
Why On-Chip Cache Coherence is Here to Stay
A final revision of this manuscript will appear in Communications of the ACM, TBD 2012

Milo M. K. Martin
University of Pennsylvania
milom@cis.upenn.edu

Mark D. Hill
University of Wisconsin

markhill@cs.wisc.edu

Daniel J. Sorin
Duke University

sorin@ee.duke.edu

Abstract
Today’s multicore chips commonly implement shared memory
with cache coherence as low-level support for operating systems
and application software. Technology trends continue to enable
the scaling of the number of (processor) cores per chip. Because
conventional wisdom says that the coherence does not scale well
to many cores, some prognosticators predict the end of coherence.

This paper refutes this conventional wisdom by showing one way
to scale on-chip cache coherence with bounded costs by combin-
ing known techniques such as: shared caches augmented to track
cached copies, explicit cache eviction notifications, and hierarchi-
cal design. Based upon our scalability analysis of this proof-of-
concept design, we predict that on-chip coherence and the program-
ming convenience and compatibility it provides are here to stay.

1. Introduction
Shared memory is the dominant low-level communication

paradigm in today’s mainstream multicore processors. In a shared
memory system, the (processor) cores communicate via loads and
stores to a shared address space. The cores use caches to both
reduce the average memory latency and reduce memory traffic.
Caches are thus beneficial, but private caches lead to the possibility
of cache incoherence. The current mainstream solution is to pro-
vide shared memory and to prevent incoherence using a hardware
cache coherence protocol, making caches functionally invisible to
software. The sidebar (Figure 1) reviews the incoherence problem
and the basic hardware coherence solution.

Cache-coherent shared memory is provided by mainstream
servers, desktops, laptops, and even mobile devices, and it is
available from all major vendors, including Intel, AMD, ARM,
IBM, and Oracle (Sun). Cache coherence has come to dominate
the market for both technical and legacy reasons. Technically,
hardware cache coherence provides performance that is generally
superior to that achievable with software-implemented coherence.
Cache coherence’s legacy advantage is that it provides backward
compatibility for a long history of software, including operating
systems, that is written for cache-coherent shared memory systems.

Although coherence provides value in today’s multicore systems,
the conventional wisdom is that on-chip cache coherence will not
scale to the large number of cores expected to be found on future
processor chips [5, 10, 13]. Coherence’s alleged lack of scalability
is believed to be due to the poor scaling of the storage and traf-
fic on the interconnection network that coherence requires, as well
as concerns about latency and energy. Such arguments against co-
herence lead those authors to conclude that cores in future multi-
core chips will not employ coherence, but instead will communi-
cate with software-managed coherence, loads/stores of scratchpad
memories, or message passing (without shared memory).

This paper seeks to refute this conventional wisdom by present-
ing one way to scale on-chip cache coherence in which coherence
overheads (i.e., traffic, storage, latency, and energy) (a) grow slowly
with core count and (b) are similar to the overheads deemed ac-
ceptable in today’s systems. To do this, we synergistically com-
bine known techniques such as: shared caches augmented to track
cached copies, explicit cache eviction notifications, and hierarchi-
cal design. Using amortized analysis, we show that interconnection
network traffic per miss need not grow with core count and that co-
herence uses at most 20% more traffic per miss than a system with
caches but not coherence. Using hierarchical design, we show that
storage overhead can be made to grow as the root of core count
and stay small, e.g., 2% of total cache size for even 512 cores. We
find negligible energy overhead and zero latency penalty for cache
misses to data that are not actively shared, and our analysis sug-
gests the relative miss penalty and energy overheads of accessing
shared data do not increase appreciably with increasing core count.

Consequently, we predict that on-chip coherence is here to stay.
Computer systems tend not to abandon compatibility to eliminate
small costs, such as the costs we find for scaling coherence. In par-
ticular, systems will not likely wish to replace conventional oper-
ating systems now that they have been shown to scale using cache
coherence [2, 3]. Boyd-Wickizer et al. [2] concur: “there is no
scalability reason to give up on traditional operating system orga-
nizations just yet.”

Some might object to retaining coherence, because many appli-
cations do not yet scale well with coherence. True, but is the root
cause the algorithm, program implementation, or coherence? If, for
example, frequent updates must be communicated to many readers,
coherence and most alternatives will do poorly. At least with hard-
ware coherence, programmers can concentrate on choreographing
independent work rather than handling low-level mechanics.

Our claim for the continued viability of on-chip cache coherence
does not imply that other communication paradigms will disappear.
There will continue to be applications for which message passing
is appropriate (e.g., scale out high performance computing) or for
which incoherent scratchpad memories are appropriate (e.g., real-
time systems), and we believe those communication paradigms will
persist. However, we predict that they are likely to continue to
coexist with on-chip cache-coherent shared memory.

2. Cache Coherence Today
To understand the issues involved in coherence’s future, we must

first understand today’s cache coherence protocols. Rather than
provide a survey of the coherence protocol design space, we instead
focus on describing one concrete coherence protocol loosely based
upon the on-chip cache coherence protocol used by Intel’s Core
i7 [17]. This system represents the state-of-the-art and can already

Sidebar: The Problem of Incoherence
Incoherence. To illustrate the incoherence problem, consider the multiple cores and corresponding private caches in the upper-right of the
diagram below. If core 1 writes the block labeled B by updating its private cache only, subsequent reads by core 2 would see the old value
indefinitely. This incoherence can lead to incorrect behavior. For example, if the block holds a synchronization variable for implementing
mutual exclusion using a lock, such incoherent behavior could allow multiple cores into a critical section or prevent cores waiting for the
release of the lock from making forward progress.

The coherence invariant. The mainstream solution to preventing incoherence is a hardware cache coherence protocol. Although there are
many possible coherence protocols, they all maintain coherence by ensuring the single-writer, multiple-reader (SWMR) invariant. That is,
for a given block, at any given moment in time, there is either:

• only a single core with write (and read) permission to the block (in state M for modified) or
• zero or more cores with read permission to the block (in state S for shared).

