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CSE 661 – Parallel and Vector Architectures 

Research Project 
 
Problem Statement 
The main idea of this research project is to enable a parallel loop to execute across all cores, 
taking advantage of the multiplicity of resources provided in a multicore processor. With the 
introduction of few instructions and minimal extra hardware support, a thread running in a 
single core will be able to broadcast a parallel loop to all cores. This mode of execution will 
be supported completely in the microarchitecture. The operating system “sees” the parallel 
loop as one thread, rather than multiple threads running on multiple cores. 

A chip multiprocessor with N cores and a shared L2-cache is shown below. Each core is 
capable of executing a thread scheduled by the operating system, referred here as a root 
thread, plus few additional threads created by the hardware to speedup the execution of 
parallel loops. An L2 cache is shared by all the cores. To optimize the bandwidth and latency, 
the L2 cache is divided into M independent banks that operate in parallel. The N cores 
communicate with the M cache banks using the on-chip interconnect. There is nothing new, 
except the ability to execute parallel loop instructions across all cores. A parallel loop 
instruction is effectively converted into N scalar instructions by distributing its work on the N 
CPU cores. 
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Figure 1: Chip multiprocessor with N cores and a shared L2 cache with M banks 
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Parallel Counter-Controlled Loops 

Consider the execution of the following loop where x and y are vectors residing in memory 
and a is a scalar value. This is the DAXPY loop that forms the inner loop of the Linpack 
benchmark for performing Gaussian elimination: 

for (i=0; i<n; i++) y[i] = a * x[i] + y[i]; 

The iterations of the above loop can be executed in parallel. Assume that the base addresses 
of arrays x and y are in registers r2 and r3 respectively, and the scalar values n and a are 
loaded in registers r1 and f1 respectively. Then, the above loop can be translated as follows: 
 
 vp r0 = r1, L2 ; allocate virtual processors 
 dup f1 = f1 ; duplicate f1 = a in all VPs 
L1: 
 lv f2 = [r2+] ; load vector x into f2 in all VPs 
 lv f3 = [r3] ; load vector y into f3 in all VPs 
 mul f4 = f1, f2 ; multiply: a * x[i] in all VPs 
 add f4 = f4, f3 ; add: a * x[i] + y[i] in all VPs 
 sv [r3+] = f4 ; store vector f4 at address y 
 loop L1 
L2: 
 
The VP Instruction 
The above loop appears to be sequential, but is in fact a parallel loop. The vp (Virtual 
Processor) instruction allocates virtual processors to execute a parallel loop. Each virtual 
processor is a hardware thread that includes integer and floating-point register files, a 
program counter, and some additional control registers. The vp instruction specifies the 
vector length and the label address at which to terminate parallel execution. It returns the 
number of allocated virtual processors (NVP). The vp instruction enables the exploitation of 
data-level parallelism across multiple cores. 

In addition to allocating hardware contexts across all cores, the vp instruction initializes the 
vector length (VL) register in all hardware contexts with the specified number of iterations, 
the virtual processor identification (VPID) register with a unique number, the virtual 
processor count (NVP) register with the count of VPs (a power of 2), and the Root register 
with the root core number. The vp instruction also initializes the end program counter (EPC) 
register in all the allocated VP contexts with the label address that marks the end of the 
parallel loop, and the program counter (PC) registers with the address of next instruction to 
launch parallel loop execution. This is illustrated in Figure 2, where Core 1 is the root core 
that issued the execution of the vp instruction. The root core always have VPID = 0. The 
instructions appearing after vp will be executed as asynchronous parallel threads (not in 
lockstep) on all the virtual processors until the end label is reached. This mode of execution is 
more flexible than the lockstep vector execution mode implemented in vector processors. 



Prepared by Dr. Muhamed Mudawar  Page 3 of 26 

 
When the program counter (PC) reaches the end label program counter (EPC), the virtual 
processor terminates execution and the hardware context is freed. Eventually all virtual 
processors will free their hardware context, except for the root thread, which continues 
normal execution after the end of the parallel loop. A special case occurs when the vector 
length is equal to 0. In this case, no virtual processor is allocated and the vp instruction 
simply becomes a jump to the end label, skipping all instructions in a parallel loop. 

If all hardware contexts are allocated and the vp instruction fails to allocate new ones, then 
the parallel loop will be executed sequentially in the root core, rather than as parallel threads 
in virtual processors.  

Figure 2: Executing a parallel loop on four cores 

 dup f1=f1
L1: lv f2=[r2+] 
 lv f3=[r3] 
 fmul f4=f1,f2 
 fadd f4=f4,f3 
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Support for Packed Data Types 
64-bit registers can pack multiple data of smaller sizes. This packing optimizes the use of 
registers and adds sub-register data parallelism. Four integer register formats, specified as 
opcode extensions, are defined: long word (.l extension), packed words (.w extension), 
packed half words (.h extension), and packed bytes (.b extension). 

 
There is no distinction between scalar and vector instructions. The same integer arithmetic 
instruction can operate on all packed formats, in addition to the long word format. Consider 
the add instruction. Four executions can result depending on the register format, as shown 
below. The same 64-bit datapath can be internally partitioned inside the ALU to produce 
different results, depending on the register format. If the register format is not specified, it 
defaults to long word (.l extension). 

 
For floating-point instructions, two register formats are defined as opcode extensions: double-
precision (.d extension) and packed single-precision (.s extension). Consider the floating-
point add instruction. Two executions can result depending on the register format. 

 Two executions of the floating-point add instruction based on the floating-point register format 

add.d f2 = f0, f1 # double float

Single-precision float 1

Single-precision float 1

+ 

= 

Single-precision float 0

Single-precision float 0

+ 

= 

Single-precision float 0Single-precision float 1f2

f1

f064-bit double-precision float 

64-bit double-precision float 

+ 

= 

64-bit double-precision float f2 

f1 

f0 

add.s f2 = f0, f1 # packed floats

Byte0 Byte1Byte2Byte3Byte4Byte5Byte6 Byte7 

Half word 3 Half word 0 Half word 1 Half word 2 

32-bit Word 1 32-bit Word 0 

64-bit Long word 

Four integer register formats are given to the same general-purpose register 

add.l r3 = r1, r2 # long words

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7

+ + + + + + + + 

= = = = = = = = 

Byte0Byte1Byte2 Byte3 Byte4Byte5Byte6Byte7r3

r2

r1Halfword 3 

Halfword 3 

+ 

= 

Halfword 0

Halfword 0

+ 

= 

Halfword 0

Halfword 1 

Halfword 1 

+ 

= 

Halfword 1 

Halfword 2 

Halfword 2 

+ 

= 

Halfword 2 Halfword 3 r3 

r2 

r1 

32-bit Word 1

32-bit Word 1

+ 

= 

32-bit Word 0

32-bit Word 0

+ 

= 

32-bit Word 032-bit Word 1r3

r2

r164-bit Long word 

64-bit Long word 

+ 

= 

64-bit Long word r3 

r2 

r1 

add.w r3 = r1, r2 # packed words

add.h r3 = r1, r2 # half words add.b r3 = r1, r2 # packed bytes

Four executions of the add instruction based on the register format 
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The DUP Instruction 
In its simplest form, the dup (duplicate) instruction broadcasts a register from a root thread 
to and all the allocate VP threads. The dup instruction accomplishes register-to-register 
communication. It acts as a non-blocking send and injects a token into the network when 
issued by a root thread. It acts as a blocking-receive in all the allocated VP threads. 

