dropped.

The following diagram depicts the operation of a typical integer ALU instruction. In addition
to producing a 64-bit result, an 8-bit predicate value controls the writing of the packed bytes
in destination register Rd.

Compare instructions produce a predicate value in register pt. The result of a compare
instruction can be AND/OR/XOR-ed with a qualifying predicate (p), as illustrated above.

When the qualifying predicate (p) is not specified, it is assumed to be p0, which is always
true. It is reserved for non-conditional instructions.

Operation of a typical integer ALU instruction

64-bit Partitioned ALU

Rd

Rs

Rt

8 . . .

. . .

. . .

. . .
64 64 64

64-bit Registers 8-bit Predicates

p

pt

. . .

8
AND
OR

XOR
. . .

. . .

8

8

Prepared by Dr. Muhamed Mudawar Page 11 of 26

Compare Instructions
There are only eight predicate registers, labeled p0-p7. Their complements are c0-c7.
Either a predicate register or its complement can be used as a qualifying predicate in
predicated instructions. p0 is always true and all its bits are hardwired to 1’s. It need not be
specified in unconditional instructions.

Ten integer compare instructions are defined: eq (equal), ne (not equal), lt (less than), ltu
(less than unsigned), le (less or equal), leu (less or equal unsigned), gt (greater than), gtu
(greater than unsigned), ge (greater or equal), and geu (greater or equal unsigned). The
syntax of a compare instruction (for example, eq) is given below:
(p) eq.f pt = rs, rt|im

It means the following:
pt = (p) AND (rs == rt|im) # bitwise AND with (p)

An integer compare instruction can use one of the following .f register formats extension:
.b (packed bytes), .h (packed half words), .w (packed words), or .l (long word).

If the packed bytes format is used, eight arbitrarily different bits can be produced in pt. If the
long word format is used, the result eight predicate bits will be all identical (either all zeros or
all ones). If the register format is not specified, it defaults to long word (.l).

For example, the following lt.h instruction computes the less-than operation in parallel on
the four packed half word elements. Since we have fixed the size of a predicate register to
eight bits, each bit is duplicated to produce an eight bit result. The result is stored in p2.

The compare instruction can be predicated. The qualifying predicate is bitwise AND-ed with
the corresponding bits of the compare instruction result. In the above example, suppose the
value of p1=00111111, then the instruction (p1) lt.h p2 = r1, r2 computes p2
as: (p1) AND (r1<r2) = 00110011.

For floating-point, six compare instructions are defined: eq (equal), ne (not equal), lt (less
than), le (less or equal), gt (greater than), and ge (greater or equal). Unsigned comparisons
are used only for integer, but not for floating-point operands. Floating-point instructions can
use either the .s (packed single-precision) or the .d (double-precision) register format. If the
format is not specified for floating-point registers, it defaults to .d.

11110011 p2 -2 1007-5r1

< <<<
6 -110-3r2

1 011
duplicate bits

lt.h p2 = r1, r2 # p2 = r1<r2

Prepared by Dr. Muhamed Mudawar Page 12 of 26

Example from the EEMBC Benchmark
Consider converting an RGB color array to CMYK for printing. The R, G, B, and the
resulting C, M, Y, and K are 8-bit pixel color arrays. This conversion is one of the EEMBC
Consumer Benchmark. It is described by the following loop:
for (i=0; i<n; i++) {
 c_val = 255 – R[i];
 m_val = 255 – G[i];
 y_val = 255 – B[i];
 K[i] = c_val;
 if (m_val < K[i]) K[i] = m_val;
 if (y_val < K[i]) K[i] = y_val;
 C[i] = c_val – K[i];
 M[i] = m_val – K[i];
 Y[i] = y_val – K[i];
}