Enforcing coherence. The diagram below illustrates core 0 caching block A with read/write permission (state M) and cores 1 and 2
caching block B with read-only permission (state S). A write to block B by core 1 (which, in our example above, led to incoherence) is
not allowed to update its read-only copy of the block. Instead, core 1 must first obtain write permission to the block. Obtaining write
permission without violating the single-writer, multiple-reader invariant requires invalidating any copies of the block in other caches (core
2 in this case, as encoded by the tracking bits in the shared cache). Such actions are handled in hardware by cache coherence logic that is
integrated into the cache controllers. Section 2 presents a current protocol (and describes the rest of the diagram). For more background,
see Sorin et al. [18].

Interconnec(on)network)
)))tracking)
))))))bits))))))))))state))))))))))))))tag)))))))))))))))))))))))))))))))))block)data)))))))))!

Core)
0)

Private)cache)

)state)))))))))))tag))))))))))))))))))))))))))))))))))block)data!
Core)
1)

Private)cache)

Core)
2)

Private)cache)

Block)in)private)cache)

Block)in)shared)cache)

~2#bits#######~64#bits#################################~512#bits!

~1#bit#per#core###~2#bits######~64#bits################################~512#bits!

State)–)Meaning)
M)(Modified))–)Read/write)permission)
S)(Shared))–))ReadEonly)permission)
I)(Invalid))–)No)permissions)

M, …
S, … S, …

Core)
3)

Private)cache)

I

Shared)cache)
(banked)by)block)address))

A:)
B:) B:) B:)

Bank)0) Bank)1)

{1000} M … A:)
Bank)2) Bank)3)

{0110} S … B:)

Figure 1: System Model. Additions for coherence are shaded.

scale to a moderate number of cores (e.g., 16). In such a system, the
cores on the chip communicate via loads and stores to the shared
memory. Each core has its own private cache hierarchy (referred to
hereafter simply as “private cache”). There is a single, shared last-
level cache (referred to hereafter as “shared cache”). Such shared
caches typically employ address-interleaved banking with one bank
per core, thus proportionally scaling the bandwidth of the shared
cache as the number of cores increases. Figure 1 illustrates this
system model.

To make our analysis simpler and more concrete, we assume
for now that the shared cache is inclusive with respect to all of
the private caches. Inclusion means that, at all times, the shared
cache contains a superset of the blocks in the private caches. Intel’s
Core i7 is one example of a chip with inclusive caches. Because
inclusion is not a universally adopted design decision, we discuss
extending our results to non-inclusive shared caches in Section 9.

With inclusion, cache coherence can be maintained with a co-
herence protocol that tracks copies of blocks in private caches using
state that is embedded in the shared cache. That is, each block in the
shared cache is augmented with a few bits of coherence state (e.g.,
to denote if the block is writable by any core) and per-core tracking
bits that denote which cores are privately caching the block (one bit
per core). As depicted in Figure 1, inclusion requires that block A

(cached by core 0) and block B (cached by cores 1 and 2) must be
present in the shared cache with appropriate tracking bits ({1000}
and {0110}, respectively. If the block size of the shared cache is
larger than the private cache’s block size, each entry in the shared
cache maintains coherence state and tracking bits at the granularity
of the private cache block size.

When a core issues a load or store that misses in its private cache,
it issues a coherence request message to the shared cache. Based on
the block’s coherence state and the block’s per-core tracking bits,
the shared cache either responds directly or forwards the request
to the one or more cores that need to respond to the request. For
example, if the request is for read/write access and one or more
cores are privately caching the block in a read-only state, then the
shared cache forwards the request to all private caches in the track-
ing list and these private caches all invalidate their copies of the
block. If no cores are caching the block, then a request has the neg-
ligible overhead of only looking up the coherence state bits in the
shared cache. This protocol is essentially a simple directory pro-
tocol in which the directory entries are co-located with the tags of
the shared cache. Inclusion ensures that each private block has a
corresponding shared block to hold its coherence tracking bits.

To maintain inclusion, when the shared cache wishes to evict a
block for which some per-core tracking bits are set, then the shared

cache issues a recall request (also known as a back-invalidation
or notification) to any core that is currently caching that block (as
determined by the per-core tracking state). Upon receipt of a recall
message, the private cache is forced to evict the block.

This approach to coherence has many attractive features, which
helps to explain why current Intel systems resemble it. This pro-
tocol avoids the need for a snooping bus and it avoids broadcast-
ing; communication involves only point-to-point messages. Be-
cause it embeds the per-core tracking bits in the shared cache, it
avoids adding additional structures dedicated solely to coherence.
For small-scale systems (e.g., 4-16 cores), the storage cost is neg-
ligible (a 16-core system adds just 16 bits for each 64-byte cache
block in the shared cache, or approximately 3% more bits). For a
miss to a block not cached by other private caches, the miss latency
and energy consumed incur the negligible overhead of checking a
couple of state bits in the shared cache rather than just a single valid
bit. As we show later, even when blocks are shared, the traffic per
miss is small and independent of the number of cores. Overall, this
approach is reasonably low-cost in terms of traffic, storage, latency,
and energy, and its design complexity is tractable. Nevertheless,
the question is: does this system model scale to future many-core
chips?

3. Scalability Concerns
Some prognosticators forecast that the era of cache coherence

is nearing its end [5, 10, 13], primarily due to an alleged lack of
scalability. However, when we examined state-of-the-art coherence
mechanisms, we found them to be more scalable than one might
expect.

We consider a coherent system to be “scalable” when the cost
of providing coherence grows (at most) slowly as core count in-
creases. We focus exclusively on the cache coherence aspects of
multicore scaling, whereas a fully scalable system (coherent or oth-
erwise) also requires scalability from other hardware (e.g., memory
and interconnect) and software (operating system and applications)
components.

This paper examines five potential concerns raised when scaling
on-chip coherence:

1. traffic on the on-chip interconnection network,
2. storage cost for tracking sharers,
3. inefficiencies caused by maintaining inclusion (as inclusion

is assumed by our base system),
4. latency of cache misses, and
5. energy overheads.

The next five sections address these concerns in sequence
and present our analysis which indicates that existing design
approaches can be employed such that none of these concerns
present a fundamental barrier to scaling coherence. After this
analysis, we discuss extending the analysis to non-inclusive caches
and address some caveats and potential criticisms of this work.