The dup instruction is also used to replicate a narrow data element and pack it in a 
destination register at the root thread, and then broadcast the destination register to the 
allocated VP threads. The .f extension is used to specify the narrow data type: dup.b 
(duplicate byte), .h (duplicate half word), .w (duplicate word), or .l (duplicate long word). 
If the .f extension is not specified, it is assumed to be .l, which duplicates a general-
purpose register. For floating-point registers, the .f extension can be .s (duplicate single-
precision float), or .d (duplicate double-precision float). If omitted, it is assumed to be .d. 
Duplicating a narrow data element is useful even if no VP thread is allocated. The dup 
instruction becomes a simple register-to-register move instruction within the root VP. 

 
Another use of the dup instruction is to broadcast a different computed value to each VP 
thread. A second source operand is used to compute a series of values. For example, if r0 is 
100 then dup r1 = r0,5 produces the following series: 100, 105, 110, 115 across all 
VPs. The value 100 is broadcast to all VPs and computed as 100 + VPID × 5 at each VP.  

 
A more general example is: dup.h r1 = r0, 5. First, r1 is computed from r0=100 at 
the root VP as r1=[115,110,105,100]. Four half words are packed into r1 because the 
.h extension is used. Then, r1 at the root is broadcast to all VPs and added to VPID×5<<2. 
The constant 5 is shifted left 2 bits (multiplied by 4) because the .h extension is used. This 
produces the following computed values of r1: [135,130,125,120](VPID=1), 
[155,150,145,140](VPID=2), and  [175,170,165,160](VPID=3). 

The syntax of the dup instruction is: dup.f rd = rs, rt|im 

The computed values are: rd = rs + VPID × (rt|im) << f 

110 

VPID = 0 (Root)

dup r1 = r0,5
. . . 

Broadcasting and computing a series of values across all VPs 

100
100r1 

r0

VPID = 1

dup r1 = r0,5
. . . 

r0 

VPID = 2 

dup r1 = r0,5 
. . . 

r0 

VPID = 3 

dup r1 = r0,5
. . . 

r0 

dup

105115 

r0

VPID = 0 (Root)

dup.h r1 = r0
. . . 

Duplicating the least-significant half-word of r0 into r1 at root and broadcasting r1 to all VP threads 

5
555 5 

r0

VPID = 1

dup.h r1 = r0
. . . 

5555
r0 

VPID = 2 

dup.h r1 = r0 
. . . 

5 5 5 5

VPID = 3 

dup.h r1 = r0
. . . 

r1 5 5 5 5 
r0 r0 

dup
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Vector Load and Store 
The load and store vector instructions are defined as follows: 
 lv.f rd = [rs] # load vector 
 sv.f [rs] = rt # store vector 

The .f extension can be .b (byte), .h (half word), .w (word), or .l (long word). For 
floating-point, the .f extension can be .s (single-precision) or .d (double-precision). 
Destination register rd is replaced by fd, and source register rt is replaced by ft. 

The lv (load vector) instruction loads a contiguous block of memory and distributes the 
vector elements onto the virtual processor registers. Register [rs] specifies the vector 
address. Each VP receives one element of the vector. The lv instruction is issued only by the 
root VP. The other VPs act as receivers as shown below. The elements are received in the 
order specified by VPID. The root VP (with VPID = 0) receives the first element. 

 
The sv (store vector) instruction gathers the vector elements and stores them in a contiguous 
block of memory at the specified vector address. Register [rs] at the root specifies the 
vector address. The elements of the vector are gathered in the order specified by VPID. They 
can be gathered at the root core or in the L2-Cache depending on implementation. 

It is also possible to load/store vectors of narrow elements such as bytes, half words, and 
words. The following example shows how the sv instruction can store a vector of half words, 
whose elements are distributed onto the virtual processor registers. The .h extension is used 
to store the least-significant half word of each register in memory. 

 
The lv and sv instruction make use of the VL (Vector Length) and NVP (Number of Virtual 
Processors) registers. If VL >= NVP then NVP elements are loaded/stored. If VL < NVP then 
VL elements are loaded/stored. 

VPID = 0 (Root) VPID = 1 VPID = 2 

 sv.h  [r1] = r3 
 . . . 

VPID = 3 

 sv.h  [r1] = r3
 . . . 

sv.h  [r1] = r3
 . . . 

sv.h  [r1] = r3
 . . . 

r3 r3 r3 r3 

Memory (L2-Cache) 

VPID = 0 (Root) VPID = 1 VPID = 2 

 lv.d  f2 = [r2] 
 . . . 

VPID = 3 

 lv.d  f2 = [r2]
 . . . 

lv.d f2 = [r2]
 . . . 

lv.d  f2 = [r2]
 . . . 

f2 f2 f2 f2 

Memory (L2-Cache) 
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Addressing Modes 
The lv and sv instructions use the register-indirect addressing mode. Register [rs] at the 
root core specifies the memory address. No immediate can be specified as a displacement. 

Two update addressing modes are also defined: 

[rs+] notation indicates that the address should be updated as: rs = rs + NVP<<f. 

[rs-] notation indicates that the address should be updated as: rs = rs - NVP<<f.  

Where NVP is the number of allocated VPs and f is a scale factor specified by the .f 
extension: f=0 for .b, 1 for .h, 2 for .w or .s, and 3 for .l or .d. 

The last addressing mode can be used to load or store vectors in reverse order. 

Vectors of Different Element Sizes 
There are situations in which vectors processed in a given loop have different element sizes. 
For example, suppose we want to add A = A + B, where A is a vector of half words and B is 
a vector of bytes. We can load, compute, and store the vectors as shown below, where r1 
contains the address of array A and r2 contains the address of array B.  
lv.h r3 = [r1] # load vector A: 1 half word per VP 
lv.b r4 = [r2] # load vector B: 1 byte per VP 
add r5 = r3, r4 # do the addition 
sv.h [r3] = r5 # store 1 half word from each VP 

The above code will load one half-word element of vector A into register r3 in each virtual 
processor. The number of elements loaded simultaneously and processed in parallel is equal 
to the number of virtual processors. A half-word element occupies the lower 16 bits of a 
register. It is sign-extended to fill the entire register. Similarly, one byte element of vector B 
is loaded into register r4 in each virtual processor and is also sign-extended. 

