
Virtual Memory

COE 501

Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 2

Presentation Outline

❖ What is Virtual Memory?

❖ Fast Address Translation

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 3

What is Virtual Memory?

❖ Extends main memory into disk storage

 In early computers, main memory was small and expensive

 Virtual memory enables a program to exceed the memory size

❖ Defines a virtual address space for a running program

 A running program is called a process

 Multiple processes can exist in memory at the same time

❖ Simplifies Memory Management done by the OS

 Operating system software allocates memory to each process

❖ Provides protection to processes and operating system

 Main memory is shared by processes and operating system

 Virtual memory enforces protection through address translation

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 4

What is Paging?

❖ A process virtual address space is divided into pages

 All pages have the same fixed size (simplifies their allocation)

❖ Operating system allocates and maps pages

 Either in main memory or on disk (if no sufficient memory space)

 Page table does the mapping from virtual to physical addresses

0
D24K
B18K
A112K
B216K
A220K
C124K

28K

Main Memory

Physical addresses

A20
B24K
C28K

Process 2

Virtual addresses

D212K

Process 1

Virtual addresses

A10
B14K
C18K
D112K
E116K

Disk Storage

Disk addresses

E1
C2
D1

Example: Page Size = 4K Bytes

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 5

What is a Page Table?

❖ Pages appear contiguous in the virtual address space

 However, they can be scattered in main memory (and disk)

Virtual Page Number Page offset

Physical Page Address Page offset

AttributesPhysical Page Address

Page Table Address Register

+

Page Table does

the mapping.

Managed by the

operating system. Sa
m

e
Pa

ge
 O

ff
se

t

index to page table

Physical Address

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 6

Page Table

❖ Each process has a page table

 The page table defines the physical address space of a process

 Physical address space = physical pages that can be accessed

 Page table is stored in main memory

 Managed only by the operating system

❖ Page table address register

 Contains the physical address of the page table in memory

 Processor uses this register to locate page table in memory

❖ Page table entry

 Contains physical page number and attributes of a single page

 Attributes specify page presence, protection and use

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 7

Page Table Entry Format

❖ Each Page Table Entry (PTE) stores:

 Physical address of a page in memory

 Page attributes (vary according to architecture)

 PTE is 4 bytes for 32-bit, and 8 bytes for 64-bit architectures

❖ Typical page attributes

 Presence bit: indicates whether page is present in memory

 Read/Write: whether page is read-only or can be written

 User/Supervisor: whether page is for operating system use only

 Accessed: whether page has been accessed recently

 Dirty: whether page has been modified

 Cache disable: whether page can be cached or not

 Page size: whether page is small or large

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 8

Analogy to Caches

Cache Concept Virtual Memory Concept

Cache Block = 32, 64, or 128 bytes Small Page = 4 KB, Large Page = 4 MB

Cache Miss: Block not found in Cache Page Fault: Page not present in memory

Transfer block from memory to cache Transfer page from disk to memory

Miss Rate: 0.1% to 10% Page Fault Rate: 0% to 0.001%

Miss Penalty: 8 to 200 clock cycles Page Fault Penalty: 106 to 107 cycles

Cache Miss is handled in hardware Page Fault is handled in software

Placement: Direct mapped, set Associative Page placed anywhere in memory

Tags identify cache blocks (hit or miss) Page table indicates page presence

Block replacement done is hardware Page replacement done in software

Write policy: Write-through or Write-back Write-back only (Modified bit)

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 9

Advantages of Virtual Memory

❖Memory Management

 Programs are given contiguous view of virtual memory

 Physical pages are simple to allocate and can be scattered

 Only the working set of a program must be in main memory

 Heap and stack can grow (use as many pages as needed)

❖ Protection

 Different processes are protected from each other

 Pages are given special attributes (read only, write, execute)

 Operating system data protected from user programs

❖ Sharing

 Can map same physical page to multiple processes

 Processes can share library code and can also share data

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 10

Issues in Virtual Memory

❖ Page Size

 Small page sizes ranging from 4KB to 16KB are typical today

 Large page size can be 2MB or 4MB (reduces page table size)