The above loop can be parallelized as follows. Predication is used to translate the nested if-
statements.
Assume r0 = n, r1 = &R, r2 = &G, r3 = &B
Assume r4 = &C, r5 = &M, r6 = &Y, r7 = &K
n is a multiple of 8, addresses are aligned on 8-bytes

 srl r8 = r0, 3 # r8 = n/8, 8 bytes per register
 vp r9 = r8, L2 # allocate virtual processors
L1: lv r10 = [r1+] # r10 = 8 packed bytes of R[]
 lv r11 = [r2+] # r11 = 8 packed bytes of G[]
 lv r12 = [r3+] # r12 = 8 packed bytes of B[]
 subfu.b r10 = r10, 255 # r10 = c_val = 255 - R[i]
 subfu.b r11 = r11, 255 # r11 = m_val = 255 - G[i]
 subfu.b r12 = r12, 255 # r12 = y_val = 255 - B[i]
 mov r14 = r10 # r14 = compute unsigned minimum
 ltu.b p2 = r11, r14 # of (r10, r11, r12)
(p2) mov r14 = r11
 ltu.b p2 = r12, r14
(p2) mov r14 = r12 # r14 = 8 packed bytes of K[]
 subfu.b r10 = r14, r10 # r10 = 8 packed bytes of C[]
 subfu.b r11 = r14, r11 # r11 = 8 packed bytes of M[]
 subfu.b r12 = r14, r12 # r12 = 8 packed bytes of Y[]
 sv [r4+] = r10 # store 8 packed bytes of C[]
 sv [r5+] = r11 # store 8 packed bytes of M[]
 sv [r6+] = r12 # store 8 packed bytes of Y[]
 sv [r7+] = r13 # store 8 packed bytes of K[]
 loop L1
L2:

Prepared by Dr. Muhamed Mudawar Page 13 of 26

Translating If-statements
Predication works very nicely when translating an if-statement nested inside a loop. The
Boolean expressions can include logical AND/OR operations. The following are examples:

Evaluation of logical AND
if (ch >= 'A' && ch <= 'Z') ch = ch + 32;

Assume 8 characters (ch) are packed in register r8

 ge.b p1 = r8, 'A' # p1 = (ch >= 'A')
(p1) and.le.b p1 = r8, 'Z' # p1 = (p1) AND (ch <= 'Z')
(p1) add.b r8 = r8, 32 # if (p1) ch = ch + 32

Evaluation of logical OR
if (ch < 'A' || ch > 'Z') ch = '*';

 lt.b p2 = r8, 'A' # p2 = (ch < 'A')
(p2) or.gt.b p2 = r8, 'Z' # p2 = (p2) OR (ch > 'Z')
(p2) set.b r8 = '*' # if (p2) ch = '*'

Compare instructions can be prefixed with a logical AND/OR operations as shown in the
above two examples. The qualifying predicate is bitwise AND/OR-ed with the comparison
result. If the prefix is not specified, it defaults to AND.

Nested if-else statement
if (ch >= '0' && ch <= '9') d = ch – '0';
else if (ch >= 'A' && ch <= 'F') d = ch – 55;
else if (ch >= 'a' && ch <= 'f') d = ch – 87;
else d = 0;

Assume 8 characters (ch) are packed in register r8
Assume 8 digits (d) are packed in register r9

 ge.b p2 = r8, '0' # p2 = (ch >= '0')
(p2) le.b p2 = r8, '9' # p2 = (p2) & (ch <= '9')
(p2) add.b r9 = r8, -48 # if (p2) d = ch – '0'
(c2) ge.b p3 = r8, 'A' # p3 = (~p2) & (ch >= 'A')
(p3) le.b p3 = r8, 'F' # p3 = (p3) & (ch <= 'F')
(p3) add.b r9 = r8, -55 # if (p3) d = ch – 55
 orp p2 = p2, p3 # p2 = (p2) | (p3)
(c2) ge.b p3 = r8, 'a' # p3 = (~p2) & (ch >= 'a')
(p3) le.b p3 = r8, 'f' # p3 = (p3) & (ch <= 'f')
(p3) add.b r9 = r8, -87 # if (p3) d = ch – 87
 orp p2 = p2, p3 # p2 = (p2) | (p3)
(c2) set.b r9 = 0 # if (p3) r9 = 0

The orp instruction is used to OR predicate registers. We can also define andp and xorp
instructions that operate on predicate registers.