We can do better by loading multiple packed vector elements into each register. We use 
lv.l to load a long word which packs four half words of vector A into register r3 in each 
virtual processor. Similarly, we use lv.w to load a word which packs four bytes of vector B 
into register r4 in each virtual processor. The four packed bytes, which occupy the lower half 
of r4, can be unpacked to become four packed half words. The unpk.h instruction is used 
for this purpose. The add.h instruction is used to carry the addition in parallel on four 
packed half words in register r3 and r4. 
lv.l r3 = [r1] # load vector A: 4 half words per register 
lv.w r4 = [r2] # load vector B: 4 bytes per register 
unpk.h r4 = r4 # Unpack 4 bytes into 4 signed half words 
add.h r5 = r3, r4 # add four packed bytes in parallel 
sv.l [r3] = r5 # store 4 half words from each register 

The speedup of a parallel loop comes from two factors: the packing done at the level of 
registers and the number of cores (or virtual processors) involved in the parallel execution. 
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Vectors with a Non-Unit Stride 
The lv and sv instructions can load and store only contiguous vectors. The implementation 
of these two instructions can always be optimized at the hardware level. Pre-fetching 
techniques can reduce the load delay. The vector length is a hint to stream the load from 
memory for long vectors. The cache footprint can be minimized or eliminated if the vector is 
loaded once, or stored with no future use.  

To handle vectors with a non-unit stride, one can define special load/store instructions that 
can transfer vectors with a non stride. However, such instructions will add more complexity 
to the hardware. Instead, scalar load/store instructions can be executed in parallel in all VPs. 

For example, consider taking the sum of elements in a vector with a non-unit stride. If the 
starting address of the column is loaded into register r1, the stride (distance in bytes between 
two elements) is loaded into r2, and the number of vector elements is loaded into r3, then 
the parallel loop can be written as: 
 vp r0 = r3, L2 # allocate VPs, r0 = NVP 
 set r6 = 0 # r4 = partial sum in each VP 
 dup r2 = r2 # r2 = stride 
 dup r3 = r1, r2 # r3 = element address in each VP 
 mul r4 = r2, r0 # r5 = stride * NVP 
L1: 
 ld r5 = [r3] # r6 = loaded value 
 add r3 = r3, r4 # advance pointer in each VP 
 add r6 = r6, r5 # accumulate partial sum in each VP 
 loop L1 
 sum r7 = r4 # r7 = reduced partial sums 
L2: 
 

 

The LOOP Instruction 

The loop instruction is used for executing a counter-controlled loop. It does the following: 

if (VL > NVP + VPID) { VL = VL – NVP; jump label; } 
else VL = 0; 

Suppose VL = 10 and NVP = 4. After executing the first iteration, VL becomes 6 and the 
loop instruction jumps to label to start the second iteration in all virtual processors. After 
executing the second iteration, VL becomes 2 and the loop instruction starts a third iteration 
in the first two virtual processors (VPID = 0 and 1), while the loop terminates (VL = 0) in the 
last two virtual processors (VPID = 2 and 3). Therefore, three iterations are executed in the 
first two virtual processors (VPID = 0 and 1) and two iterations are executed in the last two 
virtual processors (VPID = 2 and 3). This is equivalent to executing ten iterations if the loop 
is executed only by the root thread. The loop instruction guarantees that VL = 0 in all 
virtual processors when the loop terminates. 

r1 = starting address 
r2 = strider4 = stride × NVP 

r3 r3 r3 r3 r3 r3 r3 
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Reduction Instructions 
The sum instruction is a reduction instruction that initiates the transfer and reduction of a 
source register rs from all VPs into a destination register rd at the root VP. It acts as a send 
and injects a token into the network when issued by any VP. The injected token carries the 
opcode (sum), the root id, root, the source register number rs, the data value, and the 
initial count = 1. Tokens injected into the network can be merged with other tokens 
carrying the same reduction opcode, the same root id, and the same register number. When 
merged, the token values are reduced according to the opcode, and the counts are added. 
At the root, the sum instruction acts as a blocking-receive. After receiving a merged token 
holding count=NVP, register rd is updated and instruction execution is resumed. The exact 
implementation can vary. One choice is to have reduction implemented in the network itself. 
Another possibility is to use binary tree reduction in the VP threads.  
sum rd = rs 

token = <op = sum, root, rs, value, count> 

 
Reduction is also used to reduce the packed elements of a source register. The .f extension 
specifies the packed register format. For example, prod.h r3 = r2 computes the product 
of half words packed in r2 and stores the result in r3. This is useful even if only one thread 
is executing the reduction instruction. The result is a long word, regardless of the source 
register packed format. 

 
In general, a reduction instruction is computed at two levels. First, each VP thread computes 
the reduction operation on the packed elements of a source register, if a packed format is 
specified. Then all the partial results are reduced into one final result at the root VP. 

The list of reduction instructions include: 
sum.f rd = rs # reduced sum 
min.f rd = rs # reduced minimum 
max.f rd = rs # reduced maximum 
prod.f rd = rs # reduced product 
sumu.f rd = rs # reduced sum (unsigned) 
minu.f rd = rs # reduced minimum (unsigned) 
maxu.f rd = rs # reduced maximum (unsigned) 
produ.f rd = rs # reduced product (unsigned) 

Reduction instructions apply to integer as well as to floating-point registers. The last four 
unsigned reduction instructions apply only to integer registers. 

long word 

× ×

h0 h1 h2h3r2

×

r3 

prod.h r3 = r2 

r1 

sum r2 = r1 

r1 
r2 

VPID=6 

r2 

VPID=7
r1 
r2 

Root 
r1
r2

VPID=1
r1
r2

VPID=2
r1
r2

VPID=3
r1
r2

VPID=5
r1 
r2 

VPID=4 

+ + + + + + 

sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1 sum r2 = r1
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Predication 
All instructions specify a qualifying predicate register. The general syntax of an integer 
instruction is given below, where (p) is the qualifying predicate, op is the operation, and .f 
represents the register format (with .l as a default value). 
(p) op.f rd = rs, rt|im8 

Because there are eight packed byte elements per 64-bit register, each predicate register (p) 
consists of 8 bits, with one bit per byte. The 8-bit predicate register (p) controls the writing 
of the individual bytes in register rd. If all the bits of predicate (p) are zeros then there is no 
need to issue the instruction for execution. The instruction can be dropped. 

The following diagram depicts the operation of a typical integer ALU instruction. In addition 
to producing a 64-bit result, an 8-bit predicate value controls the writing of the packed bytes 
in destination register Rd. 

 
Compare instructions produce a predicate value in register pt. The result of a compare 
instruction can be AND/OR/XOR-ed with a qualifying predicate (p), as illustrated above. 

When the qualifying predicate (p) is not specified, it is assumed to be p0, which is always 
true. It is reserved for non-conditional instructions. 

