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COE 501: Computer Architecture 

Problem Set 2: Instruction Set Principles 

Solution 

1) (4 pts) The MIPS dynamic instruction mix for the gcc program is given below: 

 

load store add sub compare 
cond 

branch 
jump call return shift and or xor 

other 

ALU 

25.1% 13.2% 19.0% 2.2% 6.1% 12.1% 0.7% 0.9% 0.9% 1.1% 4.6% 8.5% 2.1% 3.5% 

 

Given the following measurements of average CPI for instruction types: 

 

  

Assume that 70% of the conditional branches are taken, compute the effective CPI for the 

above gcc program. 

 

Total ALU instructions = 19.0% + 2.2% + 6.1% + 1.1% + 4.6% + 8.5% +2.1% + 3.5% = 47.1% 

Load and Store = 25.1% + 13.2% = 38.3% 

Taken Branch = 12.1% × 0.7 = 8.47% 

Not Taken Branch = 12.1% × 0.3 = 3.63% 

Jump, Call, and Return = 0.7% + 0.9% + 0.9% = 2.5% 

 

Effective CPI = 0.471 × 1.0 + 0.383 × 1.5 + 0.0847 × 1.8 + 0.0363 × 1.2 + 0.025 × 1.3 = 1.274 

 

  

Instruction 

Type 

All ALU 

Instructions 

Load & 

Store 

Taken 

Branch 

Not Taken 

Banch 

Jump, call, 

and return 

Average 

CPI 
1.0 1.5 1.8 1.2 1.3 
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2) (12 pts) Consider the following for-loop: 

 

 for (i = 0; i < 100; i++) { A[i] = B[i] + C; } 

 

 Where A and B are arrays of 64-bit integers, and C and i are 64-bit integers. Array A starts at 

address 1000 in memory, array B starts at address 3000, and variable C is at address 5000. 

The value of variable C should be loaded once into a register (R8) before entering the loop, 

and used in all loop iterations. Allocate a register for variable i (R9), and do not load or store 

its value in memory. 

 

a) (6 pts) Write the code for MIPS64. 

  

LD R8,  5000(R0) ; Load R8 = C 

DADD R9,  R0, R0 ; R9 = i = 0 

ORI R10, R0, 1000 ; R10 = address of array A 

ORI R11, R0, 3000 ; R11 = address of array B 

ORI R15, R0, 100 ; R15 = 100 

loop: 

LD R12, (R11) ; Load R12 = B[i] 

DADD R13, R12, R8 ; R13 = B[i] + C 

SD R13, (R10) ; Store A[i] = R13 

DADD R10, R10, 8 ; R10 = address of next A[i] 

DADD R11, R11, 8 ; R11 = address of next B[i] 

DADD R9,  R9,  1 ; i++ 

BNE R9,  R15, loop ; branch if (i != 100) 
 

b) (2 pts) How many instructions are executed dynamically? 

 

 According to the code provided in part a:  

Total instructions executed = 5 (outside loop) + 7 × 100 (inner loop) = 705 

 

c) (2 pts) How many load/store instructions are executed dynamically? 

 

 Total load/store executed = 1 (outside loop) + 2 × 100 (inner loop) = 201 

 

d) (2 pts) What is the code size in bytes? 

 

 Code size in bytes = 12 instructions × 4 bytes = 48 bytes 
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3) (12 pts) Assume that variables A thru F reside in memory and their memory addresses reside 

in registers R1 to R6, respectively. Instruction opcodes are 8 bits and register addresses are 4 

bits. Instructions can vary in size according to the opcode. 

 

a) (8 pts) Consider four different classes of instruction set architectures: Accumulator, Stack, 

Register-Memory (2-address instructions), and Register-Register (3-address instructions). For 

each instruction set class, write the code sequence to compute: 

 

 C = A + B 

 D = A – E 

 F = C + D 

 

b) (4 pts) What is the code size (bits) for each instruction set class? 

 

 Solution for parts a and b:  

The code is shown under the first column and the code size (in bits) is shown under the 

second column for each instruction set class. 