Prepared by Dr. Muhamed Mudawar Page 14 of 26

If conditions are mutually exclusive
Then parallel comparisons – same above example

if (ch >= '0' && ch <= '9') d = ch – '0'
else if (ch >= 'A' && ch <= 'F') d = ch – 55
else if (ch >= 'a' && ch <= 'f') d = ch – 87
else d = 0

Assume 8 characters (ch) are packed in register r8
Assume 8 digits (d) are packed in register r9

 ge.b p1 = r8, '0' # p1 = (ch >= '0')
 ge.b p2 = r8, 'A' # p2 = (ch >= 'A')
 ge.b p3 = r8, 'a' # p3 = (ch >= 'a')

(p1) le.b p1 = r8, '9' # p1 = (p1) AND (ch <= '9')
(p2) le.b p2 = r8, 'F' # p2 = (p2) AND (ch <= 'F')
(p3) le.b p3 = r8, 'f' # p3 = (p3) AND (ch <= 'f')

 set r9 = 0 # default case
(p1) add.b r9 = r8, -48 # if (p1) d = ch – '0'
(p2) add.b r9 = r8, -55 # if (p2) d = ch – 55
(p3) add.b r9 = r8, -87 # if (p3) d = ch – 87

Comments:

Code exposing ILP and DLP

First 3 instructions can potentially execute in parallel
Next 3 depend on first 3 and can also execute in parallel
8 bytes within a single register also operate in parallel

Setting and clearing a predicate register

 eq p2 = r0, r0 # setting all bits in p2
 ne p3 = r0, r0 # clearing all bits in p3

Prepared by Dr. Muhamed Mudawar Page 15 of 26

Execution Environment
Each VP (virtual processor) can address the following registers:

• 32 × 64-bit general-purpose registers: r0 – r31

o r0 is a normal register (not hardwired to zero).

o A general-purpose register can also pack 8 bytes, 4 half words, or 2 words

• 32 × 64-bit floating-point registers: f0 – f31

o A floating-point register can also pack 2 single-precision floats

• 8 × 8-bit predicate registers: p0 – p7

o Almost all instructions are predicated. There can be few exceptions.

o Each predicate register is 8 bits, with one bit per byte in the general-purpose register.

o p0 is always true. All bits of p0 are hardwired to one, for unconditional execution.

o p1 is the overflow/carry/saturation register, generated by many instructions.

• PC and EPC

o EPC marks the last instruction address in a thread.

o Thread execution terminates when PC = EPC, and its register context is freed.

o The instruction at address EPC is not executed

• Identification

o CoreID is the ID of the core running this thread.

o Root is the ID of the core running the root thread.

o NVP is the number of virtual processors (or cores) running the thread.

o VPID is the ID of this virtual processor (or thread).

• Vector Length (VL) register

o Used by some instructions to control loop execution

• Not complete: feel free to add additional registers if needed

End Program Counter

R0 (64 bits)

Execution environment registers

R1 (64 bits)

R31 (64 bits)

.

.

.

General-Purpose Registers

. . . P0 P1 P7

Predicate Registers

PC (64 bits)

Program Counter

EPC (64 bits)

Identification

Root

Vector Length

VL (64 bits)

CoreID F0 (64 bits)

F1 (64 bits)

F31 (64 bits)

.

.

.

Floating-Point Registers

NVP VPID

Prepared by Dr. Muhamed Mudawar Page 16 of 26

Immediate Constants
Integer instructions can specify an 8-bit immediate constant for the second source operand, in
place of a second source register. Two instruction formats will result: R-R (both source
operands are registers) and R-I (second source operand is an immediate constant). For
simplicity the same mnemonic is used for both the R-R and R-I formats. Consider again the
add instruction, there are two such instructions, where.f represents the register format:
 add.f rd = rs, rt # R-R format
 add.f rd = rs, im8 # R-I format, 8-bit immediate

The 8-bit immediate constant is sign-extended for all integer instructions. When adding an
immediate constant to a packed register format, the immediate constant is replicated to all
packed elements. The following diagram shows an example:

The SET Instruction
The set instruction is used to initialize a destination register rd with a 16-bit immediate
constant. It has the following syntax, where .f is the register format:
(p) set.f rd = imm16

The immediate constant is replicated for packed bytes (.b extension), packed half words (.h
extension), and packed words (.w extension). To set packed bytes, only the least significant
8-bit of the immediate constant is replicated. To set packed words, the immediate constant is
sign-extended to 32 bits and replicated. To set a long word, the immediate constant is sign-
extended to 64 bits. The following are examples:

Using Predication to Control Register Writing
Predication is used to control the writing of destination register rd. Since a predicate register
consists of 8 bits, each bit is used to control the writing of one corresponding byte. In the
following example, if p1 = 11110000 then only bytes 4, 5, 6, and 7 can be written in r3
(shown in red). Note that predicate values should be generated properly for the desired
register format. Otherwise, bytes can be incorrectly written in a destination register.

