
Prepared by Dr. Muhamed Mudawar Page 1 of 6

COE 501: Computer Architecture

Problem Set 5: Advanced Pipelining

Solution

1) (10 pts) Consider the following so-called DAXPY loop used in Gaussian elimination. The loop
implements the vector operation Y = a * X + Y for vectors X and Y of length 100. Initially, R1 is
the address of X[0], R2 = address of Y[0], and R3 = address of X[100]. Here is the MIPS code:

loop: L.D F2, 0(R1) ; load F2 = X[i]
 MUL.D F3, F1, F2 ; F3 = a * X[i]
 L.D F4, 0(R2) ; load F4 = Y[i]
 ADD.D F4, F3, F4 ; F4 = a * X[i] + Y[i]
 S.D F4, 0(R2) ; store Y[i] = F4
 ADDIU R1, R1, 8 ; R1 = address of next X[i]
 ADDIU R2, R2, 8 ; R2 = address of next Y[i]
 BNE R1, R3, loop ; loop if not done

Consider the execution of the above loop on an in-order execution pipeline that has an
instruction fetch (IF) stage, an instruction decode (ID) stage, three independent function units:
ALU unit (1 pipeline EX stage), FP unit for floating-point addition, subtraction, and
multiplication (4 pipeline stages: FP1, FP2, FP3, and FP4), and a memory unit for load and store
instructions (2 pipeline stages: A for address calculation and M for memory access). Finally,
there is a write-back (WB) stage that writes-back the result of an instruction into the register
file. Each cycle, at most one instruction is fetched and at most one is completed. All hazards
are detected early in the ID stage. If an instruction in the ID stage cannot issue for execution
then it will stall the pipeline.

a) (5 pts) Show the execution of one loop iteration. Assume a full-forwarding network that

forwards results between function units. In addition, assume that the BNE instruction is
predicted to be always taken (with zero delay) in the IF stage. Draw a timing diagram, showing
stall cycles and forwarding. What is the total number of cycles to execute the 100 iterations of
the above loop and the average CPI?

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

L.D IF ID A M WB

MUL.D IF ID ID FP1 FP2 FP3 FP4 WB

L.D IF IF ID A M WB

ADD.D IF ID ID ID FP1 FP2 FP3 FP4 WB

S.D IF IF IF ID ID ID ID A M

ADDIU IF IF IF IF ID EX WB

ADDIU IF ID EX WB

BNE IF ID EX

L.D IF ID A M WB

 14 cycles per iteration = 8 Instruction cycles + 6 stall cycles Start 2nd Iteration

Total Cycles = 14 x 100 = 1400 cycles
Average CPI = 14 / 8 = 1.75

Prepared by Dr. Muhamed Mudawar Page 2 of 6

b) (5 pts) Reorder the instructions in the above loop to reduce the total number of clock cycles.
Redraw the timing diagram showing stall cycles and forwarding. Re-compute the average CPI.

 One possible reordering is shown below. Because ADDIU R2, R2, 8 is moved above the S.D

instruction, the address of Y[i] in the S.D instruction is changed from 0(R2) to -8(R2).

loop: L.D F2, 0(R1) ; load F2 = X[i]
 L.D F4, 0(R2) ; load F4 = Y[i]
 MUL.D F3, F1, F2 ; F3 = a * X[i]
 ADD.D F4, F3, F4 ; F4 = a * X[i] + Y[i]
 ADDIU R1, R1, 8 ; R1 = address of next X[i]
 ADDIU R2, R2, 8 ; R2 = address of next Y[i]
 S.D F4, -8(R2) ; store Y[i] = F4
 BNE R1, R3, loop ; loop if not done

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

L.D IF ID A M WB

L.D IF ID A M WB

MUL.D IF ID FP1 FP2 FP3 FP4 WB

ADD.D IF ID ID ID ID FP1 FP2 FP3 FP4 WB

ADDIU IF IF IF IF ID EX WB

ADDIU IF ID EX WB

S.D IF ID ID A M WB

BNE IF IF ID EX

L.D IF ID A M WB

 12 cycles per iteration = 8 instruction cycles + 4 stall cycles Start 2nd Iteration

 Average CPI = 12 / 8 = 1.5

Prepared by Dr. Muhamed Mudawar Page 3 of 6

2) (5 pts) This problem explores hardware register renaming. To eliminate name dependences,
WAR, and WAW hazards, the hardware renames registers. Assume the hardware has a pool of
temporary registers (called T1 through T63), that are allocated in sequence. Unroll the first two
iterations of the above DAXPY loop and rename all the destination registers, starting at T1.
Make sure to rename the source registers as well to preserve data dependences.