 Recent processors support multiple page sizes

❖ Fully associative placement to reduce page faults

❖ Handling Page Faults and Replacement Policy

 Page faults are handled in software by the operating system

 Reference bit per page: which page is referenced recently

 Modified bit per page: which page is modified

❖ Reducing the page table size

❖ Supporting fast address translation

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 11

Page Fault / Invalid Memory Access

❖ Page Fault: requested page is not present in memory

 The missing page is located on disk and transferred to memory

 It takes milliseconds to transfer a page from disk to memory

 Another process may run while first process is waiting

 A free page is allocated in memory and page table is updated

 Program is restarted at the instruction that caused page fault

❖ Invalid memory access: several cases such as

 Reference to a page not part of the virtual address space

 Writing to a read-only page

 Accessing a supervisor (operating system) page in user mode

 Operating system terminates program (segmentation fault)

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 12

Page Replacement Algorithm

❖ Working Set of a Process

 Set of pages expected to be used during some time interval

 Page faults occur when the working set is not in memory

❖ Page replacement algorithm

 Decide which memory pages to swap out (write to disk)

 To free pages in memory, when number of free pages is low

❖ Many replacement algorithms: FIFO, NRU, Clock

❖ Clock replacement algorithm

 Keep a circular list of pages in memory (circular FIFO)

 Point to next page to replace and examine the access bit

 Skip pages that have been accessed (replace if Access bit = 0)

 Operating system clears the access bits periodically

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 13

Size of the Page Table

❖ One-level page table is the simplest to implement

❖ Consider: 32-bit virtual address space with 4KB pages

❖ Page offset = 12 bits and Virtual Page Number = 20 bits

❖What is the size of the page table if entry = 4 bytes?

❖ Answer: 232/212 = 220 entries × 4 bytes = 4 MB

❖ Now consider: 48-bit virtual address with 4KB pages

❖What is the size of the page table if entry = 8 bytes?

❖ Answer: 248/212 = 236 entries × 8 bytes = 512 GB !

Virtual Page Number 20 Page Offset 12

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 14

Reducing the Page Table Size

❖Many processes have a small virtual address space

 Might need only few pages for code, data, and stack

❖ Use Limit Register to restrict the size of the page table

 Does not work well when the virtual address space is sparse

❖ Use Hierarchical Page Table for sparse address space

 Small page tables (size of a page) allocated at different levels

 Can efficiently map multiple dynamic stacks and heaps

 Disadvantage: multiple table traversal for address translation

❖ Use Multiple Page Sizes rather than one page size

 Large page size works better for large virtual address space

❖ Use Hashed Page Table shared by all processes

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 15

Two-Level Page Tables (Intel 32-bit)

L2 Table

L2 index10 L1 index10 Offset12

32-bit Virtual Address

4 KB

Page

4 KB

Page

(stack)

4 KB

Page

4 KB

Page

(data)

4 KB

Page

4 KB

Page

(code)

L1 Table

L1 Table

L1 Table

+

+

Physical
Page

Address

L2 Table Address

L1 Table
Address

Page in Memory

Page swapped out to disk

Non-existent Page

Page Table Size = Page Size = 4 KB

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 16

Variable-Size Page Support

L2 Table

L2 index10 Offset22

32-bit Virtual Address

4 KB

Page

4 KB

Page

4 MB Page

4 KB

Page

4 KB

Page

L1 Table

L1 Table

+

+

Physical
Address

L2 Table Address

L1 Table
Address

Page in Memory

Page swapped out to disk

Non-existent Page

Page Table Size = 4 KB

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 17

Sharing Pages Among Processes

Process A
L2 Table 4 MB Shared Page

(Shared library code)

Process A
L1 Table

Process A
L1 Table

Process B
L1 Table

Process B
L2 Table

4 KB

Page
Process A

Process B
L1 Table

4 KB

Page
Process B

4 KB

Shared

Data

4 KB

Page
Process B

4 KB

Page

4 KB

Page
Process A

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 18

Four-Level Page Tables (AMD64)

Virtual address = 48 bits

Physical address = 40 bits

Table Size = 4 KB (512 × 8-Byte entries)

Page Size = 4 KB, 2 MB, or 4 MB

Copyright © 2012, Elsevier Inc. All rights Reserved.

