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From Sand to Silicon

❖ Sand (beach) has a high percentage of Silicon in the form of 

Silicon dioxide (SiO2)

❖Melted Silicon is purified in many steps to reach semiconductor 

manufacturing quality

❖ Silicon Ingot: diameter = ~30 cm, weight = ~100 Kg, Silicon 

purity = 99.9999999% (one alien atom per billion silicon atoms)

Source: Intel corporation
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Ingot Slicing ➔ Blank Wafers

❖ The ingot is cut into individual silicon disks, called wafers

❖ The thickness of a wafer is about 1 mm

❖ The wafers are polished until they have mirror-smooth surfaces

❖Wafer diameter = 300mm, but future ones can be 450mm

Source: Intel corporation
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Fabrication of Chips on a Wafer

❖ Hundreds of precisely controlled steps

❖ Photo Lithography: uses photo-resist and ultraviolet (UV) light 

to expose a pattern from a photomask to the surface of a wafer

❖ Ion Implantation: the wafer with patterned photoresist is 

bombarded with a beam of ions that are embedded in selected 

regions of the wafer. This process is called doping.

❖ Dielectric Deposition: using an insulator to reduce leakage

❖ Etching: unneeded material is removed to create patterns

❖Metal Layers: multiple metal layers are made to interconnect 

the various transistors and components



IC Manufacturing, Cost, Power, and Dependability COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 5

Fabrication of Transistors and Metal Layers

Ion Implantation

Photo Lithography

Dielectric Deposition

Metal Layers Interconnect the transistors

Making of a Transistor
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Wafer of Intel 8th Generation Core i7 Dies

❖Wafer diameter = 30cm (300mm)

❖Wafer has 393 dies

❖ Area of a single die ≈ 149.6 mm2

 ~9.19 mm by ~16.28 mm

❖ Six cores + GPU on a single die

 About 3.6 billion transistors per die

❖ 14 nm manufacturing process

 11 metal layers

❖ Incomplete dies on the boundary are 

useless and discarded. They use the 

same masks used to pattern the wafer.
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Testing the Dies on the Wafer

❖ Test patterns are fed into the inputs of each chip on the wafer, 

and the outputs are compared with the correct values

❖ The wafer is cut into pieces called dies

❖ The dies that passes the test are kept, and the rest is discarded

Source: Intel corporation
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Bonding Die to Package and Final Test

❖ The substrate, the die, and the heat-spreader are put together to 

form a complete processor

❖ The green substrate is the interface between the processor and 

the rest of the PC system (up to several thousand pins)

❖ Finally, the processor are tested for their key characteristics, 

such as power dissipation and maximum frequency
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Die Yield

𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑑𝑖𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑑𝑖𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑒𝑠 𝑜𝑛 𝑎 𝑤𝑎𝑓𝑒𝑟

Bose-Einstein Formula:

𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑 =
1

1 + 𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 × 𝐷𝑖𝑒 𝑎𝑟𝑒𝑎 𝑁

❖ Empirical formula by looking at the yield of IC manufacturers

❖ Defects per unit area ≈ 0.01 to 0.05 defects per cm2

 Defects are due to microscopic particles landing on the wafer surface

 A tiny particle with the size of the smallest feature can "kill" the die

❖ N is a parameter that measures the manufacturing complexity
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Effect of the Die Size on the Yield

20 Defects on a wafer
20 Bad dies

264 dies on a wafer
Good dies = 264 – 20 = 244
Yield = 244 / 264 = 92.42%

20 Defects on a wafer
16 Bad dies

54 large dies on a wafer
Good dies = 54 – 16 = 38
Yield = 38 / 54 = 70.37%
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Example on the Die Yield

❖ Find the die yield for 60 mm2, 120 mm2, and 240 mm2 dies

The defect density is 0.023 defects per cm2 and N is 12

Solution

❖ For the small die area = 60 mm2 = 0.6 cm2

Die Yield = 1/(1 + 0.023x0.6)12 = 0.8483 = 84.83%

❖ For the medium die area = 120 mm2 = 1.2 cm2

Die Yield = 1/(1 + 0.023x1.2)12 = 0.7213 = 72.13%

❖ For the larger die area = 240 mm2 = 2.4 cm2

Die Yield = 1/(1 + 0.023x2.4)12 = 0.5248 = 52.48%

❖ The die yield drops as the die area increases
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Cost of an Integrated Circuit

