Pipelined Processor Design

COE 308
Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

+ Pipelining versus Serial Execution

+ Pipelined Datapath and Control
 Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall
+ Control Hazards

¢ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameddwar — slide 2

Pipelining Example

+« Laundry Example: Three Stages

1. Wash dirty load of clothes

2. Dry wet clothes

3. Fold and put clothes into drawers

+ Each stage takes 30 minutes to complete

¢ Four loads of clothes to wash, dry, and fold

Pipelined Processor Design COE 308 — Computer Architecture

SO
OO

© Muharuedwar — slide 3

Sequential Laundry

6 PM 7 8 9 10

11 12 AM

Time | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30

30 [30 |

] Sl
&
5
B

-4

“ Sequential laundry takes 6 hours for 4 loads

+ Intuitively, we can use pipelining to speed up laundry

Pipelined Processor Design COE 308 — Computer Architecture

© Muharoedwar — slide 4

Pipelined Laundry: Start Load ASAP

6 PM 7 8 9 PM
[30] 30 [30 ' L
30 | 30 | 30 Time
30 [30 | 30
30 [30 [30 |
(3
6 “ * Pipelined laundry takes

3 hours for 4 loads
5 @l .

+» Speedup factor is 2 for

& Qi;,: 4 loads
=7 & + Time to wash, dry, and
&S Qi?: fold one load is still the

same (90 minutes)

Pipelined Processor Design COE 308 — Computer Architecture © Muharddwar — slide 5

Serial Execution versus Pipelining

+« Consider a task that can be divided into k subtasks
< The k subtasks are executed on k different stages
<~ Each subtask requires one time unit
< The total execution time of the task is k time units

¢ Pipelining is to overlap the execution

< The k stages work in parallel on k different tasks
< Tasks enter/leave pipeline at the rate of one task per time unit

12| — [[1]2] ~ [
1]2] - |4 12| ~ [k
12| ~ [« 12| - |4]
Without Pipelining With Pipelining

One completion every k time units One completion every 1 time unit

Pipelined Processor Design COE 308 — Computer Architecture © Muhameddwar — slide 6

Synchronous Pipeline

+« Uses clocked registers between stages

+ Upon arrival of a clock edge ...

<~ All registers hold the results of previous stages simultaneously
% The pipeline stages are combinational logic circuits
+ It is desirable to have balanced stages

<- Approximately equal delay in all stages

¢+ Clock period is determined by the maximum stage delay

Pipelined Processor Design COE 308 — Computer Architecture © Muharddwar — slide 7

Pipeline Performance
* Let 7, = time delay in stage S,
% Clock cycle r=max(z) is the maximum stage delay
% Clock frequency f = 1/t = 1/max(r)
+ A pipeline can process n tasks in k + n — 1 cycles

<~ k cycles are needed to complete the first task

<~ n—1 cycles are needed to complete the remaining n — 1 tasks

+ ldeal speedup of a k-stage pipeline over serial execution

Serial execution in cycles nk
Sk=—— — = Sk — k for large n
Pipelined execution in cycles k+n-1

Pipelined Processor Design COE 308 — Computer Architecture © Muhameddwar — slide 8

MIPS Processor Pipeline

% Five stages, one cycle per stage

IF: Instruction Fetch from instruction memory

ID: Instruction Decode, register read, and J/Br address
EX: Execute operation or calculate load/store address

MEM: Memory access for load and store

o & w0 bhRE

WB: Write Back result to register

Pipelined Processor Design COE 308 — Computer Architecture © Muhameddwar — slide 9

Single-Cycle vs Pipelined Performance

+ Consider a 5-stage instruction execution in which ...
<~ Instruction fetch = ALU operation = Data memory access = 200 ps
< Register read = register write = 150 ps

