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Presentation Outline

“ Improving Cache Performance

s Software Optimizations to reduce Miss Rate

*» Hardware Cache Optimizations
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Improving Cache Performance

*» Average Memory Access Time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty
“ Used as a framework for optimizations

¢ Reduce the Hit time

<> Small and simple caches

+» Reduce the Miss Rate

< Larger block size, Larger cache size, and Higher associativity

** Reduce the Miss Penalty

<> Multilevel caches, and giving reads priority over writes
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Small and Simple Caches

** Reduce Hit time and Energy consumption

¢ Hit time Is critical: affects the processor clock cycle
< Indexing a cache represents a time consuming portion
<> Tag comparison in the tag array (hit or miss)
< Selecting the data (way) in set-associative cache

“ Direct-mapped overlaps tag check with data transfer

< Associative cache uses additional mux and increases hit time

+» Size of L1 caches has not increased much

< |-Cache and D-Cache are about 64KB in recent processors
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Access Time vs Size/Associativity
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Energy Consumption Per Read

CACTI, 40 nm technology, 64-Byte blocks
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Classifying Cache Misses - Three Cs

s+ Conditions under which cache misses occur

“» Compulsory: program starts with no block in cache
< Also called cold start misses or first-reference misses
< Misses that would occur even if a cache has infinite size
“ Capacity: misses happen because cache size is small
< Blocks are replaced and then later retrieved
< Misses that would occur even if cache is fully associative
“ Conflict: misses happen because of limited associativity

< Limited number of blocks per set and non-optimal replacement

% 4% C: Coherence misses (discussed later)
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Classifying Cache Misses

Compulsory misses are independent of cache size

Very small for long-running programs
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Larger Block to Reduce Miss Rate

*» Simplest way to reduce miss rate Is to increase block size

¢ Large block size takes advantage of spatial locality
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Block Size Impact on AMAT

» Given: miss rates for different cache sizes & block sizes

** Memory latency = 80 cycles + 1 cycle per 8 bytes
< Latency of 16-byte block = 80 + 2 = 82 clock cycles
< Latency of 32-byte block = 80 + 4 = 84 clock cycles
< Latency of 256-byte block = 80 + 32 = 112 clock cycles

+*» Which block has smallest AMAT for each cache size?

Block Size Cache=4KB Cache=16KB Cache=64 KB Cache =256 KB

16 bytes 8.57% 3.94% 2.04% 1.09%
32 bytes 7.24% 2.87% 1.35% 0.70%
64 bytes 7.00% 2.64% 1.06% 0.51%
128 bytes 7.78% 2.77T% 1.02% 0.49%
256 bytes 9.51% 3.92% 1.15% 0.49%
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*» Solution: assume hit time = 1 clock cycle

< Regardless of block size and cache size

¢ Cache Size = 4 KB, Block Size = 16 bytes
< AMAT =1 + 8.57% x 82 = 8.027 clock cycles

*»» Cache Size = 256 KB, Block Size = 256 bytes

< AMAT =1 +0.49% x 112 = 1.549 clock cycles

Block Size

16 bytes
32 bytes
64 bytes
128 bytes
256 bytes

Cache Optimizations

Cache =4 KB
AMAT = 8.027
AMAT = 7.082
AMAT = 7.160
AMAT = 8.469
AMAT = 11.65

Cache =16 KB Cache = 64 KB

AMAT = 4.231
AMAT = 3.411
AMAT = 3.323
AMAT = 3.659
AMAT = 4.685

AMAT = 2.673
AMAT = 2.134
AMAT = 1.933
AMAT =1.979
AMAT = 2.288
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Larger Cache & Higher Associativity

¢ Increasing cache size reduces capacity misses

¢ |t also reduces conflict misses

<> Larger cache size spreads out references to more blocks
*» Drawback: longer hit time and higher cost

*» Higher associativity also improves miss rates

< Eight-way set associative is as effective as a fully associative
*» Drawback: longer hit time and more energy to access

% Larger caches are popular as 2"4 and 3 |level caches
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Next . ..