4. Concern #1: Traffic
We now tackle the concerns regarding the scalability of coher-

ence’s traffic on the on-chip interconnection network. To perform
a traffic analysis, we consider for each cache miss how many bytes
need to be transferred to obtain and relinquish the given block.
We divide the analysis into two parts: in the absence of sharing
and then with sharing. This analysis shows that when sharers are
tracked precisely, the traffic per miss is independent of the number
of cores. Thus, if coherence’s traffic is acceptable for today’s sys-
tems with small numbers of cores, it will continue to be acceptable

as we scale up the number of cores. We conclude this section with
a discussion of how coherence’s per-miss traffic compares to that
of a system without coherence.

4.1 Without Sharing
We first analyze the worst-case traffic in the absence of sharing.

Each miss in a private cache requires at least two messages: (1)
a request from the private cache to the shared cache and (2) a re-
sponse from the shared cache to provide the data to the requestor.
If the block is written during the time it is in the cache, the block is
dirty and must be explicitly written back to the shared cache upon
eviction.

Even without sharing, the traffic depends on the specific coher-
ence protocol implementation. In particular, we consider protocols
that require a private cache to send an explicit eviction notification
message to the shared cache whenever it evicts a block, even when
evicting a clean block. (This decision to require explicit eviction
notifications benefits the implementation of inclusive caching, as
discussed in Section 6.) We also conservatively assume that coher-
ence requires the shared cache to send an acknowledgment mes-
sage in response to each eviction notification. Fortunately, clean
eviction messages are small (say, enough to hold a 64-bit address)
and can only occur subsequent to cache misses (which transfer, say,
a 512-bit cache block). Thus coherence’s additional traffic per miss
is modest (we will compare it to a system without coherence later
in this section) and, most importantly, independent of the number
of cores. Based on 64-byte cache blocks, Table 1 shows that coher-
ence’s traffic is 96 bytes/miss for clean blocks and 160 bytes/miss
for dirty blocks.

4.2 With Sharing
In a coherent system, when a core reads a block that is shared,

the coherence protocol may need to forward the request, but to at
most one core (and thus the traffic for each read miss is independent
of the number of cores). However, when a core incurs a write miss
to a block that is cached by one or more other cores, the coherence
protocol generates extra messages to invalidate the block from the
other cores. These invalidation messages are often used to argue
for the non-scalability of cache coherence, because when all cores
are sharing a block, a coherent system must send an invalidation
message to all other cores. However, our analysis shows that when
sharers are tracked exactly, the overall traffic per miss of cache
coherence is independent of the number of cores (the storage cost
of exact tracking is addressed in Section 5).

Consider the access pattern in which a block is read by all cores
and then written by one core. The writer core will indeed be forced
to send an invalidation message to all cores, and each core will
respond with an acknowledgment message (i.e., a cost of 2N mes-
sages for N sharers). However, such an expensive write operation
can occur only after a read miss by each of those cores. More gen-
erally, for every write that invalidates N caches, it must have been
preceded by N read misses. The traffic cost of a read miss is inde-
pendent of the number of cores (a read miss is forwarded to a single
core at most). Thus, by amortized analysis, the overall average traf-
fic per miss is constant. (A write miss that causes N messages can
occur at most once every Nth miss).

In support of this general analysis, Figure 2(b) shows the traffic
(in average bytes per miss) over a range of core counts for an ac-
cess pattern parameterized by the number of read misses to a block
between each write miss to the block. A workload consisting of
all write misses (zero read misses per write miss; far left of the
graph) has the highest traffic per miss because all blocks are dirty.
The traffic per miss is independent of the number of cores because

!"
#"

!$"
$#"

%&$"
!'%#"'"

!''"

%''"

(''"

#''"

&''"

$''"

)''"
'" !" %" (" #" &" $")" *"

!$
"

(%
"

$#
"

!%
*"

%&
$"

&!
%"

!'
%#
"

!"#$%&

'(
)$
%&
*$

#&
+
,%
%&

-$./&+,%%$%&*$#&0#,)$&+,%%&

(a) With inexact tracking of sharers

!"
#"

!$"
$#"

%&$"
!'%#"'"

!''"

%''"

(''"

#''"

&''"

$''"

)''"

'" !" %" (" #" &" $")" *"
!$
"

(%
"

$#
"

!%
*"

%&
$"

&!
%"

!'
%#
"

!"#$%&

'(
)$
%&
*$

#&
+
,%
%&

-$./&+,%%$%&*$#&0#,)$&+,%%&

(b) With exact tracking of sharers

Figure 2: Communication traffic for shared blocks

Clean block Dirty Block
Without coherence (Req+Data)+0 = 80 B/miss (Req+Data) + Data = 152 B/miss

With coherence (Req+Data) + (Evict+Ack) = 96 B/miss (Req+Data) + (Data+Ack) = 160 B/miss
Per-miss traffic overhead 20% 5%

Table 1: To calculate the traffic, we must assume values for the size of addresses and cache blocks (say, 64-bit physical addresses
and 64-byte cache blocks). Request and acknowledgment messages are typically short (e.g., 8 bytes) because they contain mainly a
block address and message type field. A data message is significantly larger because it contains both an entire data block plus a block
address (e.g., 64 + 8 = 72 bytes).

the shared cache forwards the write misses to at most one core (the
most recent writer). With an increasing number of read misses per
write miss (moving to the right on the graph), the average traffic per
miss actually decreases slightly because fewer writes lead to fewer
dirty blocks. More importantly, as predicted, the traffic is indepen-
dent of the number of cores in the system, because each write miss
that causes N messages is offset by N previous read misses.

4.3 Traffic Overhead of Coherence
We have already shown in this section that coherence’s per-miss

traffic scales, because it is independent of the number of cores. We
now examine coherence’s traffic overhead per miss with respect
to a hypothetical design with caches but no hardware coherence
(e.g., software knows exactly when cached data is stale without
extra traffic). We continue to measure traffic in terms of bytes of
traffic on the interconnection network per cache miss, thus mak-
ing the assumption that coherence does not change the number of
cache misses. This assumption is, however, potentially compro-
mised by false sharing and inefficient synchronization, which can
cause non-scalable increases in the number of cache misses. Both
of these phenomena are well-known challenges with well-known
techniques for mitigating them; we cannot completely eliminate
their impact nor can we cleanly incorporate them into our inten-
tionally simplistic models.

