
Prepared by Dr. Muhamed Mudawar Page 1 of 6

CSE 661 – Parallel and Vector Architectures

Main Research Project

Executing Parallel Loops on a Multicore Processor
Due Sunday, January 20, 2008 by 11 Midnight

Problem Statement
Current mainstream microprocessors provide limited support to data parallelism. In 1997,
Intel introduced MMX instructions in the Pentium II processor to accelerate the performance
of multimedia and communication applications. These instructions define a simple SIMD
execution model and operate on 64-bit registers, which can pack bytes, 16-bit words, or 32-
bit double words. In 1999, Intel introduced SSE instructions that operate on 128-bit XMM
registers, which pack floating-point data. Since then, Intel continued to extend and improve
its SSE technology by introducing new SSE2/3/4 instructions that operate on a variety of
packed integer and floating-point data. Other microprocessor manufacturers also extended
their instruction set architecture to support data-level parallelism within 128-bit registers to
accelerate media-rich applications that include audio and video compression, 2D image
processing, 3D graphics, speech recognition, and signal processing for communication. Sun
enhanced the SPARC processor with VIS, Hewlett-Packard added MAX to the PA-RISC
architecture, and IBM/Apple/Motorola added AltiVec to the PowerPC.

The main drawback of the SIMD instructions is that they operate on fixed-size 128-bit
registers, which limit the data-level parallelism that can be exploited. Today, chip
multiprocessors integrate multiple cores. The data-level parallelism provided by SIMD
instructions is not scalable and does not take advantage of the additional resources provided
in the multiple cores. To scale parallelism, one has to create multiple threads to run in parallel
in the multiple cores. Thread creation is done at the operating system level, which adds
overhead and complexity to the execution of parallel loops.

The main idea of this research project is to enable a parallel loop to execute across all cores,
taking advantage of the multiplicity of resources provided in a multicore processor. With the
introduction of few instructions and minimal extra hardware support, a thread running in a
single core will be able to broadcast a parallel loop to all cores. This mode of execution will
be supported completely in the microarchitecture. The operating system “sees” the parallel
loop as one thread, rather than multiple threads running on multiple cores.

A chip multiprocessor with N cores and a shared L2-cache is depicted in Figure 1. Each core
is capable of executing a thread scheduled by the operating system, referred here as a root
thread, plus few additional threads created by the hardware to speedup the execution of
parallel loops. An L2 cache is shared by all the cores. To optimize the bandwidth and latency,
the L2 cache is divided into M independent banks that operate in parallel. The N cores
communicate with the M cache banks using the on-chip interconnect. There is nothing new
about Figure 1, except the ability to execute parallel loop instructions across all cores. A
parallel loop instruction is effectively converted into N scalar instructions by distributing its
work on the N CPU cores.

Prepared by Dr. Muhamed Mudawar Page 2 of 6

Parallel Loops

Consider the execution of the following loop where x and y are vectors residing in memory
and a is a scalar value. This is the DAXPY loop that forms the inner loop of the Linpack
benchmark for performing Gaussian elimination:

for (i=0; i<n; i++) y[i] = a * x[i] + y[i];

The iterations of the above loop can be executed in parallel. Assume that the base addresses
of arrays x and y are in registers r2 and r3 respectively, and the scalar values n and a are
loaded in registers r1 and f1 respectively. Then, the above loop can be translated as follows:

 vp r1, L2 ; allocate virtual processors
 dup f1 = f1 ; duplicate f1 in all VPs
 dup r1 = r1 ; duplicate r1 in all VPs
L1:
 lv f2 = (r2+) ; load vector x into f2 in all VPs
 lv f3 = (r3) ; load vector y into f3 in all VPs
 fmul f4 = f1, f2 ; multiply: a * x[i] in all VPs
 fadd f4 = f4, f3 ; add: a * x[i] + y[i] in all VPs
 sv (r3+) = f4 ; store vector f4 at address y
 loop L1
L2:

CPU
Core 0

. . .

