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Presentation Outline
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� Challenges of Parallel Programming
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� Directory Cache Coherence
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What is a Multiprocessor?
� Collection of processors, memories, and storage devices

� That communicate and cooperate to solve large problems fast

� Resource allocation

� How large is this collection?

� How powerful are the processing units?

� Data access, communication, and synchronization

� How do the processing units communicate and cooperate?

� How data is transmitted?

� What type of interconnection network?

� Performance, Scalability, Availability, and Power Efficiency

� How does it all translate into performance? How does it scale?

� Availability in the presence of faults? Performance per watt?
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Flynn’s Taxonomy (1966)
� SISD: Single instruction stream, single data stream

� Uniprocessors

� SIMD: Single instruction stream, multiple data streams

� Same instruction is executed on different data

� Exploits Data-Level Parallelism (DLP)

� Vector processors, SIMD instructions, and Graphics Processing Units

� MISD: Multiple instruction streams, single data stream

� No commercial implementation

� MIMD: Multiple instruction streams, multiple data streams

� Most general and flexible architecture for parallel applications

� Exploits Thread-Level Parallelism (TLP) and Data-Level Parallelism

� Tightly-coupled versus loosely-coupled MIMD
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Major Multiprocessor Organizations

� Symmetric Multiprocessors (SMP)

� Main memory is shared and equally accessible by all processors

� Called also Uniform Memory Access (UMA)

� Bus based or interconnection network based

� Distributed Shared Memory (DSM) multiprocessors

� Memory is distributed and shared and accessed by all processors

� Non-uniform memory access (NUMA)

� Latency varies between local and remote memory access

� Message-Passing multiprocessors (Clusters)

� Memory is distributed, but NOT shared

� Each processor can access its own local memory

� Processors communicate by sending and receiving messages
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Single-Chip Multiprocessor (Multicores)

� Multiprocessor on a 
single chip (called 
multicores)

� Each core is a 
processor with 
private caches

� All processors 
share a common 
cache on chip

� Uniform access to 
shared cache and 
main memory

© Elsevier,
All rights reserved
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Distributed Memory Multiprocessors

� Memory is distributed among all processors

� Interconnection network connects all the (Multicore MP) nodes
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Distributed Memory Architectures

�Distributed Shared Memory (tightly coupled)

� Distributed memories are shared among all processors

� Processors can access local and remote memories

� Remote memory access over interconnection network

� Non-uniform memory access (NUMA)

�Message Passing (loosely coupled)

� Distributed memories are NOT shared

� Processors cannot access remote memories

� Multiple private physical address spaces

� Easier to build and scale than distributed shared memory

� Message passing communication over network
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Multiprocessor Communication Models
� Shared Memory Architectures

� One global physical address space

� Distributed among all physical memories

� Any processor can read/write any physical memory

� Processors communicate using load and store instructions

� Non-Uniform Memory Access (NUMA) for large-scale multiprocessors

� Message Passing Architectures (Clusters)

� Separate physical address spaces for nodes

� A compute node consists of one (or few) multicore chips and memory

� A node cannot directly access the physical memory of another node

� Nodes communicate via sending and receiving messages

� Nodes are interconnected via a high-speed network
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Next . . .

� Introduction to Multiprocessors

� Challenges of Parallel Programming

� Cache Coherence

� Directory Cache Coherence

� Synchronization
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Levels of Parallelism
� Process-level parallelism

� Processes are scheduled to run in parallel on multiple processors

� Each process runs in a separate address space

� Thread-level parallelism

� A running program (or process) creates multiple threads

� Threads run within the same address space of a process

� Multiple program counters (MIMD style) and multiple register files

� Targeted for shared-memory multiprocessors

� Data-level parallelism within a single thread

� Wide registers store multiple data values (elements of an array)

� SIMD/Vector instruction executes same operation on multiple data values

� Instruction-level parallelism within a single thread
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Parallel Programming Models
� Parallel Task is the unit of parallel computation

� Two major parallel programming models

1. Shared Memory

� Popular for small machines consisting of at most hundreds of cores

� Parallel tasks are executed as separate threads on different cores

� Threads communicate using load and store instructions to shared memory

� Threads must synchronize explicitly to control their execution order 

2. Message Passing

� Popular for large machines consisting of hundreds of thousands of cores

� Parallel tasks cannot share memory, each task has its own memory

� Parallel tasks communicate explicitly using send and receive messages

� Synchronization is done implicitly using send and receive
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Speedup Challenge: Amdahl’s Law

