
Instruction Set Principles

and Architectures

COE 501
Computer Architecture

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 2

Instruction Set Architecture

� Critical interface between software and hardware

� Set of instructions, each is directly executed in hardware

� Programmer's visible instruction set

� Programmer's visible state (registers and memory)

� Lasts through generations (backward compatibility)

� Used in desktops, servers, and embedded applications

� Provides convenient functionality to higher level software

� Permits an efficient implementation at lower levels

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 3

Evolution of Instruction Sets

. . .

Memory

. . .

Processor

Lo
ad

/S
to

re

Register-RegisterAccumulator Register-Memory

Processor
. . .

ALU

Memory

. . .

Stack

. . .

ALU

Memory

. . .

Processor

TOP

P
us

h/
P

opALU

Memory

. . .

Processor

Lo
ad

/S
to

re

C=A+B

Load [A]
Add [B]
Store [C]

Push [A]
Push [B]
Add
Pop [C]

Load R1, [A]
Add R1, [B]
Store R1, [C]

ALU

Load R1, [A]
Load R2, [B]
Add R3, R1, R2
Store R3, [C]

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 4

Classifying Instruction Sets

� Early Instruction Set Architectures

� Accumulator-based or Stack-based

� Replaced with General-Purpose Register (GPR) architectures

� Three classes or general-purpose register architectures

1. Register-Register (or Load-Store) Architecture (RISC)

� Can access memory only via load and store instructions

2. Register-Memory Architecture (CISC)

� Can access a memory location as part of any instruction

3. Memory-Memory Architecture (not used today)

� Can access two or three memory locations per instruction

� Large variation in instruction size and work per instruction (CPI)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 5

� Zero-address format: Stack machines

� ADD Stack[SP-1] � Stack[SP] + Stack[SP-1]

� Usually top of stack is kept in high-speed registers

� One-address format: Accumulator machines

� ADD [X] AC � AC + Memory[X]

� Two-address format: destination = first source operand

� ADD R1, R2 Reg[R1] � Reg[R1] + Reg[R2]

� ADD R1, [X] Reg[R1] � Reg[R1] + Memory[X]

� ADD [X], [Y] Memory[X] � Memory[X] + Memory[Y]

� Three-address format: most RISC architectures

� ADD R1, R2, R3 Reg[R1] � Reg[R2] + Reg[R3]

Variety of Instruction Formats

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 6

Memory Addressing

� Most architectures define memory as byte addressable

� A memory address can provide access to …

� A byte (8 bits), 2 bytes, 4 bytes, 8 bytes, or more bytes

� The word size is defined differently by architectures

� The word size = 2 bytes (Intel x86), 4 bytes (MIPS), or larger

� Two conventions for ordering bytes within a larger object

1. Little Endian byte ordering

� Memory address X = address of least-significant byte (Intel x86)

2. Big Endian byte ordering

� Memory address X = address of most-significant byte (SPARC)

Byte 0Byte 1Byte 2Byte 3 32-bit Register

x+3 xx+1x+2

Byte 3Byte 2Byte 1Byte 0 32-bit Register

x x+3x+2x+1

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 7

Memory Alignment

� Address A must be multiple of data size: A mod size = 0

� Why? because misalignment complicates hardware implementation

Address mod 16 = Lower 4 bits of address in hexadecimal

0 1 2 3 4 5 6 7 8 9 A B C D E F

Aligned-2 Aligned-2 Aligned-2 Aligned-2 Aligned-2 Aligned-2 Aligned-2 Aligned-2

Aligned (4 bytes) Aligned (4 bytes) Aligned (4 bytes) Aligned (4 bytes)

Aligned (8 bytes) Aligned (8 bytes)

Misaligned (8 bytes) Misaligned (4 bytes) Misalign-2

Misaligned (8 bytes) Misaligned (4 bytes) Aligned-2

Misaligned (8 bytes) Misaligned (4 bytes)

Misalign-2 Misaligned (8 bytes) Aligned (4 bytes)

Misaligned (4 bytes) Misaligned (8 bytes)

Misaligned (4 bytes) Misaligned (8 bytes)

Misaligned (4 bytes) Misaligned (8 bytes)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 8

Addressing Modes (Commonly Used)