Solution:

loop: L.D T1, 0(R1) ; load T1 = X[i]
 MUL.D T2, F1, T1 ; T2 = a * X[i]
 L.D T3, 0(R2) ; load T3 = Y[i]
 ADD.D T4, T2, T3 ; T4 = a * X[i] + Y[i]
 S.D T4, 0(R2) ; store Y[i] = T4
 ADDIU T5, R1, 8 ; T5 = address of next X[i]
 ADDIU T6, R2, 8 ; T6 = address of next Y[i]
 BNE T5, R3, loop ; loop if not done

 L.D T7, 0(T5) ; load T7 = X[i]
 MUL.D T8, F1, T7 ; T8 = a * X[i]
 L.D T9, 0(T6) ; load T9 = Y[i]
 ADD.D T10, T8, F4 ; T10 = a * X[i] + Y[i]
 S.D T10, 0(T6) ; store Y[i] = T10
 ADDIU T11, T5, 8 ; T11 = address of next X[i]
 ADDIU T12, T6, 8 ; T12 = address of next Y[i]
 BNE T11, R3, loop ; loop if not done

Prepared by Dr. Muhamed Mudawar Page 4 of 6

3) (6 pts) Consider the execution of the above DAXPY loop on an out-of-order execution pipeline.
A new Issue Stage (IS) is added to the pipeline with sufficient number of reservation stations.
The reservation stations are distributed among the function units. As in problem 1, there are
three independent functions units: ALU unit (1 pipeline EX stage), FP unit (4 pipeline stages:
FP1, FP2, FP3, and FP4), and a memory unit for load and store instructions (2 pipeline stages:
A-Unit for address calculation and M-Unit for Data Cache access). In addition, there is a Store
Buffer (SB) for store instructions only. Store instructions wait in the store buffer until their data
is present. A load instruction is allowed to bypass a previous store waiting in the store buffer if
the load address is different from the store address. Instructions are allowed to complete out
of program order. Draw a timing diagram showing the execution of the first two iterations of
the DAXPY loop on the OOO execution pipeline. Assume that the loop branch is predicted to
be always taken.

Solution:

The arrow indicates the forwarding of the result on the common data bus to a reservation
station in the issue stage.

The Store instruction (S.D) waits in the store buffer (SB) until the data is present.

The two L.D instructions in the second iteration are allowed to bypass the S.D instruction of
the first iteration because their addresses are different.

A conflicting WB (Write Back) is shown in Red.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

L.D IF ID IS A M WB

MUL.D IF ID IS IS IS FP1 FP2 FP3 FP4 WB

L.D IF ID IS A M WB

ADD.D IF ID IS IS IS IS IS IS FP1 FP2 FP3 FP4 WB

S.D IF ID IS A SB SB SB SB SB SB SB SB M

ADDIU IF ID IS EX WB

ADDIU IF ID IS EX WB WB

BNE IF ID IS EX

L.D IF ID IS A M WB

MUL.D IF ID IS IS IS FP1 FP2 FP3 FP4 WB

L.D IF ID IS A M WB WB

ADD.D IF ID IS IS IS IS IS IS FP1 FP2 FP3 FP4 WB

S.D IF ID IS A SB SB SB SB SB SB SB SB M

ADDIU IF ID IS EX WB

ADDIU IF ID IS EX WB WB

BNE IF ID IS EX

Prepared by Dr. Muhamed Mudawar Page 5 of 6

4) (7 pts) A new sufficiently large reorder buffer (ROB) and a Commit Stage (C) are now added to
the pipeline. Instructions are issued for execution out of program order. However, they
commit their results in program order by updating the register file (or memory in the case of a
store instruction). Show the timing diagram of the first two iterations of the DAXPY loop, given
that the loop branch is predicted to be always taken.

