
Static Instruction Level

Parallelism and VLIW

COE 501
Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

� Loop Level Parallelism

� Loop Unrolling

� Software Pipelining

� Predicated Instructions

� VLIW Approach

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 3

Instruction Level Parallelism (ILP)

� Overlap instruction execution to improve performance

� Approaches to increase ILP

1. Rely on compiler technology to extract parallelism

� Static ILP: Instruction-Level Parallelism detected at compile time

� Multiple-issue in-order execution pipeline: ARM Cortex-A8

� VLIW and EPIC approach: Transmeta Crusoe, Intel Itanium

2. Rely on hardware to discover parallelism at runtime

� Dynamically scheduled, out-of-order execution processor

� Examples: AMD Opteron, IBM Power, Intel Core

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 4

Loop-Level Parallelism

� Compiler does the analysis of loops in the source code

� Detects dependences across the loop iterations

� Loop-carried dependences

� Whether later iterations are data dependent on earlier iterations

� NO loop-carried dependences � Parallel Loop

� Loop iterations can run in parallel

� Example of a Parallel Loop

for (i=0; i<N; i++)

A[i] = A[i] + B[i]; // S1

� Array references are independent across loop iterations

S1 S1 S1…

i = 0 i = 1 i = N-1

Dependency Graph

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 5

Loop-Carried Dependences

� Consider the following loop:

for (i=0; i < N; i++) {

A[i+1] = A[i] + C[i]; // S1

B[i+1] = B[i] + A[i+1]; // S2

}

� Two loop-carried dependences

� S1 reads A[i] computed as A[i+1] in previous iteration

� S2 reads B[i] computed as B[i+1] in previous iteration

� Successive iterations should be executed in series

� There is one data dependence, which is not loop-carried

� S2 reads A[i+1] computed by S1 in the same iteration

S1

Iteration i i+1

Dependency Graph

S2S2

S1
A[i+1]

B[i+1]

A[i+1] A[i+1]

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 6

Non-Circular Loop-Carried Dependence

� Consider a loop like this one:

for (i=0; i < N; i++) {
A[i] = A[i] + B[i]; // S1
B[i+1] = C[i] + D[i]; // S2

}

� There is one loop-carried dependence

� S1 reads B[i] computed as B[i+1] by S2 in previous iteration

� Loop-carried dependence is not circular

� No loop-carried dependence between S1 and S1

� No loop-carried dependence between S2 and S2

� S1 depends on S2, but S2 does not depend on S1

S1

Iteration i i+1

Dependency Graph

S2S2

S1

B[i+1]

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 7

Loop Transformation

� Consider loop with no circular loop-carried dependence:

for (i=0; i < N; i++) {
A[i] = A[i] + B[i]; // S1
B[i+1] = C[i] + D[i]; // S2

}

� This loop can be transformed and made parallel:

A[0] = A[0] + B[0];
for (i=0; i < N-1; i++) {

B[i+1] = C[i] + D[i]; // S2
A[i+1] = A[i+1] + B[i+1]; // S1

}
B[N] = C[N-1] + D[N-1];

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 8

Dependence Distance

� Often a loop-carried dependence is a recurrence

for (i=1; i<N; i++) A[i] = A[i-1] + B[i];

� Dependence distance can be larger than one

for (i=4; i<N; i++) A[i] = A[i-4] + B[i];

� Loop can be unrolled to increase parallelism within iteration

for (i=4; i<N; i=i+4) {
A[i] = A[i-4] + B[i];
A[i+1] = A[i-3] + B[i+1];
A[i+2] = A[i-2] + B[i+2];
A[i+3] = A[i-1] + B[i+3];

}

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 9

Next . . .

