
Cache Optimizations

COE 501
Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 2

Presentation Outline

� Improving Cache Performance

� Software Optimizations to reduce Miss Rate

� Hardware Cache Optimizations

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 3

Improving Cache Performance

� Average Memory Access Time (AMAT)

AMAT = Hit time + Miss rate × Miss penalty

� Used as a framework for optimizations

� Reduce the Hit time

� Small and simple caches

� Reduce the Miss Rate

� Larger block size, Larger cache size, and Higher associativity

� Reduce the Miss Penalty

� Multilevel caches, and giving reads priority over writes

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 4

Small and Simple Caches

� Reduce Hit time and Energy consumption

� Hit time is critical: affects the processor clock cycle

� Indexing a cache represents a time consuming portion

� Tag comparison in the tag array (hit or miss)

� Selecting the data (way) in set-associative cache

� Direct-mapped overlaps tag check with data transfer

� Associative cache uses additional mux and increases hit time

� Size of L1 caches has not increased much

� I-Cache and D-Cache are about 64KB in recent processors

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 5

Access Time vs Size/Associativity
A

cc
es

s
Ti

m
e

in
 p

ic
os

ec
on

ds

Copyright, Elsevier Inc. All rights reserved.

Cache Size & Associativity

CACTI, 40 nm technology, Single Bank, 64-Byte blocks

Results
depend on
technology

and detailed
design

assumptions

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 6

Energy Consumption Per Read
E

ne
rg

y
pe

r
R

ea
d

in
 n

an
o

jo
ul

es

Copyright, Elsevier Inc. All rights reserved.

Cache Size & Associativity

CACTI, 40 nm technology, 64-Byte blocks

Tags + Data
are read in

parallel.

Energy per
read is higher
for multi-way

set-associative
caches

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 7

Classifying Cache Misses – Three Cs

� Conditions under which cache misses occur

� Compulsory: program starts with no block in cache

� Also called cold start misses or first-reference misses

� Misses that would occur even if a cache has infinite size

� Capacity: misses happen because cache size is small

� Blocks are replaced and then later retrieved

� Misses that would occur even if cache is fully associative

� Conflict: misses happen because of limited associativity

� Limited number of blocks per set and non-optimal replacement

� 4th C: Coherence misses (discussed later)

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 8

Classifying Cache Misses

Compulsory misses are independent of cache size

Very small for long-running programs

Conflict misses decrease as
associativity increases

Data were collected using
LRU replacement

Capacity misses decrease as capacity
increases

Miss Rate

0

2%

4%

6%

8%

10%

12%

14%

1 2 4 8 16 32 64 128 KB

1-way

2-way

4-way

8-way

Capacity
Compulsory

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 9

Larger Block to Reduce Miss Rate

� Simplest way to reduce miss rate is to increase block size

� Large block size takes advantage of spatial locality

Block Size (bytes)

M
is

s
R

at
e

0%

5%

10%

15%

20%

25%

16 32 64 12
8

25
6

1K

4K

16K

64K

256K

Increased Conflict Misses

Reduced
Compulsory
Misses

64-byte

blocks are

common in

caches

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 10

Block Size Impact on AMAT

� Given: miss rates for different cache sizes & block sizes

� Memory latency = 80 cycles + 1 cycle per 8 bytes

� Latency of 16-byte block = 80 + 2 = 82 clock cycles

� Latency of 32-byte block = 80 + 4 = 84 clock cycles

� Latency of 256-byte block = 80 + 32 = 112 clock cycles

� Which block has smallest AMAT for each cache size?

