
Prepared by Dr. Muhamed Mudawar Page 1 of 6

COE 501: Computer Architecture

Problem Set 4: Pipelining Basic and Intermediate Concepts

1) (15 pts) Use the following code fragment:

I1: LD R1, 0(R2) ; Load R1 = Memory(R2)

I2: DADDI R1, R1, 1 ; R1 = R1 + 1

I3: SD R1, 0(R2) ; Store Memory(R2) = R1

I4: DADDI R2, R2, 8 ; R2 = R2 + 8

I5: DADDI R4, R4, -1 ; R4 = R4 – 1

I6: BNE R4, R0, I1 ; Branch if R4 != 0

Assume that the initial value of R4 is 100.

a) (2 pts) List all the true data dependences in the code above within one loop iteration. Record

the register, source instruction, and destination instruction.

 Data Dependences (within one loop iteration):

 Register R1: I1 (LD) ���� I2 (DADDI)

 Register R1: I2 (DADDI) ���� I3 (SD)

 Register R4: I5 (DADDI) ���� I6 (BNE)

b) (4 pts) Show the timing of the above instruction sequence for the 5-stage MIPS pipeline

without any forwarding hardware. Use a pipeline timing chart to show all stall cycles. Assume

that the branch is handled by predicting it as NOT taken. If the branch outcome is TAKEN, it

kills the next two instructions in the pipeline. How many cycles does this loop take to execute?

What is the average CPI?

 No forwarding hardware. Taken branch kills next two instructions.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

LD IF ID EX M WB

DADDI IF s s s ID EX M WB

SD IF s s s ID EX M

DADDI IF ID EX M WB

DADDI IF ID EX M WB

BNE IF s s s ID EX

next1

next2

LD IF ID EX M WB

 Average of 17 cycles per iteration Start of next iteration

Total cycles = 17 × 100 = 1700 cycles

(Last iterate does not branch and we don’t kill next 2 instructions but this ignored for simplicity)

Average CPI = 17 cycles / 6 instructions = 2.83

Prepared by Dr. Muhamed Mudawar Page 2 of 6

c) (5 pts) Assuming delayed branching, rewrite the above code to take advantage of the branch

delay slot. Show the timing of the above instruction sequence for the 5-stage MIPS pipeline

with full forwarding hardware. How many cycles does this loop take to execute? What is the

average CPI?

 Delayed Branching + Forwarding hardware.

Code can be rewritten as follows to take advantage of the branch delay slot:

I1: LD R1, 0(R2) ; Load R1 = Memory(R2)

I2: DADDI R1, R1, 1 ; R1 = R1 + 1

I3: SD R1, 0(R2) ; Store Memory(R2) = R1

I5: DADDI R4, R4, -1 ; R4 = R4 – 1

I6: BNE R4, R0, I1 ; Branch if R4 != 0

I4: DADDI R2, R2, 8 ; R2 = R2 + 8

 1 2 3 4 5 6 7 8 9 10 11 12 13

LD IF ID EX M WB

DADDI IF s ID EX M WB

SD IF ID EX M

DADDI IF ID EX M WB

BNE IF ID EX

DADDI IF ID EX M WB

next

LD IF ID EX M WB

 8 cycles per iteration Next iterate

Total cycles = 8 × 100 = 800 cycles

Average CPI = 8 cycles / 6 instructions = 1.33

d) (4 pts) Cache memory stages sometimes take longer to access than other pipeline stages.

Consider a 7-stage pipeline: IF1, IF2, ID, EX, MEM1, MEM2, WB, where instruction fetch is split

into two stages: IF1 and IF2, and the data memory is also split into two stages: MEM1 and

MEM2. Show the timing of the above instruction sequence for the 7-stage pipeline will full

forwarding hardware. Assume that the branch is handled by predicting it as always TAKEN

with zero delay in the IF1 stage. How many cycles does this loop take to execute? What is the

average CPI?

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD IF1 IF2 ID EX M1 M2 WB

DADDI IF1 IF2 s s ID EX M1 M2 WB

SD IF1 s s IF2 ID EX M1 M2

DADDI IF1 IF2 ID EX M1 M2 WB

DADDI IF1 IF2 ID EX M1 M2 WB

BNE IF1 IF2 ID EX

LD IF1 IF2 ID EX M1 M2 WB

 8 cycles per iteration Next Iterate

Total cycles = 8 × 100 = 800 cycles

Average CPI = 8 cycles / 6 instructions = 1.33

Prepared by Dr. Muhamed Mudawar Page 3 of 6

2) (5 pts) Consider the following branch and jump frequencies. Assume there is NO branch target

buffer (BTB) in the first stage and that branches and jumps are not resolved until later stages

in the pipeline.