� F = Fraction of the original execution time which is parallelizable

� P = Number of Processors

� (1 – F) = Fraction of the execution time that cannot be parallelized
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� Parallelism has an overhead

� Thread communication, synchronization, and load balancing

� Overhead increases with the number of processors P

� A large group of processors cannot be interconnected with short distances
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Amdahl’s Law Sublinear Speedup
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Amdahl’s Law: Example 1

� Want to achieve 50× speedup on 100 processors

What fraction of the original execution time can be sequential?

� Solution

Fparallel = Fraction of the execution time, which is parallelizable

Fsequential = (1 – Fparallel) = Fraction of time, which is sequential

������� =
1

	��������
100

+ (1 − 	��������)

= 50

Solving: Fparallel = 98/99 ≅ 0.99 and Fsequential = 0.01

� Sequential time is at most 1% of original execution time
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Amdahl’s Law: Example 2

� Want to achieve 80× speedup on 100 processors

If 95% of time, we can use 100 processors, how much of the 
remaining 5% of time we must employ 50 processors, and how 
much of the remaining time can be sequential?

� Solution

������� =
1

	���
100

+
	��
50

+ (1 − 	��� − 	��)
= 80

If F100 = 0.95 then 0.76 + 1.6×F50 + 4 – 80×F50 = 1

Solving: F50 = 3.76 / 78.4 = 0.04796 = 4.796%, and

Fsequential = 1 – F100 – F50 = 0.00204 = 0.204%
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Impact of Inefficient Communication on Speedup
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Strong versus Weak Scaling

� Strong Scaling

� When speedup can be scaled for a fixed-size problem without increasing 
the data size.

� Weak Scaling

� When speedup cannot be scaled, except by increasing the data size of a 
given problem.

� Data size is increased according to the number of processors.

� Strong scaling is harder than weak scaling

� Achieving higher speedup on a multiprocessor while keeping the data size 
fixed is harder than increasing the input data size according to the number 
of processors.
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Next . . .

� Introduction to Multiprocessors

� Challenges of Parallel Programming

� Cache Coherence

� Directory Cache Coherence

� Synchronization
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Caches in a Single-Chip Multiprocessor
� Private Caches are used inside processor cores

� Reduce average latency

� Data is closer to processor

� Reduce traffic to memory

� When data is cached

� Caching shared data

� Shared data is replicated

in multiple private caches

� This requires maintaining

copies of the shared data coherent

� Cache coherence problem
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Cache Coherence Problem

� Private processor caches create the coherence problem

� Copies of a shared variable can be present in multiple data caches

� Updating copy of the shared data in one private data cache only

� Other processors do not see the update!

� Processors may read different data values through their caches

� Unacceptable to programming and is frequent!

Event
Memory

variable X

Processor A

Data Cache

Processor B

Data Cache

Processor C

Data Cache

Processor A reads X 4 4

Processor B reads X 4 4 4

Processor A stores X = 7 4 7 4

Processor C reads X 4 7 4 4
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Intuitive Coherent Memory Model

� Caches are supposed to be transparent

� What would happen if there were no caches?

� All reads and writes would go to the main memory

� Reading a location X should return the last value written to X

� What does last value written mean in a multiprocessor?

� All operations on a particular location X would be serialized

� All processors would see the same access order to location X
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Formal Definition of Memory Coherence

A memory system is coherent if it satisfies two properties:

1. Write Propagation

Writes by a processor become visible to other processors

All reads by any processor to location X must return the most 
recently written value to location X, if the read and last write are 
sufficiently separated in time.

2. Write Serialization

Writes to the same location X are serialized. Two writes to the 
same location X by any two processors are seen in the same 
order by all processors.
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What to do about Cache Coherence?