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes 8.57% 3.94% 2.04% 1.09%

32 bytes 7.24% 2.87% 1.35% 0.70%

64 bytes 7.00% 2.64% 1.06% 0.51%

128 bytes 7.78% 2.77% 1.02% 0.49%

256 bytes 9.51% 3.92% 1.15% 0.49%

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 11

Block Size Impact on AMAT

� Solution: assume hit time = 1 clock cycle

� Regardless of block size and cache size

� Cache Size = 4 KB, Block Size = 16 bytes

� AMAT = 1 + 8.57% × 82 = 8.027 clock cycles

� Cache Size = 256 KB, Block Size = 256 bytes

� AMAT = 1 + 0.49% × 112 = 1.549 clock cycles

Block Size Cache = 4 KB Cache = 16 KB Cache = 64 KB Cache = 256 KB

16 bytes AMAT = 8.027 AMAT = 4.231 AMAT = 2.673 AMAT = 1.894

32 bytes AMAT = 7.082 AMAT = 3.411 AMAT = 2.134 AMAT = 1.588

64 bytes AMAT = 7.160 AMAT = 3.323 AMAT = 1.933 AMAT = 1.449

128 bytes AMAT = 8.469 AMAT = 3.659 AMAT = 1.979 AMAT = 1.470

256 bytes AMAT = 11.65 AMAT = 4.685 AMAT = 2.288 AMAT = 1.549

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 12

Larger Cache & Higher Associativity

� Increasing cache size reduces capacity misses

� It also reduces conflict misses

� Larger cache size spreads out references to more blocks

� Drawback: longer hit time and higher cost

� Higher associativity also improves miss rates

� Eight-way set associative is as effective as a fully associative

� Drawback: longer hit time and more energy to access

� Larger caches are popular as 2nd and 3rd level caches

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 13

Next . . .

� Improving Cache Performance

� Software Optimizations to reduce Miss Rate

� Hardware Cache Optimizations

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 14

Software Optimizations

� Can be done by the programmer or optimizing compiler

� Restructuring code affects data access

� Improves spatial locality

� Improves temporal locality

� Three optimizations

1. Loop Interchange

2. Loop Fusion

3. Blocking (also called Tiling)

� In addition, software prefetching helps streaming data

� Prefetch array data in advance to eliminate cache misses

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 15

Loop Interchange

Modern compilers optimize loops to reduce cache misses

// Original Code

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

x[i][j] = 2 * y[i][j]; // stride = N

Original code traverses matrix by column

// After Loop Interchange

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

x[i][j] = 2 * y[i][j]; // stride = 1

Revised version takes advantage of spatial locality

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 16

Loop Fusion

// Original Code

for (i = 0; i < N; i++)

a[i] = b[i] + c[i];

for (i = 0; i < N; i++)

d[i] = a[i] + b[i] * c[i];

Blocks are replaced in first loop then accessed in second

// After Loop Fusion

for (i = 0; i < N; i++) {

a[i] = b[i] + c[i];

d[i] = a[i] + b[i] * c[i];

}

Revised version takes advantage of temporal locality

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 17

Blocking (or Tiling)

Original code deals with multiple matrices

Matrix Y is accessed by row, while Z is accessed by column

Loop interchange does not help

// Original Code for Matrix Multiplication

for (i = 0; i < N; i++)

for (j = 0; j < N; j++) {

sum = 0;

for (k = 0; k < N; k++) {

sum = sum + y[i][k] * z[k][j];

}

x[i][j] = sum;

}

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 18

Access Pattern for Matrix Multiply

×=

x[i][j] y[i][k] z[k][j]

Matrix X is accessed
by row.
Exploits

Spatial locality.

Matrix Y is accessed
by row.

Rows are reused.
If large N then row
blocks are replaced
� cache misses.

Matrix Z accessed by
column.

No spatial locality.
Matrix Z is reused.

However, blocks are
replaced � misses.

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 19

Restructuring Code with Blocking

// Blocking or Tiling (B = Block Size)

for (jj = 0; jj < N; jj = jj + B) {

for (kk = 0; kk < N; kk = kk + B) {

for (i = 0; i < N; i++)

for (j = jj; j < min(jj+B,N); j++) {

sum = 0;

for (k = kk; k < min(kk+B,N); k++) {

sum = sum + y[i][k] * z[k][j];

}

x[i][j] = x[i][j] + sum;

} } }

Matrix X should be initialized to zero

Block size is chosen such that blocks can fit in D-Cache

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 20

Access Pattern with Blocking

×=

x[i][j] y[i][k] z[k][j]

Sub-row of Matrix Y (consisting of B elements) is multiplied by a

sub-block of Matrix Z (consisting of B×B elements) to compute

(partially) a sub-row of Matrix X.

Exploits spatial and temporal localities in X, Y, and Z.

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 21

Compiler-Controlled Prefetching

� Cache prefetch: load data into the cache only

� Processor offers non-faulting cache prefetch instruction

� Overlap execution with the prefetching of data

� Goal is to hide the miss penalty & reduce cache misses

� Example:

for (i=0; i<N; i++) {

prefetch(&a[i+P]);

prefetch(&b[i+P]);

sum = sum + a[i] * b[i];

}

� Can prefetching be done by hardware transparently?