“+ Improving Cache Performance

* Software Optimizations to reduce Miss Rate

*» Hardware Cache Optimizations
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Software Optimizations

*» Can be done by the programmer or optimizing compiler

¢ Restructuring code affects data access
< Improves spatial locality

< Improves temporal locality
¢ Three optimizations
1. Loop Interchange
2. Loop Fusion
3. Blocking (also called Tiling)

*» In addition, software prefetching helps streaming data

< Prefetch array data in advance to eliminate cache misses

Cache Optimizations COE 501 — Computer Architecture - KFUPM Muhamed Mudawar — slide 14



Loop Interchange

Modern compilers optimize loops to reduce cache misses

// Original Code
for (j = @; j < N; j++)
for (i = 0; i < N; i++)
x[1][3] = 2 * y[i][]j]; // stride

Il
=

Original code traverses matrix by column

// After Loop Interchange
for (i = 0; i < N; i++)
for (j = ©0; j < N; j++)
x[1][j] = 2 * y[i][]J]; // stride = 1

Revised version takes advantage of spatial locality
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Loop Fusion

// Original Code
for (i = 0; i < N; i++)
a[i] = b[1i] + c[1i];
for (i = 0; i < N; i++)
d[i] = a[i] + b[i] * c[i];

Blocks are replaced in first loop then accessed in second

// After Loop Fusion
for (i = 0; i < N; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i] * c[i];
}

Revised version takes advantage of temporal locality
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Blocking (or Tiling)

Original code deals with multiple matrices
Matrix Y Is accessed by row, while Z is accessed by column

Loop interchange does not help

// Original Code for Matrix Multiplication
for (1 = 0; i < N; i++)
for (j = 0; j < N; j++) {
sum = O;
for (k = ©0; k < N; k++) {
sum = sum + y[i][k] * z[k][]];
}
x[1][J] = sum;

}
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Access Pattern for Matrix Multiply

x[1][]] y[1i][k] z[k]1[7]
— X
Matrix X is accessed Matrix Y Is accessed Matrix Z accessed by
by row. by row. column.
Exploits Rows are reused. No spatial locality.
Spatial locality. If large N then row Matrix Z Is reused.
blocks are replaced However, blocks are
=» cache misses. replaced =» misses.

Cache Optimizations COE 501 — Computer Architecture - KFUPM Muhamed Mudawar — slide 18



Restructuring Code with Blocking

// Blocking or Tiling (B = Block Size)
for (jj = 0; jj < N; jj = jj + B) {
for (kk = @; kk < N; kk = kk + B) {
for (i = 0; i < N; i++)
for (J = Jj; J < min(jj+B,N); J++) {
sum = O;
for (k = kk; k < min(kk+B,N); k++) {
sum = sum + y[i][k] * z[k][]];
}
x[1][3] = x[1][J] + sum;
Pyl

Matrix X should be initialized to zero

Block size I1s chosen such that blocks can fit in D-Cache
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Access Pattern with Blocking

x[1][]] y[i][k] z[k][]]

[
X

Sub-row of Matrix Y (consisting of B elements) is multiplied by a
sub-block of Matrix Z (consisting of BxB elements) to compute
(partially) a sub-row of Matrix X.

Exploits spatial and temporal localities in X, Y, and Z.
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Compiler-Controlled Prefetching

“+ Cache prefetch: load data into the cache only
*» Processor offers non-faulting cache prefetch instruction
“» Overlap execution with the prefetching of data
¢ Goal Is to hide the miss penalty & reduce cache misses

“ Example:

for (i=0; i<N; i++) {
prefetch(&a[i+P]);
prefetch(&b[i+P]);
sum = sum + a[i] * b[i];

}

¢ Can prefetching be done by hardware transparently?

How to estimate P?
Cost of Prefetch
Instructions?
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Next . ..