� Instruction Level Parallelism

� Loop Unrolling

� Software Pipelining

� Predicated Instructions

� VLIW Approach

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 10

Example of a Parallel Loop
� Consider the following loop: adds a scalar to a vector

for (i=0; i < N; i++)

x[i] = x[i] + s;

� Assume the following latencies (stall cycles before use)

Instruction Producing Result Instruction Using Result Latency

FP operation Another FP operation 3 stall cycles

FP operation Store 2 stall cycles

Load FP operation 1 stall cycle

Load Store 0

Integer ALU operation Integer ALU operation 0

Integer ALU operation Branch instruction 0

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 11

Translate the Loop into MIPS Code

� Initially, R1 contains the address of x[0]

� Register R1 is used as a pointer to x[i]

� Register R2 contains address of x[N]

� Register F2 contains scalar value s

; Initialize R1, R2, F2 before entering loop

Loop: L.D F0, 0(R1) ; load F0 = x[i]

ADD.D F4, F0, F2 ; F4 = x[i] + s

S.D F4, 0(R1) ; store x[i] = F4

DADDUI R1, R1, 8 ; point to next x[i]

BNE R1, R2, Loop ; branch if (R1 != R2)

� Loop block has five instructions (including branch)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 12

Showing Stall Cycles
Loop:

1 L.D F0, 0(R1) ; load F0 = x[i]

2 stall

3 ADD.D F4, F0, F2 ; F4 = x[i] + s

4 stall

5 stall

6 S.D F4, 0(R1) ; store x[i] = F4

7 DADDUI R1, R1, 8 ; point to next x[i]

8 BNE R1, R2, Loop ; branch if (R1 != R2)

� Loop branch is predicted to be always taken (zero delay)

� Clock cycles per iteration = 8

� Stall cycles per iteration = 3, CPI = 8/5 = 1.6

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 13

Reducing the Stall Cycles

� We can schedule the loop to reduce the stall cycles

Loop:

1 L.D F0, 0(R1) ; load F0 = x[i]

2 DADDUI R1, R1, 8 ; point to next x[i]

3 ADD.D F4, F0, F2 ; F4 = x[i] + s

4 stall

5 stall

6 S.D F4, -8(R1) ; store x[i] = F4

7 BNE R1, R2, Loop ; branch if (R1 != R2)

� Number of cycles is reduced to 7 per iteration

� CPI = 7 / 5 = 1.4 (how to make it run faster?)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 14

Basic Block

� Basic Block: straight-line code sequence

� No branches-in except at the entry of the basic block

� No branches-out except at the exit of the basic block

� Basic block can be a loop block with a backward branch

� Basic block is quite small

� Average dynamic branch frequency = 15% to 25%

� Four to seven instructions execute between a pair of branches

� Instructions in basic block likely to depend on each other

� Must exploit ILP across multiple basic blocks

� To obtain substantial performance enhancements

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 15

Unroll Loop Four Times
Loop:
1 L.D F0, 0(R1) ; load F0 = x[i]
3 ADD.D F4, F0, F2 ; F4 = x[i] + s
6 S.D F4, 0(R1) ; store F4 at x[i]
7 L.D F6, 8(R1) ; load F6 = x[i+1]
9 ADD.D F8, F6, F2 ; F8 = x[i+1] + s
12 S.D F8, 8(R1) ; store F8 at x[i+1]
13 L.D F10, 16(R1) ; load F10 = x[i+2]
15 ADD.D F12, F10, F2 ; F12 = x[i+2] + s
18 S.D F12, 16(R1) ; store F12 at x[i+2]
19 L.D F14, 24(R1) ; load F14 = x[i+3]
21 ADD.D F16, F14, F2 ; F16 = x[i+3] + s
24 S.D F16, 24(R1) ; store F16 at x[i+3]
25 DADDUI R1, R1, 32 ; point to x[i+4]
26 BNE R1, R2, Loop ; branch if (R1 != R2)