 Conditional branches = 20%

 Unconditional Jumps and Calls = 3%

70% of conditional branches are taken

a) (2 pts) We are examining a 5-stage processor pipeline where the unconditional jump and call

instructions are resolved at the end of the second stage, and the conditional branches are

resolved at the end of the third stage. Ignoring other pipeline stalls, how much faster would

the processor pipeline be without any control hazards?

 Unconditional Jump and Call Delay = 1 cycle (Kills next instruction)

 Taken Conditional Branch Delay = 2 cycles (Kills next 2 instructions)

 Untaken Conditional Branch kills 0 instructions

 CPI with control hazards = 1 + 0.03 × 1 + 0.2 × 0.7 × 2 = 1.31

 CPI without control hazards = 1

 Speedup = 1.31 / 1 = 1.31

b) (3 pts) Now assume a 10-stage deep pipeline, where unconditional jumps and calls are

resolved at the end of the fourth stage and conditional branches are resolved at the end of

the seventh stage. Ignoring other pipeline stalls, how much faster would the processor

pipeline be without any control hazards?

 Unconditional Jump and Call Delay = 3 cycles (Kills next 3 instructions)

 Taken Conditional Branch Delay = 6 cycles (Kills next 6 instructions)

 Untaken Conditional Branch kills 0 instructions

 CPI with control hazards = 1 + 0.03 × 3 + 0.2 × 0.7 × 6 = 1.93

 CPI without control hazards = 1

 Speedup = 1.93 / 1 = 1.93

3) (7 pts) In this problem, we will explore how a deep processor pipeline affects performance in

two ways: faster clock cycle and increased stalls due to data and control hazards. Assume that

the original processor is a 5-stage pipeline with a 1 ns clock cycle. The second processor is a

12-stage pipeline with a 0.5 ns clock cycle. The 5-stage pipeline experiences one stall cycle due

to a data hazard every 5 instructions, whereas the 12-stage pipeline experiences 3 stall cycles

every 8 instructions. In addition, branches constitute 20% of the instruction count, and the

misprediction rate for both pipelines is 5%.

a) (3 pts) What is the speedup of the 12-stage pipeline over the 5-stage pipeline, taking into

account only data hazards?

 Average CPI (5-stage pipeline) = 1 + 1/5 = 6/5 (Data hazard stalls only)

 Average CPI (12-stage pipeline) = 1 + 3/8 = 11/8 (Data hazard stalls only)

 Speedup = (6/5 × 1 ns) / (11/8 × 0.5 ns) = 1.745 (Data hazards only)

Prepared by Dr. Muhamed Mudawar Page 4 of 6

b) (4 pts) If the branch misprediction penalty is 2 cycles for the 5-stage pipeline, but 6 cycles for

the 12-stage pipeline, what are the CPIs of each, taking into account the stalls of the data

hazards and branch hazards?

 Average CPI (5-stage pipeline) = 1 + 1/5 + 0.2 × 0.05 × 2 = 1.22 (Data + Branch Hazards)

 Average CPI (12-stage pipeline) = 1 + 3/8 + 0.2 × 0.05 × 6 = 1.435 (Data + Branch Hazards)

 Speedup = (1.22 × 1 ns) / (1.435 × 0.5 ns) = 1.70 (Data + Branch Hazards)

4) (13 pts) We will now add support for register-memory ALU operations to the classic five-stage

MIPS pipeline. To simplify the problem, all memory addressing will be restricted to register

indirect. All addresses are simply a value held in a register. No displacement may be added to

the register value. For example, ADD R4, R5, (R8) means R4 = R5 + Memory(R8). Only one

memory operand can be read, but not written. To write memory, the store instruction should

be used instead. Register-register ALU operations are unchanged. For example, the instruction

ADD R4, R5, R8 means R4 = R5 + R8.

a) (2 pts) List a rearranged order of the five traditional stages of the MIPS pipeline that will

support register-memory operations implemented exclusively by register indirect addressing.

 IF = Instruction Fetch (as before)

 ID = Instruction Decode (as before)

 MEM = Memory Stage (comes before the Execute stage)

 EX = Execute (comes after the Memory stage)

 WB = Write Back stage (as before)

 The memory stage should come before the execute stage to allow a memory operand to be

read from memory before execution.

b) (5 pts) Describe what forwarding paths are needed for the rearranged pipeline by stating the

source stage, destination stage, and information transferred on each needed new path. Give

an instruction sequence showing each data hazard that can be resolved by forwarding data

between stages. Draw a timing diagram showing the forwarding between stages.

 Forwarding from MEM back to MEM stage:

 LD R7, (R6) ; Load R7 = Memory(R6)

 LD R8, (R7) ; Load R8 = Memory(R7)

 Value of R7 should be forwarded from output of MEM back to address input of MEM.

 LD R8, (R6) ; Load R8 = Memory(R6)

 SD R8, (R7) ; Store Memory(R7) = R8

 Value of R8 should be forwarded from output of MEM back to data input of MEM.