� Organize the memory hierarchy to make it go away

� Remove private caches and use one cache shared by all processors

� No private caches � No replication of shared data

� A switch (interconnection network) is needed to access shared cache

� Increases the access latency of the shared cache

� Mark shared data pages as uncacheable

� Shared data pages are not cached (must access memory)

� Private data is cached only

� We loose performance

� Detect and take actions to eliminate the problem

� Can be addressed as a basic cache design issue
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Hardware Cache Coherence Solutions
� Coherent Caches should provide

� Migration: movement of shared data between processors

� Replication: multiple copies of shared data (simultaneous reading)

� Cache Coherence Protocol

� Tracking the sharing (replication) of data blocks in private caches

� Snooping Cache

� Works well with small bus-based multiprocessors

� Each cache monitors bus to track sharing status of each block

� Directory Based Schemes

� Keep track of what is being shared in one place, called directory

� Centralized memory � Centralized directory

� Distributed shared memory � Distributed directory
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Snooping Cache Coherence Protocols
� Cache controller snoops all transactions on the shared bus

� Transaction is relevant if address matches tag in the cache

� Take action for coherence

� Invalidate

� Update

� Supply data

Bus TransactionBus Snoop

� Write Invalidate protocol

� Must invalidate shared copies

� Write Update protocol

� Must update shared copies

Data BlockTagState
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Snooping Cache Coherence Protocols
� Transactions over a shared bus (broadcast medium)

� Cache controller updates the state of blocks in a cache

� Bus transactions

� Three phases: arbitration, command/address, data transfer

� One cache issues command/address, all caches observe addresses

� Cache controller receives inputs from two sides

� Requests from processor (load/store)

� Bus requests from snooper

� Cache controller takes action

� Updates state of blocks

� Responds with data

� Generates new bus transactions

State Tag

State Tag
. . .

State Tag

Processor Requests

(Load / Store)

Snoop Bus Transactions
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MSI Snoopy Cache Coherence Protocol
� Three States for write-back data cache

1. Modified : only this cache has a modified copy of this block

2. Shared : block is read-only and can be replicated in other caches

3. Invalid : block is invalid

� Four Bus Transactions

1. Read Miss : Service a read miss on bus

2. Write Miss : Service a write miss on bus (obtain exclusive copy)

3. Invalidate : Invalidate copies of this block in other caches

4. Write Back : Write back a modified block on replacement

� On Write, invalidate all other copies

� Write cannot complete until invalidate transaction appears on bus

� Write serialization: transactions are serialized on bus
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MSI Snoopy Cache Coherence Protocol

Copyright © Elsevier Inc. All rights reserved.

� Three Cache States: M (Modified), S (Shared), I (Invalid)

� Only one cache can have block in Modified state
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MSI Snoopy Cache Coherence Protocol
Request Source State Action and Explanation

Read Hit Processor
Shared or 

Modified
Normal Hit: Read data in local data cache (no transaction)

Read Miss Processor Invalid Normal Miss: Read miss on bus, Wait for data, then change state to Shared

Read Miss Processor Shared Replace block: Place Read miss on bus, Wait for data block, keep Shared state

Read Miss Processor Modified
Replace block: Place Write-Back block, Place Read miss on bus, Wait for data 

block, then change state to Shared

Write Hit Processor Modified Normal Hit: Write data in local data cache (no transaction)

Write Hit Processor Shared Coherence: Place Invalidate on bus (no data), then change state to Modified

Write Miss Processor Invalid Normal Miss: Place Write miss on bus, wait for data, change state to Modified

Write Miss Processor Shared Replace block: Place Write miss on bus, wait for data, change state Modified

Write Miss Processor Modified Replace block: Write-Back block, Place Write miss on bus, wait for data block

Read Miss Bus Shared No action: Serve read miss from shared cache or memory

Read Miss Bus Modified Coherence: Write-Back & Serve read miss, then change state to Shared

Invalidate Bus Shared Coherence: Invalidate shared block in other caches (change state to Invalid)

Write Miss Bus Shared Coherence: Invalidate shared block in other caches, Serve write miss

Write Miss Bus Modified Coherence: Serve write miss (cache-to-cache transfer) and Invalidate block
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Example on MSI Cache Coherence
Request Processor P1 Processor P2 Bus Shared Cache