� 26 clock cycles for 4 iterations = 6.5 cycles per iteration

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 16

Unrolled Loop with Scheduling
Loop: ; Zero Stall Cycles
1 L.D F0, 0(R1) ; load F0 = x[i]
2 L.D F6, 8(R1) ; load F6 = x[i+1]
3 L.D F10, 16(R1) ; load F10 = x[i+2]
4 L.D F14, 24(R1) ; load F14 = x[i+3]
5 ADD.D F4, F0, F2 ; F4 = x[i] + s
6 ADD.D F8, F6, F2 ; F8 = x[i+1] + s
7 ADD.D F12, F10, F2 ; F12 = x[i+2] + s
8 ADD.D F16, F14, F2 ; F16 = x[i+3] + s
9 S.D F4, 0(R1) ; store F4 at x[i]
10 S.D F8, 8(R1) ; store F8 at x[i+1]
11 S.D F12, 16(R1) ; store F12 at x[i+2]
12 S.D F16, 24(R1) ; store F16 at x[i+3]
13 DADDUI R1, R1, 32 ; point to x[i+4]
14 BNE R1, R2, Loop ; branch if (R1 != R2)

� 14 clock cycles for 4 iterations = 3.5 cycles per iteration

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 17

Unrolled Loop Details

� Unroll loop k times to make k copies of the loop body

� If N is not multiple of k then generate a pair of loops

� First loop is the unrolled body that iterates (N / k) times

� Second loop executes (N % k) times (identical to original loop)

� Another choice is to increase N to be multiple of k

� Small additional overhead in array size and computation

� Reduce loop overhead

DADDUI R1, R1, 8

DADDUI R1, R1, 8

DADDUI R1, R1, 8

DADDUI R1, R1, 8

Merged into:

DADDUI R1, R1, 32 (Copy Propagation)

Adjust memory addresses in L.D and S.D

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 18

Advantages of Loop Unrolling

� Increases the size of the basic block

� From 5 to 14 instructions in the previous example

� Reduce branch frequency: one BNE per 14 instructions

� Reduces the loop overhead
� Only 3 instructions to compute x[i]: L.D, ADD.D, and S.D

� Loop overhead: DADDUI to advance pointer and BNE

� Loop overhead is reduced from 2 to 0.5 cycles per iteration

� Increases Instruction Level Parallelism (ILP)

� More independent instructions to execute in parallel

� Hide the latency of load instructions

� Hide the latency of floating-point instructions

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 19

Limits to Loop Unrolling
� Growth in Code Size

� Original loop was only 5 instructions (in previous example)

� Unrolled loop is 14 instructions after unrolling 4 iterations

� Occupies I-Cache space (larger loop body with more unrolling)

� Register Pressure

� Unrolled loop allocates more registers to increase ILP

� Additional registers are allocated to eliminate name dependences

� Can easily run out of registers when unrolling many iterations

� Benefit of unrolling decreases with additional unrolling

� Cycles per iteration = 3.5 (four unrolled iterations)

� Cycles per iteration = 3.25 (eight unrolled iterations)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 20

Summary of Loop Unrolling

� Determine whether loop unrolling is useful

� Find whether loop iterations are independent

� Use different registers to avoid name dependences

� Adjust the loop termination and iteration code

� Reduce the loop overhead and loop branching

� Determine that loads and stores are independent

� Independent loads and stores can be interchanged

� Requires analyzing memory addresses

� Schedule the code preserving data dependences

� Unrolled loop should compute the same result as original one

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 21

Next . . .

� Instruction Level Parallelism

� Loop Unrolling

� Software Pipelining

� Predicated Instructions

� VLIW Approach

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 22

Software Pipelining

� Called also: Symbolic Loop Unrolling

� Compiler technique that restructures loops

� Choose instructions from multiple iterations of original loop

� Select instructions from independent iterations

� Separate the dependent instructions within an iteration

� The idea is to make software pipelined loop run without stalls

� Startup Code

� Execute instructions left out from the first original loop iterations

� Finish Code

� Execute instructions left out from the last original loop iterations

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 23

Original Loop Example
for (i=0; i < N; i++) x[i] = x[i] + s;

Loop:

1 L.D F0, 0(R1) ; load F0 = x[i]

2 stall

3 ADD.D F4, F0, F2 ; F4 = x[i] + s

4 stall

5 stall

6 S.D F4, 0(R1) ; store x[i] = F4

7 DADDUI R1, R1, 8 ; point to next x[i]

8 BNE R1, R2, Loop ; branch if (R1 != R2)

� Loop branch is predicted to be always taken (zero delay)