 Forwarding from WB and EX stages back to the EX stage:

 ADD R4, R5, (R6) ; R4 = R5 + Memory(R6)

 SUB R7, R5, (R8) ; R7 = R5 – Memory (R8)

 AND R9, R4, R7 ; R9 = R4 & R7

 Values of R4 and R7 should be forwarded from WB and EX stages back to the EX stage.

Prepared by Dr. Muhamed Mudawar Page 5 of 6

 Forwarding from WB and EX stages back to the MEM stage:

 DADD R4, R5, (R6) ; R4 = R5 + Memory(R6)

 DSUB R7, R5, (R8) ; R7 = R5 – Memory (R8)

 SD R4, (R9) ; Memory(R9) = R4

 AND R3, R3, (R4) ; R3 = R3 & Memory(R4)

 Value of R4 should be forwarded from the output of the EX stage back data input of the

MEM stage (needed by SD). In addition, value of R4 should be forwarded from the WB stage

back to the address input of the MEM stage (needed by AND).

 1 2 3 4 5 6 7 8 9 10

LD R7, (R6) IF ID MEM EX WB

LD R8, (R7) IF ID MEM EX WB

LD R8, (R6) IF ID MEM EX WB

SD R8, (R7) IF ID MEM

ADD R4, R5, (R6) IF ID MEM EX WB

SUB R7, R5, (R8) IF ID MEM EX WB

AND R9, R4, R7 IF ID MEM EX WB

DADD R4, R5, (R6) IF ID MEM EX WB

DSUB R7, R5, (R8) IF ID MEM EX WB

SD R4, (R9) IF ID MEM

AND R3, R7, (R4) IF ID MEM EX WB

c) (3 pts) For the reordered stages of the pipeline, what data hazards cannot be forwarded and

cause stall cycles? Give an instruction sequence showing each data hazard that causes stall

cycles. Draw a timing diagram showing the stall cycles caused by each data hazard.

 Because the EX stage is rearranged after the MEM stage, some RAW data hazards cause stall

cycles in the new pipeline.

 DADD R4, R5, (R6) ; R4 = R5 + Memory(R6)

 SD R4, (R9) ; Memory(R9) = R4

 Stall 1 cycle until the value of R4 is computed in the EX stage. The MEM stage is waiting for

data to be computed in the EX stage.

 DADDI R7, R7, 16 ; R7 = R7 + 16

 DSUB R8, R8, (R7) ; R8 = R8 – Memory(R7)

 Stall 1 cycle until the value of R7 is computed in the EX stage. The MEM stage is waiting for

the address to be computed in the EX stage.

 1 2 3 4 5 6 7 8 9 10

DADD R4, R5, (R6) IF ID MEM EX WB

SD R4, (R9) IF ID stall MEM

DADDI R7, R7, 16 IF ID MEM EX WB

DSUB R8, R8, (R7) IF ID stall MEM EX WB

Prepared by Dr. Muhamed Mudawar Page 6 of 6

d) (1 pts) What is the penalty of the branch instruction in the new pipeline?

 Because the EX stage is now the fourth stage in the pipeline, the penalty of the branch

instruction has increased from 2 cycles to 3 cycles.

e) (2 pts) List all of the ways that the new pipeline with register-memory ALU operations can

have a different instruction count for a given program than the original pipeline (that supports

register-register ALU operations only). Give specific instruction sequences, one for the original

pipeline and one for the rearranged pipeline, to illustrate each way.

 Because register-memory operations are supported, the number of load instructions can be

reduced. For example, to translate A = B + C requires 4 instructions in the original MIPS

architecture, while 3 instructions only if register-memory operations are supported.

 A = B + C (No register-memory ALU operations) R4, R5, R6 contain addresses of A, B, and C:

 LD R10, (R5) ; Load R10 = Memory(R5) = B

 LD R11, (R6) ; Load R11 = Memory(R6) = C

 DADD R12, R10, R11 ; R12 = B + C

 SD R12, (R4) ; Store A = Memory(R4) = R12

 A = B + C (Register-memory ALU operations are supported):

 LD R10, (R5) ; Load R10 = Memory(R5) = B

 DADD R12, R10, (R6) ; R12 = B + C

 SD R12, (R4) ; Store A = Memory(R4) = R12

 Because Register Indirect addressing can be used only and there is no displacement

addressing, additional ALU instructions are required to calculate memory addresses. For

example, the following instruction sequence:

 LD R10, 8(R4)

 LD R11, 16(R4)

 LD R12, 24(R4)

 Should be rewritten as follows if only register-indirect addressing is supported, causing an

increase in the instruction count:

 DADDI R5, R4, 8

 DADDI R6, R4, 16

 DADDI R7, R4, 24

 LD R10, (R5)

 LD R11, (R6)

 LD R12, (R7)