� How instructions specify the addresses of their operands

� Operands can be in registers, constants, or in memory

Mode Example Meaning When used

Register ADD R1, R2, R3 R1 � R2 + R3 Values in registers

Immediate ADD R1, R2, 100 R1 � R2 + 100 For constants

Register Indirect LD R1, [R2] R1 � Mem[R2] R2 contains address

Displacement LD R1, [R2, 8] R1 � Mem[R2 + 8] Address local variables

Absolute LD R1, [1000] R1 � Mem[1000] Address static data

Indexed LD R1, [R2, R3] R1 � Mem[R2 + R3] R2=base, R3=index

Scaled Index LD R1, [R2, R3, s] R1 � Mem[R2 + R3 << s] s = scale factor

Pre-update LD R1, [R2, 8] !
R2 � R2 + 8
R1 � Mem[R2]

Address is pre-updated
Using pointer to traverse array

Post-update LD R1, [R2], 8
R1 � Mem[R2]
R2 � R2 + 8

Address is post-updated
Using pointer to traverse array

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 9

Types and Size of Operands

� Common operand types:

� ASCII character = 1 byte (64-bit register can store 8 characters)

� Unicode character or Short integer = 2 bytes = 16 bits (half word)

� Integer = 4 bytes = 32 bits (word size on many RISC processors)

� Single-precision float = 4 bytes = 32 bits (word size)

� Long integer = 8 bytes = 64 bits (double word)

� Double-precision float = 8 bytes = 64 bits (double word)

� Extended-precision float = 10 bytes = 80 bits (Intel architecture)

� Quad-precision float = 16 bytes = 128 bits (quad word)

� 32-bit versus 64-bit architectures

� 64-bit architectures support 64-bit operands & memory addresses

� Older architectures were 32-bit (can address 4 GB of memory)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 10

Data Accesses by Size

The double-word data type is used for double-precision
floating-point and for 64-bit memory addresses

Copyright © 2019, Elsevier Inc. All rights Reserved.

Data obtained from the

SPEC CPU 2000 benchmark

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 11

Operations in the Instruction Set

� Integer Arithmetic and Logical

� Integer arithmetic: ADD, SUB, SHIFT, MUL, DIV, etc.

� Logical operations: AND, OR, XOR, NOR, etc.

� Data Transfer and Data Conversions

� Load, Store, Move data between registers

� Convert data between different formats: integer, floating-point, …

� Control: branch, jump, procedure call, return, and traps

� System: Operating system calls and memory management

� Binary and Decimal Floating-point operations

� Graphics: pixel and vertex operations, compression, etc.

� SIMD instructions operate in parallel on many data elements

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 12

Breakdown of Control Instructions

� Procedure Call and Return

� Unconditional Jump

� Conditional Branch

Conditional Branch
clearly dominate

Data is obtained from the

SPEC CPU 2000 benchmark

Copyright © 2019,
Elsevier Inc. All rights Reserved.

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 13

Addressing Modes for Control

How to specify the target address for control instructions?

� PC-relative addressing for branch instructions

� PC-relative offset is added to the program counter (PC)

� The target instruction is often near the branch instruction

� Position independent code: can be loaded anywhere in memory

� As a register (or memory) containing the target address

� For procedure return and indirect jumps

� For case or switch statements

� For methods in object-oriented languages

� For high-order functions or function pointers

� For dynamically shared libraries that are loaded/linked at runtime

� As a direct address in the instruction format

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 14

Conditional Branch Options

Option Examples How Tested Advantages Disadvantages

Condition Code
(Z, N, C, V)

Intel x86,
ARM,
PowerPC

Tests special bits set
by ALU and compare
instructions

Set as a side
effect of some
ALU instructions

Extra state, constrains
ordering of instructions

Condition
Register

Alpha,
MIPS

Comparison result
put in a register

Simple
Extra compare
instruction for general
condition

Compare
and Branch

MIPS,
PA-RISC

Compare is part of
the branch

One instruction
rather than two
for a branch

May be too much work
for pipelined execution

� Different techniques are used for branches based on integer
versus floating-point comparisons

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 15

Procedure Call Options

� At a minimum, the return address should be saved

� In a special link register, in a GPR, or in memory on the stack

� Some architectures can save/restore many registers

� The compiler should select which registers to save and restore

� Two basic conventions to preserve registers

� By the caller before making a procedure CALL (Caller-Saved)

� Inside the procedure before modifying registers (Callee-Saved)

� Software conventions to reduce register saving

� Which registers should be preserved by the caller and which ones

should be preserved inside the procedure

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 16

Encoding an Instruction Set

� Variable Encoding

� Instruction length is a variable number of bytes

� Allows all addressing modes to be used with all operations

� Examples: Intel x86 and VAX

� Fixed Encoding

� All instructions have a single fixed size, typically 32 bits

� Combines the addressing mode with the opcode

� Examples: MIPS, ARM, Power, SPARC, etc.