� Clock cycles per iteration = 8

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 24

Example of Software Pipelining

Iteration i:
L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)

Iteration i+1:
L.D F0, 8(R1)
ADD.D F4, F0, F2
S.D F4, 8(R1)

Iteration i+2:
L.D F0, 16(R1)
ADD.D F4, F0, F2
S.D F4, 16(R1)

L.D F0, 0(R1)
ADD.D F4, F0, F2
L.D F0, 8(R1)

Loop:
S.D F4, 0(R1)
ADD.D F4, F0, F2
L.D F0, 16(R1)
DADDUI R1, R1, 8
BNE R1, R2, Loop
S.D F4, 0(R1)
ADD.D F4, F0, F2
S.D F4, 8(R1)

Startup

Code

Finish

Code

Unroll 3 Iterations

To separate 3 instructions

L.D ���� ADD.D ���� S.D

Software Pipelined Loop

Two fewer loop iterations

Initialize R2 = address of x[N-2]

Reuse of

F4, F0

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 25

Illustrating Software Pipelining

i=7

L.D

ADD.D

S.D

i=0

L.D

ADD.D

S.D

i=1

L.D

ADD.D

S.D

i=2

L.D

ADD.D

S.D

i=3

L.D

ADD.D

S.D

i=4

L.D

ADD.D

S.D

i=5

L.D

ADD.D

S.D

i=6

L.D

ADD.D

S.D

Finish CodeSoftware Pipelined Loop Body

2 fewer iterations

Startup Code

Assuming Original Loop has N = 8 iterations

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 26

Software Pipelining Summary

Copyright © 2012, Elsevier Inc.
All rights Reserved.

Software pipelined loop chooses instructions

across multiple iterations of the original loop,

thus separating the dependent instructions

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 27

Next . . .

� Instruction Level Parallelism

� Loop Unrolling

� Software Pipelining

� Predicated Instructions

� VLIW Approach

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 28

Predication

� Problem: Branches are sometimes difficult to predict

� When the behavior is not well know

� Mispredicted branches reduce performance

� Control dependences may severely limit ILP

� Compiler techniques may not work with some branches

� Solution: Eliminate branches with predication

� Extend the instruction set to include

� Conditional move instructions, or

� Fully predicated instructions

� Convert control dependences into data dependences

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 29

Example of Nested If Statement
for (i=0; i < N; i++) {

if (a[i] < b[i]) a[i] = b[i];

}

loop: LW R2, 0(R4) ; load R2 = a[i]

LW R3, 0(R5) ; load R3 = b[i]

SLT R1, R2, R3 ; R1 = (a[i] < b[i])

BEQ R1, R0, L1 ; Branch if false

SW R3, 0(R4) ; store a[i] = R3

L1: ADDU R4, R4, 4 ; R4 = address a[i+1]

ADDU R5, R5, 4 ; R5 = address b[i+1]

BNE R4, R8, loop ; R8 = address a[N]

� BEQ is hard to predict for each iteration

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 30

Example of Conditional Move

� Conditional move (MOVZ) eliminates BEQ instruction

� SW was control-dependent on BEQ (previous slide)

� SW is now data-dependent on MOVZ

loop: LW R2, 0(R4) ; load R2 = a[i]

LW R3, 0(R5) ; load R3 = b[i]

SLT R1, R2, R3 ; R1 = (a[i] < b[i])

MOVZ R3, R2, R1 ; if (R1==0) R3 ���� R2

SW R3, 0(R4) ; store a[i] = R3

L1: ADDU R4, R4, 4 ; R4 = address a[i+1]

ADDU R5, R5, 4 ; R5 = address b[i+1]

BNE R4, R8, loop ; R8 = address a[N]