In Table 1, we show the traffic per miss for this system without
coherence, and we now compare it to the system with coherence.
For a clean block, the system without coherence eliminates the need
for the eviction notification and the acknowledgment of this notifi-
cation. For a dirty block, the system without coherence avoids the
acknowledgment of the dirty eviction message. The key is that all
three of these messages are small. Thus, coherence’s overhead is
small, bounded, and—most importantly—independent of the num-

ber of cores. Based on 64-byte cache blocks, Table 1 shows that
coherence adds a 20% traffic overhead for clean blocks and a 5%
overhead for dirty blocks.

Conclusion: Coherence’s interconnection network traffic per
miss scales when exactly tracking sharers (one bit per core).

5. Concern #2: Storage
The scalable per-miss traffic result in the previous section as-

sumed an exact tracking of sharing state in the shared cache, which
requires N bits of state for a system with N cores. This assumption
leads to the understandable concern that such an increase in track-
ing state for systems with more cores could pose a fundamental
barrier to scalability. In this section, we show that the storage cost
scales gracefully by quantifying the storage cost and describing two
approaches for bounding this cost: (1) the traditional approach of
using inexact encoding of sharers [1, 8], which we discard in favor
of (2) an often-overlooked approach of using on-chip hierarchy to
efficiently maintain an exact encoding of sharers. The storage cost
at the private caches is negligible—supporting coherence in the pri-
vate caches adds just a few state bits for each cache block, which
is less than 1% storage overhead and independent of the number of
cores—so our analysis in this section focuses on additional storage
in the shared cache.

5.1 Conventional Approach:
Inexact Encoding of Sharers

The conventional approach to limit the storage—inexact encod-
ing of sharers—can work well but has poor worst-case behavior.
This technique represents a conservative superset of sharers us-
ing fewer bits than one bit per potential sharer, and it was well-
studied in the early 1990s [1, 8]. As a concrete example, the Origin

!
Figure 3: Hierarchical System Model. Additions for coherence are shaded.

2000 [14] uses a fixed number of bits per block, regardless of the
number of cores. For small systems, the Origin uses these bits as a
bit-vector than tracks sharers exactly. For larger systems, the Ori-
gin alternates between two uses of these tracking bits. If there are
only a few sharers, the bits are used as a limited number of point-
ers (each of which requires log2N bits to encode) that can exactly
track sharers. If the number of sharers exceeds this limited number
of pointers, the Origin uses the bits as an inexact, coarse-vector en-
coding, in which each bit represents multiple cores. Although the
storage can be bounded, the traffic of such schemes suffers due to
unnecessary invalidations.

To quantify the traffic impact of such inexact encodings, Fig-
ure 2(a) shows the result of applying the analysis from the previous
section when using the Origin’s inexact encoding scheme to bound
the storage at 32 bits per block in the shared cache (approximately
6% overhead for 64-byte blocks). When the 32 bits is enough for
exact tracking (up to 32 cores) or when the number of sharers is
smaller than the number of limited pointers (far left of the graph),
the sharers are encoded exactly, which results in the same traffic-
per-miss as the exact encoding. When the number of sharers is
large (far right of the graph), the write invalidations must be sent to
all cores (independent of the encoding), so the inexact encoding in-
curs no traffic penalty. However, when the number of cores grows
and the number of sharers is in the middle of the range, the traffic
overheads spike. With 1024 cores, the spike reaches almost 6x the
traffic of the exact encoding cases. Although conventional wisdom
might have predicted an even larger traffic spike for 1024 cores, we
next describe an alternative that eliminates any such spike in traffic.

5.2 Less Conventional Approach:
On-Chip Hierarchy for Exact Tracking

To avoid a spike in traffic for some sharing patterns, an alterna-
tive is to overcome this scalability problem using an on-chip hierar-
chy of inclusive caches. Hierarchy is a natural design methodology
for scalable systems. With many cores, the size of private caches
is limited and the miss latency from a private cache to the chip-
wide shared cache is likely large. As such, many-core systems [16,
4], GPUs [15], and proposed many-core architectures [12] clus-

ter some number of cores/threads to share an intermediate level of
cache. For example, Sun/Oracle’s T2 systems [16] share a small
L1 cache among two pipelines each with four threads. NVIDIA’s
Fermi GPU [15] clusters 32 execution pipelines into a “shared mul-
tiprocessor.” In AMD’s forthcoming Bulldozer architecture [4],
each pair of cores has per-core private L0 caches and shares a L1
cache. Such systems fill the gap between a private cache and a
large, distributed shared cache, allowing the cluster cache to pro-
vide faster access to data shared within the cluster. An additional
benefit is that coherence requests may be satisfied entirely within
the cluster (e.g., by a sibling node that is caching the block), which
can be significant if the software is aware of the hierarchy.

The same techniques described in the previous sections (inclu-
sion, integrating tracking state with caches, recall messages, and
explicit eviction notifications) are straightforward to apply recur-
sively to provide coherence across a hierarchical system. Instead
of just embedding tracking state at a single shared cache, each in-
termediate shared cache also tracks sharers—but just for the caches
included by it in the hierarchy. Consider a chip, illustrated in Fig-
ure 3, in which each core has its own private cache, each cluster of
cores has a cluster cache, and the chip has a single shared last-level
cache. Each cluster cache is shared among the cores in the cluster
and serves the same role for coherence as the shared cache in the
non-hierarchical systems we have discussed previously. That is, the
cluster cache tracks which private caches within the cluster have the
block. The shared last-level cache tracks which cluster caches are
caching the block, but not which specific private cache(s) within
the cluster are caching it. For example, a balanced 256-core sys-
tem might consist of 16 clusters of 16 cores each with a 16KB
first-level cache, a 512KB second-level shared cluster cache, and a
16MB third-level (last-level) cache shared among all clusters.