Initial value of r3 0x12 0x34 0x56 0x78 0x90 0xab 0xcd 0xefr3

(p1) set.h r3 = 0xfd37

0x90abcdefr3(p1) set.w r3 = 0xfd37

0xcdefr3 0x90ab 0xfd370xfd37

0xfffffd37

(p1) set.b r3 = 0x37 0x37 0x37 0x37 0x37 0x90 0xab 0xcd 0xefr3

Half word 3 Half word 0 Half word 1Half word 2
+ 1
=

+ 1
=

Half word 0

+ 1
=

Half word 1

+ 1
=

Half word 2Half word 3 r2

r1

add.h r2 = r1, 1 # add 1 to each packed element

set.b r3 = 5 5 5 5 5 5 5 5 5r3

set.w r3 = -713 -713 r3

set.l r3 = -713 -713r3

set.h r3 = -713 -713r3 -713 -713-713

-713

Prepared by Dr. Muhamed Mudawar Page 17 of 26

Integer Instruction Formats
Three instruction formats are defined for R-R, R-I, and SET instructions.

• p = qualifying predicate = (p0 thru p7)

o Qualifying predicate (p) is used to control the writing of each byte in register rd

o If p = 00000000 then there is no need to execute instruction

• c = Complement of a qualifying predicate = (c0 thru c7)

• op = major opcode

o Defines the instruction format

o One major opcode is used for all R-R integer instructions

o One major opcode is used for all R-I integer instructions

o One major opcode is used for all Floating-point instructions

• f = Register format

o .b (packed bytes), .h (packed half words), .w (packed words), .l (long word)

• rd = Destination register (always written)

• rs = First source register (always read)

• rt = Second source register (always read)

• opx = Opcode extension

o 7-bit opcode extension for R-R format defines up to 128 functions per major opcode

o 4-bit opcode extension for R-I format defines up to 16 functions per major opcode

• imm8 = 8-bit signed immediate constant used in R-I instructions

o Immediate constant is sign-extended and/or replicated according to register format

• imm16 = 16-bit signed immediate constant used in SET instructions

o Immediate constant is sign-extended and/or replicated according to register format

opx7 rd5 p3 rs5 rt5 f2

p3 imm8

rd5 rs5 opx4 f2

p3 imm16 rd5 f2

R-R Format

R-I Format

SET Format

op4 c

op4 c

op4 c

Prepared by Dr. Muhamed Mudawar Page 18 of 26

Integer Instructions
Integer instructions operate on 64-bit general-purpose registers. They include arithmetic,
comparison, logical, and shift instructions. They can operate on 64-bit long integers or
narrower packed data. They can execute conditionally based on the content of a qualifying
predicate register.

Integer Addition
There are two integer addition instructions: add and addu. Signed addition may overflow
indicating that the result is out of the signed range. Similarly, unsigned addition may produce
a carry, indicating that the result exceeded the maximum unsigned value. In both cases,
modulo-arithmetic is used and the result is identical, but can be out-of-range. The p1 register
is used to store the overflow/carry flags for signed/unsigned addition.

Saturation
Sometimes, it is desirable to produce saturated (rather than modulo) values when results are
out-of-range. Signed saturation clamps the result to the maximum positive or minimum
negative value that can be represented. Unsigned saturation clamps the result to the maximum
unsigned value, or to zero (in case of unsigned subtraction).

We can have a saturation option by adding the letter (s) after the instruction mnemonic. This
will result in the following combinations of addition instructions:
(p) add.f rd = rs, rt|im8 # add signed (modulo)
(p) addu.f rd = rs, rt|im8 # add unsigned (modulo)
(p) adds.f rd = rs, rt|im8 # add with signed saturation
(p) addus.f rd = rs, rt|im8 # add with unsigned saturation

An example of signed addition on packed bytes with and without saturation is shown below.
In the first example, modulo-addition is used and the result overflows in bytes 2 and 3. The
p1 predicate register captures the eight overflow flags. In the second example, saturated-
addition is used and the result is saturated in bytes 2 and 3. Observe that bytes 6 and 7 are not
saturated, although they contain the maximum positive and minimum negative byte values.

The saturation option applies to only few integer instructions (addition, subtraction,
multiplication, and packing). The remaining integer instructions do not saturate.