 

Accumulator Stack Register-Memory Register-Register 

Code Size Code Size Code Size Code Size 

Load  (R1) 

Add   (R2) 

Store (R3) 

Load  (R1) 

Sub   (R5) 

Store (R4) 

Add   (R3) 

Store (R6) 

12 

12 

12 

12 

12 

12 

12 

12 

Push (R1) 

Push (R2) 

Add 

Pop  (R3) 

Push (R5) 

Push (R1) 

Sub 

Pop  (R4) 

Push (R3) 

Push (R4) 

Add 

Pop  (R6) 

12 

12 

8 

12 

12 

12 

8 

12 

12 

12 

8 

12 

Load  R7,(R1) 

Add   R7,(R2) 

Store R7,(R3) 

Load  R8,(R1) 

Sub   R8,(R5) 

Store R8,(R4) 

Add   R7,R8 

Store R7,(R6) 

16 

16 

16 

16 

16 

16 

16 

16 

Load  R7,(R1) 

Load  R8,(R2) 

Add R9,R7,R8 

Store R9,(R3) 

Load  R10,(R5) 

Sub R11,R7,R10 

Store R11,(R4) 

Add R12,R9,R11 

Store R12,(R6) 

16 

16 

20 

16 

16 

20 

16 

20 

16 

Total 
96 

bits 
 

132 

bits 
 

128 

bits 
 

156 

bits 
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4) (8 pts) Consider a C structure (Object) that includes the following members. Assume a 64-bit 

architecture with 64-bit memory addresses: 

 

struct Object { 

  bool b; 

  double d; 

  short s1; 

  char * cptr;   // pointer to char 

  short s2; 

  short s3; 

  float * fptr;  // pointer to float 

  float f; 

  int i; 

}; 

 

a) (2 pts) If the compiler does not align data in memory, what is the minimum size of the struct 

Object in bytes? 

 

 Minimum Size (no alignment) = 1 + 8 + 2 + 8 + 2 + 2 + 8 + 4 + 4 = 39 bytes 

 

b) (3 pts) If the compiler aligns data in memory according to their size, but does not reorder the 

members of the structure, what will be the size of the struct Object? How many bytes are 

wasted internally inside the structure due to memory alignment? 

 

 Size with alignment = 1 + skip 7 + 8 + 2 + skip 6 + 8 + 2 + 2 + skip 4 + 8 + 4 + 4 = 56 bytes 

 7 + 6 + 4 = 17 bytes are skipped (wasted) internally due to memory alignment 

 

c) (3 pts) If the compiler aligns data in memory and can also reorder the members of the 

structure, how the members of the struct Object should be reordered? What will be the size 

of the struct Object? 
 

Members can be sorted according to their size 

 

struct Object { 

  bool b; 

  short s1; 

  short s2; 

  short s3; 

  float f; 

  int i; 

  double d; 

  char * cptr;  // pointer to char 

  float * fptr; // pointer to float 

}; 
 

 Size after reordering = 1 + skip 1 + 2 + 2 + 2 + 4 + 4 + 8 + 8 + 8 = 40 bytes 
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5) (14 pts) The MIPS architecture divides registers into two groups: Caller-Saved and Callee-

Saved. Those registers that are caller-saved should be preserved by the caller (if needed) 

before making a procedure call. Those registers that are callee-saved should be preserved 

inside the called procedure (if needed) before modifying them. Registers are saved by storing 

their values on the runtime stack and restored by loading their values. 

  

Register Number Usage Preserved by 

R0 Always zero Not applicable 

R1 Reserved for assembler use Not applicable 

R2 – R3 For returning function results Caller 

R4 – R7 For passing arguments Caller 

R8 – R15 For temporary results Caller 

R16 – R23 For saved variables Inside procedure (Callee) 

R24 – R25 More temporary results Caller 

R26 – R27 OS kernel Not applicable 

R28 Global data pointer Inside procedure (Callee) 

R29 Stack pointer Inside procedure (Callee) 

R30 Frame pointer Inside procedure (Callee) 

R31 Return address Inside procedure (Callee) 

 

 Suppose we want to translate function f using the above MIPS register conventions. 