9 9 9 129

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 19

System-Wide Hashed Page Table

❖ Shared by all processes and operating system

❖ Example: Intel Itanium architecture

❖ Uses the concept of virtual regions (8 per process)

Virtual Page Number (VPN) Page OffsetVRN
8 Region
Registers

Region ID PS

RR0

RR1

RR7

3

Virtual Region Number

64-bit Virtual Address

Hashing

Function

Hashed
Page Table

PTA
Base

Table SizePS = Page Size = 4KB to 256MB
Multiple Pages Sizes are supported

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 20

Hashed Page Table Entry

❖ Hashed Page Table Entry includes the following fields:

 Tag that matches Region ID and Virtual Page Number

 Presence bit, Physical Page Address

 Access bit, Dirty bit, Privilege level, Access rights

 Link in case of collision (multiple entries are searched)

 Hashed page table entry can be long (32 bytes on the Itanium)

❖ Example of a simple hashing function:

 Hashed Page Table Index = (VPN  Region ID) % Table Size

 Generates an index between 0 and Table Size – 1

 Page Size (PS) specifies the number of bits in VPN

 Hashed Page Table is searched by content

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 21

Illustrating Collisions & Search List

Tag1 (Region ID1 , VPN1) Physical Page1 LinkAttributes1

System-Wide Hashed Page Table

Tag2 (Region ID2 , VPN2) Physical Page2 Attributes2 NULL

Second Table (Search List)

Hashing

Function

Region ID1, VPN1

Region ID2, VPN2

When collisions
happen, entries
are allocated in

the second table

Linked entries
are searched for
a matching tag

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 22

Advantages / Disadvantages

❖ Advantages of Hashed Page Table

 Table is only a small fraction of memory

 Scales with physical memory, not with the virtual address space

 Sufficient number of entries to reduce collision probability

 Region ID can be shared by multiple processes

 No problem with sparse virtual address space

❖ Disadvantages

 Hashed page table entry is larger

 Collisions are unavoidable

 Must traverse search list when collisions occur (can be long list)

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 23

Presentation Outline

❖ What is Virtual Memory?

❖ Fast Address Translation

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 24

Address Translation and Protection

❖ Program generates virtual addresses

 Must translate virtual address on every memory access

 Must check whether page in memory (page fault)

 Must check protection (illegal access, invalid page)

Virtual Page Number Page offset

Physical Page Address Page offset

Sa
m

e
Pa

ge
 O

ff
se

t

Physical Address

Address
Translation

Protection Check

Virtual Address

Page Fault

Illegal Access

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 25

Fast Address Translation

❖ Address translation is expensive

 Must translate each virtual address on every memory access

 Multilevel page table ➔ translation is several memory accesses

❖ Solution: Translation Lookaside Buffer (TLB)

 TLB = Cache for address translation

 TLB = Fast address translation

 TLB input = VA = Virtual Address

 TLB output = PA = Physical Address

 I-TLB = I-Cache TLB

 D-TLB = D-Cache TLB

Unified L2 Cache

I-Cache D-Cache

Processor Core

D
a

ta

In
s
tr

u
c
ti
o

n

BlockBlock

I-TLB

VA

PA

D-TLB

VA

PA

PA PA

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 26

TLB Entries

❖ TLB keeps track of recently accessed pages

 Virtual and Physical page numbers (fast address translation)

 Accessed and Dirty bits (whether page is accessed or modified)

 Access rights and Privilege level protection bits

❖ Additional TLB fields

 Address Space Identifier (or Region ID)

▪ Allows multiple processes to be in the TLB at the same time

▪ Otherwise, TLB should be flushed on a context switch

 Global bit (G bit) for global pages that are shared by all processes

 Page size (PS) for variable page sizes

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 27

TLB Organization

❖ TLB size can vary between 32 and 512 entries

 Small TLBs are fully associative

 Large TLBs are set associative

❖ Large system can have multi-level TLBs (L1 and L2)