As an alterative approach, it is also possible to define a sat (saturate) instruction that clamps
a signed integer to its maximum positive or minimum negative value, depending on its sign:
(p) sat.f rd = rs # if (p) rd = saturate(rs)

For the above example, adds.b r3 = r1, r2 is equivalent to:
 add.b r3 = r1, r2 # p1 = 00001100
(p1) sat.b r3 = r1 # bytes 2,3 of r3 are saturated

add.b r3=r1,r2 # p1 = 00001100

-3 5 100 -95 8 6 1 -127

-2 -4 50 -63 7 13 126 -1

+ + + + + + + +

= = = = = = = =

-5 1 -106 98 15 19 127 -128 r3

r2

r1

adds.b r3=r1,r2 # p1 = 00001100

-3 5 100 -95 8 6 1 -127

-2 -4 50 -63 7 13 126-1

+ + + + + + + +

= = = = = = = =

-5 1 127 -128 15 19 127-128r3

r2

r1

Prepared by Dr. Muhamed Mudawar Page 19 of 26

Integer Subtraction
One way to define integer subtraction is: rd = rs – rt|im8. A problem with this
definition is that to obtain the negation of register rt, one must use a register rs with a zero
value. However, no general-purpose register is hardwired to zero. r0 is a normal register that
can be updated. Another problem is that there is no use for the 8-bit immediate constant. To
compute: rd = rs – im8, one can use the add instruction with a negative immediate.

A better way to define subtraction is: rd = -rs + rt|im8. This is called subtract from.
To obtain the negative of register rs, a zero immediate can be used. The use of an immediate
constant is also useful when adding it to the negative of register rs.

Therefore, four subtract-from instructions are defined for signed/unsigned operands, and with
or without saturation:
(p) subf.f rd = rs, rt|im8 # rd = -rs + rt|im8
(p) subfu.f rd = rs, rt|im8 # rd = -rs + rt|im8
(p) subfs.f rd = rs, rt|im8 # with signed saturation
(p) subfus.f rd = rs, rt|im8 # with unsigned saturation

To obtain the negation of register rs, write: subf rd = rs, 0 # rd = -rs + 0

As with addition, the subf and subfu produce identical results, because modulo-arithmetic
is used. However, the subf instruction produces eight overflow flags, while the subfu
produces eight borrow flags for unsigned subtraction. The result overflow/borrow flags are
stored in predicate register p1. The subfs and subfus might produce different saturated
results. If a borrow is detected with unsigned saturation, the result is saturated to zero,
because it cannot be negative.

To simplify assembly-language programming, the following pseudo-instructions are defined.
The pseudo-instruction sub r3 = r1, r2 computes r3 = r1 – r2. It is equivalent to
the real instruction subf r3 = r2, r1 where the order of the source operands is
exchanged.

Pseudo Instruction Equivalent Real Instruction
(p) neg.f r2 = r1
(p) sub.f r3 = r1, r2
(p) subu.f r3 = r1, r2
(p) subs.f r3 = r1, r2
(p) subus.f r3 = r1, r2

(p) subf.f r2 = r1, 0
(p) subf.f r3 = r2, r1
(p) subfu.f r3 = r2, r1
(p) subfs.f r3 = r2, r1
(p) subfus.f r3 = r2, r1

Prepared by Dr. Muhamed Mudawar Page 20 of 26

Pack
The pack instruction is used to pack two source registers rs and rt into a destination
register rd. Long words are packed into words, words are packed into half words, and half
words are packed into bytes. The packed elements of rs go into the upper half or rd. The
packed elements of rt go into the lower half. The syntax of the pack instruction is given
below:
(p) pack.f rd = rs, rt # pack rs, rt into rd

Three integer register formats are supported for the packed register rd: .w, .h, and .b.

When packing, signed and unsigned saturation options can saturate the truncated integer
operands. Out-of-range values are saturated to the maximum or minimum values that can be
represented. Two saturation options can be used with the pack instruction:
(p) packs.f rd = rs, rt # pack with signed saturation
(p) packus.f rd = rs, rt # pack with unsigned saturation

If saturation is detected, the p1 predicate bits are set for the corresponding saturated bytes.
The following example illustrates the packing of words into packed half words with signed
and unsigned saturation. Saturated values are shown in red. p1 is equal to 00111100 after
executing packs.h, and it is equal to 11001100 after executing packus.h.