State Addr Value State Addr Value Proc Addr Action State Addr Value

P2 A1 Invalidate

I A1 10

I A1 15

P2 A1 Wr Back M A1 10S A1 10

P1 A1 Invalidate

M A1 35

S A1 15P1 A1 Rd Miss

S A1 15

M A1 10I A1 15

P1 A1 Rd Miss

S A1 10

M A1 20 I A1 10

P1: Write 20 to A1

P2: Write 10 to A1

P1: Read A1

P1: Read A1

P2: Write 35 to A1 P2 A1 Wr Miss

I A1 10I A1 20

S A1 15P2 A1 Rd Miss

S A1 15

P2: Read A1

S A1 15

P1 A1 Transfer
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Coherence Misses

� Caused by writes to a shared block

� Shared block is replicated in multiple data caches

� One processor writes shared block � invalidates copies

� Another processor reads shared block � coherence miss

� True sharing misses

� Writing/Reading same variable by different processors

� Communication of shared data through cache coherence 

� False sharing misses

� Writing/Reading different variables in same block

� Invalidation mechanism invalidates the entire block

� Causes cache miss even though word was not modified
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Example of True & False Sharing Misses

Request P1 Cache State P2 Cache State Explanation

Variables X and Y belong to the same cache block

Initially, P1 and P2 read shared variable X

Block (X, Y) is in the shared state in P1 and P2

Modified (X , Y) Invalid (X , Y)

False Sharing Miss (P1 did not write Y)

Write-Back & Copy block from P1 to P2

Shared (X , Y)Shared (X , Y)P1: Write X

Modified (X , Y) Invalid (X , Y)P2: Read Y

Shared (X , Y) Shared (X , Y)

P1: Write X Shared (X , Y) Shared (X , Y)

P1 invalidates block (X , Y) in P2

True Sharing Miss (P2 read X)

Modified (X , Y) Invalid (X , Y)

False Sharing Miss (P2 did not read X)

P1 invalidates block (X , Y) in P2

P2: Write Y Modified (X , Y) Invalid (X , Y) False Sharing Miss (P1 did not read Y)

Write-Back & Copy block from P1 to P2Invalid (X , Y) Modified (X , Y)

P1: Read Y Invalid (X , Y) Modified (X , Y) True Sharing Miss (P2 modified Y)

Write-Back & Copy block from P2 to P1Shared (X , Y) Shared (X , Y)
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Alternative Cache Coherence Protocols
� MESI Cache Coherence Protocol: Four States

1. Modified : only this cache has a modified copy of this block

2. Exclusive : only this cache has a clean copy of this block

3. Shared : block may be replicated in more than one cache (read-only )

4. Invalid : block is invalid

Exclusive State: prevents invalidate on a write hit (no bus transaction)

� MOESI Cache Coherence Protocol: Five States

1. Modified : only this cache has a modified copy of this block

2. Owned : this cache is owner, other caches can share block (read-only )

3. Exclusive : only this cache has a clean copy of this block

4. Shared : block may be replicated in more than one cache (read-only )

5. Invalid : block is invalid

Owner must supply data to others on a miss: cache-to-cache transfer
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Implementing Snooping Cache Coherence
� Bus operation is NOT atomic (cannot be done in 1 cycle )

� Invalidate bus operation takes multiple cycles

� Write miss bus operation is also not atomic

� One solution: processor that sends invalidate holds the bus
� Until all processors receive the invalidate

� A single wire signals when all invalidates are completed

� Then processor that initiated bus invalidate releases the bus

� In a system with multiple buses or network: races can happen
� Two processors want to write to the same block at the same time

� Must serialize the writes to the same block (strictly ordered )

� Must receive acknowledgement for invalidates before modifying block

� Data for a read or write miss: shared cache or local cache?
� Cache-to-Cache transfer: Data block transfer between two local caches
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Next . . .

� Introduction to Multiprocessors

� Challenges of Parallel Programming

� Cache Coherence

� Directory Cache Coherence

� Synchronization
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Limitations of Snooping Protocols
� Buses have limitations for scalability

� Limited number of processor cores that can be attached to a bus

� Contention on the use of the shared bus

� Snooping bandwidth is a bottleneck for large number of processor cores

� On-Chip interconnection network � Parallel communication

� Multiple processor cores can access shared cache banks at the same time

� Allows chip multiprocessor to scale beyond few processor cores

� Snooping is difficult on network other than bus or ring

� Must broadcast coherence traffic to all processors, which is inefficient

� How to enforce cache coherence without broadcast?