“ What is the clock cycle of the single-cycle processor?
“ What is the clock cycle of the pipelined processor?
% What is the speedup factor of pipelined execution?
++ Solution
Single-Cycle Clock = 200+150+200+200+150 = 900 ps

| IF [Reg| ALU | MEM |Reg
900 ps IF |Reg| ALU | MEM |Reg]
900 ps

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 10

Single-Cycle versus Pipelined - cont'd

+ Pipelined clock cycle = max(200, 150) = 200 ps

| IF |Reg || AU | MEM [Reg |
<200+ F |Reg || ALU | MEM | Reg |

<200 IF |Reg|| ALU | MEM | Reg |
<+« 200 >« 200 >« 200 >« 200 —»<« 200 —»

% CPI for pipelined execution = 1
<~ One instruction completes each cycle (ignoring pipeline fill)

¢+ Speedup of pipelined execution = 900 ps /200 ps =4.5
<~ Instruction count and CPI are equal in both cases

“+ Speedup factor is less than 5 (number of pipeline stage)
<- Because the pipeline stages are not balanced

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 11

Pipeline Performance Summary

% Pipelining doesn’'t improve latency of a single instruction
% However, it improves throughput of entire workload

< Instructions are initiated and completed at a higher rate
% In a k-stage pipeline, k instructions operate in parallel

< Overlapped execution using multiple hardware resources

< Potential speedup = number of pipeline stages k

< Unbalanced lengths of pipeline stages reduces speedup
% Pipeline rate is limited by slowest pipeline stage
* Unbalanced lengths of pipeline stages reduces speedup
% Also, time to fill and drain pipeline reduces speedup

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 12

Next . ..

+ Pipelining versus Serial Execution

% Pipelined Datapath and Control
 Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall
+ Control Hazards

+ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 13

Single-Cycle Datapath

% Shown below is the single-cycle datapath
+“+ How to pipeline this single-cycle datapath?

Answer: Introduce pipeline register at end of each stage

IF = Instruction Fetch ID = Decode & EX = Execute MEM = Memory WB =

! ' ' '
! Register Read ! ! Access v Write
Jump or Branch TargetAddress ! 9 ! ! ' Back
1 j I '
N | Il EXy 4—:' Beq :
PC ' '
30 ! ! <« Bne 1
Imm26 1 1 ALU result 1
! Imm16 '
H zero H
Instruction Rs 5 ' 32 H
RA BusA sk Data !
Memory ! Memory
Instruction a Registers 1 A a2
= Rt S | RB ' L Address
BusB
Address 0 g 32 U Data_out
Rd RW Data_in
1 Busw CE 1 -~ =
¥ 3 32
RegDst Reg
Write |
Mem Mem Mem
ExtOp ALUSrc ALUCtrl Read Write toReg

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 14

Pipelined Datapath

¢ Pipeline registers are shown in green, including the PC

% Same clock edge updates all pipeline registers, register
file, and data memory (for store instruction)

IF = Instruction Fetch ID = Decode & EX = Execute MEM = Memory *
! Register Read ! Access V3
; — I o
1 1 ’E
1 S |2
' s o

by 1
J_/ - E
a Imm26 = :
z ALUresult 32 !
| | il i

i

N

ALUout }-----------------

Instruction @ < Data
c 9
Rs 5 e Memor o)
Memory] RA LT y £
Instruction | S Rt 5] - Address a
= =
@ REN Data_out g
Address =) g BusB mpim = =
h—)>| RW ¥ Data_in
1 BusW
o Rd Lol
T 1'32
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 15

Problem with Register Destination

% Is there a problem with the register destination address?
<~ Instruction in the ID stage different from the one in the WB stage

<~ Instruction in the WB stage is not writing to its destination register

but to the destination of a different instruction in the ID stage
ID = Decode &

X
IF = Instruction Fetch ' Register Read ' EX = Execute ' MEM =]
' ' ' I
: . ' Memory Access P90
!] ' =
: 3 : LS
' g ' 1
m z ' D
o] : L2
a Imm26 £ 1 |
= ' AlUresult 32 !
| / — i i
1
Instruction - Data
= < < 5|
Rs 5 = BusA M 53 Memor o}
Memory] RA T £ y g
Instruction | S Rt 5] - 3:‘ Address a
= 2
RB fai]
z 4 = Data_out
Address k=) o BusB mp{m ata_oulf =
- RW o [a) Data_in
1 BuswW
A Rd PN

fe

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 16

—t

Pipelining the Destination Register

+« Destination Register number should be pipelined
< Destination register number is passed from ID to WB stage
<~ The WB stage writes back data knowing the destination register