❖ Hit time is typically one clock cycle for small TLBs

 TLB Miss Penalty = few cycles to hundreds of clock cycles

 Miss Rate = 0.01% to 1%

❖ Random, FIFO, or pseudo-LRU replacement (TLB miss)

❖ TLB reach: maximum virtual space mapped by TLB

 Example: 64 TLB entries, 4 KB pages, one page per entry

 TLB reach = 64 entries × 4 KB = 256 KB

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 28

Fully Associative TLB (AMD Opteron)

TLB hit: TLB Entry Found

Get physical page address

Fast single cycle translation

TLB miss: Must traverse page table ➔ Slow translation (update TLB)

Tag = Virtual Page Number of TLB Entry

Check protection

(R/W and U/S bits)

Copyright © 2012, Elsevier Inc.

All rights Reserved.

32 TLB entries for small pages

8 TLB entries for large pages

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 29

Set Associative TLB (Intel Core i7)

V Tag 31 Physical Page Address24Prot4

.

4:1 mux

Virtual Page Number36 Offset12

Tag31 Index5 Offset12

====

Physical Page Address24 Offset12

48-bit Virtual Address

36-bit Physical Address

TLB = 4-Way Set-Associative

128 TLB Entries = 32 × 4 ways

Read/Write, User/Supervisor

Page Accessed, Page Dirty

Additional entries for large page size

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 30

Second-Level TLB

❖ Second-Level L2 TLB is used when miss in L1 TLB

❖ L2 TLB is larger than I-TLB and D-TLB

 Provides more entries for address translation

 Miss in L1, which is a hit in L2 TLB ➔ Swap TLB entries

 Miss in L1 and L2 TLBs ➔ Page table address translation (slow)

Core i7 TLBs I-TLB D-TLB L2 TLB (unified)

Size 128 entries 64 entries 512 entries

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access

Latency

1 cycle 1 cycle 6 cycles

Miss Penalty 7 cycles 7 cycles Hundreds of cycles

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 31

Handling TLB Misses and Page Faults

❖ TLB miss: No TLB entry matches the virtual address

❖ TLB miss can be handled in software or in hardware

 Traverse the page table hierarchy (by OS handler or MMU)

 If page table entry in memory is valid, then reload it into the TLB

 If page not present in main memory then page fault

❖ Page Fault: Causes a context switch

 Interrupt the program at the instruction that caused the page fault

▪ Save the process context in memory (PC and registers)

 Transfer control to the operating system to transfer the page

 Meanwhile, operating system schedules another process to run

 Later, restart the instruction that caused the page fault

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 32

TLB, Page Table, Cache Combinations

TLB Page Table Cache Possible? Under what circumstances?

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss -

Miss Miss Hit

Yes: this is what we want!

Yes: TLB hit ➔ page table is not checked

Cache miss ➔ block in memory

Yes: TLB miss ➔ entry in page table

Yes: TLB miss ➔ entry in page table

Cache miss ➔ block in memory

Yes: Page fault ➔ page swapped out

NOT possible: TLB translation is not

possible if page is not in memory

NOT possible: data not allowed in

cache if page is not in memory

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 33

Address Translation Summary

Lookup
TLB

Virtual Address

Check
Protection

Traverse
Page Table

Terminate
Program

OS handler
loads page

TLB Hit

Reload TLB

Deny
Access

Grant
Access

Physical
Address
to Cache

Page present
in memory

Page Fault

TLB Miss

Invalid Page

Restart Instruction

Hardware

Hardware or Software

Software (OS handler)

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 34

Physical versus Virtual Caches

❖ Physical cache is addressed with physical addresses

 Virtual addresses are generated by the processor

 Address translation is required, which may increase the hit time

❖ Virtual cache is addressed with virtual addresses

 Address translation is not required for a hit (but only for a miss)

CPU
Core

VA
TLB

PA
Physical
Cache

PA (on miss)
Main

MemoryDataData

CPU
Core

VA
TLBVirtual

Cache

PA
Main

MemoryDataData

VA (on miss)