� Hybrid Encoding

� Few instruction lengths � reduces the variability in length

� Compressed encoding of some frequently used instructions

� Examples: micro MIPS and ARM Thumb

Instruction
encoding

impacts the
code size

and ease of
decoding
inside the
processor

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 17

Things to Remember …
� Major reasons for GPR architectures

� Registers are faster than memory and reduce memory traffic

� General-Purpose Registers are easier for a compiler to use

� Register-Register architectures are simpler than Register-Memory

� Programs with aligned memory references run faster

� Misalignment requires multiple aligned memory references

� Addressing modes specify …

� Registers, constants, and memory locations

� Simple addressing modes are frequently used

� 32 bits can address at most 4GB, 64 bits can address 16 Exabytes

� Most frequently used instructions are the simplest ones

� Instruction encoding impacts size and ease of decoding

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 18

IBM 360 Architecture

� The term “Computer Architecture” was coined by IBM in 1964

� First true Instruction Set Architecture (ISA)

� Portable software on different models, compiler, assembler, linker

� Milestone: one of the most successful computers in history

� IBM 360 ISA hid the technological differences between models

� Model 30 (64 KB, 0.03 MIPS), Model 67 (1 MB, virtual memory, 1 MIPS)

� Machine is capable of supervising itself

� IBM Operating System/360

� Dynamic Address Translation to support time-sharing

� General method for connecting I/O devices (simple to assemble)

� Built-in hardware fault checking to reduce down time

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 19

� Processor State: 32-bit machine with 24-bit addresses

� 16 General-Purpose 32-bit Registers

� 4 Floating-Point 64-bit Registers

� Instruction Address register, Condition codes

� Data Formats

� 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words

� This is why bytes are 8-bit long today

� 64-bit Floating-point precision

� Model 91: Out-of-Order execution for scientific computing

� Instruction Types and Formats

� Register-Register, Register-Memory, and Memory-Memory

� 2-Byte RR format, 4-Byte RX format, and 6-Byte SS format

IBM 360 Architecture (cont'd)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 20

IBM 360 Model 30

CPU Disk

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 21

IBM 360: 50 years later zSeries z12
�Six-core design (large cores)

� 2.75 billion transistors (597 mm2)

� 32 nm technology (13 layers)

�The z12 runs at 5.5 GHz to 6 GHz

�Power = 300 Watts (liquid cooling)

� I-Cache: 64KB L1 + 1MB L2 per core

�D-cache: 96KB L1 + 1MB L2 per core

�On-chip shared L3: 48MB eDRAM

� 64-bit virtual addressing

� Original S/360 was 24-bit, S/370 was 32-bit

�Out-of-order superscalar pipeline

� Six execution units per core

� Optimized for single-thread performance

The IBM zSeries
z12 Die [2012]

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 22

Intel x86 Architecture

� Difficult to understand and impossible to love!

� Developed by independent groups (over 30+ years)

� 8086 (1978): 16-bit registers, 20-bit address, segmentation

� 8087 (1980): FP coprocessor, FP instructions, FP register stack

� 80286 (1982): 24-bit address space, protected mode

� 80386 (1985): 32-bit architecture, Paging (4 KB pages), MMU

� 80486 (1989): pipelined, on-chip caches and x87 FPU (80-bit)

� Pentium (1993): two pipelines U&V, 64-bit databus, MMX

� Pentium Pro (1995): µop translation, Out-of-order, L2 cache

� Pentium III (1999): SSE instructions, 128-bit XMM registers

� Pentium 4 (2001): deeply pipelined, SSE2, hyper-threading

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 23

Intel x86 Architecture (cont’d)

� Further developments …

� AMD64 (2003): AMD extended Intel x86 architecture to 64 bits

� Intel x86-64 (2004): Intel adopted AMD64, added SSE3

� Intel Core (2006): 64-bit integer, low-power, multi-core, SSE4

� Intel Core i3/i5/i7 (2008): L3 cache, QuickPath interconnect

� Intel Atom (2008): In order execution, low-power, on-die GPU

� AVX: Advanced Vector eXtension (2008): 256-bit YMM registers

� AVX-512: expands AVX into 512-bit ZMM registers

� Intel Xeon Phi (2012): Many Integrated Cores (MIC)