Operation of a typical integer ALU instruction 

64-bit Partitioned ALU

Rd

Rs

Rt

8 . . .

. . .

. . .

. . .
64 64 64 

64-bit Registers 8-bit Predicates 

p 

pt 

. . . 

8 
AND 
OR 

XOR 
. . . 

. . . 

8 

8 
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Compare Instructions 
There are only eight predicate registers, labeled p0-p7. Their complements are c0-c7. 
Either a predicate register or its complement can be used as a qualifying predicate in 
predicated instructions. p0 is always true and all its bits are hardwired to 1’s. It need not be 
specified in unconditional instructions. 

Ten integer compare instructions are defined: eq (equal), ne (not equal), lt (less than), ltu 
(less than unsigned), le (less or equal), leu (less or equal unsigned), gt (greater than), gtu 
(greater than unsigned), ge (greater or equal), and geu (greater or equal unsigned). The 
syntax of a compare instruction (for example, eq) is given below: 
(p) eq.f pt = rs, rt|im 

It means the following: 
pt = (p) AND (rs == rt|im) # bitwise AND with (p) 

An integer compare instruction can use one of the following .f register formats extension: 
.b (packed bytes), .h (packed half words), .w (packed words), or .l (long word). 

If the packed bytes format is used, eight arbitrarily different bits can be produced in pt. If the 
long word format is used, the result eight predicate bits will be all identical (either all zeros or 
all ones). If the register format is not specified, it defaults to long word (.l). 

For example, the following lt.h instruction computes the less-than operation in parallel on 
the four packed half word elements. Since we have fixed the size of a predicate register to 
eight bits, each bit is duplicated to produce an eight bit result. The result is stored in p2. 

 
The compare instruction can be predicated. The qualifying predicate is bitwise AND-ed with 
the corresponding bits of the compare instruction result. In the above example, suppose the 
value of p1=00111111, then the instruction (p1) lt.h p2 = r1, r2 computes p2 
as: (p1) AND (r1<r2) = 00110011. 

For floating-point, six compare instructions are defined: eq (equal), ne (not equal), lt (less 
than), le (less or equal), gt (greater than), and ge (greater or equal). Unsigned comparisons 
are used only for integer, but not for floating-point operands. Floating-point instructions can 
use either the .s (packed single-precision) or the .d (double-precision) register format. If the 
format is not specified for floating-point registers, it defaults to .d. 

11110011 p2 -2 1007-5r1

< <<<
6 -110-3r2

1 011
duplicate bits

lt.h p2 = r1, r2 # p2 = r1<r2
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Example from the EEMBC Benchmark 
Consider converting an RGB color array to CMYK for printing. The R, G, B, and the 
resulting C, M, Y, and K are 8-bit pixel color arrays. This conversion is one of the EEMBC 
Consumer Benchmark. It is described by the following loop:  
for (i=0; i<n; i++) { 
 c_val = 255 – R[i]; 
 m_val = 255 – G[i]; 
 y_val = 255 – B[i]; 
 K[i] = c_val; 
 if (m_val < K[i]) K[i] = m_val; 
 if (y_val < K[i]) K[i] = y_val; 
 C[i] = c_val – K[i]; 
 M[i] = m_val – K[i]; 
 Y[i] = y_val – K[i]; 
} 

The above loop can be parallelized as follows. Predication is used to translate the nested if-
statements. 
# Assume r0 = n,  r1 = &R, r2 = &G, r3 = &B 
# Assume r4 = &C, r5 = &M, r6 = &Y, r7 = &K 
# n is a multiple of 8, addresses are aligned on 8-bytes 
 
 srl r8  = r0, 3 # r8 = n/8, 8 bytes per register 
 vp r9  = r8, L2 # allocate virtual processors 
L1: lv r10 = [r1+] # r10 = 8 packed bytes of R[] 
 lv r11 = [r2+] # r11 = 8 packed bytes of G[] 
 lv r12 = [r3+] # r12 = 8 packed bytes of B[] 
 subfu.b r10 = r10, 255 # r10 = c_val = 255 - R[i] 
 subfu.b r11 = r11, 255 # r11 = m_val = 255 - G[i] 
 subfu.b r12 = r12, 255 # r12 = y_val = 255 - B[i] 
 mov r14 = r10 # r14 = compute unsigned minimum 
 ltu.b p2  = r11, r14 #       of (r10, r11, r12) 
(p2) mov r14 = r11 
 ltu.b p2  = r12, r14 
(p2) mov r14 = r12 # r14 = 8 packed bytes of K[] 
 subfu.b r10 = r14, r10 # r10 = 8 packed bytes of C[] 
 subfu.b r11 = r14, r11 # r11 = 8 packed bytes of M[] 
 subfu.b r12 = r14, r12 # r12 = 8 packed bytes of Y[] 
 sv [r4+] = r10 # store 8 packed bytes of C[] 
 sv [r5+] = r11 # store 8 packed bytes of M[] 
 sv [r6+] = r12 # store 8 packed bytes of Y[] 
 sv [r7+] = r13 # store 8 packed bytes of K[] 
 loop L1 
L2: 
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Translating If-statements 
Predication works very nicely when translating an if-statement nested inside a loop. The 
Boolean expressions can include logical AND/OR operations. The following are examples: 
 
# Evaluation of logical AND 
if (ch >= 'A' && ch <= 'Z') ch = ch + 32; 
 
# Assume 8 characters (ch) are packed in register r8 
 
 ge.b p1 = r8, 'A' # p1 = (ch >= 'A') 
(p1) and.le.b p1 = r8, 'Z' # p1 = (p1) AND (ch <= 'Z') 
(p1) add.b r8 = r8, 32 # if (p1) ch = ch + 32 
 
# Evaluation of logical OR 
if (ch < 'A' || ch > 'Z') ch = '*'; 
 
 lt.b p2 = r8, 'A' # p2 = (ch < 'A') 
(p2) or.gt.b p2 = r8, 'Z' # p2 = (p2) OR (ch > 'Z') 
(p2) set.b r8 = '*' # if (p2) ch = '*' 

Compare instructions can be prefixed with a logical AND/OR operations as shown in the 
above two examples.  The qualifying predicate is bitwise AND/OR-ed with the comparison 
result. If the prefix is not specified, it defaults to AND. 
 