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑤𝑎𝑓𝑒𝑟

𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 × 𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑

𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 =
𝑊𝑎𝑓𝑒𝑟 𝑎𝑟𝑒𝑎

𝐷𝑖𝑒 𝑎𝑟𝑒𝑎
− 𝐼𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑑𝑖𝑒𝑠 𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 ≈
𝜋 × 𝑤𝑎𝑓𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 2

𝐷𝑖𝑒 𝑎𝑟𝑒𝑎
−
𝜋 ×𝑊𝑎𝑓𝑒𝑟 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

2 × 𝐷𝑖𝑒 𝑎𝑟𝑒𝑎

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝐶 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑖𝑒 + 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑖𝑒 + 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 + 𝑓𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡

𝐹𝑖𝑛𝑎𝑙 𝑡𝑒𝑠𝑡 𝑦𝑖𝑒𝑙𝑑
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Counting the Dies on a Wafer

❖ Find the number of dies on a wafer with a diameter = 30cm

When the die area = 60 mm2,120 mm2, and 240 mm2

Answer:

❖ For the small die area = 60 mm2 = 0.6 cm2

Dies per wafer  ( × 152)/0.6  – ( × 30)/√(2×0.6)  1092

❖ For the medium die area = 120 mm2 = 1.2 cm2

Dies per wafer  ( × 152)/1.2  – ( × 30)/√(2×1.2)  528

❖ For the large die area = 240 mm2 = 2.4 cm2

Dies per wafer  ( × 152)/2.4  – ( × 30)/√(2×2.4)  251

❖ If the die area is doubled, the total number of dies on a wafer 

is less than half because we loose dies on the boundary
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Cost of a Die

❖ Given three different die areas = 60mm2, 120mm2, and 240mm2, 

the total count of dies on a 30cm-diameter wafer is calculated as 

1092, 528, and 251, respectively. The die yield is also calculated 

as: 84.83%, 72.13%, and 52.48%, respectively.

If the cost of a wafer is $7000, calculate the cost per die

Answer (does not include cost of testing and packaging)

❖ For 60mm2, number of good dies = 1092 × 0.8483  962

Cost of a 60mm2 die = $7000 / 962 = $7.28

❖ For 120mm2, number of good dies = 528 × 0.7213  381 (rounded)

Cost of 120mm2 die = $7000 / 381 = $18.37 (increased by 2.52X)

❖ For 240mm2, number of good dies = 251 × 0.5248  132 (rounded)

Cost of 240mm2 die = $7000 / 132 = $53.03 (increased by 7.28X)
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Things to Remember about Cost

❖ Bottom line is the number of good dies per wafer

❖ Good dies per wafer = Number of dies × Die yield

❖ The manufacturing process dictates the wafer cost, wafer 

yield, and the defects per unit area

❖ Sole control of the designer is die area and hence the cost

❖ Die should be tested, packaged, then tested again

 These steps add more costs, which can be significant

❖Most microprocessor dies fall between 100 and 300 mm2

❖ Low-end embedded processors are below 10 mm2

❖ Designers also add redundancy to raise the yield
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Power in Integrated Circuits

❖ Power is the biggest challenge facing computer design

 Power should be brought in and distributed around the chip

 Hundreds of pins and multiple layers just for power and ground

 Power is dissipated as heat and must be removed

❖ Thermal Design Power (TDP)

 Characterizes sustained power consumption

 Used as target for power supply and cooling system

 Lower than peak (1.5X higher), higher than average power consumption

❖ Clock rate can be reduced dynamically to limit power
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Power versus Energy

❖Which metric is the right one: Power or Energy?

❖ Power is Energy per Unit Time: 1 Watt = 1 Joule / Second

❖ Energy for a given task is a better measurement (Joules)

❖ Energy for a workload = Average Power × Execution Time

❖ Energy efficiency is important for battery-operated devices 

and for large servers or cloud

❖ Example: which processor is more energy efficient?