� 62 Cores (Pentium), AVX-512, 4 threads/core, 1+ Teraflops

� Market Success ≠ Technical Elegance

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 24

Intel x86-64 Basic Registers

CS

SS

DS

ES

FS

GS

Segment
Registers

16 bits

CF = Carry Flag

OF = Overflow Flag

ZF = Zero Flag

SF = Sign Flag

Word = 16 bits

Double = 32 bits

Quad = 64 bits

EAX = 32 bits

ECX = 32 bits

EDX = 32 bits

EBX = 32 bits

ESP = 32 bits

EBP = 32 bits

ESI = 32 bits

EDI = 32 bits

RAX = R0

RCX = R1

RDX = R2

RBX = R3

RSP = R4

RBP = R5

RSI = R6

RDI = R7

EIP = 32 bitsRIP

EFLAGS = 32 bitsRFLAGS

Extended to 64 bits

R8d = 32 bits

R9d = 32 bits

R10d = 32 bits

R11d = 32 bits

R12d = 32 bits

R13d = 32 bits

R14d = 32 bits

R15d = 32 bitsA
dd

iti
on

al
 r

eg
is

te
rs

in

64
-b

it
m

od
e

R8

R9

R10

R11

R12

R13

R14

R15

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 25

MOV Instruction
� MOV has different meanings according to source and destination

� Three types of source operands:

� Immediate: constant encoded in the instruction

� Source Register: register number is encoded in the instruction

� Memory: address is computed according to memory addressing mode

� Two types of destination operands: Register or Memory

� However, Memory to Memory transfer is not allowed

Instruction Meaning Comment

MOV Rd, Rs Rd = Rs Register copy

MOV Rd, Imm Rd = Imm Initialize Rd with Immediate

MOV Rd, [mem] Rd = [mem] Load register Rd from memory

MOV [mem], Rs [mem] = Rs Store register Rs in Memory

MOV [mem], Imm [mem] = Imm Store immediate in Memory

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 26

Data Movement Instructions

� MOVZX and MOVSX: src can be a register or memory location

� Value is copied into destination register Rd with zero or sign extension

� PUSH and POP use the Stack Pointer register RSP

� XCHG: exchange two registers or a register with memory

� Not all instructions are listed, only the commonly used ones

Instruction Meaning Comment

MOVZX Rd, src Rd = zero_extend(src) Move with zero extend

MOVSX Rd, src Rd = sign_extend(src) Move with sign extend

PUSH src RSP –= 8 ; [RSP] = src Push src value on stack

POP dest dest = [RSP] ; RSP += 8 Pop top of stack

XCHG dest, src {dest,src} = {src,dest} Exchange src with dest

LEA Rd, [mem] Rd = address_of(mem) Load effective address

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 27

Arithmetic Instructions
Instruction Meaning Comment

ADD Rd, Rs Rd = Rd + Rs Register to Register

ADD Rd, Imm Rd = Rd + Imm Register Immediate

ADD Rd, [mem] Rd = Rd + [mem] Source Memory

ADD [mem], Rs [mem] = [mem] + Rs Destination Memory

ADD [mem], Imm [mem] = [mem] + Imm Destination Memory

SUB dest, src dest = dest – src Multiple opcodes

ADC dest, src dest = dest + src + CF Add with Carry Flag

SBB dest, src dest = dest – src – CF Subtract with Borrow

NEG dest dest = -dest Negate (2's complement)

INC dest dest = dest + 1 Faster than: ADD dest, 1

DEC dest dest = dest – 1 Faster than: SUB dest, 1

� Arithmetic Instruction update flags in RFLAGS
CF = Carry Flag, OF = Overflow Flag, SF = Sign Flag, ZF = Zero Flag

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 28

Logic and Shift Instructions
Instruction Meaning Comment

AND dest, src dest = dest & src Bitwise AND

OR dest, src dest = dest | src Bitwise OR

XOR dest, src dest = dest ^ src Bitwise XOR

NOT dest dest = ~dest Bitwise NOT

SHL dest, src dest = dest <<0 src Shift Left (insert zeros)

SHR dest, src dest = dest 0>> src Shift Right (insert zeros)

SAR dest, src dest = dest s>> src Shift Arithmetic Right

ROR dest, src Rotate Right

ROL dest, src Rotate Left

� Destination (dest) can be a register Rd or memory location

� Source (src) can be a register Rs, immediate, or memory location

� Destination and source cannot be both memory locations

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 29

Integer Multiply and Divide Instructions

Instruction Meaning Comment

MUL src RDX:RAX = RAX * src 64 × 64 bits = 128 bits

IMUL src RDX:RAX = RAX * src Signed Multiplication

IMUL dest, src dest = dest * src Multiple opcodes

DIV src
RAX = RDX:RAX / src

RDX = RDX:RAX % src

Unsigned Division

RDX = remainder

IDIV src
RAX = RDX:RAX / src

RDX = RDX:RAX % src

Signed Division

RDX = remainder

� MUL does unsigned multiplication, IMUL does signed multiply

� 128-bit result is written to RDX (upper 64 bits) and RAX (lower 64 bits)

� IMUL can have 2 operands: 64-bit result is written to destination
register or memory. Upper 64-bit of product is discarded.

