
Instruction Pipelining:

Basic and Intermediate Concepts

COE 501

Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 2

Presentation Outline

❖ Pipelining Basics

❖MIPS 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 3

What is Pipelining?

❖ Consider a task that can be divided into k subtasks

 The k subtasks are executed on k different stages

 Each subtask requires one time unit

 The total execution time of the task is k time units

❖ Pipelining is to overlap the execution

 The k stages work in parallel on k different tasks

 Tasks enter/leave pipeline at the rate of one task per time unit

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

1 2 k…

Serial Execution

One completion every k time units

Pipelined Execution

One completion every 1 time unit

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 4

Synchronous Pipeline

❖ Uses clocked registers between stages

❖ Upon arrival of a clock edge …

 All registers hold the results of previous stages simultaneously

❖ The pipeline stages are combinational logic circuits

❖ It is desirable to have balanced stages

 Approximately equal delay in all stages

❖ Clock period is determined by the maximum stage delay

S1 S2 Sk

R
e
g
is

te
r

R
e

g
is

te
r

R
e

g
is

te
r

R
e

g
is

te
r

Input

Clock

Output

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 5

❖ Let ti = time delay in stage Si

❖ Clock cycle t = max(ti) is the maximum stage delay

❖ Clock frequency f = 1/t = 1/max(ti)

❖ A pipeline can process n tasks in k + n – 1 cycles

 k cycles are needed to complete the first task

 n – 1 cycles are needed to complete the remaining n – 1 tasks

❖ Ideal speedup of a k-stage pipeline over serial execution

Pipeline Performance

k + n – 1Pipelined execution in cycles

Serial execution in cycles
== Sk → k for large n

nk
Sk

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 6

Simple 5-Stage Processor Pipeline

❖ Five stages, one cycle per stage

1. IF: Instruction Fetch from instruction memory

 Select address: next instruction, jump target, branch target

2. ID: Instruction Decode

 Determine control signals & read registers from the register file

3. EX: Execute operation

 Load and Store: Calculate effective memory address

 Branch: Calculate address and outcome (Taken or Not Taken)

4. MEM: Memory access for load and store only

5. WB: Write Back result to register

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 7

Visualizing the Pipeline

❖Multiple instruction execution over multiple clock cycles

 Instructions are listed in program order from top to bottom

 Figure shows the use of resources at each stage and each cycle

 No interference between different instructions in adjacent stages

Time (in cycles)

Pr
og

ra
m

 O
rd

e
r

add r9, r8, r7

CC2

Reg

IM

DM

Reg

sub r5, r2, r3

CC4

ALU

IM

sw r2, 10(r3)

DM

Reg

CC5

Reg

ALU

IM

DM

Reg

CC6

Reg

ALU DM

CC7

Reg

ALU

CC8

Reg

DM

lw r6, 8(r5) IM

CC1

Reg

ori r4, r3, 7

ALU

CC3

IM

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 8

❖ Time Diagram shows:

 Which instruction occupying what stage at each clock cycle

❖ Instruction flow is pipelined over the 5 stages

Timing the Instruction Flow

IF

WB

–

EX

ID

WB

–

EX

WB

MEM –

ID

IF

EX

ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

MEM

EX

ID

IF

WB

MEM

EX

ID

IF

lw r7, 8(r3)

lw r6, 8(r5)

ori r4, r3, 7

sub r5, r2, r3

sw r2, 10(r3)I
ns

tr
uc

ti
on

 O
rd

e
r

Up to five instructions can be in the

pipeline during the same cycle

Instruction Level Parallelism (ILP)

ALU instructions skip

the MEM stage. Store

instructions skip the

WB stage

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 9

Example of Pipeline Performance

❖ Consider a 5-stage instruction execution pipeline …

 Instruction fetch = ALU = Data memory access = 350 ps

 Register read = Register write = 250 ps

❖ Compare single-cycle, multi-cycle, versus pipelined

 Assume: 20% load, 10% store, 40% ALU, and 30% branch

❖ Solution:

Instruction Fetch Reg Read ALU Memory Reg Wr Time

Load 350 ps 250 ps 350 ps 350 ps 250 ps 1550 ps

Store 350 ps 250 ps 350 ps 350 ps 1300 ps

ALU 350 ps 250 ps 350 ps 250 ps 1200 ps

Branch 350 ps 250 ps 350 ps 950 ps

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 10

Single-Cycle, Multi-Cycle, Pipelined

Tclock = 350+250+350+350+250 = 1550 ps

CPI = 1, but long clock cycle

Tclock = 350 ps

Average CPI = 5×0.2 + 4×0.1 + 4×0.4 + 3×0.3 = 3.9

Multi-Cycle Execution:

350ps 350ps 350ps
Load = 5 cycles

Reg

350ps

ALU Reg

IF Reg

350ps 350ps 350ps

ALU

350ps 350ps 350ps

IF Reg

350ps

ALU Reg

IF350ps

MEM

ALU = 4 cycles

Branch = 3 cycles

Each instruction = 1550 ps

IF Reg ALU RegMEM

Each instruction = 1550 ps

IF Reg ALU RegMEM

Each instruction = 1550 ps

IF Reg ALU RegMEM

Single-Cycle Execution:

350ps

Pipelined Execution:

350ps 350ps 350ps

IF Reg

350ps

ALU Reg

350ps

MEM

IF Reg ALU RegMEM

IF Reg ALU RegMEM

350ps

Tclock = 350 ps = max(350, 250)

One instruction completes each cycle

Average CPI = 1

Ignore time to fill pipeline

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 11

Single-Cycle, Multi-Cycle, Pipelined

❖ Single-Cycle CPI = 1, but long clock cycle = 1550 ps

 Time of each instruction = 1550 ps

❖Multi-Cycle Clock = 350 ps (faster clock than single-cycle)

 But average CPI = 3.9 (worse than single-cycle)

 Average time per instruction = 350 ps × 3.9 = 1365 ps

 Multi-cycle is faster than single-cycle by: 1550/1365 = 1.14x

❖ Pipeline Clock = 350 ps (same as multi-cycle)

 But average CPI = 1 (one instruction completes per cycle)

 Average time per instruction = 350 ps × 1 = 350 ps

 Pipeline is faster than single-cycle by: 1550/350 = 4.43x

 Pipeline is also faster than multi-cycle by: 1365/350 = 3.9x

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 12

Pipeline Performance Summary

❖ Pipelining doesn’t improve latency of a single instruction

❖ However, it improves throughput of entire workload

 Instructions are initiated and completed at a higher rate

❖ In a k-stage pipeline, k instructions operate in parallel

 Overlapped execution using multiple hardware resources

 Potential speedup = number of pipeline stages k

 Unbalanced lengths of pipeline stages reduces speedup

❖ Pipeline rate is limited by slowest pipeline stage

❖ Unbalanced lengths of pipeline stages reduces speedup

❖ Also, time to fill and drain pipeline reduces speedup

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 13

Next . . .

❖ Pipelining Basics

❖ 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 14

MIPS Instruction Formats

❖ All instructions are 32 bits with a 6-bit primary opcode

❖ These are the main instruction formats, not the only ones

rs

sa

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 15

5-Stage Pipeline

Destination register

should be pipelined

from ID to WB stage
R31

Op

ID = Instruction Decode

& Register Read

flags

Z, N, C, V

PCSrc

ALU

Op
Reg

Write

A
L
UAddress

Instruction

Instruction

Cache

Rs

Rd

Ext

Rt

ALU result

P
C

0
0

Data

Cache

Address

Data_in

Data_out

Register

File

RA

RB

BusA

BusB

RW BusW

+1

Mem

Write

Select

Result

EX = Execute

Calculate Address

IF = Instruction Fetch MEM = Memory Access

(Load and Store)