 Processor A consumes 20% more power than B on a given task

 However, A requires only 70% of the execution time needed by B

❖ Answer: Energy consumption of A = 1.2 × 0.7 = 0.84 of B

 Processor A consumes less energy than B (more energy-efficient)



IC Manufacturing, Cost, Power, and Dependability COE 501 – Computer Architecture - KFUPM Muhamed Mudawar – slide 18

Dynamic Energy and Power

❖ For CMOS technology, primary energy consumption has been 

in switching transistors, called dynamic energy

❖ Dynamic Energy  Capacitive Load × Voltage2

 Capacitive Load = Capacitance of output transistors & wires

 Voltage has dropped from 5V to just under 1V in 20 years

❖ Dynamic Power  Capacitive Load × Voltage2 × Frequency

❖ Reducing Clock Frequency reduces Power but not energy

❖ Reducing Clock Frequency increases execution time
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Example of Dynamic Energy & Power

❖Microprocessors today have adjustable voltage and clock 

frequency. Assume 10% reduction in voltage and 15% 

reduction in frequency, what is the impact on dynamic energy 

and dynamic power?

❖ Answer:

10% reduction in Voltage ➔ Voltagenew = 0.90 × Voltageold

15% reduction in Frequency ➔ Frequencynew = 0.85 × Frequencyold

𝐸𝑛𝑒𝑟𝑔𝑦𝑛𝑒𝑤
𝐸𝑛𝑒𝑟𝑔𝑦𝑜𝑙𝑑

=
𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑛𝑒𝑤

2

𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑜𝑙𝑑
2 = 0.90 2 = 0.81

𝑃𝑜𝑤𝑒𝑟𝑛𝑒𝑤
𝑃𝑜𝑤𝑒𝑟𝑜𝑙𝑑

=
𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑛𝑒𝑤

2

𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑜𝑙𝑑
2 ×

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑛𝑒𝑤
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑜𝑙𝑑

= 0.81 × 0.85 = 0.6885
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Trends in Power & Clock Frequency

300X5V→1V24X

Power  Capacitive Load × Voltage2 × Frequency

2X
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Copyright © 2019, Elsevier Inc. All rights reserved.

Clock Frequency is Slowing Down

❖ Intel 80386 

consumed 4 W

❖ Some high-end 

server processors 

consume 130 W

❖ Heat must be 

dissipated from 

~200 mm2 chip

❖ This is the limit of 

what can be 

cooled by air
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Techniques to Reduce Dynamic Power

1. Turn off the clock of inactive modules or cores

2. Dynamic Voltage-Frequency Scaling (DVFS)

 Periods of low activity → No need to operate at max power

 Reduce voltage and frequency to reduce power

3. Design for the Typical Case

 Battery-operated mobile devices are often idle, DRAM memory and 

storage offer low power modes to save battery energy

4. Overclocking (Turbo Mode)

 The chip decides that it is safe to run at higher clock rate for a short 

time until temperature starts to rise (temperature sensor)

 Run few cores at higher clock rate, while turning off other cores
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Static Power Consumption

❖ Static power is dissipated because leakage current flows even 

when a transistor is off 

❖ Leakage current increases with smaller transistor sizes

 New transistor technology (better insulator) helps reduce leakage

❖ Static Power  Static Current × Voltage

 Static power increases with the number of transistors

❖ Static power can be as high as 50% of total power

 Large SRAM caches need static power to maintain their values

❖ Power Gating: Turn Off the Power Supply

 To inactive modules to control the loss of leakage current
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Energy per Operation
❖ 32-bit FP addition uses 9X more energy than 32-bit INT addition (Area is 31X)

❖ 32-bit SRAM read uses 50X more energy than 32-bit INT addition

❖ 32-bit DRAM read uses 6400X more energy than 32-bit INT addition

Mark Horowitz, "Computing's Energy Problem and what we can do about it", ISSCC 2014.
Area numbers are from synthesized result using Design Compiler under TSMC 45nm technode. 
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Relative Performance 

❖ Absolute performance is about maximizing the performance of 

a given application or workload, regardless of the cost of the 

system or the energy consumed

❖ Relative performance can be cost-aware or energy-aware

❖ Cost-aware performance = Performance per Cost of a system

 Designing systems that deliver higher performance per dollar

❖ Energy-aware performance = Tasks executed per Joule

 Designing systems that executes more tasks per energy consumed

❖ Performance per Watt = Tasks per Joule

 Performance / Watt = (Tasks / sec) / (Joule / sec) = Tasks / Joule

 Designing systems that deliver higher performance per power utilized
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Example on Relative Performance

❖ Suppose we run a database application on three different servers: 

A, B, and C. Performance is measured as the number of database 

transactions per second. The data is recorded as follows:

Transactions Per Sec (TPS): A = 910,978, B = 976,812, and C=1,840,450

System Cost: A = $9352, B = $9576, and C = $21,658

Power Utilization: A = 570 W, B = 650 W, and C = 1090 W

❖Which server has the highest absolute performance, performance 

per cost, and performance per watt?