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 30

Intel x86 Memory Addressing Modes

� Base Register: any general purpose register (16 registers)

� Index Register: any general purpose register, except RSP

� Scale factor: 1, 2, 4, or 8 multiplied by the index value

� Displacement: optional 8-bit, 16-bit, or 32-bit constant value

Base

RAX

RBX

RCX

RDX

RSI

RDI

RSP

RBP

R8 - R15

RAX

RBX

RCX

RDX

RSI

RDI

RBP

R8 - R15

1

2

4

8

Index Scale

+ × +

Displacement

None

8-bit

16-bit

32-bit

+ × +

Examples:
mov eax, [rbx]

mov [rbx + 16], rdx

add r10, [r11 + rsi]

and r12, [rdi*4 + 100]

sub [r8 + r9*8 – 100], rax

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 31

Flow Control Instructions
Instruction Meaning Comment

JMP target RIP = target Unconditional Jump

JMP Rs/[mem] RIP = Rs/[mem] Indirect Jump

CMP src1,src2 Compute (src1 – src2) Only flags are modified

Jcond target if (cond) RIP = target Conditional Jump

CALL target Push(RIP); RIP=target Push Return Addr on stack

CALL Rs/[mem] Push(RIP); RIP=Rs/[mem] Indirect Call

RET RIP = pop() Pop & Jump to return addr

RET Imm RIP = pop(); RSP+=Imm Return & pop Imm bytes

� Conditional Jump Instructions:

� JZ/JE (ZF=1), JNZ/JNE (ZF=0), JC (CF=1), JNC (CF=0), JO, JNO, JS, JNS

� Signed: JL (SF ≠ OF), JGE (SF = OF), JLE (SF ≠ OF or ZF = 1), JG

� Unsigned: JB (CF = 1), JAE (CF = 0), JBE (CF = 1 or ZF = 1), JA

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 32

Intel x86-64 Instruction Format

� Variable instruction length and complex encoding ����

� REX (Reg Extension) prefix to address R8 to R15 in 64-bit mode

� Addressing modes (ModR/M and SIB bytes)

� Base or scaled index with 8, 16, or 32-bit displacement

� Immediate operand (if needed), can be 8 bytes in 64-bit mode

00 � No disp

01 � 8-bit disp

10 � 16 or 32-bit

11 � reg to reg

4, or 8

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 33

Complex Encoding of x86 Instructions

Some Instructions can be

very long (up to 17 bytes)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 34

Top 10 Integer Instructions for Intel x86

1. Load: 22% (read from memory)

2. Conditional branch: 20%

3. Compare: 16%

4. Store: 12% (write to memory)

5. Add: 8%

6. And: 6%

7. Sub: 5%

8. Move register-register: 4%

9. Call: 1% (function call)

10. Return: 1% (function return)

Total = 96% of instructions executed

Percentages are based
on five SPEC INT 92

programs

The most widely
executed instructions are
the simplest operations

of an instruction set

Top-10 instructions
account for 96% of

instructions executed

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 35

Intel x86-64 FPU & XMM Registers

x87 FPU Registers
ST0 = 80 bits

ST1 = 80 bits

ST2 = 80 bits

ST3 = 80 bits

ST4 = 80 bits

ST5 = 80 bits

ST6 = 80 bits

ST7 = 80 bits

XMM0 = 128 bits

XMM1 = 128 bits

XMM2 = 128 bits

XMM3 = 128 bits

XMM4 = 128 bits

XMM5 = 128 bits

XMM6 = 128 bits

XMM7 = 128 bits

XMM8 = 128 bits

XMM9 = 128 bits

XMM10 = 128 bits

XMM11 = 128 bits

XMM12 = 128 bits

XMM13 = 128 bits

XMM14 = 128 bits

XMM15 = 128 bits

A
dd

iti
on

al
re

gi
st

er
s

in
64

-b
it

m
od

e

XMM Registers

MXCSR

FP Status

FPU IP

FPU DP

Top of stack

Condition codes

Exception Flags

FP Control
Precision control

Rounding control

Exception masks

Saved for

Exception

Handlers

Rounding Control

Exception Masks

Exception Flags

Replaced By

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 36

SSE Instruction Set

� SSE = Streaming SIMD Extension

� SIMD instructions operate in parallel on multiple data packed in a register

� SSE Instructions consist of the following:

� Data movement instructions

� Arithmetic Instructions

� Logical Instructions

� Comparison Instructions

� Conversion Instructions

� The SSE instruction set introduced 70 new instructions

� SSE2 added 144 more instructions to SSE

� SSE3 added 13 more instructions

� SSE4 added 54 more instructions

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 37

SSE Scalar Instructions

Scalar Single-Precision
Floating-Point Instructions (SSE)

MOVSS, ADDSS, SUBSS, …

MULSS, DIVSS, SQRTSS, …

MAXSS, MINSS, CMPSS, …

A1

B1

A1 A0

B0

A0 op B0

op

128-bit XMM Registers

Scalar Double-Precision
Floating-Point Instructions (SSE2)

MOVSD, ADDSD, SUBSD, …

MULSD, DIVSD, SQRTSD, …

MAXSD, MINSD, CMPSD, …

A3 A2 A1 A0

B3 B2 B1 B0

A3 A2 A1 A0 op B0

op

128-bit XMM Registers

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 38

A1 op B1

B1

SSE Parallel (SIMD) Instructions

A3 A2 A1 A0

B3 B2 B1 B0

A3 op B3 A2 op B2 A1 op B1 A0 op B0

op op op op

128-bit XMM Registers

Packed Single-Precision
Floating-Point Instructions (SSE)

MOVAPS, MOVUPS, …

ADDPS, SUBPS, MULPS, …

MAXPS, MINPS, CMPPS, …

A1 A0

B0

A0 op B0

op op

128-bit XMM Registers

Packed Double-Precision
Floating-Point Instructions (SSE2)

MOVAPD, MOVUPD, …

ADDPD, SUBPD, MULPD, …

MAXPD, MAXPD, CMPPD, …

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 39

SSE/2 Data Movement Instructions

� dest: can be xmm register or [mem]

� src: can be xmm register or [mem]

� However, memory to memory operations are not allowed

� MOVD and MOVQ: either dest or src is an integer GPR

Instruction Meaning

MOVSS dest, src Move Scalar (S=32-bit float) from src to dest

MOVSD dest, src Move Scalar (D=64-bit float) from src to dest

MOVAPS dest, src Move Aligned Packed floats (16 bytes)

MOVUPS dest, src Move Unaligned Packed floats (16 bytes)

MOVAPD dest, src Move Aligned Packed double-precision floats

MOVUPD dest, src Move Unaligned Packed double-precision floats

MOVD dest, src Move Double-word (32 bits) between GPR and XMM

MOVQ dest, src Move Quad-word (64 bits) between GPR and XMM

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 40

SSE/2 Floating-Point Instructions
Instruction Meaning

ADDSS dest, src Add Scalar S=32-bit floats (low 32-bit)

ADDPS dest, src Add Packed S=32-bit floats (4 elements)

ADDSD, ADDPD Add Scalar/Packed D=64-bit floats (2 elements)

SUBSS, SUBPS Subtract Scalar/Packed S=32-bit floats

SUBSD, SUBPD Subtract Scalar/Packed D=64-bit floats

MULSS, MULPS Multiply Scalar/Packed S=32-bit floats

MULSD, MULPD Multiply Scalar/Packed D=64-bit floats

DIVSS, DIVPS Divide Scalar/Packed S=32-bit floats

DIVSD, DIVPD Divide Scalar/Packed D=64-bit floats

MAXSS, MAXPS Maximum Scalar/Packed S=32-bit floats

MAXSD, MAXPD Maximum Scalar/Packed D=64-bit floats

CMPSS, CMPPS Compare Scalar/Packed S=32-bit floats (8 cond)

CMPSD, CMPPD Compare Scalar/Packed D=64-bit floats (8 cond)

� This is only a short list of some important SSE/SSE2 instructions

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 41

Intel x86 Instruction Set Expansion

?