Function f receives four arguments in registers R4 thru R7 and returns its result in register 

R2. We know that function f calls g, but we do not have the code for g and we don’t know 

which registers are used in g. We only know that g receives two integer arguments and 

returns one integer result according to the MIPS register conventions shown above. 

 

a) (5 pts) Translate function f into MIPS64 code: 

int f(int a, int b, int c, int d) { 

  return g(g(a,b), c+d); 

 } 

 

f: DADDI R29, R29, -16 ; Decrement stack pointer by 16 bytes 

 SD R31, (R29) ; Save return address on the stack 

 SD R16, 8(R29) ; Save R16 on the stack  

 DADD R16, R6, R7 ; R16 = c+d 

 JAL g ; Call function g; R2 = result 

 ORI R4, R2, 0 ; R4 = R2 = result of first call 

 ORI R5, R16, 0 ; R5 = R16 = c+d 

 JAL g ; Second call to g; R2 = result 

 LD R31, (R29) ; Load return address on the stack 

 LD R16, 8(R29) ; Restore R16 from the stack 

 DADDI R29, R29, 16 ; Free space on the stack 

 JR R31 ; Return to caller 

 

b) (5 pts) Translate function h into MIPS64 code: 

int h(int a, int b, int c, int d) { 

   if (a+b<c+d) return g(a+b, c+d); 

   else return g(c+d, a+b); 

 } 
 



Prepared by Dr. Muhamed Mudawar Page 6 of 6 

h: DADDI R29, R29, -8 ; Decrement stack pointer by 8 bytes 

 SD R31, (R29) ; Save return address on the stack 

 DADDI R4, R4, R5 ; R4 = a+b 

 DADDI R5, R6, R7 ; R5 = c+d 

 SLT R8, R4, R5 ; R8 = (a+b<c+d) 

 BEQ R8, R0, else ; Branch if false to else part 

 JAL g ; Call g(a+b, c+d); R2 = result 

 J return 

else: 

 ORI R9, R4, 0 ; R9 = R4 = a+b 

 ORI R4, R5, 0 ; R4 = R5 = c+d 

 ORI R5, R9, 0 ; R5 = R9 = a+b 

 JAL g ; Call g(c+d, a+b); R2 = result 

return: 

 LD R31, (R29) ; Load return address on the stack 

 DADDI R29, R29, 8 ; Free space on the stack 

 JR R31 ; Return to caller 
 
c) (4 pts) Can we use tail-call optimization that uses the J (jump) instruction rather than JAL 

(jump-and-link) to call the function g in part a and b? If no, explain why not. If yes, show how 

the code should be optimized in part a and b? 

 

 For part a, we can use tail-call optimization for the second call to g. However, we must save 

the return for the first call to g. The code for part a is as follows: 
 
f: DADDI R29, R29, -16 ; Decrement stack pointer by 16 bytes 

 SD R31, (R29) ; Save return address on the stack 

 SD R16, 8(R29) ; Save R16 on the stack 

 DADD R16, R6, R7 ; R16 = c+d 

 JAL g ; Call function g; R2 = result 

 ORI R4, R2, 0 ; R4 = R2 = result of first call 

 ORI R5, R16, 0 ; R5 = R16 = c+d 

 LD R31, (R29) ; Load return address on the stack 

 LD R16, 8(R29) ; Restore R16 from the stack 

 DADDI R29, R29, 16 ; Free space on the stack 

 J g ; Jump to g (tail-call); R2 = result 
 
For part b, there is only one call to g (either IF part or ELSE part). We can use tail-call 

optimization as follows: (No need to save return address on the stack) 

h: DADDI R4, R4, R5 ; R4 = a+b 

 DADDI R5, R6, R7 ; R5 = c+d 

 SLT R8, R4, R5 ; R8 = (a+b<c+d) 

 BEQ R8, R0, else ; Branch if false to else part 

 J g ; Tail-Call g(a+b, c+d); R2 = result 

else: 

 ORI R9, R4, 0 ; R9 = R4 = a+b 

 ORI R4, R5, 0 ; R4 = R5 = c+d 

 ORI R5, R9, 0 ; R5 = R9 = a+b 

 J g ; Tail-Call g(c+d, a+b); R2 = result 


