
Prepared by Dr. Muhamed Mudawar Page 1 of 4

COE 501: Computer Architecture

Problem Set 6: Cache Coherence

1) (10 pts) The bus-based dual-core multiprocessor shown in Figure 1 represents a symmetric

shared memory architecture. Each processor has an L1 write-back private cache. Coherence is

maintained using the MSI write-invalidate snooping protocol. For simplicity, each cache is

directly-mapped with four blocks, and each block holds two words (8 bytes). For clarity, the tag

contains the full address in hexadecimal, while the data is shown in decimal.

Each part of this exercise specifies a memory operation. Treat each operation as independently

applied to the initial state given in Figure 1. What value is returned (by a read) and the bus

transaction (if any), the resulting state, tag, and value of the caches and memory after the

given operation? Show the content of the relevant cache blocks.

a) P0 reads address 0x120

b) P0 writes address 0x120 � 38

c) P0 reads address 0x128

d) P1 reads address 0x114

e) P1 writes address 0x11C � 14

Processor P1

state tag block data

32 15 0x100 S

7 2 0x128 M

0 10 0x110 I

3 1 0x118 S

M
e

m
o

ry

block data

… … …
addr

32 15 0x100

5 17 0x108

0 10 0x110

3 1 0x118

6 8 0x120

10 25 0x128

27 9 0x130

… … …

Processor P0

state tag block data

32 15 0x100 S

5 12 0x108 M

0 10 0x110 S

3 1 0x118 S

Figure 1: Bus-Based Dual Core multiprocessor

Prepared by Dr. Muhamed Mudawar Page 2 of 4

2) (10 pts) The performance of a snooping-cache coherent multiprocessor depends on many

detailed implementation issues that determine how quickly a cache responds with data in the

modified (M) state. In some implementations, a CPU read miss to a block in the M state in

another processor’s cache is faster than a read miss to a block in memory. This is because

caches are smaller and faster than main memory. Consider the following latencies:

• CPU read and write hits generate no stall cycles

• CPU read and write misses generate Nmemory and Ncache stall cycles if satisfied by memory

and cache, respectively.

• CPU write hits that generate an invalidate incur Ninvalidate stall cycles.

• A write-back of a block, due to replacement or another processor’s request, incurs an

additional Nwriteback stall cycles.

For the multiprocessor of Figure 1, consider the following parameters:

Nmemory = 80 stall cycles, Ncache = 10 stall cycles, Ninvalidate = 4 stall cycles, Nwriteback = 5 stall cycles.

Consider the following sequences of operations. Assuming the initial state of Figure 1, how

many stall cycles are generated? Explain your answer and show the modified blocks.

a) P1 reads address 0x120

 P1 reads address 0x124

 p1 reads address 0x128

b) P0 reads address 0x100

 P0 writes address 0x108 � 37

 P0 writes address 0x130 � 29

c) P0 reads address 0x120

 P0 reads address 0x100

 P1 writes address 0x100 � 24

 P0 reads address 0x104

3) (10 pts) Many snooping coherence protocols have additional states, state transitions, or bus

transactions to reduce the overhead of maintaining cache coherence. An optimization to the

MSI snooping protocol is to add the Exclusive (E) state, indicating that no other node has a

copy of the block, but the block has not yet been modified. A cache block enters the Exclusive

state when a read miss is satisfied by memory and no other node has a valid copy. CPU reads

and writes to that block proceed with no further bus traffic, but CPU writes causes the state of

the block to transition from Exclusive to Modified. There is a Shared wire on the bus that

signals ‘1’ when a read miss appears on the bus and at least one other processor has a copy of

the block. Otherwise, the Shared wire signals ‘0’, indicating that the block is exclusively read by

one processor. Draw state transition diagrams for the MESI cache coherence protocol. Two

diagrams are needed: first diagram should be based on requests from the processor and the

second diagram should be based on requests from the bus.

Prepared by Dr. Muhamed Mudawar Page 3 of 4

4) (10 pts) The quad-core multiprocessor shown in Figure 2 uses directory-based cache coherence

implemented in the shared L2 cache. Each processor has an L1 write-back private cache. Three

states are defined in the L1 cache: M (Modified), S (Shared), and I (invalid). For simplicity, each

L1 cache is directly-mapped with four blocks, and each block holds two words (8 bytes). For

clarity, the tag contains the full address in hexadecimal, while the data is shown in decimal.

The L2 cache is directly-mapped, shared by all cores, and split into two banks. Blocks whose

physical addresses are multiple of 16 (0x10 in hexadecimal) are mapped to L2 cache bank 0,

while the other blocks are mapped to L2 cache bank 1. Four presence bits are associated with

each L2 cache block, to indicate which L1 cache has a copy of the L2 cache block. The L2 cache

is sufficiently large and contains a superset of the L1 blocks (inclusion policy). Four states are

associated with each L2 cache block: M (Modified by a processor), O (Owned by L2 and can be

shared in L1), S (Shared clean block), and I (Invalid). The L2 Owned state indicates that a block

was modified in L1 and later written back to L2. The L2 cache is updated but not memory.

Each part of this exercise specifies a memory operation. Treat each operation as applied to the

initial state given in Figure 2. What value is returned (by a read) and the resulting state, tag, and

value in L1 and L2 caches? Show the presence bits and content of the relevant cache blocks.

Processor P1

state tag data

20 10 0x120 S

7 2 0x128 M

27 9 0x170 S

29 1 0x118 S

Processor P0

state tag data

32 15 0x100 S

5 12 0x108 M

3 1 0x130 S

29 1 0x118 S

Processor P2

state tag data

20 10 0x120 S

0 11 0x128 I

4 12 0x110 M

43 62 0x138 S

Processor P3

state tag data

20 10 0x120 S

0 11 0x128 I

3 1 0x130 S

13 35 0x158 M

Interconnection Network

Figure 2: Directory-Based Quad-Core multiprocessor

L2
 S

h
a

re
d

 C
a

ch
e

 B
a

n
k

 0

block data tag

32 15 0x100

23 12 0x110

20 10 0x120

3 1 0x130

6 8 0x140

10 25 0x150

79 31 0x160

… … …

27 9 0x170

state presence

S 1000

M 0010

O 0111

S 1001

S

O

I

O

… …

0000

0000

0000

0100

L2
 S

h
a

re
d

 C
a

ch
e

 B
a

n
k

 1

block data tag

5 17 0x108

29 1 0x118

0 11 0x128

43 62 0x138

55 48 0x148

76 35 0x158

8 9 0x168

… … …

7 19 0x178

state presence

M 1000

O 1100

M 0100

S 0010

I

M

S

O

… …

0000

0001

0000

0000

Memory 0 Memory 1

Prepared by Dr. Muhamed Mudawar Page 4 of 4

a) P0 reads address 0x120

b) P3 writes address 0x124 � 38

c) P2 reads address 0x128

d) P1 reads address 0x158

e) P1 writes address 0x11C � 14

5) (10 pts) Directory protocols are more scalable than snooping protocols because they send

explicit request and invalidate messages to those nodes that have copies of a block, while

snooping protocols broadcasts all requests to all nodes. Consider again the directory-based

quad-core multiprocessor shown in Figure 2. Show all the messages that are sent in the

network for each of the following requests:

a) P0 reads address 0x120

b) P3 writes address 0x124 � 38

c) P2 reads address 0x128

d) P1 writes address 0x11C � 14