IF ! ID

! ! EX ! MEM WB
—— i
1 1
i o~ i
: 5 :
- 5 :
0 / - |—> i
o Imm26
= — E i ALU result 32
— =]
1]

P WBData_}------------------

Instruction © < Data
Memory S| Rs 5 R I BusA [Memory
Instruction | S Rt 5) — Address
= 2
1 RB »
17} &Q Data_out
Address £| Rd 53 BusB | m -
—p| RW Data_in
BusW

7 32 %‘
4]

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 17

Graphically Representing Pipelines

++ Multiple instruction execution over multiple clock cycles
<~ Instructions are listed in execution order from top to bottom
< Clock cycles move from left to right
< Figure shows the use of resources at each stage and each cycle

1—Time (in cycles)—+ CC1 +CC2 + CC3 + CC4—+ CC5+CC6 — CCT + CC8 —

Iw $16, 8($55)
add $s1, §52,s3 | | Hredl Dt low] :- |
ori $s4, $13,7 _— Hred]

i
sw $s2,10($13) | J'@ l

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 18

sub $15, $s2, $13

EEY
\E/
H

\E/
2]

<— Program Execution Order

Instruction-Time Diagram

+* Instruction-Time Diagram shows:

<~ Which instruction occupying what stage at each clock cycle

+ Instruction flow is pipelined over the 5 stages

Up to five instructions can be in the - - -
pipeline during the same cycle |- _ ALU instructions skip
Instruction Level Parallelism (ILP) . the MEM stage.
| \ Store instructions
g 2 skip the WB stage
S w $17,8($s3) | F | D | Ex [vEM| wB , :
4 1
c:> w $t6,8($s5) F | 1D | Ex [vem|ws | !
1
2 ori $t4,%$s3,7 IF | ID|EX| =" wB !
Q
2 sub $s5, $s2, $13 F |0 |Ex| - |ws]|
2 sw $s2,10($s3) F | 0 | Ex [Mem| =
l CCl CC2 CC3 CC4 CC5 CC6 €C7 cC8 CC9 Time
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 19

Control Signals

IF ID EX MEM wWB

[NPC }----1-}-
El
3
3
[Imm] NPC2 |1-}-
*
o W
3 2

'
I
'
'
I
'
I
'
'
'
i
'
ALUresult 32 !
Imm16 !
e’ '
Instruction ° < 32 Data
Memory S| Rs 5 Ra I BusA b Memory ©
= ©
Instruction | S [} - Address fa
S| Rt 5 g E(T =
& RB 0 Data_out =
Address £| Rd 87 BusB jmp| m @ 0 -
RW ¥ b Data_in A
BusW 32
0 [%2 '%‘
4J L&l
Reg Reg Ext ALU ALU Mem Mem Mem
Dst Write Op Src Ctrl Read Write toReg

Same control signals used in the single-cycle datapath

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 20

10

Pipelined Control

El
3
N
o
[Imm] NPC2]
z
o
32
*
o W
S o
3 8

Instruction ° N 32 Data
Rs 5 = BusA Memor S
Memory ra L - y g

Instruction] (0] — ress
“lre QE ! Data_out g
Address Rd '05)7 BuSB [1 @ = =
RW ¢ p Data_in &
)_ BusW 32

32 'El
1]

¢+———>Pop[Instruction | NPC |
Co

func

Pass control

Reg Reg Ext ALU ALU Beq Mem Mem Mem

Op src ctrl Bne Read Write toReg
signals along # i
pipeline just L
like the data L =
Pipelined Processor Design COE 308 — Computer Architecture - © Muhameewar — slide 21