How to estimate P?

Cost of Prefetch

Instructions?

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 22

Next . . .

� Improving Cache Performance

� Software Optimizations to reduce Miss Rate

� Hardware Cache Optimizations

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 23

Hardware Cache Optimizations

Five hardware cache optimizations are considered:

1. Priority to Cache Read Misses over Writes

2. Hardware Prefetching of Instructions and Data

3. Pipelined Cache Access

4. Non-Blocking Caches

5. Multi-Ported and Multi-Banked Caches

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 24

Priority to Read Misses over Writes

� Reduces: Miss Penalty

� Serve read misses before writes have completed

� Write-Through Cache � Write Buffer

� Read miss is served before completing writes in write buffer

� Problem: write buffer might hold updated data on a read miss

� Solution: lookup write buffer and forward data (if buffer hit)

� Write-Back Cache � Victim Buffer

� Read miss is served before writing back modified blocks

� Modified blocks that are evicted are moved into a victim buffer

� Problem: victim buffer might hold block on a read miss

� Solution: lookup victim buffer and forward block (if buffer hit)

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 25

Hardware Prefetching

� Hardware observes instruction and data access patterns

� Prefetch instruction/data blocks before they are requested

� Prefetch two blocks on a cache miss (most common)

� The requested block and the next consecutive block

� The requested block is placed in the cache

� The prefetched block is placed into a stream buffer

� If the requested block is present in the stream buffer

� Read block from the stream buffer & issue next prefetch request

� Multiple stream buffers for instruction & data prefetching

� Prefetching utilizes memory bandwidth and consumes energy

� If prefetched data is not used � negative impact on performance

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 26

Speedup due to Hardware Prefetching

Copyright, Elsevier Inc. All rights reserved.

Hardware Prefetching Turned ON

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 27

Pipelined Cache Access

� Used mainly in the L1 Instruction and Data caches

� L1 cache latency is multiple clock cycles (2 to 4 cycles)

� However, L2 and L3 cache accesses are not pipelined

� Advantages of Pipelined Cache Access

� Faster clock rate and higher bandwidth

� Better for larger associativity

� Disadvantages

� Increases latency of I-Cache and D-Cache

� Increases branch penalty due to increased I-Cache latency

� Increases load delay due to increased D-Cache latency

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 28

Example of Pipelined Cache Access

In
de

x
O

ffs
et

Ta
g

D
at

a-
in

A
dd

re
ss Tag

Array

m waysD
ec

od
er

Ta
g

C
he

ck

Data

Array

m waysD
ec

od
er

m
 ta

gs
m

 w
or

ds

D
at

a-
in

w
r

w
r

hi
t

D
at

a-
ou

t

w
ay

se

le
ct

Tag Check & Way Select

we

word
select

Ta
g

m
ux

Decode & Array Access

Parallel Access to Tag and

Data Array, Reduces

Latency, Good for L1 cache

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 29

Serial Access

to Tag and

Data Array,

Reduces

Energy, Good

for L2 and L3

caches

Serial Access to Tag and Data Arrays

Tag

Array

m ways

Data

Array

m ways

In
de

x
O

ffs
et

Ta
g

D
at

a-
in

A
dd

re
ss

D
ec

od
er

Ta
g

C
he

ck

D
ec

od
er

w
ay

hi
t

In
de

x
O

ffs
et

D
at

a-
in

w
r

w
r

hi
t

D
at

a-
ou

t

way select

Tag Array Access

& Tag Check

Data Array Access

Read & Write

Only one way

is accessed

we

� Tag array is examined first for hit, then only one way is accessed

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 30

Non-Blocking Cache

� Allows a cache to continue to supply hits under a miss

� The processor need not stall on a cache miss

� Useful for out-of-order execution and multithreaded processors

� Hit under a Miss

� Reduces the effective miss penalty

� Increases cache bandwidth

� Hit under Multiple Misses

� Multiple outstanding cache misses

� May further lower the effective miss penalty

� Increases the complexity of the cache controller

� Beneficial if the memory system can service multiple misses

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 31

Non-Blocking Cache Timeline

Miss Penalty

Execution TimeExecution Time

Blocking Cache M = Cache Miss = Stall

M

Miss Penalty

Execution TimeExecution Time

Hit Under 1 Miss M = Cache Miss, H = Hit, S = StallH S

Miss Penalty

Miss Penalty

Execution TimeExecution Time

Hit Under 2 Misses M M H S

Miss Penalty

M = Cache Miss, H = Hit, S = Stall

Miss Penalty

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 32

Effectiveness of Non-Blocking Cache

Copyright, Elsevier Inc. All rights reserved.

