
Prepared by Dr. Muhamed Mudawar Page 1 of 6

COE 501: Computer Architecture

Problem Set 2: Instruction Set Principles

Solution

1) (4 pts) The MIPS dynamic instruction mix for the gcc program is given below:

load store add sub compare
cond

branch
jump call return shift and or xor

other

ALU

25.1% 13.2% 19.0% 2.2% 6.1% 12.1% 0.7% 0.9% 0.9% 1.1% 4.6% 8.5% 2.1% 3.5%

Given the following measurements of average CPI for instruction types:

Assume that 70% of the conditional branches are taken, compute the effective CPI for the

above gcc program.

Total ALU instructions = 19.0% + 2.2% + 6.1% + 1.1% + 4.6% + 8.5% +2.1% + 3.5% = 47.1%

Load and Store = 25.1% + 13.2% = 38.3%

Taken Branch = 12.1% × 0.7 = 8.47%

Not Taken Branch = 12.1% × 0.3 = 3.63%

Jump, Call, and Return = 0.7% + 0.9% + 0.9% = 2.5%

Effective CPI = 0.471 × 1.0 + 0.383 × 1.5 + 0.0847 × 1.8 + 0.0363 × 1.2 + 0.025 × 1.3 = 1.274

Instruction

Type

All ALU

Instructions

Load &

Store

Taken

Branch

Not Taken

Banch

Jump, call,

and return

Average

CPI
1.0 1.5 1.8 1.2 1.3

Prepared by Dr. Muhamed Mudawar Page 2 of 6

2) (12 pts) Consider the following for-loop:

 for (i = 0; i < 100; i++) { A[i] = B[i] + C; }

 Where A and B are arrays of 64-bit integers, and C and i are 64-bit integers. Array A starts at

address 1000 in memory, array B starts at address 3000, and variable C is at address 5000.

The value of variable C should be loaded once into a register (R8) before entering the loop,

and used in all loop iterations. Allocate a register for variable i (R9), and do not load or store

its value in memory.

a) (6 pts) Write the code for MIPS64.

LD R8, 5000(R0) ; Load R8 = C

DADD R9, R0, R0 ; R9 = i = 0

ORI R10, R0, 1000 ; R10 = address of array A

ORI R11, R0, 3000 ; R11 = address of array B

ORI R15, R0, 100 ; R15 = 100

loop:

LD R12, (R11) ; Load R12 = B[i]

DADD R13, R12, R8 ; R13 = B[i] + C

SD R13, (R10) ; Store A[i] = R13

DADD R10, R10, 8 ; R10 = address of next A[i]

DADD R11, R11, 8 ; R11 = address of next B[i]

DADD R9, R9, 1 ; i++

BNE R9, R15, loop ; branch if (i != 100)

b) (2 pts) How many instructions are executed dynamically?

 According to the code provided in part a:

Total instructions executed = 5 (outside loop) + 7 × 100 (inner loop) = 705

c) (2 pts) How many load/store instructions are executed dynamically?

 Total load/store executed = 1 (outside loop) + 2 × 100 (inner loop) = 201

d) (2 pts) What is the code size in bytes?

 Code size in bytes = 12 instructions × 4 bytes = 48 bytes

Prepared by Dr. Muhamed Mudawar Page 3 of 6

3) (12 pts) Assume that variables A thru F reside in memory and their memory addresses reside

in registers R1 to R6, respectively. Instruction opcodes are 8 bits and register addresses are 4

bits. Instructions can vary in size according to the opcode.

a) (8 pts) Consider four different classes of instruction set architectures: Accumulator, Stack,

Register-Memory (2-address instructions), and Register-Register (3-address instructions). For

each instruction set class, write the code sequence to compute:

 C = A + B

 D = A – E

 F = C + D

b) (4 pts) What is the code size (bits) for each instruction set class?

 Solution for parts a and b:

The code is shown under the first column and the code size (in bits) is shown under the

second column for each instruction set class.