More than 1200 instructions with the

introduction of AVX instructions

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 42

The MIPS Architecture
� Announced in 1985: MIPS I,II,III,IV,V, MIPS32, MIPS64

� MIPS64 has 32 × 64-bit general-purpose registers

� Named R0 to R31 (also known as integer registers)

� Register R0 is always zero and cannot be written

� There are also 32 × 64-bit floating-point registers

� Named F0 to F31 for double-precision FP numbers

� Single-precision FP numbers use the lower 32-bit of the register

� Integer and Floating-Point data types for MIPS64

� 8-bit bytes, 16-bit half words, 32-bit words, and 64-bit long words

� 32-bit single-precision and 64-bit double precision

� Latest MIPS64 release eliminated the HI and LO registers

� Multiply and Divide instructions write their results into GPR registers

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 43

MIPS Instruction Formats

� All instructions are 32 bits with a 6-bit primary opcode

� These are the main instruction formats, not the only ones

rs

sa

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 44

MIPS Load and Store Instructions

� Load/Store instructions use the I-Format with 16-bit displacement

Instruction Name Meaning

LD Rt, Imm(Rs) Load double word Reg[Rt] �64 Mem[Reg[Rs] + Imm]

LW Rt, Imm(Rs) Load word Reg[Rt] �32 Mem[Reg[Rs] + Imm] (sign-extend)

LH Rt, Imm(Rs) Load half word Reg[Rt] �16 Mem[Reg[Rs] + Imm] (sign-extend)

LB Rt, Imm(Rs) Load byte Reg[Rt] �8 Mem[Reg[Rs] + Imm] (sign-extend)

LWU Rt, Imm(Rs) Load word unsigned Reg[Rt] �32 Mem[Reg[Rs] + Imm] (zero-extend)

LHU Rt, Imm(Rs) Load half unsigned Reg[Rt] �16 Mem[Reg[Rs] + Imm] (zero-extend)

LBU Rt, Imm(Rs) Load byte unsigned Reg[Rt] �8 Mem[Reg[Rs] + Imm] (zero-extend)

SD Rt, Imm(Rs) Store double word Mem[Reg[Rs] + Imm] �64 Reg[Rt]

SW Rt, Imm(Rs) Store word Mem[Reg[Rs] + Imm] �32 Reg[Rt] (lower 32-bit)

SH Rt, Imm(Rs) Load half word Mem[Reg[Rs] + Imm] �16 Reg[Rt] (lower 16-bit)

SB Rt, Imm(Rs) Load byte Mem[Reg[Rs] + Imm] �8 Reg[Rt] (lower 8-bit)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 45

MIPS Floating-Point Load and Store

� Coprocessor 1 (C1) means the Floating-Point unit

� The FI-Format is used for floating-point load/store instructions

� Displacement Addressing: Address = Reg[Rs] + Imm16

� Data should be aligned in memory

� Loading less than 64 bits � Data is extended to 64 bits

� Storing less than 64 bits � Lower bit are written to memory

Instruction Name Meaning

LDC1 Ft, Imm(Rs) Load double to FP Reg[Ft] �64 Mem[Reg[Rs] + Imm]

LWC1 Ft, Imm(Rs) Load word to FP Reg[Ft] �32 Mem[Reg[Rs] + Imm] (zero-extend)

SDC1 Ft, Imm(Rs) Store FP double Mem[Reg[Rs] + Imm] �64 Reg[Ft]

SWC1 Ft, Imm(Rs) Store FP word Mem[Reg[Rs] + Imm] �32 Reg[Ft] (lower 32-bit)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 46

MIPS64 ALU Instructions

� ALU instructions can be Register-Register or Register-Immediate

� DADD is used for 64-bit integer addition, ADD for 32-bit integer addition

Instruction Meaning

DADD Rd, Rs, Rt Reg[Rd] � Reg[Rs] + Reg[Rt] (64-bit integer addition)

DSUB Rd, Rs, Rt Reg[Rd] � Reg[Rs] – Reg[Rt] (64-bit integer subtraction)

DADDU / DSUBU Same as DADD / DSUB, but Ignore Overflow

DADDI Rt, Rs, Imm Reg[Rt] � Reg[Rs] + Imm (immediate can be negative)

DADDIU Rt, Rs, Imm Same as DADDI, but Ignore Overflow

DSLL, DSRL, DSRA Shift Left, Shift Right Logical, Shift Right Arithmetic

DSLLV, DSRLV, DSRAV Same as DSLL, DSRL, DSRA, but with a variable amount

AND, OR, XOR, NOR R-type bitwise logic instructions (64-bit operands)

ANDI, ORI, XORI I-type bitwise logic (16-bit immediate is zero-extended)

SLT, SLTU, SLTI, SLTIU Set Less Than, Unsigned, Immediate, (Result is 0 or 1)

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 47

MIPS64 Multiply and Divide Instructions
� Multiplication of 64-bit integers produces a 128-bit product