“+ Improving Cache Performance

s Software Optimizations to reduce Miss Rate

*» Hardware Cache Optimizations
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Hardware Cache Optimizations

Five hardware cache optimizations are considered:
1. Priority to Cache Read Misses over Writes

2. Hardware Prefetching of Instructions and Data
3. Pipelined Cache Access

4. Non-Blocking Caches

5. Multi-Ported and Multi-Banked Caches
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Priority fo Read Misses over Writes

** Reduces: Miss Penalty
*» Serve read misses before writes have completed

*» Write-Through Cache =» Write Buffer

< Read miss is served before completing writes in write buffer
<> Problem: write buffer might hold updated data on a read miss

= Solution: lookup write buffer and forward data (if buffer hit)

+» Write-Back Cache =» Victim Buffer

<> Read miss is served before writing back modified blocks
< Modified blocks that are evicted are moved into a victim buffer
< Problem: victim buffer might hold block on a read miss

= Solution: lookup victim buffer and forward block (if buffer hit)
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Hardware Prefetching

*»» Hardware observes instruction and data access patterns

< Prefetch instruction/data blocks before they are requested

*» Prefetch two blocks on a cache miss (most common)
< The requested block and the next consecutive block
< The requested block is placed in the cache

< The prefetched block is placed into a stream buffer
¢ If the requested block Is present in the stream buffer

< Read block from the stream buffer & issue next prefetch request
*» Multiple stream buffers for instruction & data prefetching

< Prefetching utilizes memory bandwidth and consumes energy

< If prefetched data is not used = negative impact on performance
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Speedup due to Hardware Prefetching
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Pipelined Cache Access

¢ Used mainly in the L1 Instruction and Data caches
¢ L1 cache latency is multiple clock cycles (2 to 4 cycles)
** However, L2 and L3 cache accesses are not pipelined

*» Advantages of Pipelined Cache Access
< Faster clock rate and higher bandwidth

<> Better for larger associativity

¢ Disadvantages
<> Increases latency of I-Cache and D-Cache
<> Increases branch penalty due to increased I-Cache latency

<> Increases load delay due to increased D-Cache latency
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Example of Pipelined Cache Access

= S i Parallel Access to Tag and
- - Data Array, Reduces
% SN ,g i Latency, Good for L1 cache
a a we | ,
word
. select | g Data 8 S 5
| 18 Arra S > o @
: | 8 y = = 5
| o) m ways S J Q
(s A |
U') T 1
= : - |
0 > o Ta ' S Z O |
N < % g > % » O S !
s Js Array )| @ I3 » I
S c &) > > =
o — Q > & > O " <
< : Q1 mways . © :
5 .2 5
L | i

Decode & Array Access Tag Check & Way Select

Cache Optimizations COE 501 — Computer Architecture - KFUPM Muhamed Mudawar — slide 28



Serial Access to Tag and Data Arrays

*» Tag array Is examined first for hit, then only one way Is accessed

| Tag Array Access | Data Array Access | i
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Non-Blocking Cache

*» Allows a cache to continue to supply hits under a miss
<> The processor need not stall on a cache miss

< Useful for out-of-order execution and multithreaded processors

** Hit under a Miss
<> Reduces the effective miss penalty

< Increases cache bandwidth

** Hit under Multiple Misses
< Multiple outstanding cache misses
< May further lower the effective miss penalty
< Increases the complexity of the cache controller

<> Beneficial if the memory system can service multiple misses
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Non-Blocking Cache Timeline

Blocking Cache M = Cache Miss = Stall
V

Execution Time Execution Time

Miss Penalty
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Effectiveness of Non-Blocking Cache

- —=— Hit-under-1-miss Hit-under-2-misses -3¢ Hit-under-64-misses
% 100‘:}"13 ; __“’_'_,_.-ﬂ._. r * * .
&c, gg%_ ) e o M o, Y
2 B0, e e Ml et
E ?DG),-" — e a Tt -
£ ° ¢
.S EU%—
B 50% e,
=
E 40%
NIQIG|lg|2lElD|2E|l2leLls|T(XI2X|0l8|E|lE|IR
HEEHEEEEE R IEEEE R EEREHEEE
o EW%EEME: ElIS|iclaolels|o|*" =
< S| | E S 2 4= “lald|le o
o O DG =
L T @
= T 3
SPECINT SPECFP
Hit-under-1-miss reduces the miss penalty by 9% (SPECINT) and 12.5% (SPECFP)
Hit-under-2-misses reduces the miss penalty by 10% (SPECINT) and 16% (SPECFP)

Copyright, Elsevier Inc. All rights reserved.