Accumulator Stack Register-Memory Register-Register

Code Size Code Size Code Size Code Size

Load (R1)

Add (R2)

Store (R3)

Load (R1)

Sub (R5)

Store (R4)

Add (R3)

Store (R6)

12

12

12

12

12

12

12

12

Push (R1)

Push (R2)

Add

Pop (R3)

Push (R5)

Push (R1)

Sub

Pop (R4)

Push (R3)

Push (R4)

Add

Pop (R6)

12

12

8

12

12

12

8

12

12

12

8

12

Load R7,(R1)

Add R7,(R2)

Store R7,(R3)

Load R8,(R1)

Sub R8,(R5)

Store R8,(R4)

Add R7,R8

Store R7,(R6)

16

16

16

16

16

16

16

16

Load R7,(R1)

Load R8,(R2)

Add R9,R7,R8

Store R9,(R3)

Load R10,(R5)

Sub R11,R7,R10

Store R11,(R4)

Add R12,R9,R11

Store R12,(R6)

16

16

20

16

16

20

16

20

16

Total
96

bits

132

bits

128

bits

156

bits

Prepared by Dr. Muhamed Mudawar Page 4 of 6

4) (8 pts) Consider a C structure (Object) that includes the following members. Assume a 64-bit

architecture with 64-bit memory addresses:

struct Object {

 bool b;

 double d;

 short s1;

 char * cptr; // pointer to char

 short s2;

 short s3;

 float * fptr; // pointer to float

 float f;

 int i;

};

a) (2 pts) If the compiler does not align data in memory, what is the minimum size of the struct

Object in bytes?

 Minimum Size (no alignment) = 1 + 8 + 2 + 8 + 2 + 2 + 8 + 4 + 4 = 39 bytes

b) (3 pts) If the compiler aligns data in memory according to their size, but does not reorder the

members of the structure, what will be the size of the struct Object? How many bytes are

wasted internally inside the structure due to memory alignment?

 Size with alignment = 1 + skip 7 + 8 + 2 + skip 6 + 8 + 2 + 2 + skip 4 + 8 + 4 + 4 = 56 bytes

 7 + 6 + 4 = 17 bytes are skipped (wasted) internally due to memory alignment

c) (3 pts) If the compiler aligns data in memory and can also reorder the members of the

structure, how the members of the struct Object should be reordered? What will be the size

of the struct Object?

Members can be sorted according to their size

struct Object {

 bool b;

 short s1;

 short s2;

 short s3;

 float f;

 int i;

 double d;

 char * cptr; // pointer to char

 float * fptr; // pointer to float

};

 Size after reordering = 1 + skip 1 + 2 + 2 + 2 + 4 + 4 + 8 + 8 + 8 = 40 bytes

Prepared by Dr. Muhamed Mudawar Page 5 of 6

5) (14 pts) The MIPS architecture divides registers into two groups: Caller-Saved and Callee-

Saved. Those registers that are caller-saved should be preserved by the caller (if needed)

before making a procedure call. Those registers that are callee-saved should be preserved

inside the called procedure (if needed) before modifying them. Registers are saved by storing

their values on the runtime stack and restored by loading their values.

Register Number Usage Preserved by

R0 Always zero Not applicable

R1 Reserved for assembler use Not applicable

R2 – R3 For returning function results Caller

R4 – R7 For passing arguments Caller

R8 – R15 For temporary results Caller

R16 – R23 For saved variables Inside procedure (Callee)

R24 – R25 More temporary results Caller

R26 – R27 OS kernel Not applicable

R28 Global data pointer Inside procedure (Callee)

R29 Stack pointer Inside procedure (Callee)

R30 Frame pointer Inside procedure (Callee)

R31 Return address Inside procedure (Callee)

 Suppose we want to translate function f using the above MIPS register conventions.

