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COE 501: Computer Architecture 

Problem Set 4: Pipelining Basic and Intermediate Concepts 

1) (15 pts) Use the following code fragment: 

 

I1: LD R1, 0(R2) ; Load R1 = Memory(R2) 

I2: DADDI R1, R1, 1 ; R1 = R1 + 1 

I3: SD R1, 0(R2) ; Store Memory(R2) = R1 

I4: DADDI R2, R2, 8 ; R2 = R2 + 8 

I5: DADDI R4, R4, -1 ; R4 = R4 – 1 

I6: BNE R4, R0, I1 ; Branch if R4 != 0 

 

Assume that the initial value of R4 is 100. 

 

a) (2 pts) List all the true data dependences in the code above within one loop iteration. Record 

the register, source instruction, and destination instruction. 

 

 Data Dependences (within one loop iteration): 

 

 Register R1: I1 (LD) ���� I2 (DADDI) 

 Register R1: I2 (DADDI) ���� I3 (SD) 

 Register R4: I5 (DADDI) ���� I6 (BNE) 

 

b) (4 pts) Show the timing of the above instruction sequence for the 5-stage MIPS pipeline 

without any forwarding hardware. Use a pipeline timing chart to show all stall cycles. Assume 

that the branch is handled by predicting it as NOT taken. If the branch outcome is TAKEN, it 

kills the next two instructions in the pipeline. How many cycles does this loop take to execute? 

What is the average CPI? 

 

 No forwarding hardware. Taken branch kills next two instructions. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

LD IF ID EX M WB                  

DADDI  IF s s s ID EX M WB              

SD      IF s s s ID EX M           

DADDI          IF ID EX M WB         

DADDI           IF ID EX M WB        

BNE            IF s s s ID EX      

next1                       

next2                       

LD                  IF ID EX M WB 

 Average of 17 cycles per iteration Start of next iteration 

 

Total cycles = 17 × 100 = 1700 cycles 

(Last iterate does not branch and we don’t kill next 2 instructions but this ignored for simplicity) 

Average CPI = 17 cycles / 6 instructions = 2.83 
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c) (5 pts) Assuming delayed branching, rewrite the above code to take advantage of the branch 

delay slot. Show the timing of the above instruction sequence for the 5-stage MIPS pipeline 

with full forwarding hardware. How many cycles does this loop take to execute? What is the 

average CPI? 

 

 Delayed Branching + Forwarding hardware. 

Code can be rewritten as follows to take advantage of the branch delay slot: 

 

I1: LD R1, 0(R2) ; Load R1 = Memory(R2) 

I2: DADDI R1, R1, 1 ; R1 = R1 + 1 

I3: SD R1, 0(R2) ; Store Memory(R2) = R1 

I5: DADDI R4, R4, -1 ; R4 = R4 – 1 

I6: BNE R4, R0, I1 ; Branch if R4 != 0 

I4: DADDI R2, R2, 8 ; R2 = R2 + 8 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

LD IF ID EX M WB         

DADDI  IF s ID EX M WB       

SD    IF ID EX M       

DADDI     IF ID EX M WB     

BNE      IF ID EX      

DADDI       IF ID EX M WB   

next              

LD         IF ID EX M WB 

 8 cycles per iteration Next iterate 

 

Total cycles = 8 × 100 = 800 cycles 

Average CPI = 8 cycles / 6 instructions = 1.33 

 

d) (4 pts) Cache memory stages sometimes take longer to access than other pipeline stages. 

Consider a 7-stage pipeline: IF1, IF2, ID, EX, MEM1, MEM2, WB, where instruction fetch is split 

into two stages: IF1 and IF2, and the data memory is also split into two stages: MEM1 and 

MEM2. Show the timing of the above instruction sequence for the 7-stage pipeline will full 

forwarding hardware. Assume that the branch is handled by predicting it as always TAKEN 

with zero delay in the IF1 stage. How many cycles does this loop take to execute? What is the 

average CPI? 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

LD IF1 IF2 ID EX M1 M2 WB           

DADDI  IF1 IF2 s s ID EX M1 M2 WB        

SD   IF1 s s IF2 ID EX M1 M2        

DADDI      IF1 IF2 ID EX M1 M2 WB      

DADDI       IF1 IF2 ID EX M1 M2 WB     

BNE        IF1 IF2 ID EX       

LD         IF1 IF2 ID EX M1 M2 WB   

 8 cycles per iteration Next Iterate 

 

Total cycles = 8 × 100 = 800 cycles 

Average CPI = 8 cycles / 6 instructions = 1.33 
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2) (5 pts) Consider the following branch and jump frequencies. Assume there is NO branch target 

buffer (BTB) in the first stage and that branches and jumps are not resolved until later stages 

in the pipeline. 

 

 Conditional branches = 20% 

 Unconditional Jumps and Calls = 3% 

70% of conditional branches are taken 

 

a) (2 pts) We are examining a 5-stage processor pipeline where the unconditional jump and call 

instructions are resolved at the end of the second stage, and the conditional branches are 

resolved at the end of the third stage. Ignoring other pipeline stalls, how much faster would 

the processor pipeline be without any control hazards? 