Cache Optimizations COE 501 — Computer Architecture - KFUPM Muhamed Mudawar — slide 32



Miss Status Holding Register (MSHR)

*» Contains the block address of the pending miss
<> Same block can have multiple outstanding load/store misses

<> Can also have multiple outstanding block addresses

*+ Misses can be classified into:
< Primary: first miss to a cache block that initiates a fetch request
<> Secondary: subseqguent miss to a cache block in transition

< Structural Stall miss: the MSHR hardware resource is fully utilized

V| Type [ Offset Destination or Data
V| Block address | <
v _[V] Type Offset Destination or Data
New miss address
Type: LD, SD, LW, SW, etc. Offset: block offset
match Destination register for load or Data for store
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Non-Blocking Cache Operation

** On Cache Miss, check MSHR for matched block address

< If found: allocate new load/store entry for matched block
< If not found: allocate new MSHR and load/store entry

< If all MSHR resources are allocated then Stall (Structural)

“* When cache block is transferred from lower-level memory
< Process the load and store instructions that missed in the block
< Load data from the specified block offset into destination register
< Store data in the data cache at the specified block offset

< De-allocate MSHR entry after completing all missed loads/stores
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Multi-Banked Cache

*+ Banks were originally used in main memory and DRAM chips

* They are now commonly used in cache memory (L1, L2, and L3)
¢ The cache is divided into multiple banks

¢ Multiple banks can be accessed independently and in parallel

“* Intel core 17 has 4 banks in L1 and 8 banks in L2
<> L1 cache banks can support 2 memory accesses per cycle
= To support high instruction execution rate in superscalar processors
<> L2 cache banks can handle multiple outstanding L1 cache misses
= To support non-blocking caches

< L2 and L3 cache banks also reduce energy per access = smaller arrays
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Multi-Banked Cache (cont'd)

¢ Partition address space into multiple banks

< Block-interleaved cache banks

Address

< Bank Address (BA) = Block Address mod N banks

Block Address
A

,

A

Tag

Index |BA| Offset

< When two requests map to same cache bank = Bank Conflict

< One request is allowed to proceed, while second request waits

*» Example: Sequential interleaving of blocks across 4 cache banks

<> Each cache bank is implemented using a tag array and a data array

Bank 0

Block O, 16, ...

Block 4, 20, ...

Index

Block 8, 24, ...

WNE=O

Block 12, 28, ...

Cache Optimizations

WNE=O

Bank 1

Block 1, 17, ...

Block 5, 21, ...

Block 9, 25, ...

Block 13, 29, ...

N = O

w

Bank 2

Block 2, 18, ...

Block 6, 22, ...

Block 10, 26, ...

Block 14, 30, ...

COE 501 — Computer Architecture - KFUPM
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Bank 3

Block 3, 19, ...

Block 7, 23, ...

Block 11, 27, ...

Block 15, 31, ...
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Multi-Ported, Multi-Banked Cache

*» Example: Dual-Ported Data Cache with four cache banks
<> Two address ports =» Two load / store instructions per cycle
< Four cache banks to reduce bank conflict
<> Each cache bank is set-associative with a tag array and data array

< Crossbar switches map addresses to cache banks and back to the ports

Cache

. Bank O
PortO: Inst, Addr, Rd, Data_in —> —> Port0: Data_out, Rd

Cache
Bank 1

Cache

Bank 2
Portl: Inst, Addr, Rd, Data_in —> —> Portl: Data out, Rd

Cache
Bank 3

2x4 switch
4x2 switch
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In Summary

<+ Reducing Hit Time and Energy

<> Smaller and simpler L1 caches

* Reducing Miss Rate
< Larger block size, larger capacity, and higher associativity
< Software (and compiler) optimizations

< Software and Hardware prefetching of instructions and data
“+ Reducing Miss Penalty

< Multi-level caches

<> Priority to read misses over writes, non-blocking cache

¢ Increasing Cache Bandwidth

< Pipelined, non-blocking, multi-ported, and multi-banked cache
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