Such a hierarchical organization has some disadvantages (extra
complexity and additional layers of cache lookups), but it has two
key benefits for coherence. First, the hierarchy naturally provides a
simple form of fan-out invalidation and acknowledgment combin-
ing. For example, consider a block cached by all cores. When a
core issues a write miss to that block, the cluster cache lacks write
permission for the block, so it forwards it on to the shared last-

!"#
$"#
%"#
&"#
'"#
(!"#
($"#
(%"#
(&"#
('"#
$!"#

(# $# %# '# (&
#

)$
#

&%
#

($
'#

$*
&#

*(
$#

(!
$%
#

$!
%'
#

%!
+&
#

!"
#$
%&
'(
#)
'$
*'

%+
(,-

'$
.'
/"
0(

.#$'!(

,-./01231410#

567231410#

58911231410#

Figure 4: Storage overhead in shared caches

level cache. The shared last-level cache then sends an invalidation
message to each cluster (not to each core), which triggers the clus-
ter cache to perform an analogous invalidation operation within the
cluster. The cluster then sends a single invalidation acknowledg-
ment (independent of the number of cores in the cluster that were
caching the block). Compared to a flat protocol, which must send
acknowledgments to every requestor, the total cross-chip traffic is
reduced, and it avoids the bottleneck of sequentially injecting hun-
dreds or thousands of invalidation messages and later sequentially
processing the same number of acknowledgments.

The second benefit is that a hierarchical system that enforces
inclusion at each level reduces the storage cost of coherence. Recall
from Section 4 that using an exact encoding of sharers allows for
scalable communication for coherence, but that we deferred the
seeming problem of the storage cost of exact encoding. Now we
show that, by using hierarchy, we can also make the storage cost
scale gracefully. Consider first a two-level system (three levels
of cache) comprised of K clusters of K cores each (K2 = C total
cores). Each cluster cache is inclusive with respect to all of the
private caches within the cluster, and the shared last-level cache
is inclusive with respect to all of the cluster caches. Each cluster
cache block uses one bit for each of the K private caches it includes,
plus a few bits of state. Similarly, each shared last-level cache block
consumes one bit for each of the K cluster caches it includes, plus
a few bits of state. Importantly, these storage costs grow as a linear
function of K and thus proportional to

√
C. Even if C increases

greatly,
√

C grows more slowly.
This storage cost at the cluster caches and last-level cache could

be reduced even further by extending the hierarchy by one level.
Consider a system with K level-2 clusters, each of which consists
of K level-1 clusters; each level-1 cluster consists of K cores. This
system has C = K3 cores and a storage cost proportional to 3

√
C

In Figure 4, we plot coherence’s storage overhead (i.e., coher-
ence’s storage as a fraction of the total cache storage) in terms of
the bits needed to provide exact tracking of sharers, for conven-
tional flat (non-hierarchical) systems, 2-level systems, and 3-level
systems. For a very large example, a 1024-core two-level system
would have 32 clusters of 32 cores and thus 32 bits per 64-byte
cache block at each level, which is just 6%. An extreme (absurd?)
4096-core three-level system would have 16 clusters, each with 16
sub-clusters of 16 cores, with a storage overhead of only 3%.

Conclusion: Hierarchy combined with inclusion enables effi-
cient scaling of the storage cost for exact encoding of sharers.

6. Concern #3: Maintaining Inclusion
In the system model we focus on in this paper, we have chosen

to initially require that the shared cache maintain inclusion with

respect to the private caches. Maintaining an inclusive shared cache
allows efficient tracking of blocks in private caches by embedding
the tracking information in the tags of the shared cache, which is
why we choose to use this design point. Inclusion also simplified
the analysis of communication and storage in the previous sections.

Inclusion requires that if a block is cached in any private cache,
it is also cached in the shared cache. Thus, when the shared cache
evicts a block with non-empty tracking bits, it is required to send
a recall message to each private cache that is caching the block,
adding to system traffic. More insidiously, such recalls can increase
the cache miss rate by forcing cores to evict hot blocks they are
actively using [11]. To ensure scalability, we seek a system that
make recalls vanishingly rare, the design of which first requires
understanding the reasons why recalls occur.

Recalls occur when the shared cache is forced to evict a block
with one or more sharers. To reduce recalls, the shared cache al-
ways chooses to evict non-shared blocks over shared blocks. Be-
cause the capacity of an inclusive shared cache will often exceed
the aggregate capacity of the private caches (for example, the ra-
tio is 8 for the four-core Intel Core i7 with a 8MB shared cache
and four 256KB second-level private caches), it is highly likely
that there will be a non-shared block to evict whenever an eviction
occurs.

Unfortunately, the shared cache sometimes lacks sufficient infor-
mation to differentiate between a block possibly being cached and
certainly being cached by a core. That is, the tracking bits in the
shared cache are updated when a block is requested, but the shared
cache does not always know when a private cache has evicted the
block. Why? In most systems, clean blocks (those not written dur-
ing their lifetime in the cache) are evicted silently from the private
caches, thus introducing ambiguity at the shared cache as to what is
still being cached and what has already been evicted. This lack of
information manifests as poor replacement decisions at the shared
cache.

To remedy this lack of information, a system can instead require
the private caches to send explicit notification messages whenever
a block is evicted (even when evicting clean blocks). For exam-
ple, AMD’s HT-Assist uses explicit eviction notifications on clean-
exclusive block replacements to improve sharer state encoding [6].
If such eviction notifications occur on every cache eviction, it en-
ables the shared cache to maintain a precise, up-to-date tracking of
private caches that hold each block, transforming the tracking infor-
mation from being conservative to exact. Thus, when an eviction
decision occurs, the shared cache will know which blocks are no
longer being cached, and thus likely have a choice to evict a non-
shared block to avoid a recall. This precision, of course, comes
with a cost: increased traffic for evictions of clean blocks (previ-
ously analyzed in Section 4).

Explicit eviction notifications can potentially eliminate all re-
calls, but only if the associativity (i.e., the number of places in
which a specific block may be cached) of the shared cache exceeds
the aggregate associativity of the private caches. With sufficient as-
sociativity, whenever the shared cache looks for a non-shared block
to evict, if it has exact sharing information, it is guaranteed to find
a non-shared block and thus avoid a recall. Without this worst-
case associativity, a pathological cluster of misses could lead to a
situation in which all blocks in a set of the shared cache are truly
shared. Unfortunately, even with a modest number of cores, the re-
quired associativity becomes prohibitive, as has been previously re-
ported [7]. For example, eight cores with eight-way set-associative
private caches require a 64-way set-associative shared cache and
the required associativity doubles for each doubling of the number
of cores.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" #" $" %" &" '" (")" *"

!"
#$
"%

&'
("
)*
+),

-.
."
.)
/'

0.
-%
()
1"

$'
22.
)

1'3*)*+)4((#"('&")!#-5'&")/'$6")/'7'$-&8)&*)96'#":)/'$6")/'7'$-&8)

#,-./"

$,-./"

&,-./"

*,-./"

4..*$-'35-&8)
*+)96'#":)
/'$6")

01234536"
7389:;"
<2.43"

Figure 5: Likelihood that a shared cache miss triggers a recall.