❖ Answer:

Server C has the highest absolute performance = 1,850,450 TPS

Server B has the highest performance per cost = 976,812/$9576 = 102 TPS/$

Server C has the highest performance per watt = 1,840,450/1090 = 1688 TPS/W
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Things to Remember about Energy & Power

❖ The bottom line is Energy for a given Workload (Joules)

 The less the Energy used per task, the higher is the energy efficiency

 For both battery-operated mobile devices and large servers

❖ Power should be used as a constraint

 A processor for a mobile device might be limited to 15 watts

 A server processor might be limited to 120 watts (cooling + power supply)

❖ Power Consumed = Dynamic Power + Static Power

 Dynamic power is consumed when transistors switch on and off

 Static power is consumed because of static leakage current

❖ Clock rate can be reduced dynamically to limit power

❖ Reducing voltage reduces both energy and power
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Dependability

❖ Dependability is a measure of system's reliability, availability, 

and maintainability

❖ Reliability: continuity of correct service

❖ Availability: readiness for correct service

❖Maintainability: ability to undergo modifications and repair

❖ Systems alternate between two states of service:

1. Service accomplishment: service is delivered as specified

2. Service interruption: failure in service

❖ Failure: transition from state 1 to state 2

❖ Restoration (or Repair): transition from state 2 back to state 1
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Measuring Dependability

❖Module Reliability: measure of continuous service

❖MTTF: Mean Time To Failure

 Measures Reliability

 Continuous service accomplishment from a reference time

 Reported in hours

❖ FIT: Failures In Time = 109 / MTTF

 Number of failures per billion hours of operation

❖MTTR: Mean Time To Repair

 Measure service interruption time

❖MTBF: Mean Time Between Failures = MTTF + MTTR

❖Module Availability = MTTF / (MTTF + MTTR)
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Example of Calculating MTTF

❖ A disk subsystem has the following components

 10 disks, each rated at MTTF = 1,000,000 hours

 1 ATA controller, rated at MTTF = 500,000 hours

 1 power supply, rated at MTTF = 200,000 hours

 1 fan, rated at MTTF = 200,000 hours

 1 ATA cable, rated at MTTF = 1,000,000 hours

❖ Failure of a component is a failure of the disk subsystem

❖ Failures are independent and lifetimes of modules are 

exponentially distributed

❖ Overall failure rate = sum of failure rates of modules

❖ Compute the MTTF of the disk subsystem
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Calculating MTTF (Solution)

❖ Failure Rate (1disk) = 1 / 1,000,000 = 1000 / 109 = 1000 FIT

❖ Failure Rate (10 disks) = 10 × 1 / 1,000,000 = 10,000 / 109

❖ Failure Rate (ATA controller) = 1 / 500,000 = 2000 / 109

❖ Failure Rate (Power supply) = 1 / 200,000 = 5000 / 109

❖ Failure Rate (Fan) = 1 / 200,000 = 5000 / 109

❖ Failure Rate (ATA cable) = 1 / 1,000,000 = 1000 / 109

❖ Failure Rate (disk system) = Sum of failure rates

= (10,000 + 2000 + 5000 + 5000 + 1000) / 109

❖ Failure Rate (disk system) = 23,000 / 109 = 23,000 FIT

❖MTTF (disk system) = 109 / 23,000  43,478 hours  1812 days, 

which is just under 5 years
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Redundancy Improves Reliability

❖ Example: Using two power supplies for a disk subsystem

 One power supply is sufficient to run the disk subsystem, but we are 

adding a second power supply to tolerate the failure of one power supply

 If each power supply is rated at MTTF = 200,000 & MTTR = 50 hours, 

what is the MTTF of the power supply pair?

❖ Answer:

 Assuming independent failure of power supplies

 Failure rate (1st or 2nd power supply) = 2 / MTTF

 Probability of 2nd failure while repairing first = MTTR / MTTF

 Failure rate (both power supplies) = (2 / MTTF) × (MTTR / MTTF)

 MTTF (power supply pair) = MTTF2 / (2 × MTTR) = 200,0002 / (2 × 50)

 MTTF (power supply pair) = 400,000,000 hours (2000X more reliable)