Pipelined Control - Cont'd

+ ID stage generates all the control signals

¢ Pipeline the control signals as the instruction moves

< Extend the pipeline registers to include the control signals

+ Each stage uses some of the control signals

<~ Instruction Decode and Register Read

= Control signals are generated

= RegDst is used in this stage
<~ Execution Stage => ExtOp, ALUSrc, and ALUCTtrl

= Next PC uses J, Beq, Bne, and zero signals for branch control
< Memory Stage = => MemRead, MemWrite, and MemtoReg
< Write Back Stage => RegWrite is used in this stage

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 22

Control Signals Summary

Decode Execute Stage Memory Stage
Stage Control Signals Control Signals
RegDst |ALUSrc Beq |Bne| ALUCtrl [MemRd|MemWr| MemReg [RegWrite
R-Type | 1=Rd | 0=Reg X 0 0 0 func 0 0 0 1
addi 0=Rt |1=Imm |1=sign| O 0 0 ADD 0 0 0 1
slti 0=Rt |1=Imm |1=sign| O 0 0 SLT 0 0 0 1
andi 0=Rt |1=Imm |O=zero| O 0 0 AND 0 0 0 1
ori 0=Rt | 1=Imm [O=zero| O 0 0 OR 0 0 0 1
w 0=Rt |1=Imm |1=sign| O 0 0 ADD 1 0 1 1
sw X 1=lmm |1=sign| O 0 0 ADD 0 1 X 0
beq X 0=Reg | x ofl11]o SUB 0 0 X 0
bne X 0=Reg X 0 0 1 SuUB 0 0 X 0
j X X X 1 0 0 X 0 0 X 0
Pipelined Processor Design COE 308 — Computer Architecture © Muharmeewar — slide 23

Next . ..

+ Pipelining versus Serial Execution

+ Pipelined Datapath and Control

% Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall

«» Control Hazards

¢ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture

© Muharuddwar — slide 24

12

Pipeline Hazards

% Hazards: situations that would cause incorrect execution
< If next instruction were launched during its designated clock cycle

1. Structural hazards

<- Caused by resource contention
< Using same resource by two instructions during the same cycle

2. Data hazards
<~ An instruction may compute a result needed by next instruction

< Hardware can detect dependencies between instructions

3. Control hazards
<~ Caused by instructions that change control flow (branches/jumps)

< Delays in changing the flow of control
% Hazards complicate pipeline control and limit performance

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 25

Structural Hazards

% Problem
< Attempt to use the same hardware resource by two different

instructions during the same cycle
& Example Strgctural Hazard
Two instructions are
< Writing back ALU result in stage 4 attempting to write
< Conflict with writing load data in stage 5 the register file
during same cycle
I !
o w $16,8$s5) | F | D [Ex |vem[ws| -7
£ ori $14,$s3,7 F | D |Ex|ws
3
& sub $15, $s2, $s3 IF | ID | EX |WB
S sw $s2,10($s3) IF | ID | EX [MEM

CCl CC2 CC3 CC4 CCH CC6 CCT7 CC8 CC9 Time

© Muharuddwar — slide 26

«—

Pipelined Processor Design COE 308 — Computer Architecture

13

Resolving Structural Hazards

+ Serious Hazard:

< Hazard cannot be ignored

++ Solution 1: Delay Access to Resource
<~ Must have mechanism to delay instruction access to resource
< Delay all write backs to the register file to stage 5
= ALU instructions bypass stage 4 (memory) without doing anything
+¢ Solution 2: Add more hardware resources (more costly)
< Add more hardware to eliminate the structural hazard

< Redesign the register file to have two write ports
= First write port can be used to write back ALU results in stage 4
= Second write port can be used to write back load data in stage 5

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 27

Next . ..