W
B

 =
 W

ri
te

 B
a

c
k

3

2

1

0

+

1

0

A

Imm16

IR B
Im

m
N

P
C

2

N
P

C
3

N
P

C

Y

0

2

1

R
e
s
u

lt2

0

1

D

ALU

Src
Reg

Dst

Return Address

R
d
2

R
d
3

R
d
4

Mem

Read

Branch Target Address

Jump Target = Imm26

Jump Register Address

Next PC Address

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 16

Pipelined Control
❖ Pipeline the control signals as the instruction moves

 Extend the pipeline registers to include the control signals

❖ Each stage uses some of the control signals

 Instruction Decode (ID) Stage

▪ Generate all control signals

▪ Select destination register: RegDst control signal

▪ PC control uses: J (Jump) control signal for PCSrc

 Execution Stage ➔ ALUSrc, and ALUOp

▪ PC control uses: JR, Beq, Bne, and ALU flags for PCSrc

 Memory Stage ➔ MemRead, MemWrite, and SelectResult

 Write Back Stage ➔ RegWrite is used in this stage

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 17

Jump Register Address

R31

Branch Target Address

flags

A
L
UAddress

Instruction

Instruction

Cache

Rs

Rd

Ext

Rt

Jump Address

ALU result

P
C

0
0

Data

Cache

Address

Data_in

Data_out

Register

File

RA

RB

BusA

BusB

RW BusW

+1 W
B

 =
 W

ri
te

 B
a

c
k

3

2

1

0

+

1

0

A

Imm16

IR B
Im

m
N

P
C

2

N
P

C
3

N
P

C

Next PC Address

Y

0

2

1

R
e
s
u

lt2

0

1

D

Return Address

R
d

2

R
d
3

R
d
4

3

2

1

ID = Instruction Decode EX = Execute

MEM = Memory Access

Pipelined Datapath + Control

Pass control

Signals along

pipeline just

like data

Reg

Write

Reg

Write

W
B

Select

Result

Mem

Read

Mem

Write

ALU

Op

ALU

Src

JR

BEQ

BNE

M
E

M

PC Control

J JR

flags

BEQ BNE

PCSrc

Control

Signals

Reg

Dst

Main & ALU

Control

Op,

func J

E
X

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 18

Next . . .

❖ Pipelining Basics

❖ 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 19

❖ Hazard: Situation that would cause incorrect execution

 If next instruction were launched during its designated clock cycle

1. Structural hazard

 Caused by hardware resource contention

 Using same resource by two instructions during same clock cycle

2. Data hazard

 An instruction may depend on the result of a prior instruction still in the

pipeline, that did not write back its result into the register file

3. Control hazards

 Caused by instructions that change control flow (branches/jumps)

 Delays in changing the flow of control

❖ Hazards complicate pipeline control and limit performance

Pipeline Hazards

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 20

Structural Hazard

❖ Definition

 Attempt to use the same hardware resource by two different

instructions during the same clock cycle

❖ Example

 Writing back ALU result in stage 4

 Conflict with writing load data in stage 5

WB

WB

EX

ID

WB

EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw r6, 8(r5)

ori r4, r13, 7

sub r5, r2, r13

sw r2, 10(r3)I
ns

tr
uc

ti
on

s

Structural Hazard

Two instructions are

attempting to write the

register file during

same cycle

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 21

Resolving Structural Hazard

❖ Is it serious? Yes! cannot be ignored

❖ Solution 1: Delay access to resource

 Delay Write Back to Stage 5

❖ Solution 2: Add more hardware

 Two write ports for register file (costly)

▪ Does not improve performance

▪ One fetch ➔ one completion per cycle

WB

EX

ID EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw r6, 8(r5)

ori r4, r13, 7

sub r5, r2, r13

sw r2, 10(r3)I
ns

tr
uc

ti
on

s

WB

WB

-

-

Resolving

Structural Hazard

Delay access

to register file

Write Back occurs

only in Stage 5

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 22

Example 2 of Structural Hazard

❖ One Cache Memory for both Instructions & Data

 Instruction fetch requires cache access each clock cycle

 Load/store also requires cache access to read/write data

 Cannot fetch instruction and load data if one address port

Time (in cycles)

Pr
og

ra
m

 O
rd

e
r

add r9, r8, r7

CC2

Reg

Mem

Mem

Reg

sub r5, r2, r3

CC4

ALU

Mem

Mem

Reg

CC5

Reg

ALU Mem

CC6

Reg

ALU Mem

CC7

Reg

CC8

Reg

lw r6, 8(r5) Mem

CC1

Reg

ori r4, r3, 7

ALU

CC3

Mem

Structural

Hazard

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 23

Stalling the Pipeline

❖ Delay Instruction Fetch ➔ Stall pipeline (inject bubble)

 Reduces performance: Stall pipeline for each load and store!

❖ Better Solution: Use Separate Instruction & Data Caches

 Addressed independently: No structural hazard and No stalls

Time (in cycles)

Pr
og

ra
m

 O
rd

e
r

add r9, r8, r7

CC2

Reg

Mem

Mem

Reg

CC4

ALU Mem

CC5

Reg

ALU Mem

CC6

Reg

CC7

Reg

CC8

lw r6, 8(r5) Mem

CC1

Reg

ori r4, r3, 7

ALU

CC3

Mem

Stall Pipeline

Inject Bubble

sub r5, r2, r3 Mem Reg ALU Mem Reg

bubble bubble bubble bubble bubble

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 24

Resolving Structural Hazards

❖ Serious Hazard: structural hazard cannot be ignored

 Can be eliminated with careful design of the pipeline

❖ Solution 1: Delay Access to Hardware Resource

 Such as having all write backs to register file in the last stage, or

 Stall the pipeline until resource is available

❖ Solution 2: Add more Hardware Resources

 Add more hardware to eliminate the structural hazard

 Such as having two cache memories for instructions & data

 I-Cache and D-Cache can be addressed in parallel (same cycle)

▪ Known as Harvard Architecture

 Better than having two address ports for same cache memory

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 25

Performance Example

❖ Processor A: I-Cache + D-Cache (Harvard Architecture)

❖ Processor B: single-ported cache for both instructions & data

❖ B has a clock rate 1.05X faster than clock rate of A

❖ Loads + Stores = 40% of instructions executed

❖ Ideal pipelined CPI = 1 (if no stall cycles)

❖Which processor is faster and by what factor?