 

 Unconditional Jump and Call Delay = 1 cycle (Kills next instruction) 

 Taken Conditional Branch Delay = 2 cycles  (Kills next 2 instructions) 

 Untaken Conditional Branch kills 0 instructions 

 

 CPI with control hazards = 1 + 0.03 × 1 + 0.2 × 0.7 × 2 = 1.31 

 CPI without control hazards = 1 

 Speedup = 1.31 / 1  = 1.31 

 

b) (3 pts) Now assume a 10-stage deep pipeline, where unconditional jumps and calls are 

resolved at the end of the fourth stage and conditional branches are resolved at the end of 

the seventh stage. Ignoring other pipeline stalls, how much faster would the processor 

pipeline be without any control hazards? 

 

 Unconditional Jump and Call Delay = 3 cycles (Kills next 3 instructions) 

 Taken Conditional Branch Delay = 6 cycles  (Kills next 6 instructions) 

 Untaken Conditional Branch kills 0 instructions 

 

 CPI with control hazards = 1 + 0.03 × 3 + 0.2 × 0.7 × 6 = 1.93 

 CPI without control hazards = 1 

 Speedup = 1.93 / 1  = 1.93 

 

3) (7 pts) In this problem, we will explore how a deep processor pipeline affects performance in 

two ways: faster clock cycle and increased stalls due to data and control hazards. Assume that 

the original processor is a 5-stage pipeline with a 1 ns clock cycle. The second processor is a 

12-stage pipeline with a 0.5 ns clock cycle. The 5-stage pipeline experiences one stall cycle due 

to a data hazard every 5 instructions, whereas the 12-stage pipeline experiences 3 stall cycles 

every 8 instructions. In addition, branches constitute 20% of the instruction count, and the 

misprediction rate for both pipelines is 5%. 

 

a) (3 pts) What is the speedup of the 12-stage pipeline over the 5-stage pipeline, taking into 

account only data hazards? 

 

 Average CPI (5-stage pipeline) = 1 + 1/5 = 6/5 (Data hazard stalls only) 

 Average CPI (12-stage pipeline) = 1 + 3/8 = 11/8 (Data hazard stalls only) 

 Speedup = (6/5 × 1 ns) / (11/8 × 0.5 ns) = 1.745 (Data hazards only) 
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b) (4 pts) If the branch misprediction penalty is 2 cycles for the 5-stage pipeline, but 6 cycles for 

the 12-stage pipeline, what are the CPIs of each, taking into account the stalls of the data 

hazards and branch hazards? 

 

 Average CPI (5-stage pipeline) = 1 + 1/5 + 0.2 × 0.05 × 2 = 1.22 (Data + Branch Hazards) 

 Average CPI (12-stage pipeline) = 1 + 3/8 + 0.2 × 0.05 × 6 = 1.435 (Data + Branch Hazards) 

 Speedup = (1.22 × 1 ns) / (1.435 × 0.5 ns) = 1.70 (Data + Branch Hazards) 

 

 

4) (13 pts) We will now add support for register-memory ALU operations to the classic five-stage 

MIPS pipeline. To simplify the problem, all memory addressing will be restricted to register 

indirect. All addresses are simply a value held in a register. No displacement may be added to 

the register value. For example, ADD R4, R5, (R8) means R4 = R5 + Memory(R8). Only one 

memory operand can be read, but not written. To write memory, the store instruction should 

be used instead. Register-register ALU operations are unchanged. For example, the instruction 

ADD R4, R5, R8 means R4 = R5 + R8. 

 

a) (2 pts) List a rearranged order of the five traditional stages of the MIPS pipeline that will 

support register-memory operations implemented exclusively by register indirect addressing. 

 

 IF = Instruction Fetch (as before) 

 ID = Instruction Decode (as before) 

 MEM = Memory Stage (comes before the Execute stage) 

 EX = Execute (comes after the Memory stage) 

 WB = Write Back stage (as before) 

 

 The memory stage should come before the execute stage to allow a memory operand to be 

read from memory before execution. 

 

b) (5 pts) Describe what forwarding paths are needed for the rearranged pipeline by stating the 

source stage, destination stage, and information transferred on each needed new path. Give 

an instruction sequence showing each data hazard that can be resolved by forwarding data 

between stages. Draw a timing diagram showing the forwarding between stages. 

 

 Forwarding from MEM back to MEM stage: 

 LD R7, (R6) ; Load R7 = Memory(R6) 

 LD R8, (R7) ; Load R8 = Memory(R7) 

 Value of R7 should be forwarded from output of MEM back to address input of MEM. 

 

 LD R8, (R6) ; Load R8 = Memory(R6) 

 SD R8, (R7) ; Store Memory(R7) = R8 

 Value of R8 should be forwarded from output of MEM back to data input of MEM. 