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 35

Virtual Cache Benefits/Drawbacks

❖ Benefits of a Virtual Cache

 Address translation is not required for a cache hit

 TLB is not along critical path: cache access time is reduced

❖ Drawbacks of a Virtual Cache

 Protection bits must be associated with each cache block

 Flushing the virtual cache on a context switch

▪ Unless address space identifiers are included in the tags

▪ To avoid mixing virtual addresses of different processes

 Aliasing problem due to the sharing of physical pages

▪ Aliases: different virtual addresses map to same physical page

▪ Multiple copies of the same block in a virtual cache

▪ Updates make duplicate blocks inconsistent

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 36

Aliases in Virtual-Address Caches

❖ General Solution: Disallow aliases to coexist in cache

Shared

Page

Process B
Page Table

Process A
Page Table

VA1

VA2

PA

PA

Aliases:
Different Virtual Addresses

Map to same physical address

VTag1 Copy 1 of Data Block at Physical Address PA

VTag2 Copy 2 of Data Block at Physical Address PA

. . .

Tag Data

Virtual Cache can have two
copies of the same block in
main memory.

Writes to first copy of the
block in the cache are not
visible to second copy!

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 37

TLB Translation during Indexing

❖ To lookup a cache, we should …

 Index the cache: Physical or Virtual address can be used

 Compare tags: Physical or Virtual address can be used

❖ Virtual cache eliminates address translation for a hit

 However, causes problems (protection, flushing, and aliasing)

❖ Best combination for L1 cache

 Address translation starts concurrently with indexing

▪ Same page offset used in both virtual and physical address

▪ Use part of page offset for indexing ➔ limits cache size

 Compare tags using physical address (TLB output)

 Ensure that each cache block has a unique physical address

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 38

Parallel Access to TLB and L1 Cache

Page Offset = p bits ➔ Page Size = 2
p

bytes

Block Offset = b bits ➔ Block Size = 2
b

bytes

Cache Index = k bits ➔ Cache Size = m ways × 2
k

× 2
b

bytes

Page Offset is identical in virtual and physical addresses

If (k + b) > p then Alias Problem➔ Lower VPN bits used in cache index

=

Virtual Page Number (VPN) Page Offset <p bits>

Physical Page Address

TLB

VA

PA

Block Offset

L1 Cache

m ways

Cache Index

k

b

=

Physical Tags

Data

m:1 mux

Hit

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 39

Anti-Aliasing Techniques

❖ Increase the Page Size

 Larger page ➔ larger cache physical index ➔ larger cache

 Shared pages should be large and aligned to avoid alias problem

 Requires OS and architectural support for large page size

❖ Increase Cache Associativity

 Increase cache capacity, without changing index (or page size)

 Maximum capacity of directly-mapped physical cache = page size

 m-way set associative cache increases capacity by a factor of m

❖ Disallow aliases to coexist while processing a cache miss

 if (k + b) > p ➔ Cache is virtually indexed ➔ Alias problem

 Examine L1 cache tags while processing a cache miss, if an alias is

found (with same physical tag) then invalidate block

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 40

AMD Opteron TLB and Cache

L1 TLB: 40 entries

Fully Associative

L2 TLB: 512 entries

4-way Set Associative

L1 Cache: 64KB

2-way set associative, LRU

Virtual index, Physical tag

L2 Cache: 1MB

16 ways, Pseudo-LRU

Virtual Memory COE 501 – Computer Architecture - KFUPM © Muhamed Mudawar – slide 41

AMD Opteron Memory Hierarchy

❖ Exclusion policy between L1 and L2

 Block can exist in L1 or L2 but not in both

 Both D-cache and L2 use write-back with write-allocate

❖ L1 cache is pipelined, latency is 2 clock cycles

❖ L1 TLB = 40 entries, L2 TLB = 512 entries

❖ L1 cache is virtually indexed and physically tagged

 Lower 3-bit of Virtual Page Number (VPN) are used in L1 index

❖ On a L1 cache miss, controller checks for alias in L1

 8 = 23 L1 cache tags per way are examined in parallel for an alias

during an L2 cache lookup.

 If an alias is found ➔ the offending block is invalidated