# Nested if-else statement 
if (ch >= '0' && ch <= '9') d = ch – '0'; 
else if (ch >= 'A' && ch <= 'F') d = ch – 55; 
else if (ch >= 'a' && ch <= 'f') d = ch – 87; 
else d = 0; 
 
# Assume 8 characters (ch) are packed in register r8 
# Assume 8 digits (d) are packed in register r9 
 
 ge.b p2 = r8, '0' # p2 = (ch >= '0') 
(p2) le.b p2 = r8, '9' # p2 = (p2) & (ch <= '9') 
(p2) add.b r9 = r8, -48 # if (p2) d = ch – '0' 
(c2) ge.b p3 = r8, 'A' # p3 = (~p2) & (ch >= 'A') 
(p3) le.b p3 = r8, 'F' # p3 = (p3) & (ch <= 'F') 
(p3) add.b r9 = r8, -55 # if (p3) d = ch – 55 
 orp p2 = p2, p3 # p2 = (p2) | (p3) 
(c2) ge.b p3 = r8, 'a' # p3 = (~p2) & (ch >= 'a') 
(p3) le.b p3 = r8, 'f' # p3 = (p3) & (ch <= 'f') 
(p3) add.b r9  = r8, -87 # if (p3) d = ch – 87 
 orp p2 = p2, p3 # p2 = (p2) | (p3) 
(c2) set.b r9  = 0 # if (p3) r9 = 0 
 

The orp instruction is used to OR predicate registers. We can also define andp and xorp 
instructions that operate on predicate registers. 
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# If conditions are mutually exclusive 
# Then parallel comparisons – same above example 
 
if (ch >= '0' && ch <= '9') d = ch – '0' 
else if (ch >= 'A' && ch <= 'F') d = ch – 55 
else if (ch >= 'a' && ch <= 'f') d = ch – 87 
else d = 0 
 
# Assume 8 characters (ch) are packed in register r8 
# Assume 8 digits (d) are packed in register r9 
 
 ge.b p1 = r8, '0' # p1 = (ch >= '0') 
 ge.b p2 = r8, 'A' # p2 = (ch >= 'A') 
 ge.b p3 = r8, 'a' # p3 = (ch >= 'a') 
 
(p1) le.b p1 = r8, '9' # p1 = (p1) AND (ch <= '9') 
(p2) le.b p2 = r8, 'F' # p2 = (p2) AND (ch <= 'F') 
(p3) le.b p3 = r8, 'f' # p3 = (p3) AND (ch <= 'f') 
 
 set r9 = 0 # default case 
(p1) add.b r9 = r8, -48 # if (p1) d = ch – '0' 
(p2) add.b r9 = r8, -55 # if (p2) d = ch – 55 
(p3) add.b r9 = r8, -87 # if (p3) d = ch – 87 
 
Comments: 
 
Code exposing ILP and DLP 
 
First 3 instructions can potentially execute in parallel 
Next 3 depend on first 3 and can also execute in parallel 
8 bytes within a single register also operate in parallel 
 
# Setting and clearing a predicate register 
 
 eq p2 = r0, r0 # setting all bits in p2 
 ne p3 = r0, r0 # clearing all bits in p3 
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Execution Environment 
Each VP (virtual processor) can address the following registers: 

• 32 × 64-bit general-purpose registers: r0 – r31 

o r0 is a normal register (not hardwired to zero). 

o A general-purpose register can also pack 8 bytes, 4 half words, or 2 words 

• 32 × 64-bit floating-point registers: f0 – f31 

o A floating-point register can also pack 2 single-precision floats 

• 8 × 8-bit predicate registers: p0 – p7 

o Almost all instructions are predicated. There can be few exceptions. 

o Each predicate register is 8 bits, with one bit per byte in the general-purpose register. 

o p0 is always true. All bits of p0 are hardwired to one, for unconditional execution. 

o p1 is the overflow/carry/saturation register, generated by many instructions. 

• PC and EPC 

o EPC marks the last instruction address in a thread.  

o Thread execution terminates when PC = EPC, and its register context is freed. 

o The instruction at address EPC is not executed 

• Identification 

o CoreID is the ID of the core running this thread. 

o Root is the ID of the core running the root thread. 

o NVP is the number of virtual processors (or cores) running the thread. 

o VPID is the ID of this virtual processor (or thread). 

• Vector Length (VL) register 

o Used by some instructions to control loop execution 

• Not complete: feel free to add additional registers if needed 

 

End Program Counter 

R0 (64 bits) 

Execution environment registers 

R1 (64 bits) 

R31 (64 bits) 

. 

. 

. 

General-Purpose Registers 

. . . P0 P1 P7

Predicate Registers 

PC (64 bits) 

Program Counter 

EPC (64 bits) 

Identification 

Root 

Vector Length 

VL (64 bits) 

CoreID F0 (64 bits) 

F1 (64 bits) 

F31 (64 bits) 

. 

. 

. 

Floating-Point Registers 

NVP VPID 
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Immediate Constants 
Integer instructions can specify an 8-bit immediate constant for the second source operand, in 
place of a second source register. Two instruction formats will result: R-R (both source 
operands are registers) and R-I (second source operand is an immediate constant). For 
simplicity the same mnemonic is used for both the R-R and R-I formats. Consider again the 
add instruction, there are two such instructions, where.f represents the register format: 
 add.f rd = rs, rt # R-R format 
 add.f rd = rs, im8 # R-I format, 8-bit immediate 

The 8-bit immediate constant is sign-extended for all integer instructions. When adding an 
immediate constant to a packed register format, the immediate constant is replicated to all 
packed elements. The following diagram shows an example: 

 

The SET Instruction 
The set instruction is used to initialize a destination register rd with a 16-bit immediate 
constant. It has the following syntax, where .f is the register format: 
(p) set.f rd = imm16 

The immediate constant is replicated for packed bytes (.b extension), packed half words (.h 
extension), and packed words (.w extension). To set packed bytes, only the least significant 
8-bit of the immediate constant is replicated. To set packed words, the immediate constant is 
sign-extended to 32 bits and replicated. To set a long word, the immediate constant is sign-
extended to 64 bits. The following are examples: 

 

Using Predication to Control Register Writing 
Predication is used to control the writing of destination register rd. Since a predicate register 
consists of 8 bits, each bit is used to control the writing of one corresponding byte. In the 
following example, if p1 = 11110000 then only bytes 4, 5, 6, and 7 can be written in r3 
(shown in red). Note that predicate values should be generated properly for the desired 
register format. Otherwise, bytes can be incorrectly written in a destination register. 

 

Initial value of r3 0x12 0x34 0x56 0x78 0x90 0xab 0xcd 0xefr3

(p1) set.h r3 = 0xfd37 

0x90abcdefr3(p1) set.w r3 = 0xfd37 

0xcdefr3 0x90ab 0xfd370xfd37

0xfffffd37

(p1) set.b r3 = 0x37 0x37 0x37 0x37 0x37 0x90 0xab 0xcd 0xefr3

Half word 3 Half word 0 Half word 1Half word 2
+ 1 
= 

+ 1 
= 

Half word 0 

+ 1 
= 

Half word 1

+ 1 
= 

Half word 2Half word 3 r2 

r1 

add.h r2 = r1, 1 # add 1 to each packed element 

set.b r3 = 5 5 5 5 5 5 5 5 5r3

set.w r3 = -713 -713 r3

set.l r3 = -713 -713r3

set.h r3 = -713 -713r3 -713 -713-713

-713
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Integer Instruction Formats 
Three instruction formats are defined for R-R, R-I, and SET instructions. 