❖ Solution:

CPIA = 1, CPIB = 1+0.4 (due to structural hazards)

1.33
1.05

1

1

0.41

rate Clock

rate Clock

CPI

CPI
 Speedup

B

A

A

B
A/B =

+
==

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 26

Next . . .

❖ Pipelining Basics

❖ 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 27

❖ Occurs when one instruction depends on the result of a

previous instruction still in the pipeline

 Previous instruction did not write back its result to register file

 Next instruction reads data before it is written

❖ Data Dependence between instructions

 Given two instructions I and J, where I comes before J

 Instruction J reads an operand written by I

I: add r8, r6, r10 ; I writes r8

J: sub r7, r8, r14 ; J reads r8

❖ Read After Write: RAW Hazard

 Hazard occurs when J reads register r8 before I writes it

Data Hazard

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 28

DMReg

IM

Reg

ALU

IM

DM

Reg

Reg

ALU

IM

DM

Reg

Reg

ALU DM

Reg

ALU

Reg

DM

IM

Reg

ALU

IM

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of r8

sub r8, r9, r13

CC1
10

CC2

add r4, r8, r15

10

CC3

or r16, r13, r8

10

CC4

and r17, r14, r8

10

CC6
20

CC7
20

CC8
20

CC5

sw r18, 16(r8)

10

Example of a RAW Data Hazard

❖ Result of sub is needed by add, or, and, & sw instructions

❖ Instructions add & or will read old value of r8 from reg file

❖ During CC5, r8 is written at end of cycle, old value is read

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 29

RegReg

Solution 1: Stalling the Pipeline

❖ Three stall cycles during CC3 thru CC5 (wasting 3 cycles)

 Stall cycles delay execution of add & fetching of or instruction

❖ The add instruction cannot read r8 until beginning of CC6

 The add instruction remains in the Instruction register until CC6

 The PC register is not modified until beginning of CC6

DM

Reg

RegReg

Time (in cycles)

I
ns

tr
uc

ti
on

 O
rd

e
r value of r8

CC1
10

CC2
10

CC3
10

CC4
10

CC6
20

CC7
20

CC8
20

CC5
10

add r4, r8, r15 IM

or r16, r13, r8 IM ALU

ALU Reg

sub r8, r9, r13 IM Reg ALU DM Reg

CC9
20

stall stall DMstall

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 30

DM

Reg

Reg

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of r8

sub r8, r9, r13 IM

CC1
10

CC2

add r4, r8, r15 IM

10

CC3

or r16, r13, r8

ALU

IM

10

CC4

and r17, r16, r8

ALU

IM

10

CC6

Reg

DM

ALU

20

CC7

Reg

DM

ALU

20

CC8

Reg

DM

20

CC5

sw r18, 16(r8)

Reg

DM

ALU

IM

10

Solution 2: Forwarding ALU Result

❖ The ALU result is forwarded (fed back) to the ALU input

 No bubbles are inserted into the pipeline and no cycles are wasted

❖ ALU result is forwarded from ALU, MEM, and WB stages

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 31

Implementing Forwarding

0

1

2

3

0

1

2

3

Y
clk

Rs

In
s
tr

u
c
ti
o

n

ALU result

Data

Cache

Address

Data_in

Data_out

R
d
4

A
L
U

1

0

R
d
3

R
d
2

A
B

R
e
s
u

lt

D

Im
m

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA
Rt

❖ Two multiplexers added at the inputs of A & B registers

 Data from ALU stage, MEM stage, and WB stage is fed back

❖ Two signals: ForwardA and ForwardB control forwarding

ForwardA

ForwardB

R31

Rd
0

2

1

2

0

1

Imm16
Ext

Return Address

N
P

C
3

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 32

Forwarding Control Signals

Signal Explanation

ForwardA = 0 First ALU operand comes from register file = Value of (Rs)

ForwardA = 1 Forward result of previous instruction to A (from ALU stage)

ForwardA = 2 Forward result of 2nd previous instruction to A (from MEM stage)

ForwardA = 3 Forward result of 3rd previous instruction to A (from WB stage)

ForwardB = 0 Second ALU operand comes from register file = Value of (Rt)

ForwardB = 1 Forward result of previous instruction to B (from ALU stage)