Solution:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

L.D IF ID IS A M W C

MUL.D IF ID IS IS IS FP1 FP2 FP3 FP4 W C

L.D IF ID IS A M W rob rob rob rob C

ADD.D IF ID IS IS IS IS IS IS FP1 FP2 FP3 FP4 W C

S.D IF ID IS A SB SB SB SB SB SB SB SB SB C

ADDIU IF ID IS EX W rob rob rob rob rob rob rob rob C

ADDIU IF ID IS EX W W rob rob rob rob rob rob rob C

BNE IF ID IS EX rob rob rob rob rob rob rob rob rob C

L.D IF ID IS A M W rob rob rob rob rob rob rob C

MUL.D IF ID IS IS IS FP1 FP2 FP3 FP4 W rob rob rob C

L.D IF ID IS A M W W rob rob rob rob rob rob C

ADD.D IF ID IS IS IS IS IS IS FP1 FP2 FP3 FP4 W C

S.D IF ID IS A SB SB SB SB SB SB SB SB SB C

ADDIU IF ID IS EX W rob rob rob rob rob rob rob rob C

ADDIU IF ID IS EX W W rob rob rob rob rob rob rob C

BNE IF ID IS EX rob rob rob rob rob rob rob rob rob C

The arrow indicates the forwarding of the result on the common data bus to a reservation
station in the issue stage.

Instructions write their results to the Reorder Buffer (ROB). They commit their results in
program order (commit stage C).

A conflicting W (Write to Reorder Buffer) is shown in Red.

The Store instruction (S.D) waits in the store buffer (SB) until the commit stage C.

The two L.D instructions in the second iteration are allowed to bypass the S.D instruction of
the first iteration because their addresses are different.

At steady state, one instruction is committed per cycle.

Prepared by Dr. Muhamed Mudawar Page 6 of 6

5) (7 pts) Consider a superscalar pipeline that fetches two instructions, decodes two instructions,
dispatches two instructions, writes two results into the ROB, and commits the results of at
most two instructions each cycle. Because there are three independent function units, up to
three instructions can be issued for execution in a given clock cycle. Redraw the timing
diagram of the first two iterations of the DAXPY loop on the superscalar processor, given that
the loop branch is predicted to be always taken.

Solution:

loop: L.D F2, 0(R1) ; load F2 = X[i]
 MUL.D F3, F1, F2 ; F3 = a * X[i]
 L.D F4, 0(R2) ; load F4 = Y[i]
 ADD.D F4, F3, F4 ; F4 = a * X[i] + Y[i]
 S.D F4, 0(R2) ; store Y[i] = F4
 ADDIU R1, R1, 8 ; R1 = address of next X[i]
 ADDIU R2, R2, 8 ; R2 = address of next Y[i]
 BNE R1, R3, loop ; loop if not done

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

L.D IF ID IS A M W C

MUL.D IF ID IS IS IS IS FP1 FP2 FP3 FP4 W C

L.D IF ID IS A M W rob rob rob rob C

ADD.D IF ID IS IS IS IS IS IS IS IS FP1 FP2 FP3 FP4 W C

S.D IF ID IS A SB SB SB SB SB SB SB SB SB SB C

ADDIU IF ID IS EX W rob rob rob rob rob rob rob rob rob rob C

ADDIU IF ID IS EX W rob rob rob rob rob rob rob rob rob C

BNE IF ID IS IS EX rob rob rob rob rob rob rob rob rob rob C

L.D IF ID IS A M W rob rob rob rob rob rob rob rob C

MUL.D IF ID IS IS IS IS FP1 FP2 FP3 FP4 W rob rob rob rob C

L.D IF ID IS A M W rob rob rob rob rob rob rob rob C

ADD.D IF ID IS IS IS IS IS IS IS IS FP1 FP2 FP3 FP4 W C

S.D IF ID IS A SB SB SB SB SB SB SB SB SB SB C

ADDIU IF ID IS EX W W rob rob rob rob rob rob rob rob rob C

ADDIU IF ID IS EX W rob rob rob rob rob rob rob rob rob C

BNE IF ID IS IS IS EX rob rob rob rob rob rob rob rob rob C

Two instructions are fetched, decoded, and dispatched each cycle.

At most two results are written into the ROB during the same cycle.

A third write during cycle 11 is a conflicting write W shown in red.

At steady state, two instructions are committed per cycle.