� Have a directory that records the state of each cached block

� Directory entry specifies which private caches have copies of the block
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Directory in a Chip Multiprocessor
� Directory in outermost cache (shared by all processor cores)

� Directory keeps track of copies of each block in local caches

� Outermost cache is split into multiple banks (parallel access)

� Number of cache banks can vary (not related to number of cores)

Processor

Core 0

Local

Cache 0

Processor

Core 1

Local

Cache 1

Processor

Core 2

Local

Cache 2

Processor

Core 3

Local

Cache 3

Processor

Core 4

Local

Cache 4

Processor

Core 5

Local

Cache 5

Processor

Core 6

Local

Cache 6

Processor

Core 7

Local

Cache 7

Interconnection Network (or Crossbar Switch)

Shared Cache Bank 0

+ Directory 0

Shared Cache Bank 1

+ Directory 1

Shared Cache Bank 2

+ Directory 2

Shared Cache Bank 3

+ Directory 3

Memory Controller 0 Memory Controller 1 Memory Controller 2 Memory Controller 3
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Directory in the Shared Cache

� Shared Cache is inclusive with respect to all local caches

� Shared cache contains a superset of the blocks in local caches

� Example: Intel Core i7

� Directory is implemented in the shared cache

� Each block in the shared cache is augmented with presence bits

� If k processors then k presence bits + state per block in shared cache

� Presence bits indicate which cores have a copy of the cache block

� Each block has state information in private and shared cache

� State = M (Modified), S (Shared), or I (Invalid) in local cache

Block DataTagState

Block DataTagStatePresence bits

Block in a Local Cache

Block in a Shared Cache



Multiprocessors & Thread-Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 40

Terminology

� Local (or Private) Cache

� Where a processor request originates

� Home Directory

� Where information about a cache block is kept

� Directory uses presence bits and state to track cache blocks

� Remote Cache

� Has a copy of the cache block

� Cache Coherence ensures Single-Writer, Multiple-Readers

� If a block is modified in a local cache then one valid copy can exist

� Shared Cache and memory are not updated

� No bus and don’t want to broadcast to all processor cores

� All messages have explicit responses
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States for Local and Shared Cache
� Three states for a local (private) cache block:

1. Modified : only this cache has a modified copy of this block

2. Shared : block may be replicated in more than one cache (read-only )

3. Invalid : block is invalid, not present in this local cache

� Four states for a shared cache block (directory):

1. Modified : only one local cache is the owner of this block

� One local cache (one presence bit) has a modified copy of this block

2. Owned : shared cache is the owner of the modified block

� Modified block was written-back to shared cache, but not to memory

� A block in the owned state can be shared by multiple local caches

3. Shared : block may be replicated in more than one cache (read-only )

4. Invalid : block is invalid in the shared cache and in any local cache
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Read Miss by Processor P
� Processor P sends Read Miss message to home directory

� Home Directory: block is Shared or Owned

� Directory sends data reply message to P, and sets presence bit of P

� Local cache of processor P changes state of received block to shared

� Home Directory: block is Modified

� Directory sends Fetch message to remote cache that modified block

� Remote cache sends Write-Back message to directory (shared cache)

� Remote cache changes state of block to shared

� Directory changes state of shared block to owned

� Directory sends data reply message to P, and sets presence bit of P

� Local cache of processor P changes state of received block to shared

� Home Directory: block is Invalid � get block from memory
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Read Miss to a Block in Modified State

Processor P

Local Cache

Shared Cache

+ Directory

Processor Q

Local Cache

1. Read Miss by P

Requesting block A

4. Data block A

reply message to P

2. Fetch Block A

Requested by P

3. Write-Back Block A

Requested by P

Requestor

Total of 4 messages

Processor Q writes-back

Block A to shared cache

Block A is shared by P and Q

It is owned by shared cache

Memory
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Write Miss Message by P to Directory
� Home Directory: block is Modified

� Directory sends Fetch-Invalidate message to remote cache of Q

� Remote cache of processor Q sends data reply message directly to P

� Remote cache changes state of block to invalid

� Local cache of P changes the state of received block to modified

� Directory clears presence bit of Q and sets presence bit of P

� Home Directory: block is Shared or Owned

� Directory sends invalidate messages to all sharers (presence bits)