Thus, instead of eliminating all recalls, we instead focus on a sys-
tem in which recalls are possible but rare. To estimate the impact
of limited shared cache associativity on recall rate, we performed
a simulation modeling recalls due to enforcing inclusion in such
a system. We pessimistically configured the private caches to be
fully associative. To factor out the effect of any particular bench-
mark, we generated a miss address stream to random sets of the
shared cache, which prior work has found accurately approximates
conflict rates [9]. We also pessimistically assumed no data sharing
among the cores, which would reduce the inclusive capacity pres-
sure on the shared cache.

Fortunately, recalls can be made rare in the expected design
space. Figure 5 shows the recall rate (the percentage of misses that
cause a recall) for shared caches of various sizes (as a ratio of ag-
gregate per-core capacity) for several shared cache associativities.
When the capacity of the shared cache is less than the aggregate
per-core capacity (ratio < 1.0), almost every request causes a
recall because the private caches are constantly contending for
an unrealistically under-provisioned shared cache. As the shared
cache size increases, the recall rate quickly drops. Once the
capacity ratio reaches 4×, even an eight-way set-associative shared
cache keeps the recall rate below 0.1%. For comparison, the Intel
Core i7 has a 16-way set-associative cache with an 8× capacity
ratio. That 8-way shared caches have few recalls at capacity ratios
of 2× and above is analogous to the behavior of hash tables that
also work well when sized at least twice as large as the data stored.
Based on this analysis, we conclude that the traffic overhead of
enforcing inclusion is negligible for systems with explicit eviction
notifications and reasonable shared cache sizes and associativities.

Conclusion: We can design a system with an inclusive shared
cache with a negligible recall rate, and thus we can efficiently
embed the tracking state in the shared cache.

7. Concern #4: Latency
In a non-coherent system, a miss in a private cache sends a re-

quest to the shared cache. As discussed earlier, to provide sufficient
bandwidth, shared caches are typically interleaved by addresses
with banks physically distributed across the chip (Figure 1), so the
expected best-case latency of a miss that hits in the shared cache is
the access latency of the cache bank plus the round-trip traversal of
the on-chip interconnect to reach the appropriate bank of the shared
cache. Requests that miss in the shared cache are in turn routed to
the next level of the memory hierarchy (e.g., DRAM).

In a coherent system with private caches and a shared cache,
there are four cases to consider with regard to miss latency: (1) a hit

in the private cache, (2) a direct miss, in which the shared cache can
fully satisfy the request (i.e., to a block not cached in other private
caches), (3) an indirect miss, in which the shared cache must con-
tact one or more other caches, and (4) a miss in the shared cache,
which incurs a long-latency access to off-chip DRAM. Coherence
adds no latency to perhaps the two most performance-critical cases:
private cache hits (case 1) and off-chip misses (case 4). Coherence
also adds no appreciable latency to direct misses, because the co-
herence state bits in the tags of the shared cache can be extended to
unambiguously distinguish between direct and indirect misses.

Indirect misses, however, do incur the extra latency of sending a
message on the on-chip interconnect to the specified private cores.
Such messages are sent in parallel, and responses are typically sent
directly to the original requester (resulting in what is known as a
three-hop protocol). Thus, the critical path latency of direct and
indirect misses can be approximated by the following formulas:

Non-coherent:
tnoncoherent = tinterconnect + tcache + tinterconnect

Coherent:
tdirect = tinterconnect + tcache + tinterconnect
tindirect = tinterconnect + tcache + tinterconnect + tcache + tinterconnect

The indirect miss latency for coherence is between 1.5× and
2× larger than the latency of a non-coherent miss (the exact ra-
tio depends on the relative latencies of cache lookup (tcache) and
interconnect traversal (tinterconnect). This ratio is considered accept-
able in today’s multicore systems (partly because indirect misses
are generally in the minority for well-tuned software). The ratio
also indicates scalability, as this ratio is independent of the num-
ber of cores. Even if the absolute interconnect latency increases
with more cores, such increases will generally increase the latency
of misses (even in a non-coherent system) roughly proportionally,
thus keeping the ratio largely unchanged. Moreover, if latency is
still deemed to be too great, for either coherent or non-coherent
systems, these systems can use prefetching to hide the latency of
anticipated accesses.

Similar reasoning can be applied recursively to calculate the
above latency ratio for a system with more layers of hierarchy.
Although the impact of hierarchy may hurt absolute latency (e.g.,
due to additional layers of lookup), overall, we see no reason why
hierarchy should significantly impact the ratio of the latencies
of direct to indirect misses. Furthermore, the cluster caches
introduced by hierarchy may help mitigate the growing cross-chip
latency by (1) providing a closer medium-sized cache that both
allows faster sharing within a cluster and (2) reducing the number
of longer-latency accesses to the chip-wide distributed shared
last-level cache. Modeling the full impact of hierarchy on latency
(and traffic) is beyond the reach of the simple models used in this
paper.

Conclusion: Although misses to actively shared blocks have
greater latency than other misses, the latency ratio is tolerated
today and the ratio need not grow as the number of cores in-
creases.

8. Concern #5: Energy
Although a detailed energy analysis is perhaps not as straight-

forward as the analyses we have performed thus far, we can use
those prior analyses to support the conclusion that the energy cost
of coherence is also not a barrier to scalability. In general, energy
overheads come from both doing more work (dynamic/switching
energy) and from additional transistors (static/leakage energy).

For dynamic energy, the primary concerns are extra messages
and additional cache lookups. However, we have already shown
that interconnect traffic and message count per-miss do not increase
with the number of cores, which in turn indicates that the protocol
state transitions and number of extra cache lookups are similarly
bounded and scalable.