 

 Forwarding from WB and EX stages back to the EX stage: 

 ADD R4, R5, (R6) ; R4 = R5 + Memory(R6) 

 SUB R7, R5, (R8) ; R7 = R5 – Memory (R8) 

 AND R9, R4, R7 ; R9 = R4 & R7 

 Values of R4 and R7 should be forwarded from WB and EX stages back to the EX stage. 
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 Forwarding from WB and EX stages back to the MEM stage: 

 DADD R4, R5, (R6) ; R4 = R5 + Memory(R6) 

 DSUB R7, R5, (R8) ; R7 = R5 – Memory (R8) 

 SD R4, (R9) ; Memory(R9) = R4 

 AND R3, R3, (R4) ; R3 = R3 & Memory(R4) 

 Value of R4 should be forwarded from the output of the EX stage back data input of the 

MEM stage (needed by SD). In addition, value of R4 should be forwarded from the WB stage 

back to the address input of the MEM stage (needed by AND). 

 

 

 1 2 3 4 5 6 7 8 9 10 

LD R7, (R6) IF ID MEM EX WB      

LD R8, (R7)  IF ID MEM EX WB     

           

LD R8, (R6) IF ID MEM EX WB      

SD R8, (R7)  IF ID MEM       

           

ADD R4, R5, (R6) IF ID MEM EX WB      

SUB R7, R5, (R8)  IF ID MEM EX WB     

AND R9, R4, R7   IF ID MEM EX WB    

           

DADD R4, R5, (R6) IF ID MEM EX WB      

DSUB R7, R5, (R8)  IF ID MEM EX WB     

SD  R4, (R9)   IF ID MEM      

AND  R3, R7, (R4)    IF ID MEM EX WB   

 

c) (3 pts) For the reordered stages of the pipeline, what data hazards cannot be forwarded and 

cause stall cycles? Give an instruction sequence showing each data hazard that causes stall 

cycles. Draw a timing diagram showing the stall cycles caused by each data hazard. 

 

 Because the EX stage is rearranged after the MEM stage, some RAW data hazards cause stall 

cycles in the new pipeline. 

 DADD R4, R5, (R6) ; R4 = R5 + Memory(R6) 

 SD R4, (R9) ; Memory(R9) = R4 

 Stall 1 cycle until the value of R4 is computed in the EX stage. The MEM stage is waiting for 

data to be computed in the EX stage. 

 

 DADDI R7, R7, 16 ; R7 = R7 + 16 

 DSUB R8, R8, (R7) ; R8 = R8 – Memory(R7) 

 Stall 1 cycle until the value of R7 is computed in the EX stage. The MEM stage is waiting for 

the address to be computed in the EX stage. 

 

 1 2 3 4 5 6 7 8 9 10 

DADD R4, R5, (R6) IF ID MEM EX WB      

SD   R4, (R9)  IF ID stall MEM      

           

DADDI  R7, R7, 16 IF ID MEM EX WB      

DSUB  R8, R8, (R7)  IF ID stall MEM EX WB    
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d) (1 pts) What is the penalty of the branch instruction in the new pipeline? 

 

 Because the EX stage is now the fourth stage in the pipeline, the penalty of the branch 

instruction has increased from 2 cycles to 3 cycles. 

 

e) (2 pts) List all of the ways that the new pipeline with register-memory ALU operations can 

have a different instruction count for a given program than the original pipeline (that supports 

register-register ALU operations only). Give specific instruction sequences, one for the original 

pipeline and one for the rearranged pipeline, to illustrate each way. 

 

 Because register-memory operations are supported, the number of load instructions can be 

reduced. For example, to translate A = B + C requires 4 instructions in the original MIPS 

architecture, while 3 instructions only if register-memory operations are supported. 

 

 A = B + C (No register-memory ALU operations) R4, R5, R6 contain addresses of A, B, and C: 

 LD R10, (R5) ; Load R10 = Memory(R5) = B 

 LD R11, (R6) ; Load R11 = Memory(R6) = C 

 DADD R12, R10, R11 ; R12 = B + C 

 SD R12, (R4) ; Store A = Memory(R4) = R12 

 

 A = B + C (Register-memory ALU operations are supported): 

 LD R10, (R5) ; Load R10 = Memory(R5) = B 

 DADD R12, R10, (R6) ; R12 = B + C 

 SD R12, (R4) ; Store A = Memory(R4) = R12 

 

 Because Register Indirect addressing can be used only and there is no displacement 

addressing, additional ALU instructions are required to calculate memory addresses. For 

example, the following instruction sequence: 

 

 LD R10, 8(R4) 

 LD R11, 16(R4) 

 LD R12, 24(R4) 

 

 Should be rewritten as follows if only register-indirect addressing is supported, causing an 

increase in the instruction count: 

 

 DADDI R5, R4, 8 

 DADDI R6, R4, 16 

 DADDI R7, R4, 24 

 LD R10, (R5) 

 LD R11, (R6) 

 LD R12, (R7) 

 


