
Prepared by Dr. Muhamed Mudawar Page 1 of 3

CSE 661 – Parallel and Vector Architectures

Parallel Programming Assignment
Due Wednesday, October 31, 2007 by 12 Midnight

Objectives:
• Developing, writing, testing, and debugging parallel programs
• Using the message passing interface library
• Parallel program performance evaluation
• Teamwork

Problem Statement
Gaussian elimination is a well-known technique for solving simultaneous linear systems of
equations. Variables are eliminated one by one until there is only one left, and the discovered
values of variables are back-substituted to obtain the values of other variables. In practice, the
linear equations are represented as an augmented matrix A[n][n+1] with n rows and n+1
columns. The matrix is converted to an upper triangular matrix. Then back substitutions are
used.

Pseudo-code for sequential Gaussian elimination is shown below. The diagonal element for a
particular iteration of the k loop is called the pivot element, and its row is called the pivot row.

procedure GaussianElimination (A[n][n+1]) {
 for k = 0 to n-2 do {
 for i = k+1 to n-1 do {
 factor = A[i][k]/A[k][k];
 for j = k+1 to n do {
 A[i][j] = A[i][j] – factor * A[k][j];
 }
 A[i][k] = 0
 }
 }
}

1. Draw a simple figure illustrating the dependences among matrix elements. The input
matrix should be read from a text file and the output matrix should also be produced
in a text file. Large n × n matrices can be generated randomly. Write a small program
to generate n × n matrices. Generate 1000×1001 to 10000×10001 element matrices.

2. The pivot element and the pivot row can be effectively broadcast directly to all
processes that need it. This is called the broadcast version. Parallelism is exploited
only within an iteration of the outermost loop. Assuming a decomposition into rows,
write an MPI parallel version of the Gaussian elimination procedure.

Prepared by Dr. Muhamed Mudawar Page 2 of 3

3. Gaussian elimination can also be parallelized in a form that is more aggressive in
exploiting the available concurrency, even across outer loop iterations. During the kth
iteration, the process assigned the pivot row can simply pass the pivot row on to the
next process instead of broadcasting it. This process can use the pivot row to update
its assigned rows immediately, as well as pass it on to the next process, and so on. As
soon as this process has done its computation for the kth iteration of that loop in the
sequential program, it can immediately perform its pivot row computation for the
(k+1)th iteration without waiting for all other processes to receive the kth row and
perform their work for the kth iteration. It can then pass this (k+1)th row on to the
next process as well, which can use it right away instead of waiting for the entire
previous k loop iterations to complete. Multiple k loop iterations are in progress at
once. This is called the pipelined form of parallelism. Write a message-passing
parallel version of the Gaussian elimination procedure using the pipelined form of
parallelism.

Tools:
Your program should be developed and tested on the linux cluster machines 1 through 20,
using the installed version of MPICH.

Groups:
Two students can form a group. Make sure to write the names of the students involved in
your group on the project report.

Coding and Documentation:
Develop the code for the two given problems with the following aspects in mind:

• Correctness: the code should work properly.
• Efficiency: proper partitioning of data, efficient communication, overlap of

computation with communication.
• Documentation: the code should be well documented through the appropriate use of

comments. Use a proper standard coding style.

Report Document:
The project report must contain sections highlighting the following:

■ Program Design

 Two parallel programs should be developed: first one will use the broadcast approach and
the second will use the pipelined approach. Specify clearly the design of the Gaussian
Elimination procedure for each version. Specify the decomposition and assignment of the
data to the various processes. Indicate the communication requirement between the
various processes. Discuss the advantages/disadvantages of each parallel version.

■ Program Output and Performance

Run both programs using different input files and on a different number of machines. At
least, three matrix sizes should be tested: 1000×1001, 2000×2001, and 4000×4001
elements. You may also test larger matrices if the execution time is reasonable. Repeat
the execution with different number of processes. Try 1, 2, 4, 8, 16, and 32 processes. If

Prepared by Dr. Muhamed Mudawar Page 3 of 3

the number of processes exceeds the number of machines then some machines will end up
having more than one process.

Verify the correctness of the output of both parallel programs. The best way to do it is to
write a sequential version of the program that generates the output in a file. Compare the
output of the sequential program against the output of the parallel versions of the
program.

For each experiment, specify the input matrix size and the number of processes. Compute
and record the Wall execution time. Collect data in tables and draw charts showing the
execution time versus the number of processes and the input size. Also compute and show
the speedup of computation.

■ Discussion
 Discuss all the various inputs and configurations that were handled. Discuss the speedup

of the computation as the number of processes increases. You may go beyond 32
processes if you wish. Also discuss the effect of increasing the input size on the execution
time.

 Compare the two parallel program versions and discuss their efficiencies and their
communication overheads.
Compare the execution time of the sequential version of the program against the parallel
versions to find the speedup and the overhead of parallel execution. Discuss the
difference in the execution time when you run the sequential version and the parallel
versions on a single machine.

■ Teamwork
Group members are required to divide the work equally among themselves, so that
everyone is involved in program development, and debugging.
Show clearly the division of work among the group members using a Chart and also
prepare a Project execution plan showing the time frame for completing the subtasks of
the project.

Submission Guidelines:
All submissions will be done through WebCT.
Submit one zip file containing the source and binary code of all programs as well as the
report document. Make sure that all programs are well documented.

Grading Policy:
The grade will be divided according to the following components:
■ Correctness of code: program produces correct results
■ Efficiency of code: achieving speedup in the parallel versions
■ Documentation of code: program is well documented
■ Team Work: participation and contribution to the project
■ Report document: report is well written and results are well reported and discussed

Late Policy:
The project should be submitted on the due date by midnight. Late projects are accepted, but
will be penalized 5% for each late day and for a maximum of 5 late days (or 25%). Projects
submitted after 5 late days will not be accepted.