¢ Pipelining versus Serial Execution

+ Pipelined Datapath and Control

“ Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall
+ Control Hazards

¢+ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 28

14

Data Hazards

+ Dependency between instructions causes a data hazard

+ The dependent instructions are close to each other

< Pipelined execution might change the order of operand access

% Read After Write — RAW Hazard
<~ Given two instructions | and J, where | comes before J
<~ Instruction J should read an operand after it is written by |
< Called a data dependence in compiler terminology
Iadd $s1, $s2, $s3 # $s1 is written
J: sub $s4, $s1, $s3 # $sl is read

<~ Hazard occurs when J reads the operand before | writes it

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 29

Example of a RAW Data Hazard

Time (cycles) —————+ CC1+CC2—+CC3—+CCA4—+CCH5—+CC6H—+CCT—+CC8—
valueof $s2 | 10 | 120 { 10 | 10 | 10 { 20 | 20 | 20

sub $52, $11, $13]—@- s
add $s4, $s2, $t5 :
or $s6, $13, $s2 : i | i:

and $s7, $14, $s2

<— Program Execution Order —|>

sw $t8,10($s2)

% Result of sub is needed by add, or, and, & sw instructions
% Instructions add & or will read old value of $s2 from reg file
¢+ During CC5, $s2 is written at end of cycle, old value is read

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 30

15

Solution 1: Stalling the Pipeline

T Time (in cycles) +CC1+CC2+CC3+CCA~+CC5+CCH+CCT+CC8-+CCI—
. value of $s2 f10 {10 {10 | 10 | 10 { 20 | 20 | 20 | 20
Q . . H i

2 : : i |

S sub $s2, $t1, $t3 i in : : : : ; ;

: fiifes -

ks 5 [l

g cdddsd $s2.915 () i ol e
i ' ¢ stall stall @ stall :

S or $s6,$13, $s2 A .@. @.ﬂpﬂﬂm
il : : : ' Li L : :

¢ Three stall cycles during CC3 thru CC5 (wasting 3 cycles)
< Stall cycles delay execution of add & fetching of or instruction

% The add instruction cannot read $s2 until beginning of CC6
< The add instruction remains in the Instruction register until CC6

<~ The PC register is not modified until beginning of CC6

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 31

Solution 2: Forwarding ALU Result

% The ALU result is forwarded (fed back) to the ALU input

<~ No bubbles are inserted into the pipeline and no cycles are wasted

¢ ALU result is forwarded from ALU, MEM, and WB stages

Time (cycles) + CC1+CC2+CC3+CC4—+CCH+CCH+CCT+CC8—
T valueof $s2 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20

sub $s2, $11, $13 M
ad $s4,952,915 | (ITHlRedit
or $s6, $13, $s2 , @

and $s7, $s6, $s2

o g
sw $18,10($s2) . 5 5 ; Em E'@ : m E

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 32

<— Program Execution Order

16

Implementing Forwarding

+«» Two multiplexers added at the inputs of A & B registers
< Data from ALU stage, MEM stage, and WB stage is fed back

+ Two signals: ForwardA and ForwardB control forwarding

ForwardA
Imm26 9]
v E 32 ALU result
(0 <]
) =
9 =
= Rs R L BusA J ; < g Address
Sl Ir . & =>3 = Data 0 T
g B % BusB = — T Memor s
= GEJ!) Y |2 o
17)
< > RW X = na PN Al Data_out 1 =
BusW 2 Data_in
32 > \3 ™ [
O g g 3
Rd W Lol N L
clk
ForwardB
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 33

Forwarding Control Signals

Signal ‘ Explanation

ForwardA = 0 | First ALU operand comes from register file = Value of (Rs)

ForwardA =1 | Forward result of previous instruction to A (from ALU stage)

ForwardA = 2 | Forward result of 2" previous instruction to A (from MEM stage)

ForwardA = 3 | Forward result of 3 previous instruction to A (from WB stage)

ForwardB = 0 | Second ALU operand comes from register file = Value of (Rt)

ForwardB = 1 | Forward result of previous instruction to B (from ALU stage)

ForwardB = 2 | Forward result of 2" previous instruction to B (from MEM stage)

ForwardB = 3 | Forward result of 3 previous instruction to B (from WB stage)