For static energy, the primary concerns are the extra tracking
state, which we have also already shown scales gracefully, and
leakage due to any extra logic for protocol processing. The pro-
tocol processing logic is added per core and/or per cache bank, and
thus also should add at most a fixed per-core, and thus scalable,
leakage energy overhead.

Furthermore, many energy-intensive parts of the system are
largely unaffected by coherence (the cores themselves, the cache
data arrays, off-chip DRAM, and storage), and thus energy
overheads incurred by coherence will be relatively smaller when
put into the context of the whole system.

Conclusion: Based upon the aforementioned traffic and stor-
age scalability analyses, we find no reason that the energy over-
heads of coherence will increase with the number of cores.

9. Non-Inclusive Shared Caches
So far this paper assumes an inclusive shared cache, like that of

Intel’s Core i7, but this choice is not universal. Instead of requiring
a private cache block to be present in the shared cache (inclusion),
a system can forbid it from being present (exclusion) or allow but
not require it to be present (neither inclusion nor exclusion). Not
enforcing inclusion reduces redundant caching (less important for
the Core i7 whose shared cache size is eight times the sum of its
private cache sizes), but has implications on coherence.

A non-inclusive system can retain the coherence benefits of an
inclusive shared cache by morphing it into two structures: (a) a
new non-inclusive shared cache that holds tags and data, but not
tracking state, and is free to be of any size and associativity, and
(b) a “directory” that holds tags and per-core tracking state, but not
data blocks, and uses inclusion to operate like a dataless version of
the previous inclusive shared cache. This design roughly resembles
some systems from AMD [6].

To the first order, the communication between the directory and
its private caches is the same as with the original inclusive shared
cache, provided that the directory continues to be large enough to
keep recalls rare. Moreover, designers now have more freedom in
setting the new non-inclusive shared cache configuration to trade
off cost and memory traffic. Although the directory tracking state is
the same as with an inclusive shared cache (the total directory size
is proportional to the sum of private cache sizes), the storage impact
is more significant because: (1) the directory must now also include
tags (that were there for free in the original inclusive shared cache),
and (2) the relative overhead gets larger if hardware designers opt
for a smaller shared cache.

To be concrete, let S1 be the sum of private cache sizes, S2
be the shared cache size, D be the directory entry size relative
to the size of a private cache block and tag, and R be the ratio
of the number of directory entries to the total number of private
cache blocks. R should be greater than 1 to keep recalls rare (Sec-
tion 6). Directory storage adds R×S1×D to cache storage S1+S2
for a relative overhead of (R×D)/(1+S2/S1). Assume that R=2
and D=(16b+32b)/(32b+512b) for sharing bits for 16 cores and
32b tag+state (e.g., 8MB, 16-way associative, 64-byte blocks, 48b
physical addresses). If S2/S1 is 8, as in Core i7, then directory stor-
age overhead is only 2%. Shrinking S2/S1 to 4, 2, and 1 increases
relative overhead to 4%, 6%, and 9%, respectively.

The use of hierarchy adds another level of directory and an L3
cache. Without inclusion, the new directory level must point to
an L2 bank if a block is either in the L2 bank or its co-located
directory. For cache size ratio Z = S3/S2 = S2/S1 = 8, the storage
overhead for reaching 256 cores is 2%. Shrinking Z to 4, 2, or
1 at most doubles the relative overhead to 5%, 10%, and 18%,
respectively. Furthermore, such overheads translate into relatively
lower overheads in terms of overall chip area, because caches are
only part of the chip area. Overall, we find that directory storage is
still reasonable when the cache size ratio Z > 1.

10. Summary, Caveats, and Criticisms
In this paper, we describe a coherence protocol based on a

combination of known ideas to show that the costs of on-chip
coherence grow slowly with core count. The design uses a
hierarchy of inclusive caches with embedded coherence state
whose tracking information is kept precise with explicit cache
replacement messages. Using amortized analysis, we show that for
every cache miss request and data response, the interconnection
network traffic per miss is independent of the number of cores
and thus scales. Embedding coherence state in an inclusive cache
hierarchy keeps coherence’s storage costs small (e.g., 512 cores
can be supported with 5% extra cache area with two cache levels
or 2% with three levels). Coherence adds no latency to cache hits,
off-chip accesses, and misses to blocks not actively shared; miss
latency for actively shared blocks is higher, but the ratio of the
latencies for these misses are tolerable today and independent of
the number of cores. Energy overheads of coherence are correlated
with traffic and storage, so we find no reason for energy overheads
to limit the scalability of coherence. Extensions to a non-inclusive
shared cache show larger but manageable storage costs when
shared cache size is larger than the sum of private cache size. With
coherence’s costs shown to scale, we see on-chip coherence as
here to stay for the programmability and compatibility benefits it
provides.

Nevertheless, there are limitations and potential criticisms of this
work. First, this paper does not perform detailed architectural sim-
ulations with specific benchmarks or consider difficult-to-model
queuing impacts due to cache and interconnect contention. We in-
stead show that coherence’s per-miss traffic is independent of the
miss pattern and number of cores. Although less precise than de-
tailed simulation, our results are actually more robust as they are
not limited to the specific benchmarks studied. Furthermore, we
describe our protocol as an existence proof of a scalable coherence
protocol, but we do not claim it to be the best. To this more modest
end, less precision is required.

Second, we did not compare against multicore chips without
caches or without a shared address space. Although these latter
approaches have been successful in high-performance computing,
etc., they have not been common in mainstream multicore systems.
Given that coherence’s costs can be kept low and that we already
have operating systems that use hardware coherence to scale to
many cores [2, 3], there does not appear to be a need to abandon
coherence. Thus, we anticipate that alternatives to cache-coherent
shared memory will continue to exist and thrive in certain domains,
but that on-chip coherence will continue to dominate mainstream
multicore chips. Furthermore, coherent systems can support legacy
algorithms from these other domains, because any program that
works for scratchpad systems (e.g., Cell processor) or message
passing systems (e.g., MPI cluster) can easily map to a shared
memory system with caches.