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 31

MIPS Conditional Move Instructions

Most basic form of predication
MOVZ Rd, Rs, Rt ; if (Rt == 0) Rd ���� Rs
MOVN Rd, Rs, Rt ; if (Rt != 0) Rd ���� Rs
MOVT Rd, Rs, cc ; if (cc == 1) Rd ���� Rs
MOVF Rd, Rs, cc ; if (cc == 0) Rd ���� Rs
MOVZ.S Fd, Fs, Rt ; if (Rt == 0) Fd ���� Fs
MOVZ.D Fd, Fs, Rt ; if (Rt == 0) Fd ���� Fs
MOVN.S Fd, Fs, Rt ; if (Rt != 0) Fd ���� Fs
MOVN.D Fd, Fs, Rt ; if (Rt != 0) Fd ���� Fs
MOVT.S Fd, Fs, cc ; if (cc == 1) Fd ���� Fs
MOVT.D Fd, Fs, cc ; if (cc == 1) Fd ���� Fs
MOVF.S Fd, Fs, cc ; if (cc == 0) Fd ���� Fs
MOVF.D Fd, Fs, cc ; if (cc == 0) Fd ���� Fs

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 32

Full Predication

� Conditional instructions

� Associate a qualifying predicate (qp) with each instruction

(qp) instruction ; if (qp) execute instruction

� Qualifying predicate is checked as part of instruction execution

� If (qp) is true � instruction executes normally

� If (qp) is false � instruction becomes a no-op

� Full predication can eliminate most non-loop branches

� Simplifies instruction scheduling

� Only few architectures support full predication

� Intel Itanium uses qualifying predicates for conditional execution

� ARM uses condition codes for conditional execution

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 33

Example of Predicated Instruction
for (i=0; i < N; i++) {

if (a[i] < b[i]) a[i] = b[i];

}

loop: LW R2, 0(R4) ; load R2 = a[i]

LW R3, 0(R5) ; load R3 = b[i]

SLT p1, R2, R3 ; p1 = (a[i] < b[i])

(p1) SW R3, 0(R4) ; if (p1) a[i] = R3

L1: ADDU R4, R4, 4 ; R4 = address a[i+1]

ADDU R5, R5, 4 ; R5 = address b[i+1]

BNE R4, R8, loop ; R8 = address a[N]

� Conditional SW instruction eliminates BEQ and MOVZ

� MIPS does not support predication (just for illustration)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 34

Example of If-Else Conversion
if (a[i] < b[i]) e[i] = b[i] + c[i];

else e[i] = b[i] - d[i];

B0: load r1 = a[i]
load r2 = b[i]
lt p1, p2 = r1, r2

(p1) load r3 = c[i]
(p2) load r3 = d[i]
(p1) add r4 = r2, r3
(p2) sub r4 = r2, r3

store e[i] = r4
. . .

B0: load r1 = a[i]
load r2 = b[i]
lt p1 = r1, r2
if (p1) br B2

B1: load r3 = d[i]
sub r4 = r2, r3
br B3

B2: load r3 = c[i]
add r4 = r2, r3

B3: store e[i] = r4
. . .

After Predication:

Four basic blocks are reduced to

just one basic block (no branches)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 35

Predication Advantages/Complications

� Predication Advantages

� Eliminates hard-to-predict branches

� Converts control into data dependences (if-else conversions)

� Increases basic block size and instruction level parallelism

� Does not generate an exception when predicate is false

� Full predication is more useful than conditional move

� Complications

� Deciding when the terminate a predicated instruction

1. Early in the pipeline when issued (if predicate value is known)

2. Later in the pipeline before writing result (consumes resources)

� Forwarding predicate values complicates the implementation

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 36

Next . . .