� Directory receives acknowledge message and clears presence bits

� Directory sends data reply message to P, sets presence bit of P

� Local cache of P and directory change state of the block to modified

� Home Directory: Invalid � get block from memory
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Write Miss to a Block in Modified State

Total of 3 messages

Processor Q sends data reply to P

Q invalidates its copy of block A

Block A is then modified by P

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

3. Data block A

reply message to P

Requestor

Memory
1. Write Miss by P

Requesting block A

2. Fetch-Invalidate

Block A Requested by P
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Write Miss to a Block with Sharers

Directory sends invalidate messages 

to all sharers

Directory receives acknowledge

message for all invalidates and 

clears their presence bits

Directory sends data reply message, 

and changes state of block A to 

modified

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

Requestor

Memory

2. Invalidate A

Processor R

Private Cache

3. Invalidate A

1. Write Miss by P

Requesting block A

5. Data block A

reply message to P
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. 
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Invalidating a Block with Sharers

Directory sends invalidate messages 

to all sharers

Directory receives acknowledge

message for all invalidates and 

clears their presence bits

Directory sends acknowledge

message to P, and changes state of 

block A to modified

Processor P

Private Cache

Shared Cache

+ Directory

Processor Q

Private Cache

Requestor

Memory

2. Invalidate A

Processor R

Private Cache

3. Invalidate A

1. Invalidate block A

Requested by P

5. Acknowledge A

4
. 
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le

d
g

e
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Directory Protocol Messages
Message Type Source Destination Message Function

Read Miss
Local
Cache

Home
Directory

Processor P has a read miss at address A
Request data and make P a read sharer

Write Miss
Local
Cache

Home
Directory

Processor P has a write miss at address A
Request data and make P the exclusive owner

Invalidate
Local
Cache

Home
Directory

Processor P wants to invalidate all copies of the same block at 
address A in all remote caches

Invalidate
Home
Directory

Remote
Caches

Directory sends invalidate message to all remote caches to 
invalidate shared block at address A

Acknowledge
Remote
Cache

Home
Directory

Remote cache sends an acknowledgement message back to 
home directory after invalidating last shared block A

Acknowledge
Home
Directory

Local
Cache

Directory sends acknowledgment message back to local cache 
of P after invalidating all shared copies of block A

Fetch
Home
Directory

Remote
Cache

Directory sends a fetch message to a remote cache to fetch 
block A and to change its state to Shared

Fetch &
Invalidate

Home
Directory

Remote
Cache

Directory sends message to a remote cache to fetch block A and 
to change its state to Invalid

Data Block
Reply

Directory
or Cache

Local
Cache

Directory or remote cache sends data block reply message to 
local cache of processor P that requested data block A

Data Block
Write Back

Remote
Cache

Home
Directory

Remote Cache sends a write-back message to home directory 
containing data block A
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MSI State Diagram for a Local Cache

� Three states for a cache block in a local (private) cache

� Similar to snooping coherence protocol

� Requests by processor

� Black arrows

� Requests by directory

� Red arrows
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MOSI State Diagram for Directory

Invalid
Shared

(read only)

Modified
(Processor P)

Write Miss

Request by Q

Fetch-Invalidate P, Data-reply to Q, Presence[P] = 0, Presence[Q] = 1
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e
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[P
]=

1

Write Miss

request by P

Read Miss request by P

Get block from memory;

Data reply to P, Set presence[P] = 1

Owned
by shared

cache

Read Miss request by P

Data reply to P

Set presence[P] = 1

Read miss by Q � Fetch P, Data reply to Q

Write-Back by P � Presence[P] = 0

Read Miss request by P

Data reply to P, Set presence[P] = 1

Write Miss or Invalidate request by P

Invalidate all sharers, clear presence bits

Data reply to P, Set presence[P] = 1
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Next . . .