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 34

17

Forwarding Example

Instruction sequence: When sub instruction is fetched
w $t4, 4($t0) ori will be in the ALU stage

ori $t7 ,$t1,2 . .
sub $t3, $t4, $t7 Iw will be in the MEM stage

ForwardA = 2 from MEM stage ForwardB = 1 from ALU stage

sub $t3, $t4 , $t7 ori $t7 ,$t1,2 Iw $t4 ,4($t0)
Imm26
Imm16 2 [¢
= 32 _ 32 ALU result
2 J e g %
- Rs , |SRTHELSS Loyl < 2 Address
=
% Rt | - =>3 Q = Data 0 I
= 2 M = b Memory |, 3
@ Q 32 32 Data_out =
= >{RW X om a L ¢
BusW 2 Data_in
A |3
32 ™~ —
—{0) e 3 B
T
R Ll 2 1
clk
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 35

RAW Hazard Detection

< Current instruction being decoded is in Decode stage
<~ Previous instruction is in the Execute stage
<~ Second previous instruction is in the Memory stage

< Third previous instruction in the Write Back stage

If ((Rs 1= 0) and (Rs == Rd2) and (EX.RegWrite)) ForwardA < 1
Else if ((Rs = 0) and (Rs == Rd3) and (MEM.RegWrite)) ForwardA < 2
Else if ((Rs = 0) and (Rs == Rd4) and (WB.RegWrite)) ForwardA < 3
Else ForwardA < O

If ((Rt 1= 0) and (Rt == Rd2) and (EX.RegWrite)) ForwardB < 1
Else if ((Rt 1= 0) and (Rt == Rd3) and (MEM.RegWrite)) ForwardB ¢ 2
Else if ((Rt 1= 0) and (Rt == Rd4) and (WB.RegWrite)) ForwardB < 3
Else ForwardB < 0

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 36

Hazard Detect and Forward Logic

Imm26 o]
N}
E 32 32 ALU result
—E
2 Iy =i ;l
Rs RA LT BusA s ; p| <C & Address
c
& R 3 . 3 = Data 0 el
3 B » BusBm — - <
S . N = 0 Memory |, 2
7 32 32 Data_out 1
< > RW | 1 o a L ¢
BuswW 2 >] Data_in
>3 ALUCHI 132
Y 5] b4 L5
clk
RegDst
ForwardB| |ForwardA
1
(e
/ Hazard Detect
7 and Forward
func je—
RegWrite RegWrite RegWrite
Op Main " o
& ALU [} 2
Control o= N[
=
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 37

Next . ..

+ Pipelining versus Serial Execution

+ Pipelined Datapath and Control

“ Pipeline Hazards

+ Data Hazards and Forwarding

% Load Delay, Hazard Detection, and Pipeline Stall
+ Control Hazards

¢+ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 38

19

Load Delay

+ Unfortunately, not all data hazards can be forwarded
< Load has a delay that cannot be eliminated by forwarding
+ In the example shown below ...
< The LW instruction does not read data until end of CC4
< Cannot forward data to ADD at end of CC3 - NOT possible
+— Time (cycles) —+CC1+CC2+CC3 j—CC4fCC5fCCéfCC7+CCB—»
W $s2,20($11) lfred

However, load can
{| forward data to
{| 2nd next and later

add $s4, $s2, $15 instructions

or $t6, $t3, $s2 |

Program Order

l and $17, $s2, $t4

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 39

Detecting RAW Hazard after Load

+ Detecting a RAW hazard after a Load instruction:

<~ The load instruction will be in the EX stage

<~ Instruction that depends on the load data is in the decode stage
++ Condition for stalling the pipeline

if ((EX.MemRead == 1) // Detect Load in EX stage

and (ForwardA==1 or ForwardB==1)) Stall // RAW Hazard

“ Insert a bubble into the EX stage after a load instruction
<~ Bubble is a no-op that wastes one clock cycle

< Delays the dependent instruction after load by once cycle

= Because of RAW hazard

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 40

20

Stall the Pipeline for one Cycle
% ADD instruction depends on LW =» stall at CC3

< Allow Load instruction in ALU stage to proceed
< Freeze PC and Instruction registers (NO instruction is fetched)
< Introduce a bubble into the ALU stage (bubble is a NO-OP)