Function f receives four arguments in registers R4 thru R7 and returns its result in register

R2. We know that function f calls g, but we do not have the code for g and we don’t know

which registers are used in g. We only know that g receives two integer arguments and

returns one integer result according to the MIPS register conventions shown above.

a) (5 pts) Translate function f into MIPS64 code:

int f(int a, int b, int c, int d) {

 return g(g(a,b), c+d);

 }

f: DADDI R29, R29, -16 ; Decrement stack pointer by 16 bytes

 SD R31, (R29) ; Save return address on the stack

 SD R16, 8(R29) ; Save R16 on the stack

 DADD R16, R6, R7 ; R16 = c+d

 JAL g ; Call function g; R2 = result

 ORI R4, R2, 0 ; R4 = R2 = result of first call

 ORI R5, R16, 0 ; R5 = R16 = c+d

 JAL g ; Second call to g; R2 = result

 LD R31, (R29) ; Load return address on the stack

 LD R16, 8(R29) ; Restore R16 from the stack

 DADDI R29, R29, 16 ; Free space on the stack

 JR R31 ; Return to caller

b) (5 pts) Translate function h into MIPS64 code:

int h(int a, int b, int c, int d) {

 if (a+b<c+d) return g(a+b, c+d);

 else return g(c+d, a+b);

 }

Prepared by Dr. Muhamed Mudawar Page 6 of 6

h: DADDI R29, R29, -8 ; Decrement stack pointer by 8 bytes

 SD R31, (R29) ; Save return address on the stack

 DADDI R4, R4, R5 ; R4 = a+b

 DADDI R5, R6, R7 ; R5 = c+d

 SLT R8, R4, R5 ; R8 = (a+b<c+d)

 BEQ R8, R0, else ; Branch if false to else part

 JAL g ; Call g(a+b, c+d); R2 = result

 J return

else:

 ORI R9, R4, 0 ; R9 = R4 = a+b

 ORI R4, R5, 0 ; R4 = R5 = c+d

 ORI R5, R9, 0 ; R5 = R9 = a+b

 JAL g ; Call g(c+d, a+b); R2 = result

return:

 LD R31, (R29) ; Load return address on the stack

 DADDI R29, R29, 8 ; Free space on the stack

 JR R31 ; Return to caller

c) (4 pts) Can we use tail-call optimization that uses the J (jump) instruction rather than JAL

(jump-and-link) to call the function g in part a and b? If no, explain why not. If yes, show how

the code should be optimized in part a and b?

 For part a, we can use tail-call optimization for the second call to g. However, we must save

the return for the first call to g. The code for part a is as follows:

f: DADDI R29, R29, -16 ; Decrement stack pointer by 16 bytes

 SD R31, (R29) ; Save return address on the stack

 SD R16, 8(R29) ; Save R16 on the stack

 DADD R16, R6, R7 ; R16 = c+d

 JAL g ; Call function g; R2 = result

 ORI R4, R2, 0 ; R4 = R2 = result of first call

 ORI R5, R16, 0 ; R5 = R16 = c+d

 LD R31, (R29) ; Load return address on the stack

 LD R16, 8(R29) ; Restore R16 from the stack

 DADDI R29, R29, 16 ; Free space on the stack

 J g ; Jump to g (tail-call); R2 = result

For part b, there is only one call to g (either IF part or ELSE part). We can use tail-call

optimization as follows: (No need to save return address on the stack)

h: DADDI R4, R4, R5 ; R4 = a+b

 DADDI R5, R6, R7 ; R5 = c+d

 SLT R8, R4, R5 ; R8 = (a+b<c+d)

 BEQ R8, R0, else ; Branch if false to else part

 J g ; Tail-Call g(a+b, c+d); R2 = result

else:

 ORI R9, R4, 0 ; R9 = R4 = a+b

 ORI R4, R5, 0 ; R4 = R5 = c+d

 ORI R5, R9, 0 ; R5 = R9 = a+b

 J g ; Tail-Call g(c+d, a+b); R2 = result