Unpack
The unpk instruction is used to unpack the low order 32 bits of a source register rs into a
64-bit destination register rd. 4 bytes are unpacked into 4 half words, 2 half words are
unpacked into 2 words, and a word is unpacked into a long word. The unpkh instruction is
used to unpack the high order 32 bits. Packed elements are sign- or zero-extended, depending
on the option. The four variations of the unpk instruction are given below:
(p) unpk.f rd = rs # unpack low 32 bits sign-extended
(p) unpku.f rd = rs # unpack low 32 bits zero-extended
(p) unpkh.f rd = rs # unpack high 32 bits sign-extended
(p) unpkhu.f rd = rs # unpack high 32 bits zero-extended

Three register formats are supported by the unpk instruction: .h, .w, and .l, which specify
the format of destination register rd. No saturation can occur and the p1 predicate register is
not affected.

Assume value of r1

packs.h r3 = r1, r2

packus.h r3 = r1, r2

Assume value of r2

50000 r1 -1

32767r3 -32768 32767-1

32767r3 65535 5000065535

32767 r2 -33000

Prepared by Dr. Muhamed Mudawar Page 21 of 26

Integer Multiplication
In general, integer multiplication takes two operands of size n bits and produces a product of
size 2n bits. Because the destination register is only n bits in size, the mul instruction is
defined here to produce only the low-order n bits of the multiplication. There is no need to
distinguish between signed and unsigned multiplication because the lower n bits of the
product are the same in both cases. The difference is in the upper n bits, which are not stored.
(p) mul.f rd = rs, rt # rd = rs * rt

Restricting the product size to n bits is not a limitation. If a 2n bit product is desired, the
operands can be expanded from n to 2n bits before multiplication, using the unpk (unpack)
instruction. Sign/zero extensions are used to unpack signed/unsigned integer operands.

Signed/unsigned saturation options can be defined for the mul instruction, which affect the
p1 predicate. Saturation options are useful if no unpacking is done before multiplication.
(p) muls.f rd = rs, rt # with signed saturation
(p) mulus.f rd = rs, rt # with unsigned saturation

Integer Division
There are two integer divide instructions div and mod, which produce the quotient and
remainder. Both instructions take two n-bit operands and produce an n-bit quotient and an n-
bit remainder. The division can be signed or unsigned and can operate on packed elements
within a register according to the register format. There is no saturation option with integer
division because the quotient and the remainder do not saturate.
(p) div.f rd = rs, rt # Signed quotient
(p) mod.f rd = rs, rt # Signed remainder
(p) divu.f rd = rs, rt # Unsigned quotient
(p) modu.f rd = rs, rt # Unsigned remainder

The division hardware can produce the quotient and remainder simultaneously. However,
since there is only one destination register in the instruction format and to avoid using
special-purpose HI and LO registers, the mod instruction is introduced in addition to div.
The mod instruction will do integer division identical to div. Sometimes, a program needs
either the quotient or the remainder, but not both. In this case, the proper instruction is used
and the division is done once. However, if a program requires both results and uses both
instructions in sequence, the division hardware can save the last division operands and result
in internal registers to avoid repeating the same operation and wasting cycles.

1234r1 -5000 unusedunusedAssume value of r1

unpk.w r3 = r1

unpk.w r4 = r2

Assume value of r2

1234 r3 -5000

100r2 378 unusedunused

100 r4 378

mul.w r5 = r3, r4 123400 r5 1890000

Prepared by Dr. Muhamed Mudawar Page 22 of 26

Logical Instructions
Eight R-R logical instructions are defined as follows:
(p) and rd = rs, rt # rd = rs & rt
(p) andc rd = rs, rt # rd = ~rs & rt
(p) or rd = rs, rt # rd = rs | rt
(p) orc rd = rs, rt # rd = ~rs | rt
(p) xor rd = rs, rt # rd = rs ^ rt
(p) nand rd = rs, rt # rd = ~(rs & rt)
(p) nor rd = rs, rt # rd = ~(rs | rt)
(p) xnor rd = rs, rt # rd = ~(rs ^ rt)

The register format (.f extension) need not be specified for R-R logical instructions, because
these instructions operate on bits that are not affected by the register format.