ForwardB = 2 Forward result of 2nd previous instruction to B (from MEM stage)

ForwardB = 3 Forward result of 3rd previous instruction to B (from WB stage)

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 33

Forwarding Example

0

1

2

3

0

1

2

3

Y

Rs

In
s
tr

u
c
ti
o

n

ALU result

Data

Cache

Address

Data_in

Data_out

R
d
4

A
L
U

1

0

R
d
3

R
d
2

A
B

R
e
s
u

lt

D

Im
m

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA
Rt

R31

Rd
0

2

1

2

0

1

Imm16
Ext

Return Address

N
P

C
3

Instruction sequence:

lw r4, 4(r8)
ori r7, r9, 2
sub r3, r4, r7

When sub instruction is fetched

ori will be in the ALU stage

lw will be in the MEM stage

lw r4,4(r8)ori r7,r9,2sub r3,r4,r7

ForwardA = 2 from MEM stage

ForwardA=2

ForwardB=1

ForwardB = 1 from ALU stage

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 34

Hazard Detect and Forward Logic

0

1

2

3

0

1

2

3

Y

Rs

In
s
tr

u
c
ti
o

n

ALU result

Data

Cache

Address

Data_in

Data_out

R
d
4

A
L
U

1

0

R
d
3

R
d
2

A
B

R
e
s
u

lt

D

Im
m

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA
Rt

R31

Rd
0

2

1

2

0

1

Imm16
Ext

Return Address

N
P

C
3

ALUOp

RegDst

Main

& ALU

Control M
E

ME
X

W
B

Op,

func

ForwardB ForwardA

RegWr3RegWr2 RegWr4

Hazard Detect

and Forward

Rs

Rt

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 35

Forwarding Equations

❖ Current instruction being decoded is in Decode stage

 Previous instruction is in the Execute stage

 Second previous instruction is in the Memory stage

 Third previous instruction in the Write Back stage

if ((Rs != 0) && (Rs == Rd2) && (RegWr2)) ForwardA = 1

else if ((Rs != 0) && (Rs == Rd3) && (RegWr3)) ForwardA = 2

else if ((Rs != 0) && (Rs == Rd4) && (RegWr4)) ForwardA = 3

else ForwardA = 0

if ((Rt != 0) && (Rt == Rd2) && (RegWr2)) ForwardB = 1

else if ((Rt != 0) && (Rt == Rd3) && (RegWr3)) ForwardB = 2

else if ((Rt != 0) && (Rt == Rd4) && (RegWr4)) ForwardB = 3

else ForwardB = 0

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 36

Next . . .

❖ Pipelining Basics

❖ 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 37

Load Delay

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2

add r14, r12, r15

Reg

IM

CC3

or r16, r13, r12

ALU

IM

CC6

Reg

DM

ALU

CC7

Reg

Reg

DM

CC8

Reg

ld r12, 24(r10) IM

CC1 CC4

and r17, r12, r13

DM

ALU

IM

CC5

DM

ALU

❖ Unfortunately, not all data hazards can be forwarded

 Load has a delay that cannot be eliminated by forwarding

❖ In the example shown below …

 The LD instruction does not read data until end of CC4

 Cannot forward data to ADD at end of CC3 - NOT possible

However, load can

forward data to 2nd

next and later

instructions

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 38

Detecting RAW Hazard after Load
❖ Detecting a RAW hazard after a Load instruction:

 The load instruction will be in the EX stage

 Instruction that depends on the load data is in the decode stage

❖ Condition for stalling the pipeline

if ((EX.MemRead == 1) // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

❖ Insert a bubble into the EX stage after a load instruction

 Bubble is a no-op that wastes one clock cycle

 Delays the dependent instruction after load by once cycle

▪ Because of RAW hazard

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 39

Regor r16, r13, r12 IM DM RegALU

RegALU DMRegadd r14, r12, r15

add r14, r12, r15 IM

Regld r12, 24(r10) IM

stall

ALU

bubble bubble bubble

DM Reg

Stall the Pipeline for one Cycle

❖ DADD instruction depends on LD➔ stall at CC3

 Allow Load instruction in ALU stage to proceed

 Freeze PC and Instruction registers (NO instruction is fetched)

 Introduce a bubble into the ALU stage (bubble is a NO-OP)

❖ Load can forward data to next instruction after delaying it

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2 CC3 CC6 CC7 CC8CC1 CC4 CC5

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 40

ld r12, 8(r11) MEM WBEXIDStallIF

ld r11, (r15) MEM WBEXIDIF

Stall Cycles

❖ Stall cycles are shown on a timing diagram

❖ Hazard is detected in the Decode stage

❖ Stall indicates that instruction is delayed (bubble inserted)