 
• p = qualifying predicate = (p0 thru p7) 

o Qualifying predicate (p) is used to control the writing of each byte in register rd 

o If p = 00000000 then there is no need to execute instruction 

• c = Complement of a qualifying predicate = (c0 thru c7) 

• op = major opcode 

o Defines the instruction format 

o One major opcode is used for all R-R integer instructions 

o One major opcode is used for all R-I integer instructions 

o One major opcode is used for all Floating-point instructions 

• f = Register format 

o .b (packed bytes), .h (packed half words), .w (packed words), .l (long word) 

• rd = Destination register (always written) 

• rs = First source register (always read) 

• rt = Second source register (always read) 

• opx = Opcode extension 

o 7-bit opcode extension for R-R format defines up to 128 functions per major opcode 

o 4-bit opcode extension for R-I format defines up to 16 functions per major opcode 

• imm8 = 8-bit signed immediate constant used in R-I instructions 

o Immediate constant is sign-extended and/or replicated according to register format 

• imm16 = 16-bit signed immediate constant used in SET instructions 

o Immediate constant is sign-extended and/or replicated according to register format 

opx7 rd5 p3 rs5 rt5 f2 

p3 imm8 

 

rd5 rs5 opx4 f2 

p3 imm16 rd5 f2 

R-R Format 

R-I Format 

SET Format 

op4 c 

op4 c 

op4 c 
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Integer Instructions 
Integer instructions operate on 64-bit general-purpose registers. They include arithmetic, 
comparison, logical, and shift instructions. They can operate on 64-bit long integers or 
narrower packed data. They can execute conditionally based on the content of a qualifying 
predicate register. 

Integer Addition 
There are two integer addition instructions: add and addu. Signed addition may overflow 
indicating that the result is out of the signed range. Similarly, unsigned addition may produce 
a carry, indicating that the result exceeded the maximum unsigned value. In both cases, 
modulo-arithmetic is used and the result is identical, but can be out-of-range. The p1 register 
is used to store the overflow/carry flags for signed/unsigned addition. 

Saturation 
Sometimes, it is desirable to produce saturated (rather than modulo) values when results are 
out-of-range. Signed saturation clamps the result to the maximum positive or minimum 
negative value that can be represented. Unsigned saturation clamps the result to the maximum 
unsigned value, or to zero (in case of unsigned subtraction). 

We can have a saturation option by adding the letter (s) after the instruction mnemonic. This 
will result in the following combinations of addition instructions: 
(p) add.f rd = rs, rt|im8 # add signed   (modulo) 
(p) addu.f rd = rs, rt|im8 # add unsigned (modulo) 
(p) adds.f rd = rs, rt|im8 # add with signed saturation 
(p) addus.f rd = rs, rt|im8 # add with unsigned saturation 

An example of signed addition on packed bytes with and without saturation is shown below. 
In the first example, modulo-addition is used and the result overflows in bytes 2 and 3. The 
p1 predicate register captures the eight overflow flags. In the second example, saturated-
addition is used and the result is saturated in bytes 2 and 3. Observe that bytes 6 and 7 are not 
saturated, although they contain the maximum positive and minimum negative byte values. 

 
The saturation option applies to only few integer instructions (addition, subtraction, 
multiplication, and packing). The remaining integer instructions do not saturate. 

As an alterative approach, it is also possible to define a sat (saturate) instruction that clamps 
a signed integer to its maximum positive or minimum negative value, depending on its sign: 
(p) sat.f rd = rs # if (p) rd = saturate(rs) 

For the above example, adds.b r3 = r1, r2 is equivalent to: 
 add.b r3 = r1, r2 # p1 = 00001100 
(p1) sat.b r3 = r1 # bytes 2,3 of r3 are saturated 

add.b r3=r1,r2 # p1 = 00001100

-3 5 100 -95 8 6 1 -127 

-2 -4 50 -63 7 13 126 -1 

+ + + + + + + + 

= = = = = = = = 

-5 1 -106 98 15 19 127 -128 r3 

r2 

r1 

adds.b r3=r1,r2 # p1 = 00001100

-3 5 100 -95 8 6 1 -127

-2 -4 50 -63 7 13 126-1 

+ + + + + + + + 

= = = = = = = = 

-5 1 127 -128 15 19 127-128r3

r2

r1
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Integer Subtraction 
One way to define integer subtraction is: rd = rs – rt|im8. A problem with this 
definition is that to obtain the negation of register rt, one must use a register rs with a zero 
value. However, no general-purpose register is hardwired to zero. r0 is a normal register that 
can be updated. Another problem is that there is no use for the 8-bit immediate constant. To 
compute: rd = rs – im8, one can use the add instruction with a negative immediate. 

A better way to define subtraction is: rd = -rs + rt|im8. This is called subtract from. 
To obtain the negative of register rs, a zero immediate can be used. The use of an immediate 
constant is also useful when adding it to the negative of register rs. 

Therefore, four subtract-from instructions are defined for signed/unsigned operands, and with 
or without saturation: 
(p) subf.f rd = rs, rt|im8 # rd = -rs + rt|im8 
(p) subfu.f rd = rs, rt|im8 # rd = -rs + rt|im8 
(p) subfs.f rd = rs, rt|im8 # with signed saturation 
(p) subfus.f rd = rs, rt|im8 # with unsigned saturation 

To obtain the negation of register rs, write: subf rd = rs, 0  # rd = -rs + 0 

As with addition, the subf and subfu produce identical results, because modulo-arithmetic 
is used. However, the subf instruction produces eight overflow flags, while the subfu 
produces eight borrow flags for unsigned subtraction. The result overflow/borrow flags are 
stored in predicate register p1. The subfs and subfus might produce different saturated 
results. If a borrow is detected with unsigned saturation, the result is saturated to zero, 
because it cannot be negative. 

To simplify assembly-language programming, the following pseudo-instructions are defined. 
The pseudo-instruction sub r3 = r1, r2 computes r3 = r1 – r2. It is equivalent to 
the real instruction subf r3 = r2, r1 where the order of the source operands is 
exchanged. 

Pseudo Instruction Equivalent Real Instruction 
(p) neg.f r2 = r1 
(p) sub.f r3 = r1, r2 
(p) subu.f r3 = r1, r2 
(p) subs.f r3 = r1, r2 
(p) subus.f  r3 = r1, r2 

(p) subf.f r2 = r1, 0 
(p) subf.f r3 = r2, r1 
(p) subfu.f r3 = r2, r1 
(p) subfs.f r3 = r2, r1 
(p) subfus.f r3 = r2, r1 
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Pack 
The pack instruction is used to pack two source registers rs and rt into a destination 
register rd. Long words are packed into words, words are packed into half words, and half 
words are packed into bytes. The packed elements of rs go into the upper half or rd. The 
packed elements of rt go into the lower half. The syntax of the pack instruction is given 
below: 
(p) pack.f rd = rs, rt # pack rs, rt into rd 

Three integer register formats are supported for the packed register rd: .w, .h, and .b. 