Four R-I logical instructions are defined as follows:
(p) and.f rd = rs, im8 # rd = rs & im8
(p) andc.f rd = rs, im8 # rd = ~rs & im8
(p) or.f rd = rs, im8 # rd = rs | im8
(p) xor.f rd = rs, im8 # rd = rs ^ im8

The register format (.f extension) should be used for R-I logical instructions. It indicates
how the immediate constant should be replicated for the packed elements.

Logical instructions do not produce overflow or carry bits, and hence do not modify the p1
predicate register.

Shift and Rotate Instructions
Three shift instructions and one rotate are defined as follows:
(p) sll.f rd = rs, rt|im # shift left logical
(p) srl.f rd = rs, rt|im # shift right logical
(p) sra.f rd = rs, rt|im # shift right arithmetic
(p) rol.f rd = rs, rt|im # rotate left

Shifting and rotation differ depending on the register format. If a packed register format is
specified, then each packed element is shifted or rotated. The shift/rotate amount is either an
immediate constant im or a variable stored in register rt. For packed byte elements, only
three bits are required to specify the shift/rotate amount, while the long integer format
requires six bits. There is only one rotate left (rol) instruction. There is no rotate right. To
rotate right a 64-bit long integer by 20 bits, it can be rotated left by 44 = 64 – 20 bits.

Prepared by Dr. Muhamed Mudawar Page 23 of 26

Scalar Load and Store
The load and store instructions are defined as follows:
(p) ld.f rd = [rs+im] # if (p!=0) rd = memory[rs+im]
(p) st.f [rs+im] = rt # if (p!=0) memory[rs+im] = rt

The .f extension can be .b (load/store byte), .h (half word), .w (word), or .l (long word).
ld.b loads one byte from memory into the least-significant byte of a destination register rd,
ld.h loads one half word, ld.w loads one word, and ld.l loads a long word (which might
pack 8 bytes, 4 half words, or 2 words). Sign-extension fills the upper-part of a register.

Similarly, st.b stores the least significant byte of a source register rt, st.h stores the
lower half word, st.w stores the lower word, and st.l stores the complete register (which
might pack 8 bytes, 4 half words, or 2 words). If the .f extension is not specified, it is
assumed to be .l for integer loads and stores.

For floating-point, the .f extension can be .s (single-precision) or .d (double-precision).
Destination register rd is replaced by fd, and source register rt is replaced by ft.

Memory Alignment
Memory alignment is a requirement to simplify the hardware implementation. Long words
should be aligned on an 8-byte boundary, words should be aligned on a 4-byte boundary, and
half-words should be aligned on a 2-byte boundary. Bytes need not be aligned.

Addressing Mode
Only one addressing mode is supported by the load and store instructions: base-displacement
addressing. The base address is stored in register rs, and the displacement is the immediate
constant. The effective address is computed as follows:
Effective Address = Reg(rs) + sign-extend(immediate)

r3 sign-extension
 sign-extension

. . .

. . .

r2

r4
r5

Registers
8-byte wide

address of black byte in memory r1

st.l [r1+8] = r4
st.w [r1+4] = r5

ld.h r2 = [r1+2]
ld.b r3 = [r1+1]

Memory
8-byte boundary

Prepared by Dr. Muhamed Mudawar Page 24 of 26

Load and Store Format
The load and store instructions use slightly different formats. The load instruction specifies
register rd as the destination register, which is written by the load instruction, while the store
instruction specifies register rt as a source register read by the store instruction and written
in memory. Both instructions use a 12-bit signed immediate constant as a displacement, but
the immediate is distributed in the store instruction format.

Control Flow Instructions

The jump and call instructions are defined as follows:
(p) jump label # if (p!=0) jump to label
(p) call label # if (p!=0) call procedure
(p) jump rs # if (p!=0) jump register
(p) call rs # if (p!=0) call register

If any bit of (p) is set, the jump or call instruction will occur. If all bits of (p) are clear,
the jump or call instruction will be dropped. If (p) is not specified, it defaults to (p0),
and the jump or call will be unconditional.

The JUMP instruction format is used for the direct jump and call instructions. PC-relative
addressing is used. The 24-bit immediate constant is sign-extended, shifted left by 2 bits, and
added to the program counter to determine the address of the target instruction.
PC = PC + imm24 << 2

All instructions occupy 4 bytes in memory and are aligned on a 4-byte boundary. The lower 2
bits of PC are always zero. Therefore, imm24 is simply added to the upper 62 bits of PC.

