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COE 501: Computer Architecture 

Problem Set 6: Cache Coherence 

 

1) (10 pts) The bus-based dual-core multiprocessor shown in Figure 1 represents a symmetric 

shared memory architecture. Each processor has an L1 write-back private cache. Coherence is 

maintained using the MSI write-invalidate snooping protocol. For simplicity, each cache is 

directly-mapped with four blocks, and each block holds two words (8 bytes). For clarity, the tag 

contains the full address in hexadecimal, while the data is shown in decimal. 

 

 
 

Each part of this exercise specifies a memory operation. Treat each operation as independently 

applied to the initial state given in Figure 1. What value is returned (by a read) and the bus 

transaction (if any), the resulting state, tag, and value of the caches and memory after the 

given operation? Show the content of the relevant cache blocks. 

 

a) P0 reads address 0x120 

b) P0 writes address 0x120 � 38 

c) P0 reads address 0x128 

d) P1 reads address 0x114 

e) P1 writes address 0x11C � 14 

  

Processor P1 

state tag block data 

32 15 0x100 S 

7 2 0x128 M 

0 10 0x110 I 

3 1 0x118 S 

M
e

m
o

ry
 

block data 

… … … 
addr 

32 15 0x100 

5 17 0x108 

0 10 0x110 

3 1 0x118 

6 8 0x120 

10 25 0x128 

27 9 0x130 

… … … 

Processor P0 

state tag block data 

32 15 0x100 S 

5 12 0x108 M 

0 10 0x110 S 

3 1 0x118 S 

Figure 1: Bus-Based Dual Core multiprocessor 
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2) (10 pts) The performance of a snooping-cache coherent multiprocessor depends on many 

detailed implementation issues that determine how quickly a cache responds with data in the 

modified (M) state. In some implementations, a CPU read miss to a block in the M state in 

another processor’s cache is faster than a read miss to a block in memory. This is because 

caches are smaller and faster than main memory. Consider the following latencies: 

 

• CPU read and write hits generate no stall cycles 

• CPU read and write misses generate Nmemory and Ncache stall cycles if satisfied by memory 

and cache, respectively. 

• CPU write hits that generate an invalidate incur Ninvalidate stall cycles. 

• A write-back of a block, due to replacement or another processor’s request, incurs an 

additional Nwriteback stall cycles. 

 

For the multiprocessor of Figure 1, consider the following parameters: 

Nmemory = 80 stall cycles, Ncache = 10 stall cycles, Ninvalidate = 4 stall cycles, Nwriteback = 5 stall cycles. 

 

Consider the following sequences of operations. Assuming the initial state of Figure 1, how 

many stall cycles are generated? Explain your answer and show the modified blocks. 

 
a) P1 reads address 0x120 

 P1 reads address 0x124 

 p1 reads address 0x128 

 

b) P0 reads address 0x100 

 P0 writes address 0x108 � 37 

 P0 writes address 0x130 � 29 

 

c) P0 reads address 0x120 

 P0 reads address 0x100 

 P1 writes address 0x100 � 24 

 P0 reads address 0x104 

 

3) (10 pts) Many snooping coherence protocols have additional states, state transitions, or bus 

transactions to reduce the overhead of maintaining cache coherence. An optimization to the 

MSI snooping protocol is to add the Exclusive (E) state, indicating that no other node has a 

copy of the block, but the block has not yet been modified. A cache block enters the Exclusive 

state when a read miss is satisfied by memory and no other node has a valid copy. CPU reads 

and writes to that block proceed with no further bus traffic, but CPU writes causes the state of 

the block to transition from Exclusive to Modified. There is a Shared wire on the bus that 

signals ‘1’ when a read miss appears on the bus and at least one other processor has a copy of 

the block. Otherwise, the Shared wire signals ‘0’, indicating that the block is exclusively read by 

one processor. Draw state transition diagrams for the MESI cache coherence protocol. Two 

diagrams are needed: first diagram should be based on requests from the processor and the 

second diagram should be based on requests from the bus. 
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4) (10 pts) The quad-core multiprocessor shown in Figure 2 uses directory-based cache coherence 

implemented in the shared L2 cache. Each processor has an L1 write-back private cache. Three 

states are defined in the L1 cache: M (Modified), S (Shared), and I (invalid). For simplicity, each 

L1 cache is directly-mapped with four blocks, and each block holds two words (8 bytes). For 

clarity, the tag contains the full address in hexadecimal, while the data is shown in decimal. 

 

The L2 cache is directly-mapped, shared by all cores, and split into two banks. Blocks whose 

physical addresses are multiple of 16 (0x10 in hexadecimal) are mapped to L2 cache bank 0, 

while the other blocks are mapped to L2 cache bank 1. Four presence bits are associated with 

each L2 cache block, to indicate which L1 cache has a copy of the L2 cache block. The L2 cache 

is sufficiently large and contains a superset of the L1 blocks (inclusion policy). Four states are 

associated with each L2 cache block: M (Modified by a processor), O (Owned by L2 and can be 

shared in L1), S (Shared clean block), and I (Invalid). The L2 Owned state indicates that a block 

was modified in L1 and later written back to L2. The L2 cache is updated but not memory. 

 

 
Each part of this exercise specifies a memory operation. Treat each operation as applied to the 

initial state given in Figure 2. What value is returned (by a read) and the resulting state, tag, and 

value in L1 and L2 caches? Show the presence bits and content of the relevant cache blocks. 

  

Processor P1 

state tag data 

20 10 0x120 S 

7 2 0x128 M 

27 9 0x170 S 

29 1 0x118 S 

Processor P0 

state tag data 

32 15 0x100 S 

5 12 0x108 M 

3 1 0x130 S 

29 1 0x118 S 

Processor P2 

state tag data 

20 10 0x120 S 

0 11 0x128 I 

4 12 0x110 M 

43 62 0x138 S 

Processor P3 

state tag data 

20 10 0x120 S 

0 11 0x128 I 

3 1 0x130 S 

13 35 0x158 M 

Interconnection Network 

Figure 2: Directory-Based Quad-Core multiprocessor 
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block data tag 

32 15 0x100 

23 12 0x110 

20 10 0x120 

3 1 0x130 

6 8 0x140 

10 25 0x150 

79 31 0x160 

… … … 

27 9 0x170 

state presence 

S 1000 

M 0010 

O 0111 

S 1001 

S 
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I 

O 

… … 

0000 

0000 

0000 

0100 
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block data tag 

5 17 0x108 

29 1 0x118 

0 11 0x128 

43 62 0x138 

55 48 0x148 

76 35 0x158 

8 9 0x168 

… … … 

7 19 0x178 

state presence 

M 1000 

O 1100 

M 0100 

S 0010 

I 
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… … 

0000 

0001 

0000 

0000 

Memory 0 Memory 1 
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a) P0 reads address 0x120 

b) P3 writes address 0x124 � 38 

c) P2 reads address 0x128 

d) P1 reads address 0x158 

e) P1 writes address 0x11C � 14 

 

5) (10 pts) Directory protocols are more scalable than snooping protocols because they send 

explicit request and invalidate messages to those nodes that have copies of a block, while 

snooping protocols broadcasts all requests to all nodes. Consider again the directory-based 

quad-core multiprocessor shown in Figure 2. Show all the messages that are sent in the 

network for each of the following requests: 

 

a) P0 reads address 0x120 

b) P3 writes address 0x124 � 38 

c) P2 reads address 0x128 

d) P1 writes address 0x11C � 14 

 

 