� Low and High 64-bit of the product are computed using two instructions

� Division of 64-bit integers produces a quotient and remainder

� Results are written to a register Rd � LO and HI registers are eliminated

Instruction Meaning

DMUL Rd, Rs, Rt Rd = Low 64-bit of Signed 64-bit integer multiplication

DMUH Rd, Rs, Rt Rd = High 64-bit of Signed 64-bit integer multiplication

DMULU Rd, Rs, Rt Rd = Low 64-bit of Unsigned 64-bit integer multiplication

DMUHU Rd, Rs, Rt Rd = High 64-bit of Unsigned 64-bit integer multiplication

DDIV Rd, Rs, Rt Rd = Quotient of Signed 64-bit integer division

DMOD Rd, Rs, Rt Rd = Modulo (Remainder) of Signed 64-bit integer division

DDIVU Rd, Rs, Rt Rd = Quotient of Unsigned 64-bit integer division

DMODU Rd, Rs, Rt Rd = Modulo (Remainder) of Unsigned 64-bit integer division

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 48

Instruction Meaning

ADD.S Fd, Fs, Ft Reg[Fd] � Reg[Fs] + Reg[Ft] (32-bit double-precision add)

ADD.D Fd, Fs, Ft Reg[Fd] � Reg[Fs] + Reg[Ft] (64-bit double-precision add)

SUB.S, SUB.D FP Subtract (FR-format), Single and Double-precision

MUL.S, MUL.D FP Multiply (FR-format), Single and Double-precision

DIV.S, DIV.D FP Divide (FR-format): Single and Double-precision

MADDF.S, MADDF.D FP Fused Multiply-Add: Reg[Fd] � Reg[Fd] + Reg[Fs] × Reg[Ft]

SEL.S, SEL.d Select: Reg[Fd] � Reg[Fd].bit0 ? Reg[Ft] : Reg[Fs]

CVT.x.y Fd, Fs Convert: Reg[Fd] � convert_from_format_y_to_x (Reg[Fs])

CMP.cond.S (or .D) Compare: Reg[Fd] � compare_cond (Reg[Fs], Reg[Ft])

MIPS Floating-Point Instructions

� FCSR: Floating-point Control and Status Register

� Controls the FPU: Rounding mode, enables and reports FP exceptions

� CMP (compare) instruction: result is written to register Fd

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 49

MIPS Control Flow Instructions

� Branch Target Address: PC-Relative

� PC � PC + 4 + Offset × 4

Instruction Meaning

J target Jump within current 256 MB region (J-Format: 26-bit target addr)

JAL target Jump And Link (J-Format): Reg[R31] � RA, PC � target addr

JALR Rd, Rs Jump And Link Register (R-Format): Reg[Rd] � RA, PC � Reg[Rs]

JR Rs Jump Register (R-Format), PC � Reg[Rs]

BEQ Rs, Rt, Offset Branch on Equal (I-Format): if (Reg[Rs] == Reg[Rt])

BNE Rs, Rt, Offset Branch on Not Equal (I-Format): if (Reg[Rs] != Reg[Rt])

BLTZ Rs, Offset Branch on Less Than Zero (I-Format): if (Reg[Rs] < 0)

BGTZ, BLEZ, BGEZ Branch (I-Format): if (Reg[Rs] > 0), if (Reg[Rs] <= 0), if (Reg[Rs] >= 0)

BC1EQZ, BC1NEZ Branch (FI-Format): if (Reg[Ft].bit0 == 0), if (Reg[Ft].bit0 != 0)

SYSCALL, ERET System Call exception, Exception Return to user code

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 50

MIPS Instruction Set Usage

SPEC INT 2000
Five Programs

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 51

MIPS Instruction Set Usage (cont’d)

SPEC FP 2000
Five Programs

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 52

Fallacies and Pitfalls

� Fallacy: Complex and Powerful instruction ⇒ higher performance

� Fewer instructions required

� But complex instructions are hard to implement

� May slow down instruction execution

� Compilers are good at making fast code from simple instructions

� Fallacy: You can design a flawless architecture

� All architecture design involves tradeoffs

� Fallacy: Use assembly code for high performance

� Modern compilers are better at dealing with modern processors

� Pitfall: Innovating ISA without accounting for the compiler

� Pitfall: Designing “high-level” instructions for specific languages

Instruction Set Principles and Architectures COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 53

What Makes a Good Instruction Set?

� Provides a simple software interface

� Allows simple, fast, efficient hardware implementations

� But across 25+ year time frame

� Instruction set changes continually (ISA revisions & extensions)

� Technology allows larger CPU over time

� Technology constraints changes (power versus performance)

� Compiler, programming style, applications change

� Software compatibility negatively impacts ISA innovation

� New instruction set can be justified only by a new large market
and technological advances