❖ Instruction fetching is also delayed after a stall

❖ Example:

add r3, r12, r13 MEM WBEXIDStallIF

sub r4, r11, r3 MEM WBEXIDIF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3 CC10

Data forwarding is shown using green arrows

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 41

RegDst

Main & ALU

Control

M
E

ME
X

W
B

Op,

func

Control Signals

Bubble = 0 1

0

Hazard Detect, Forward, and Stall

ForwardB ForwardA

RegWr3RegWr2

MemRead

RegWr4

Hazard Detect

Forward, & Stall

Rs

Rt

0

1

2

3

0

1

2

3

Y

Rs

In
s
tr

u
c
ti
o

n

ALU result

Data

Cache

Address

Data_in

Data_out

R
d
4

A
L
U

1

0

R
d
3

R
d
2

A
B

R
e
s
u

lt

D

Im
m

R
e
g

is
te

r
F

il
e

RB

BusA

BusB

RW BusW

RA
Rt

R31

Rd
0

2

1

2

0

1

Imm16
Ext

Return Address

N
P

C
3

P
C

Stall

D
is

a
b
le

 P
C

D
is

a
b
le

 I
R

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 42

Compiler Scheduling to Avoid Stalls

❖ Compilers reorder code in a way to avoid load stalls

❖ Consider the translation of the following statements:

A = B + C; D = E – F; // A thru F are in Memory

❖Original code: two stall cycles

ld r10, 8(r16) ; &B = 8+(r16)

ld r11, 16(r16) ; &C = 16+(r16)

add r12, r10, r11 ; stall cycle

sd r12, 0(r16) ; &A = (r16)

ld r13, 32(r16) ; &E = 32+(r16)

ld r14, 40(r16) ; &F = 40+(r16)

sub r15, r13, r14 ; stall cycle

sd r15, 24(r16) ; &D = 24+(r16)

❖ Faster code: No Stalls

ld r10, 8(r16)

ld r11, 16(r16)

ld r13, 32(r16)

ld r14, 40(r16)

add r12, r10, r11

sd r12, 0(r16)

sub r15, r13, r14

sd r15, 24(r16)

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 43

❖ Instruction J should write its result after it is read by I

I: sub r14, r11, r13 ; r11 is read

J: add r11, r12, r13 ; r11 is written

❖ Called Anti-Dependence: Re-use of register r11

❖ NOT a data hazard in the 5-stage pipeline because:

 Reads are always in stage 2

 Writes are always in stage 5, and

 Instructions are processed in order

❖ Anti-dependence can be eliminated by renaming

 Use a different destination register for add (eg, r15)

Name Dependence: Write After Read

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 44

Name Dependence: Write After Write

❖ Same destination register is written by two instructions

I: sub r11, r14, r13 ; r11 is written

J: add r11, r12, r13 ; r11 is written again

❖ Called Output Dependence: Re-use of register r11

❖ Not a data hazard in the 5-stage pipeline because:

 All writes are ordered and always take place in stage 5

❖ However, can be a hazard in more complex pipelines

 If Instruction J completes and writes r11 before instruction I

❖ Output dependence can be eliminated by renaming r11

❖ Read After Read is NOT a name dependence

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 45

Next . . .

❖ Pipelining Basics

❖ 5-Stage Pipeline Microarchitecture

❖ Structural Hazards

❖ Data Hazards and Forwarding

❖ Load Delay and Pipeline Stall

❖ Control Hazards and Branch Prediction

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 46

What is needed to Calculate next PC?

❖ For Unconditional Jumps

 Opcode (J or JAL), PC and 26-bit address (immediate)