% Load can forward data to next instruction after delaying it
17 Time (cycles) —+ CC1+CC2+CC3+CCA—+CCE+CC6+CCT+CC8—

< lw $s2, 20($s1) ﬂ m E.@.E,@ ;
o T
j H
O add $s4, $s2, $15 ﬂm s‘rcxll
£ i
I : : : i
[S2) | |
o | H
1 3
a
l or $16, $s3, $s2
Pipelined Processor Design COE 308 — Computer Arclhitecture I © Muhameewar — slide 41

Showing Stall Cycles

+ Stall cycles can be shown on instruction-time diagram
“ Hazard is detected in the Decode stage

+ Stall indicates that instruction is delayed

+ Instruction fetching is also delayed after a stall

s Example:

| Data forwarding is shown using green arrows |

w $s1,($t5) | IF | 1D | Ex |vEM| WB

W $s2,8($s1) iF |stai| 0 Nex [mem] we

add $v0, $s2, $13 IF [stall| D Nex JMEm| ws

sub $v1, $s2, $v0 F | D Nex [MEM| wB

CCl CC2 CC3 CC4 CC5 CC6 CCT7 CC8 CC9 CCI0 Time

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 42

21

Hazard Detect, Forward, and Stall

func

ForwardB| |ForwardA
]

\—

p
Hazard Detect

Imm26 [o]
o
E 32 32 ALU result
E.
[0 :l
= — 3
Rs RA I BusAf ; p{ <C 2 Address
5 Rt & 3 1 = Data 0 I
I3 k3] @ BusBe | | Memor =
a 3 >) o Y a2 2
@| Rd et | 1 32 32 Data_out 1
< RW X o [a}
. Busw 2 [Data_in w
=>2) | | | n 1
\) 2N Lol L
clk
‘ RegDst
O
a
(]
re]
©
8
o

/

Forward, & Stall

/

e = \

Pipelined Processor Design

stall RegWrite RegWrite
Op) Control Signals RegWrite
L Main & ALU 0 «
Control Bubble —p|1 w v
=0 |"Ej

MemRead

IEYR:

COE 308 — Computer Architecture © Muhameewar — slide 43

Code Scheduling o Avoid Stalls

« Compilers reorder code in a way to avoid load stalls

+» Consider the translation of the following statements:
A=B+C;D=E- F; // Athru F are in Memory

+* Slow code:
lw $10,4($s0)

w G+118($s0)
add $TZ,$T,

sw $12,0($s0)
Iw $13,16($s0)

w $14)20($50)
sub $15,$t3:G19)

sw $15,12($0)

Pipelined Processor Design

+» Fast code: No Stalls

&B = 4($s0) lw $10, 4($s0)
&C = 8($s0) lw
stall cycle lw

&A = 0($30)
&E = 16($50)

lw

o
Q.
o
4
—+
N

sw $t2, 0(%

&F = 20($s0) 0)
stall cycle sub $15, $T3,
&D = 12($0) sw $15, 12($s0)

COE 308 — Computer Architecture © Muhameewar — slide 44

22

Name Dependence: Write After Read

¢ Instruction J should write its result after it is read by |
+ Called anti-dependence by compiler writers
I: sub $t4, $t1 , $t3 # $t1 is read
J:add $t1, $t2, $t3 # $t1 is written
% Results from reuse of the name $t1
« NOT a data hazard in the 5-stage pipeline because:
< Reads are always in stage 2

<~ Writes are always in stage 5, and

< Instructions are processed in order

+ Anti-dependence can be eliminated by renaming
< Use a different destination register for add (eg, $t5)

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 45

Name Dependence: Write After Write

% Same destination register is written by two instructions
+ Called output-dependence in compiler terminology
l:sub $t1 , $t4, $t3 # $t1 is written
J:add $t1, $t2, $t3 # $t1 is written again
+» Not a data hazard in the 5-stage pipeline because:
< All writes are ordered and always take place in stage 5
% However, can be a hazard in more complex pipelines

< If instructions are allowed to complete out of order, and
< Instruction J completes and writes $t1 before instruction |

++ Output dependence can be eliminated by renaming $t1

+» Read After Read is NOT a name dependence

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 46

23

Next . ..