� Instruction Level Parallelism

� Loop Unrolling

� Software Pipelining

� Predicated Instructions

� VLIW Approach

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 37

Getting CPI below 1

� CPI ≥ 1 if only 1 instruction is issued every clock cycle

� Getting CPI below 1 requires multiple-issue

� Multiple-issue processors come in 3 flavors

1. Statically-scheduled in-order execution superscalar processors

2. Dynamically-scheduled out-of-order execution processors

3. VLIW (very long instruction word) processors

� VLIW processors

� Issue a fixed number of instructions each cycle

� Formatted as a fixed instruction group

� Parallelism among instructions explicitly indicated

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 38

VLIW: Very Long Instruction Word

� Each long instruction has multiple operations

� Intel Itanium calls it an instruction group

� No register data dependencies

� All the instructions in a group could be executed in parallel

� Compiler must explicitly indicate boundary between groups

� Transmeta: grouping is called a molecule (atoms are operations)

� All operations in the long instruction are parallel

� The long instruction word has slots for many operations

� Slots for memory, floating-point, integer, and branch units

� To simplify the decoding and issuing of operations

� Unused slots are filled with no-ops

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 39

Recall: Loop Unrolling
for (i=0; i < N; i++) x[i] = x[i] + s;

Loop: ; Unrolled four times
1 L.D F0, 0(R1) ; load F0 = x[i]
2 L.D F6, 8(R1) ; load F6 = x[i+1]
3 L.D F10, 16(R1) ; load F10 = x[i+2]
4 L.D F14, 24(R1) ; load F14 = x[i+3]
5 ADD.D F4, F0, F2 ; F4 = x[i] + s
6 ADD.D F8, F6, F2 ; F8 = x[i+1] + s
7 ADD.D F12, F10, F2 ; F12 = x[i+2] + s
8 ADD.D F16, F14, F2 ; F16 = x[i+3] + s
9 S.D F4, 0(R1) ; store F4 at x[i]
10 S.D F8, 8(R1) ; store F8 at x[i+1]
11 S.D F12, 16(R1) ; store F12 at x[i+2]
12 S.D F16, 24(R1) ; store F16 at x[i+3]
13 DADDUI R1, R1, 32 ; point to x[i+4]
14 BNE R1, R2, Loop ; branch if (R1 != R2)

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 40

Loop Unrolling in VLIW (3 Slots)

� Unroll loop 4 times and schedule the code on 3 slots

� Cycles per iteration = 10/4 = 2.5 (2 stall cycles: cc5, cc8)

� Fills 14 / 24 = 58% of slots

Slot 0 = Memory Slot 1 = FPU Slot 2 = ALU | Branch Cycle

L.D F0,0(R1) 1

L.D F6,8(R1) 2

L.D F10,16(R1) ADD.D F4,F0,F2 3

L.D F14,24(R1) ADD.D F8,F6,F2 4

S.D F4,0(R1) ADD.D F12,F10,F2 6

S.D F8,8(R1) ADD.D F16,F14,F2 7

S.D F12,16(R1) DADDUI R1,R1,32 9

S.D F16,24(R1) BNE R1,R2,Loop 10

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 41

Scheduling Code to Minimize Cycles

� Cycles per iteration = 9 / 4 = 2.25 (zero stall cycles)

� Fills 14 / 27 = 52% of slots

Slot 0 = Memory Slot 1 = FPU Slot 2 = ALU | Branch Cycle

L.D F0,0(R1) 1

L.D F6,8(R1) 2

L.D F10,16(R1) ADD.D F4,F0,F2 3

L.D F14,24(R1) ADD.D F8,F6,F2 4

ADD.D F12,F10,F2 5

S.D F4,0(R1) ADD.D F16,F14,F2 6

S.D F8,8(R1) 7

S.D F12,16(R1) DADDUI R1,R1,32 8

S.D F16,24(R1) BNE R1,R2,Loop 9

Static Instruction Level Parallelism COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 42

Problems with VLIW

� Increase in code size

� Ambitiously unrolling loop to increase ILP

� No-ops are wasted bits in the instruction encoding

� Complex encoding and grouping of instructions

� Increased compiler complexity

� Compiler must unroll loops and schedule code

� Compiler closely tied to processor implementation

� Binary code compatibility can be a problem in VLIW processors

� Limited static instruction level parallelism

� Hardware must still detect hazards

� VLIW does not fundamentally solve instruction scheduling