When packing, signed and unsigned saturation options can saturate the truncated integer 
operands. Out-of-range values are saturated to the maximum or minimum values that can be 
represented. Two saturation options can be used with the pack instruction: 
(p) packs.f rd = rs, rt # pack with signed saturation 
(p) packus.f rd = rs, rt # pack with unsigned saturation 

If saturation is detected, the p1 predicate bits are set for the corresponding saturated bytes. 
The following example illustrates the packing of words into packed half words with signed 
and unsigned saturation. Saturated values are shown in red. p1 is equal to 00111100 after 
executing packs.h, and it is equal to 11001100 after executing packus.h. 

 

Unpack 
The unpk instruction is used to unpack the low order 32 bits of a source register rs into a 
64-bit destination register rd. 4 bytes are unpacked into 4 half words, 2 half words are 
unpacked into 2 words, and a word is unpacked into a long word. The unpkh instruction is 
used to unpack the high order 32 bits. Packed elements are sign- or zero-extended, depending 
on the option. The four variations of the unpk instruction are given below: 
(p) unpk.f rd = rs # unpack low  32 bits sign-extended 
(p) unpku.f rd = rs # unpack low  32 bits zero-extended 
(p) unpkh.f rd = rs # unpack high 32 bits sign-extended 
(p) unpkhu.f rd = rs # unpack high 32 bits zero-extended 

Three register formats are supported by the unpk instruction: .h, .w, and .l, which specify 
the format of destination register rd. No saturation can occur and the p1 predicate register is 
not affected. 

Assume value of r1 

packs.h  r3 = r1, r2 

packus.h r3 = r1, r2 

Assume value of r2 

50000 r1 -1

32767r3 -32768 32767-1

32767r3 65535 5000065535

32767 r2 -33000
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Integer Multiplication 
In general, integer multiplication takes two operands of size n bits and produces a product of 
size 2n bits. Because the destination register is only n bits in size, the mul instruction is 
defined here to produce only the low-order n bits of the multiplication. There is no need to 
distinguish between signed and unsigned multiplication because the lower n bits of the 
product are the same in both cases. The difference is in the upper n bits, which are not stored. 
(p) mul.f rd = rs, rt # rd = rs * rt 

Restricting the product size to n bits is not a limitation. If a 2n bit product is desired, the 
operands can be expanded from n to 2n bits before multiplication, using the unpk (unpack) 
instruction. Sign/zero extensions are used to unpack signed/unsigned integer operands. 

 
Signed/unsigned saturation options can be defined for the mul instruction, which affect the 
p1 predicate. Saturation options are useful if no unpacking is done before multiplication. 
(p) muls.f rd = rs, rt # with signed saturation 
(p) mulus.f rd = rs, rt # with unsigned saturation 

Integer Division 
There are two integer divide instructions div and mod, which produce the quotient and 
remainder. Both instructions take two n-bit operands and produce an n-bit quotient and an n-
bit remainder. The division can be signed or unsigned and can operate on packed elements 
within a register according to the register format. There is no saturation option with integer 
division because the quotient and the remainder do not saturate. 
(p) div.f rd = rs, rt # Signed quotient 
(p) mod.f rd = rs, rt # Signed remainder 
(p) divu.f rd = rs, rt # Unsigned quotient 
(p) modu.f rd = rs, rt # Unsigned remainder 

The division hardware can produce the quotient and remainder simultaneously. However, 
since there is only one destination register in the instruction format and to avoid using 
special-purpose HI and LO registers, the mod instruction is introduced in addition to div. 
The mod instruction will do integer division identical to div. Sometimes, a program needs 
either the quotient or the remainder, but not both. In this case, the proper instruction is used 
and the division is done once. However, if a program requires both results and uses both 
instructions in sequence, the division hardware can save the last division operands and result 
in internal registers to avoid repeating the same operation and wasting cycles. 

1234r1 -5000 unusedunusedAssume value of r1 

unpk.w  r3 = r1 

unpk.w  r4 = r2 

Assume value of r2 

1234 r3 -5000

100r2 378 unusedunused

100 r4 378

mul.w   r5 = r3, r4 123400 r5 1890000
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Logical Instructions 
Eight R-R logical instructions are defined as follows: 
(p) and rd = rs, rt # rd =   rs & rt 
(p) andc rd = rs, rt # rd =  ~rs & rt 
(p) or rd = rs, rt # rd =   rs | rt 
(p) orc rd = rs, rt # rd =  ~rs | rt 
(p) xor rd = rs, rt # rd =   rs ^ rt 
(p) nand rd = rs, rt # rd = ~(rs & rt) 
(p) nor rd = rs, rt # rd = ~(rs | rt) 
(p) xnor rd = rs, rt # rd = ~(rs ^ rt) 

The register format (.f extension) need not be specified for R-R logical instructions, because 
these instructions operate on bits that are not affected by the register format. 

Four R-I logical instructions are defined as follows: 
(p) and.f rd = rs, im8 # rd =  rs & im8  
(p) andc.f rd = rs, im8 # rd = ~rs & im8 
(p) or.f rd = rs, im8 # rd =  rs | im8 
(p) xor.f rd = rs, im8 # rd =  rs ^ im8 

The register format (.f extension) should be used for R-I logical instructions. It indicates 
how the immediate constant should be replicated for the packed elements. 

Logical instructions do not produce overflow or carry bits, and hence do not modify the p1 
predicate register. 

Shift and Rotate Instructions 
Three shift instructions and one rotate are defined as follows: 
(p) sll.f rd = rs, rt|im # shift left logical  
(p) srl.f rd = rs, rt|im # shift right logical 
(p) sra.f rd = rs, rt|im # shift right arithmetic 
(p) rol.f rd = rs, rt|im # rotate left 

Shifting and rotation differ depending on the register format. If a packed register format is 
specified, then each packed element is shifted or rotated. The shift/rotate amount is either an 
immediate constant im or a variable stored in register rt. For packed byte elements, only 
three bits are required to specify the shift/rotate amount, while the long integer format 
requires six bits. There is only one rotate left (rol) instruction. There is no rotate right. To 
rotate right a 64-bit long integer by 20 bits, it can be rotated left by 44 = 64 – 20 bits. 
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Scalar Load and Store 
The load and store instructions are defined as follows: 
(p) ld.f rd = [rs+im] # if (p!=0) rd = memory[rs+im]  
(p) st.f [rs+im] = rt # if (p!=0) memory[rs+im] = rt 

The .f extension can be .b (load/store byte), .h (half word), .w (word), or .l (long word). 
ld.b loads one byte from memory into the least-significant byte of a destination register rd, 
ld.h loads one half word, ld.w loads one word, and ld.l loads a long word (which might 
pack 8 bytes, 4 half words, or 2 words). Sign-extension fills the upper-part of a register. 