� Introduction to Multiprocessors

� Challenges of Parallel Programming

� Cache Coherence

� Directory Cache Coherence

� Synchronization
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Synchronization
� Cache coherence allows parallel threads to communicate

� However, coherence does not synchronize parallel threads

� Synchronization is required to control the execution of threads

� Three types of synchronization are widely used:

1. Lock synchronization

2. Event synchronization

3. Barrier synchronization

� Synchronization ensures the correctness of parallel execution

� However, synchronization can be a performance bottleneck

� Reduces the speedup and performance of parallel threads
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Lock Synchronization
� Protects a critical section accessed by parallel threads

� A critical section is a sequence of instructions that

� Read – Modify – Write  shared data in memory

� Only one thread can be in the critical section at a time

� Two synchronization operations are defined:

1. Lock(X) , just before entering critical section

2. Unlock(X) , just before leaving critical section

� Only one thread is allowed to lock variable X at a time

� Other threads must wait until the variable X is unlocked

� Access to the critical section is serialized
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Critical Section
� Critical sections with lock/unlock make threads wait

� Using one lock variable X to lock an array increases contention

� Using many lock variables (fine-grain locking) reduces contention

� Atomic (read-modify-write) instructions can help reducing locks

Each thread:

Compute1

lock(X)

Critical

Section

unlock(X)

Compute2

Compute1 Critical Compute2

Compute1 Wait Critical Compute2

Compute1 Wait Critical Compute2

T1

T2

T3

Time

lock(X) unlock(X)

lock(X) unlock(X)lock(X)

lock(X) unlock(X)lock(X)
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Point-to-Point Event Synchronization
� One thread (producer ) computes and writes data in memory

� One (or more) thread (consumer ) reads data in memory

� Consumer thread must wait until the data is written in memory

� Two operations are defined:

1. Wait(X) Causes a thread to wait until variable X is set

2. Set(X) Set X to true and releases waiting threads (if any)

Compute1 Wait Compute2T2

Time

Compute1 Compute2T1

Set(X)

Wait(X)

Producer

Consumer
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Barrier Synchronization
� Threads must wait until All threads reach the barrier

� Last thread arriving the barrier releases all waiting threads

� Total execution time depends on the slowest thread

� Threads must be balanced to avoid loosing performance

Each thread:

loop {

Compute1

}

Barrier(X,4)

loop {

Compute2

}
Compute1 Wait Compute2

Compute1 Wait Compute2T1

T4
Time

Compute1 Compute2T2 Wait

barrier(X, 4)

barrier(X, 4)

Compute1 Compute2T3

barrier(X, 4)

barrier(X, 4)
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Instructions for Synchronization
� Synchronization functions are implemented in a library

� The architecture provides special instructions for synchronization

� Swap instruction: swap rb, (ra)

� Swap a register rb with a memory variable at address (ra)

� Does a load and store in one atomic instruction

� Load-Linked (LL) and Store Conditional (SC) instructions:

� LL rd = (ra) Load and save address in link register: link = ra

� SC rd = (ra), rb If (link==ra) {store (ra)=rb; rd=1} else rd=0

� If SC succeeds, then the LL-SC sequence has executed atomically

� If SC fails and returns zero in rd then LL-SC sequence must be repeated

� The LL-SC sequence can implement many synchronization operations
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Implementing Lock and Unlock
� Lock can be implemented with few instructions

� If the lock is acquired then spin (busy-wait)

lock: // Address parameter in r1

ld r2 = (r1) // Load lock value

bnez r2, lock // Spin if the lock is acquired

set r2 = 1 // Set lock value

swap r2, (r1) // Swap r2 with lock variable (r1)

bnez r2, lock // Make sure it was not locked

ret // Return to caller

� Unlock stores zero to release the lock

unlock: // Address parameter in r1

sd (r1) = r0 // store zero to release the lock

ret // Return to caller
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Implementing Atomic Operations
� The LL and SC instructions can implement many atomic operations

� Implementing Fetch-and-Add using LL and SC:

// Two parameters: r1 = address, r2 = added value

FetchAdd:

LL r3 = (r1) // Load Linked

ADD r3 = r3, r2 // Add to r2

SC r4 = (r1), r3 // Store conditional

BEQZ r4, FetchAdd // Retry if SC failed

RET

� If SC succeeds that LL-ADD-SC sequence is executed atomically

� If SC fails that the LL-ADD-SC sequence must be repeated
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Concluding Remarks

� Goal: higher performance using multiple processors

� Difficulties

� Developing parallel software

� Devising appropriate architectures

� Many reasons for optimism

� Changing software and application environment

� Chip-level multiprocessors

� Lower latency, higher bandwidth interconnect

� An ongoing challenge for computer architects