Hit-under-1-miss reduces the miss penalty by 9% (SPECINT) and 12.5% (SPECFP)

Hit-under-2-misses reduces the miss penalty by 10% (SPECINT) and 16% (SPECFP)

R
e

d
u

ct
io

n
 i

n
 M

is
s

P
e

n
a

lt
y

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 33

Miss Status Holding Register (MSHR)

� Contains the block address of the pending miss

� Same block can have multiple outstanding load/store misses

� Can also have multiple outstanding block addresses

� Misses can be classified into:

� Primary: first miss to a cache block that initiates a fetch request

� Secondary: subsequent miss to a cache block in transition

� Structural Stall miss: the MSHR hardware resource is fully utilized

V Block address

=New miss address

match

V Type Offset Destination or Data

V Type Offset Destination or Data

. . .

Type: LD, SD, LW, SW, etc. Offset: block offset

Destination register for load or Data for store

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 34

Non-Blocking Cache Operation

� On Cache Miss, check MSHR for matched block address

� If found: allocate new load/store entry for matched block

� If not found: allocate new MSHR and load/store entry

� If all MSHR resources are allocated then Stall (Structural)

� When cache block is transferred from lower-level memory

� Process the load and store instructions that missed in the block

� Load data from the specified block offset into destination register

� Store data in the data cache at the specified block offset

� De-allocate MSHR entry after completing all missed loads/stores

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 35

Multi-Banked Cache

� Banks were originally used in main memory and DRAM chips

� They are now commonly used in cache memory (L1, L2, and L3)

� The cache is divided into multiple banks

� Multiple banks can be accessed independently and in parallel

� Intel core i7 has 4 banks in L1 and 8 banks in L2

� L1 cache banks can support 2 memory accesses per cycle

� To support high instruction execution rate in superscalar processors

� L2 cache banks can handle multiple outstanding L1 cache misses

� To support non-blocking caches

� L2 and L3 cache banks also reduce energy per access � smaller arrays

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 36

Multi-Banked Cache (cont'd)

� Partition address space into multiple banks

� Block-interleaved cache banks

� Bank Address (BA) = Block Address mod N banks

� When two requests map to same cache bank � Bank Conflict

� One request is allowed to proceed, while second request waits

� Example: Sequential interleaving of blocks across 4 cache banks

� Each cache bank is implemented using a tag array and a data array

0

1

2

3

Bank 0

Block 0, 16, …

Block 4, 20, …

Block 8, 24, …

Block 12, 28, …

In
d

e
x

0

1

2

3

Bank 1

Block 1, 17, …

Block 5, 21, …

Block 9, 25, …

Block 13, 29, …

0

1

2

3

Bank 2

Block 2, 18, …

Block 6, 22, …

Block 10, 26, …

Block 14, 30, …

0

1

2

3

Bank 3

Block 3, 19, …

Block 7, 23, …

Block 11, 27, …

Block 15, 31, …

OffsetBAIndexTag

Block Address

Address

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 37

Multi-Ported, Multi-Banked Cache

� Example: Dual-Ported Data Cache with four cache banks

� Two address ports � Two load / store instructions per cycle

� Four cache banks to reduce bank conflict

� Each cache bank is set-associative with a tag array and data array

� Crossbar switches map addresses to cache banks and back to the ports

2×
4

sw
itc

h
Cache
Bank 0

Port0: Inst, Addr, Rd, Data_in

Port1: Inst, Addr, Rd, Data_in

Cache
Bank 1

Cache
Bank 2

Cache
Bank 3

4×
2

sw
itc

h

Port0: Data_out, Rd

Port1: Data_out, Rd

Cache Optimizations COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 38

In Summary

� Reducing Hit Time and Energy

� Smaller and simpler L1 caches

� Reducing Miss Rate

� Larger block size, larger capacity, and higher associativity

� Software (and compiler) optimizations

� Software and Hardware prefetching of instructions and data

� Reducing Miss Penalty

� Multi-level caches

� Priority to read misses over writes, non-blocking cache

� Increasing Cache Bandwidth

� Pipelined, non-blocking, multi-ported, and multi-banked cache