On-chip Interconnect

Shared L2 Cache

. . . CPU
Core 1

CPU
Core N-1

Cache
Bank 0

Main Memory I/O

Cache
Bank M-1

Figure 1: Chip multiprocessor with N cores and a shared L2 cache with M banks

Prepared by Dr. Muhamed Mudawar Page 3 of 6

The VP Instruction
The above loop appears to be sequential, but is in fact a parallel loop. The vp (Virtual
Processor) instruction allocates virtual processors to execute a parallel loop. Each virtual
processor is a hardware context that includes integer and floating-point register files, a
program counter, and some additional control registers. The vp instruction specifies the
vector length and the label address at which to terminate parallel execution. The vp
instruction enables the exploitation of data-level parallelism across multiple cores.

In addition to allocating hardware contexts across all cores, the vp instruction initializes the
vector length (VL) register in all hardware contexts with the specified number of iterations,
the virtual processor identification (VPID) register with a unique number, the virtual
processor count (NVP) register with the count of VPs (a power of 2), and the Root register
with the root core number. The vp instruction also initializes the end program counter (EPC)
register in all the allocated VP contexts with the label address that marks the end of the
parallel loop, and the program counter (PC) registers with the address of next instruction to
launch parallel loop execution. This is illustrated in Figure 2, where Core 1 is the root core
that issued the execution of the vp instruction. The root core always have VPID = 0. The
instructions appearing after vp will be executed as asynchronous parallel threads (not in
lockstep) on all the virtual processors until the end label is reached. This mode of execution is
more flexible than the lockstep vector execution mode implemented in vector processors.

When the program counter (PC) reaches the end label program counter (EPC), the virtual
processor terminates execution and the hardware context is freed. Eventually all virtual
processors will free their hardware context, except for the root thread, which continues
normal execution after the end of the parallel loop. A special case occurs when the vector
length is equal to 0. In this case, no virtual processor is allocated and the vp instruction
simply becomes a jump to the end label, skipping all instructions in a parallel loop.

Figure 2: Executing a parallel loop on four cores

 dup f1=f1
 dup r1=r1
L1: lv f2=(r2+)
 lv f3=(r3)
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv (r3+)=f4
 loop L1
L2:

Core 1 = Root

dup f1=f1
 dup r1=r1
L1: lv f2=(r2+)
 lv f3=(r3)
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv (r3+)=f4
 loop L1
L2:

Core 2

dup f1=f1
 dup r1=r1
L1: lv f2=(r2+)
 lv f3=(r3)
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv (r3+)=f4
 loop L1
L2:

Core 3

 dup f1=f1
 dup r1=r1
L1: lv f2=(r2+)
 lv f3=(r3)
 fmul f4=f1,f2
 fadd f4=f4,f3
 sv (r3+)=f4
 loop L1
L2:

Core 0

PC EPC = L2

VL = n

VPID = 3 NVP = 4

General

Purpose

Registers

General

Purpose

Registers

Root = 1

PC EPC = 0

VL = n

VPID = 0 NVP = 4

General

Purpose

Registers

General

Purpose

Registers

Root = 1

PC EPC = L2

VL = n

VPID = 1 NVP = 4

General

Purpose

Registers

General

Purpose

Registers

Root = 1

PC EPC = L2

VL = n

VPID = 2 NVP = 4

General

Purpose

Registers

General

Purpose

Registers

Root = 1

Prepared by Dr. Muhamed Mudawar Page 4 of 6

If all hardware contexts are allocated and the vp instruction fails to allocate new ones, then
the parallel loop will be executed sequentially in the root core, rather than as parallel threads
in virtual processors.

The DUP Instruction
The dup (duplicate) instruction broadcasts a source register from the root thread to a
destination register in the root and all the allocate VP threads. It is illustrated in Figure 3. The
dup instruction accomplishes register-to-register communication. It acts as a non-blocking
send and injects a token into the network when issued by a root thread. It acts as a blocking-
receive in all the allocated VP threads. The root thread also copies the source register value
into the destination register.