Similarly, st.b stores the least significant byte of a source register rt, st.h stores the 
lower half word, st.w stores the lower word, and st.l stores the complete register (which 
might pack 8 bytes, 4 half words, or 2 words). If the .f extension is not specified, it is 
assumed to be .l for integer loads and stores.  

 
For floating-point, the .f extension can be .s (single-precision) or .d (double-precision). 
Destination register rd is replaced by fd, and source register rt is replaced by ft.  

Memory Alignment 
Memory alignment is a requirement to simplify the hardware implementation. Long words 
should be aligned on an 8-byte boundary, words should be aligned on a 4-byte boundary, and 
half-words should be aligned on a 2-byte boundary. Bytes need not be aligned.  

Addressing Mode 
Only one addressing mode is supported by the load and store instructions: base-displacement 
addressing. The base address is stored in register rs, and the displacement is the immediate 
constant. The effective address is computed as follows: 
Effective Address = Reg(rs) + sign-extend(immediate) 

 

 

r3  sign-extension 
 sign-extension 

 

. . . 

. . . 

r2 

r4 
r5 

Registers 
8-byte wide 

 
address of black byte in memory r1 

st.l [r1+8] = r4
st.w [r1+4] = r5

ld.h r2 = [r1+2]
ld.b r3 = [r1+1]

Memory 
8-byte boundary 
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Load and Store Format 
The load and store instructions use slightly different formats. The load instruction specifies 
register rd as the destination register, which is written by the load instruction, while the store 
instruction specifies register rt as a source register read by the store instruction and written 
in memory. Both instructions use a 12-bit signed immediate constant as a displacement, but 
the immediate is distributed in the store instruction format. 

 

Control Flow Instructions 

The jump and call instructions are defined as follows: 
(p) jump label # if (p!=0) jump to label 
(p) call label # if (p!=0) call procedure 
(p) jump rs # if (p!=0) jump register 
(p) call rs # if (p!=0) call register 

If any bit of (p) is set, the jump or call instruction will occur. If all bits of (p) are clear, 
the jump or call instruction will be dropped. If (p) is not specified, it defaults to (p0), 
and the jump or call will be unconditional. 

The JUMP instruction format is used for the direct jump and call instructions. PC-relative 
addressing is used. The 24-bit immediate constant is sign-extended, shifted left by 2 bits, and 
added to the program counter to determine the address of the target instruction. 
PC = PC + imm24 << 2 

All instructions occupy 4 bytes in memory and are aligned on a 4-byte boundary. The lower 2 
bits of PC are always zero. Therefore, imm24 is simply added to the upper 62 bits of PC. 

 
The call instruction does a jump and saves the return address in register r31. This register 
is named the ra (return address) register. 

The indirect jump and call instructions jump to the content of register rs. These two 
instructions use the R-R instruction format. 

Imm12 rd5 p3 op5 rs5 f2 

Load Format 

Store Format 

Imm7 Imm5 p3 op5 rs5 rt5 f2 

p3 op5 imm24 

JUMP Format 
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Floating-Point Instructions 
Floating-point instructions can be designed to address a separate set of floating-point 
registers. Alternatively, it can address the same general-purpose registers. Each approach has 
its advantages and disadvantages. Addressing a separate set of registers doubles the number 
of registers that can be used by one thread, which might be considered a positive or negative 
point. It is a positive point if a program thread needs all these registers. However, it is a 
negative point if a program is dominated by integer instructions, which make little use of 
floating-point registers or vice-versa. It also takes more time to save and restore two register 
files (instead of one) on context switches. Furthermore, additional instructions are necessary 
to move data between the two register sets and to load/store floating-point registers. These 
instructions can be eliminated if a common register file is used. On the other hand, using a 
common register file places more pressure on the registers. More register ports are needed to 
issue multiple instructions in a given cycle. These ports can be reduced and distributed if two 
register files are used. There can be no register dependency between an integer and a floating-
point instruction if separate register files are used, and hence can be issued in parallel. 
However, register dependencies must be checked if a common register file is used. In what 
follows, a separate set of floating-point registers f0–f31 is assumed.  

The following floating-point instructions are defined: 
(p) add.f fd = fs, ft # if (p) fd = fs + ft 
(p) sub.f fd = fs, ft # if (p) fd = fs - ft 
(p) mul.f fd = fs, ft # if (p) fd = fs * ft 
(p) div.f fd = fs, ft # if (p) fd = fs / ft 
(p) mov.f fd = ft # if (p) fd = ft 
(p) neg.f fd = ft # if (p) fd = -ft 
(p) abs.f fd = ft # if (p) fd = abs(ft) 
(p) rcp.f fd = ft # if (p) fd = 1/ft 
(p) sqrt.f fd = ft # if (p) fd = sqrt(ft) 

Where .f is the floating-point register format, which should be specified as either: .d or .s. 
Floating-point immediate constants cannot be specified as a second operand. They should be 
loaded from memory.  
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Conversion Instructions 
The float instruction converts a long integer or a pair of integer words to their floating-
point representation. It also transfers the converted data from a general-purpose register, rs, 
to a floating-point register, fd. 

The round, trunc, floor, and ceil instructions convert a double-precision float or a 
pair of single-precision floats to their integer representation, using rounding to the nearest 
integer, truncation, or obtaining the floor or ceiling functions, which produce slightly 
different integer results. The converted data is transferred from a floating-point source 
register fs to a general-purpose register rd. 

Only two register formats can be specified for all conversion instructions: either .d or .s. 
(p) float.f fd = rs # fd = float(rs) 
(p) round.f rd = fs # rd = round(fs) 
(p) trunc.f rd = fs # rd = trunc(fs) 
(p) floor.f rd = fs # rd = floor(fs) 
(p) ceil.f rd = fs # rd = ceil(fs) 

Floating-Point Pack 
The pack.s instruction is used to pack two double-precision floating-point registers fs and 
ft into a packed single-precision destination register fd. Only the .s register format can be 
used to specify the format of destination register fd. The packed fs goes into the upper half 
or fd. The packed ft goes into the lower half. 
(p) pack.s fd = fs, ft # pack fs, ft into fd 

 

Floating-Point Unpack 
The unpk.d instruction is used to unpack the low-order single-precision float of source 
register fs into a double-precision float in destination register fd. The unpkh.d instruction 
is used to unpack the high order single-precision float. Only the .d register format can be 
used to specify the format of destination register fd. 
(p) unpk.d fd = fs # unpack low  order float 
(p) unpkh.d fd = fs # unpack high order float 

 

 

unpk.d f2 = f1 

Single-precision float 0Single-precision float 1f1 

Double-precision float Double-precision float f2f3 

unpkh.d f3 = f1 

pack.s f3 = f1, f2  # pack double-precision floats 

Single-precision float 0Single-precision float 1

Double-precision float Double-precision float 

f3 

f2f1 