❖ For Jump Register

 Opcode + function (JR or JALR) and Register[Rs] value

❖ For Conditional Branches

 Opcode, branch outcome (taken or not), PC and 16-bit offset

❖ For Other Instructions

 Opcode and PC value

❖ Opcode is decoded in ID stage ➔ Jump delay = 1 cycle

❖ Branch outcome is computed in EX stage

 Branch delay = 2 clock cycles

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 47

2-Cycle Branch Delay

❖ Control logic detects a Branch instruction in the 2nd Stage

❖ ALU computes the Branch outcome in the 3rd Stage

❖ Next1 and Next2 instructions will be fetched anyway

❖ Convert Next1 and Next2 into bubbles if branch is taken

cc4 cc5 cc6 cc7

IF Reg DMALU

BubbleBubble Bubble

BubbleBubble BubbleBubble

L1: target instruction

beq r8,r9,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc3

ALU

Reg

IF

Branch

Target

Addr

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 48

Predict Branch NOT Taken

❖ Branches can be predicted to be NOT taken

❖ If branch outcome is NOT taken then

 Next1 and Next2 instructions can be executed

 Do not convert Next1 & Next2 into bubbles

 No wasted clock cycles

beq r8,r9,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc3

NOT TakenALU

Reg

IF Reg

cc4 cc5 cc6 cc7

ALU DM

ALU DM

Reg

Reg

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 49

J

J

Pipelined Jump and Branch

Main

& ALU

Control

Op

func

ForwardB

ForwardA

Rs

Rt
Forward & Stall

Rd2, Rd3, Rd4

RegWr2,3,4, MemRd

Bubble = 0

Stall

D
is

a
b
le

 P
C

D
is

a
b
le

 I
RKill1

Jump

kills next

instruction

Kill2

Taken

branch

kills two M
E

M

Control Signals
0

1

Control Signals

E
X

PC

Control

PCSrc

JR, BEQ, BNE
JR, BEQ, BNEZero

0

1

2

3

0

1

2

3

R

32

32

Rs

In
s
tr

u
c
ti
o

n

A
L
U

Ext
Imm16

1

0

R
d
3

R
d
2

A
B D

Im
m

32

R
e

g
is

te
r

F
il

e

RB

BusA

BusB

RW BusW

RA

Rt

32

Rd

Zero

Address

Instruction

Instruction

Cache

PC+1 +

0

1

3

2

+1

P
C

0
0

N
P

C

0

1

Bubble = NOP

R31

0

2

1

B
T
A

Jump Target Address

Jump Register Address

Branch Target Address

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 50

Jump and Branch Impact on CPI

❖ Base CPI = 1 without counting jump and branch stalls

❖ Unconditional Jump = 5%, Conditional branch = 20%

and 90% of conditional branches are taken

❖ 1 stall cycle per jump, 2 stall cycles per taken branch

❖What is the effect of jump and branch stalls on the CPI?

Solution:

❖ Jump adds 1 stall cycle for 5% of instructions = 1 × 0.05

❖ Branch adds 2 stall cycles for 20% × 90% of instructions

= 2 × 0.2 × 0.9 = 0.36

❖ New CPI = 1 + 0.05 + 0.36 = 1.41

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 51

Branch Hazard Alternatives

❖ Predict Branch Not Taken (previously discussed)

 Successor instruction is already fetched

 Do NOT kill instruction after branch if branch is NOT taken

 Kill only instructions appearing after Jump or taken branch

❖ Delayed Branch

 Define branch to take place AFTER the next instruction

 Compiler/assembler fills the branch delay slot (only one slot)

❖ Dynamic Branch Prediction

 Loop branches are taken most of time

 How to predict the branch behavior at runtime?

 Must reduce the branch delay to zero, but how?

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 52

❖ Define branch to take place after the next instruction

❖MIPS defines one delay slot

 Reduces branch penalty

❖ Compiler fills the branch delay slot

 By selecting an independent instruction

from before the branch

 Must be okay to execute instruction in the

delay slot whether branch is taken or not

❖ If no instruction is found

 Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add r8,r9,r10

beq r5,r6,label

Branch Delay Slot

label:

. . .

beq r5,r6,label

add r8,r9,r10

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 53

❖ New meaning for branch instruction

 Branching takes place after next instruction (Not immediately!)

❖ Impacts software and compiler

 Compiler is responsible to fill the branch delay slot

❖ However, modern processors and deeply pipelined

 Branch penalty is multiple cycles in deeper pipelines

 Multiple delay slots are difficult to fill with useful instructions

❖MIPS used delayed branching in earlier pipelines

 However, delayed branching lost popularity in recent processors

 Dynamic branch prediction has replaced delayed branching

Drawback of Delayed Branching

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 54

Branch Target Buffer (IF Stage)

❖ The branch target buffer is implemented as a small cache

 Stores the target addresses of recent branches and jumps

❖We must also have prediction bits

 To predict whether branches are taken or not taken

 The prediction bits are determined by the hardware at runtime

mux

PC

Branch Target & Prediction Buffer

Addresses of

Recent Branches

Target

Addresses

low-order bits

used as index

Predict

Bits
Inc

=
predict_taken

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 55

Branch Target Buffer – cont’d

❖ Each Branch Target Buffer (BTB) entry stores:

 Address of a recent jump or branch instruction

 Target address of jump or branch

 Prediction bits for a conditional branch (Taken or Not Taken)

To predict jump/branch target address and branch outcome before

instruction is decoded and branch outcome is computed

❖ Use the lower bits of the PC to index the BTB

 Check if the PC matches an entry in the BTB (jump or branch)