If no VP context is allocated, the dup instruction becomes a simple register-to-register move
instruction within the root context. The dup instruction is used to duplicate integer as well as
floating-point registers.

The LOOP Instruction

The loop instruction is used for executing a counter-controlled loop. It does the following:

if (VL > NVP + VPID) { VL = VL – NVP; jump label; }
else VL = 0;

Suppose VL = 10 and NVP = 4. After executing the first iteration, VL becomes 6 and the
loop instruction jumps to label to start the second iteration in all virtual processors. After
executing the second iteration, VL becomes 2 and the loop instruction starts a third iteration
in the first two virtual processors (VPID = 0 and 1), while the loop terminates (VL = 0) in the
last two virtual processors (VPID = 2 and 3). Therefore, three iterations are executed in the
first two virtual processors (VPID = 0 and 1) and two iterations are executed in the last two
virtual processors (VPID = 2 and 3). This is equivalent to executing ten iterations if the loop
is executed only by the root thread. The loop instruction guarantees that VL = 0 in all
virtual processors when the loop terminates.

Core 1 = Root Core 2 Core 3

 dup r1 = r0
 . . .

Core 0

 dup r1 = r0
 . . .

dup r1 = r0
 . . .

dup r1 = r0
 . . .

r0

r1

. . .

r0

r1

. . .

r0

r1

. . .

r0

r1

. . .

Figure 3: Broadcasting a source register to all VP threads, including Root

dup

Prepared by Dr. Muhamed Mudawar Page 5 of 6

The LV Instruction

The lv (load vector) instruction loads a contiguous block of memory from the shared L2
cache and distributes the words onto the virtual processor contexts. Each VP operates on one
element of the vector. The lv instruction is issued only by the root VP. The other VPs act as
receivers. This is shown in Figure 4. The (r2+) notation indicates that the address in r2
should be updated: r2 = r2 + NVP×8. Alternatively, each VP can load its value by using
a scalar load instruction.

More details on the instruction set and the processor architecture will be provided later.

Simulator Development
Develop a simulator that will simulate the functionality and performance of a multicore
processor that has the capability of executing a parallel loop on multiple cores. Your
simulator should be cycle-accurate and parameterized. It should produce performance
statistics by directly executing benchmark programs. Search the Internet to find open-source
simulators that might simplify your task. Do the necessary modifications to add the necessary
features that you want to simulate in the proposed architecture.

Benchmark Program Kernels
Decide on the benchmark programs or loop kernels that you to simulate. You can write and
simulate small loop kernels, such as matrix multiplication, Gaussian elimination, FFT, and
some programs from the EEMBC benchmark.

Project Paper and Presentation

The final report should be written much like a journal or a conference paper. It should include
a title, the names of the group members, an abstract, an introduction, a body describing
details of the processor architecture, description of the simulator, simulation results, a
conclusion, and a list of references. The abstract should summarize the accomplishments and
contributions of your project in one or two paragraphs. The body should be single-spaced, 10-
point font size, and of length 10-12 pages. Additional supporting material on the simulator
development can be put in a separate appendix (not part of the paper).
A presentation will be given by each group on the due date during the last week of the
semester. All group members should deliver part of the talk. Your talk should typically

Core 1 = Root Core 2 Core 3

 lv f2 = (r2+)
 . . .

Core 0

 lv f2 = (r2+)
 . . .

lv f2 = (r2+)
 . . .

lv f2 = (r2+)
 . . .

f2 f2 f2 f2

Figure 4: Load Vector done by the Root VP

Shared L2 Cache

Prepared by Dr. Muhamed Mudawar Page 6 of 6

include a title slide, an insight slide discussing the main idea of your work, an outline, a
problem description, motivation, background, details of the processor architecture,
description of the simulation, benchmark programs, results, conclusions, and possible future
work and enhancements.

Submission Guidelines
All submissions will be done through WebCT.
Submit one zip file containing the source and executable code of the simulator, benchmark
programs that were tested, the project paper, and the final presentation.