The call instruction does a jump and saves the return address in register r31. This register
is named the ra (return address) register.

The indirect jump and call instructions jump to the content of register rs. These two
instructions use the R-R instruction format.

Imm12 rd5 p3 op5 rs5 f2

Load Format

Store Format

Imm7 Imm5 p3 op5 rs5 rt5 f2

p3 op5 imm24

JUMP Format

Prepared by Dr. Muhamed Mudawar Page 25 of 26

Floating-Point Instructions
Floating-point instructions can be designed to address a separate set of floating-point
registers. Alternatively, it can address the same general-purpose registers. Each approach has
its advantages and disadvantages. Addressing a separate set of registers doubles the number
of registers that can be used by one thread, which might be considered a positive or negative
point. It is a positive point if a program thread needs all these registers. However, it is a
negative point if a program is dominated by integer instructions, which make little use of
floating-point registers or vice-versa. It also takes more time to save and restore two register
files (instead of one) on context switches. Furthermore, additional instructions are necessary
to move data between the two register sets and to load/store floating-point registers. These
instructions can be eliminated if a common register file is used. On the other hand, using a
common register file places more pressure on the registers. More register ports are needed to
issue multiple instructions in a given cycle. These ports can be reduced and distributed if two
register files are used. There can be no register dependency between an integer and a floating-
point instruction if separate register files are used, and hence can be issued in parallel.
However, register dependencies must be checked if a common register file is used. In what
follows, a separate set of floating-point registers f0–f31 is assumed.

The following floating-point instructions are defined:
(p) add.f fd = fs, ft # if (p) fd = fs + ft
(p) sub.f fd = fs, ft # if (p) fd = fs - ft
(p) mul.f fd = fs, ft # if (p) fd = fs * ft
(p) div.f fd = fs, ft # if (p) fd = fs / ft
(p) mov.f fd = ft # if (p) fd = ft
(p) neg.f fd = ft # if (p) fd = -ft
(p) abs.f fd = ft # if (p) fd = abs(ft)
(p) rcp.f fd = ft # if (p) fd = 1/ft
(p) sqrt.f fd = ft # if (p) fd = sqrt(ft)

Where .f is the floating-point register format, which should be specified as either: .d or .s.
Floating-point immediate constants cannot be specified as a second operand. They should be
loaded from memory.

Prepared by Dr. Muhamed Mudawar Page 26 of 26

Conversion Instructions
The float instruction converts a long integer or a pair of integer words to their floating-
point representation. It also transfers the converted data from a general-purpose register, rs,
to a floating-point register, fd.

The round, trunc, floor, and ceil instructions convert a double-precision float or a
pair of single-precision floats to their integer representation, using rounding to the nearest
integer, truncation, or obtaining the floor or ceiling functions, which produce slightly
different integer results. The converted data is transferred from a floating-point source
register fs to a general-purpose register rd.

Only two register formats can be specified for all conversion instructions: either .d or .s.
(p) float.f fd = rs # fd = float(rs)
(p) round.f rd = fs # rd = round(fs)
(p) trunc.f rd = fs # rd = trunc(fs)
(p) floor.f rd = fs # rd = floor(fs)
(p) ceil.f rd = fs # rd = ceil(fs)

Floating-Point Pack
The pack.s instruction is used to pack two double-precision floating-point registers fs and
ft into a packed single-precision destination register fd. Only the .s register format can be
used to specify the format of destination register fd. The packed fs goes into the upper half
or fd. The packed ft goes into the lower half.
(p) pack.s fd = fs, ft # pack fs, ft into fd

Floating-Point Unpack
The unpk.d instruction is used to unpack the low-order single-precision float of source
register fs into a double-precision float in destination register fd. The unpkh.d instruction
is used to unpack the high order single-precision float. Only the .d register format can be
used to specify the format of destination register fd.
(p) unpk.d fd = fs # unpack low order float
(p) unpkh.d fd = fs # unpack high order float

unpk.d f2 = f1

Single-precision float 0Single-precision float 1f1

Double-precision float Double-precision float f2f3

unpkh.d f3 = f1

pack.s f3 = f1, f2 # pack double-precision floats

Single-precision float 0Single-precision float 1

Double-precision float Double-precision float

f3

f2f1