 If there is a match and the branch is predicted to be Taken then Update

the PC using the target address stored in the BTB

❖ The BTB entries are updated by the hardware at runtime

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 56

Dynamic Branch Prediction

❖ Prediction of branches at runtime using prediction bits

❖ Prediction bits are associated with each entry in the BTB

 Prediction bits reflect the recent history of a branch instruction

❖ Typically few prediction bits (1 or 2) are used per entry

❖We don’t know if the prediction is correct or not

❖ If correct prediction then

 Continue normal execution – no wasted cycles

❖ If incorrect prediction (or misprediction) then

 Kill the instructions that were incorrectly fetched – wasted cycles

 Update prediction bits and target address for future use

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 57

Correct

Prediction

No stall

cycles

YesNo

Dynamic Branch Prediction – Cont’d

Use PC to address Instruction Cache

and Branch Target Buffer

BTB

Predict taken?

Increment PC PC = target address

Enter branch & target address,

and set prediction in BTB entry.

Kill fetched instructions.

Restart PC at target address

Mispredicted branch

Kill fetched instructions

Update prediction bits

Restart PC after branch

Normal

Execution

YesNo

Taken

branch?

No Yes

IF
ID

E
X

Taken

branch?

Jump?

No

Enter jump & target address in BTB

Kill fetched instruction.

Restart PC at jump target address

Yes

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 58

❖ Prediction is just a hint that is assumed to be correct

❖ If incorrect then fetched instructions are killed

❖ 1-bit prediction scheme is simplest to implement

 1 bit per branch instruction (associated with BTB entry)

 Record last outcome of a branch instruction (Taken/Not taken)

 Use last outcome to predict future behavior of a branch

1-bit Prediction Scheme

Predict

Not Taken

Taken

Predict

Taken

Not

Taken

Not Taken

Taken

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 59

1-Bit Predictor: Shortcoming

❖ Inner loop branch mispredicted twice!

Mispredict as taken on last iteration of inner loop

 Then mispredict as not taken on first iteration of inner loop

next time around

outer: ...
...

inner: ...

...

bne r1, r2, inner
...
bne r3, r4, outer

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 60

❖ 1-bit prediction scheme has a performance shortcoming

❖ 2-bit prediction scheme works better and is often used

 4 states: strong and weak predict taken / predict not taken

❖ Implemented as a saturating counter

 Counter is incremented to max=3 when branch outcome is taken

 Counter is decremented to min=0 when branch is not taken

2-bit Prediction Scheme

Not Taken

Taken

Not Taken

Taken
Strong

Predict

Not Taken

Taken

Weak

Predict

Taken

Not Taken

Weak

Predict

Not Taken
Not Taken

Taken
Strong

Predict

Taken

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 61

Evaluating Branch Alternatives

❖ Assume: Jump = 3%, Branch-Not-Taken = 5%, Branch-Taken = 15%

❖ Assume a branch target buffer with hit rate = 90% for jump & branch

❖ Prediction accuracy for jump = 100%, for conditional branch = 80%

❖ What is the impact on the CPI? (Ideal CPI = 1 if no control hazards)

Branch Scheme Jump Branch Not Taken Branch Taken

Predict not taken Penalty = 2 cycles Penalty = 0 cycles Penalty = 3 cycles

Delayed branch Penalty = 1 cycle Penalty = 0 cycles Penalty = 2 cycles

BTB Prediction Penalty = 2 cycles Penalty = 3 cycles Penalty = 3 cycles

Branch Scheme Jump = 3% Branch NT = 5% Branch Taken = 15% CPI

Predict not taken 0.03 × 2 0 0.15 × 3 = 0.45 1+0.51

Delayed branch 0.03 × 1 0 0.15 × 2 = 0.30 1+0.33

BTB Prediction 0.03×0.1×2 0.05×0.9×0.2×3 0.15×(0.1+0.9×0.2)×3 1+0.16

Pipelining: Basic and Intermediate Concepts COE 501 – Computer Architecture – KFUPM Muhamed Mudawar – slide 62

In Summary
❖ Three types of pipeline hazards

 Structural hazards: conflict using a resource during same cycle

 Data hazards: due to data dependencies between instructions

 Control hazards: due to branch and jump instructions

❖ Hazards limit the performance and complicate the design

 Structural hazards: eliminated by careful design or more hardware

 Data hazards can be eliminated by forwarding

 However, load delay cannot be eliminated and stalls the pipeline

 Delayed branching reduces branch delay ➔ compiler support

 BTB with branch prediction can reduce branch delay to zero

 Branch mis-prediction should kill the wrongly fetched instructions