Third, we are aware of the complexity challenge posed by coher-
ence. We do not underestimate the importance of managing com-

plexity, but the chip design industry has a long history of success-
fully managing complexity. Many companies have sold many sys-
tems with hardware cache coherence. Designing and validating the
coherence protocols in these systems is not easy, but industry has
overcome—and continues to overcome—these challenges. More-
over, the complexity of coherence protocols does not necessarily
scale up with increasing numbers of cores. Adding more cores
to an existing multicore design has little impact on the conceptual
complexity of a coherence protocol, although it may increase the
amount of time necessary to validate the protocol. However, even
the validation effort may not pose a scalability problem; research
has shown that it is possible to design hierarchical coherence pro-
tocols that can be formally verified with an amount of effort that
is independent of the number of cores [19]. Furthermore, the com-
plexity of the alternative to hardware coherence—that is, software
implemented coherence—is non-zero. As when assessing hard-
ware coherence’s overheads (storage, traffic, latency, and energy)
one must be careful not to implicitly assume that the alternative
to coherence is free. Forcing software to use software-managed
coherence or explicit message passing does not remove the com-
plexity, but rather shifts the complexity from hardware to software.

Fourth, we assumed a single-chip (socket) system and did not ex-
plicitly address chip-to-chip coherence used in today’s multi-socket
servers. The same sort of tagged tracking structures can be ap-
plied to small-scale multi-socket systems [6], essentially adding
one more level to the coherence hierarchy. Moreover, providing
coherence across multi-socket systems may become less important,
because single-chip solutions solve more needs and “scale out” so-
lutions are required in any case, e.g., for data centers, but that is an
argument for a different paper.

Fifth, even if coherence itself scales, we do not address other is-
sues that may prevent practical multi-core scaling, such as the scal-
ability of the on-chip interconnect or the critical problem of soft-
ware non-scalability. Despite advances in scaling operating sys-
tems and applications, there remain many applications that do not
(yet) effectively scale to many cores, and this paper does not di-
rectly improve the situation. Nevertheless, we show that on-chip
hardware coherence can scale gracefully, thereby freeing applica-
tion and system software developers from re-implementing coher-
ence (e.g., knowing when to flush and re-fetch data) or orchestrat-
ing explicit communication via message passing.

Conclusion: On-chip coherence can scale gracefully and it en-
ables programmers to concentrate on what matters for parallel
speedups: finding work to do in parallel without undo commu-
nication and synchronization.

Acknowledgments
For feedback, we thank the anonymous referees, James Balfour,
Colin Blundell, Derek Hower, Steve Keckler, Alvy Lebeck, Steve
Lumetta, Steve Reinhardt, Mike Swift, and David Wood. This
material is based upon work supported by the National Sci-
ence Foundation (CNS-0720565, CNS-0916725, CNS-1117280,
CCF-0644197, CCF-0905464, and CCF-0811290), Sandia/DOE
(MSN123960/DOE890426), and SRC (2009-HJ-1881). Any opin-
ions, findings, and conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation, Sandia/DOE, or
SRC. Hill has a significant financial interest in AMD.

References
[1] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An

Evaluation of Directory Schemes for Cache Coherence. In
Proceedings of the 15th Annual International Symposium on
Computer Architecture, May 1988.

[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An Analysis
of Linux Scalability to Many Cores. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and
Implementation, Oct. 2010.

[3] R. Bryant. Scaling Linux to the Extreme. In Proceedings of
the Linux Symposium, 2004.

[4] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas.
Bulldozer: An Approach to Multithreaded Compute
Performance. IEEE Micro, 31(2), March/April 2011.

[5] B. Choi, R. Komuravelli, H. Sung, R. Bocchino, S. Adve,
and V. Adve. DeNovo: Rethinking Hardware for Disciplined
Parallelism. In Proceedings of the Second USENIX Workshop
on Hot Topics in Parallelism (HotPar), 2010.

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache Hierarchy and Memory Subsystem of the
AMD Opteron Processor. IEEE Micro, 30:16–29, 2010.

[7] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi.
Cuckoo Directory: Efficient and Scalable CMP Coherence.
In Proceedings of the 17th Symposium on High-Performance
Computer Architecture, Feb. 2011.

[8] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood.
Cooperative Shared Memory: Software and Hardware for
Scalable Multiprocessor. ACM Transactions on Computer
Systems, 11(4):300–318, Nov. 1993.

[9] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU
Caches. IEEE Transactions on Computers,
38(12):1612–1630, Dec. 1989.

[10] J. Howard et al. A 48-Core IA-32 Message-Passing
Processor with DVFS in 45nm CMOS. In Proceedings of the
International Solid-State Circuits Conference, 2010.

[11] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and
J. Emer. Achieving Non-Inclusive Cache Performance with
Inclusive Caches: Temporal Locality Aware (TLA) Cache
Management Policies. In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture,
Dec. 2010.

[12] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C. Crago,
W. Tuohy, A. Mahesri, S. S. Lumetta, M. I. Frank, and S. J.
Patel. Rigel: an Architecture and Scalable Programming
Interface for a 1000-core Accelerator. In Proceedings of the
36th Annual International Symposium on Computer
Architecture, June 2009.

[13] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and
S. J. Patel. Cohesion: An Adaptive Hybrid Memory Model
for Accelerators. IEEE Micro, 31(1), January/February 2011.

[14] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, 1997.

[15] J. Nickolls and W. J. Dally. The GPU Computing Era. IEEE
Micro, 30(2):56–69, March/April 2010.

[16] M. Shah, J. Barren, J. Brooks, R. Golla, G. Grohoski,
N. Gura, R. Hetherington, P. Jordan, M. Luttrell, C. Olson,
B. Sana, D. Sheahan, L. Spracklen, and A. Wynn.
UltraSPARC T2: A highly-threaded, power-efficient, SPARC
SOC. In Solid-State Circuits Conference, 2007. ASSCC ’07.
IEEE Asian, Nov. 2007.

[17] R. Singhal. Inside Intel Next Generation Nehalem
Microarchitecture. In Hot Chips 20, 2008.

[18] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence. Morgan and
Claypool, 2011.

[19] M. Zhang, A. R. Lebeck, and D. J. Sorin. Fractal Coherence:
Scalably Verifiable Cache Coherence. In Proceedings of the
43rd Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2010.