+ Pipelining versus Serial Execution

¢ Pipelined Datapath and Control

« Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall
¢ Control Hazards

+ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 47

Control Hazards

+« Jump and Branch can cause great performance loss
+« Jump instruction needs only the jump target address

+«+ Branch instruction needs two things:

< Branch Result Taken or Not Taken
<- Branch Target Address
= PC+4 If Branch is NOT taken
= PC + 4+ 4 ximmediate If Branch is Taken

+ Jump and Branch targets are computed in the ID stage
< At which point a new instruction is already being fetched
<~ Jump Instruction: 1-cycle delay
< Branch: 2-cycle delay for branch result (taken or not taken)

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 48

24

2-Cycle Branch Delay

% Control logic detects a Branch instruction in the 2" Stage
% ALU computes the Branch outcome in the 3" Stage
“ Nextl and Next2 instructions will be fetched anyway

«» Convert Nextl and Next2 into bubbles if branch is taken

ccl cc2 cc3 ccd cc5 cc6 cc?

Beq $t1,$2,L1 H— IF —H:Reg:l@
=l Bl

Hr EDED
Branch m Hy

L1: target instruction Target IF H[|Reg DM
Addr] U

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 49

Implementing Jump and Branch

- N
5 O
) — z
i <] / —
o Q Imm26 &
§ - / £
& Instructi s e R |
= nstruction 1
2 Memory 2| Rs 5 A % BusA | <
% Instruction % Rt 5 § >3) | |
=) £ RB © BusB mm)
Address Rd > 2
— RW
8-)_ & BuswW btp| 2 @
5 j >3 ~
o
J LI
. 2
2 Reg
Dst
Branch Delay = 2 cycles J, Beq, Bne
I |
Branch target & outcome Main & ALU

are computed in ALU stage

Control

L
Control Signals ’-‘
; %

Bubble = 0 =>|2 L

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 50

MEM ¢

25

Predict Branch NOT Taken

+«» Branches can be predicted to be NOT taken

« If branch outcome is NOT taken then
<> Nextl and Next2 instructions can be executed
<> Do not convert Nextl & Next2 into bubbles

<~ No wasted cycles

ccl cc2 cc3 ccd cc5 cc6 cc?

Beq $tL,$t2,L1 H— IF —H: Reg :H:@ NOT Taken
He H oty
Next2 H— IF -I: Reg w Reg

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 51

Reducing the Delay of Branches
+ Branch delay can be reduced from 2 cycles to just 1 cycle

 Branches can be determined earlier in the Decode stage

<~ A comparator is used in the decode stage to determine branch
decision, whether the branch is taken or not

<~ Because of forwarding the delay in the second stage will be
increased and this will also increase the clock cycle

% Only one instruction that follows the branch is fetched
+ If the branch is taken then only one instruction is flushed

% We should insert a bubble after jump or taken branch

<> This will convert the next instruction into a NOP

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 52

Reducing Branch Delay to 1 Cycle

, Longer Cycle
ero
] ‘:IE‘_ Data forwarded
T
= < Bre = then compared
S Imm16 =]
2 £
I —
@ Instruction | |g M | R _I 32
— ucti 1 =
2 Memory '% % e — Y S ﬁ »é
€ Instruction | = 5] >3) U 2
3 2 @ BusB jm ~ | @ 1
Address - 'as; © 0
1
s Busw = S @ 32 e
32 »é‘ [~ ®
2] L
" 2 Reg
Reset signal converts Dst
next instruction after [pea.ere L aLuc
jump or taken branch Como Sone |°= FX B
. ontrol
into a bubble Bubble =0 =+ t §|
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 53

Next . ..

+ Pipelining versus Serial Execution

+ Pipelined Datapath and Control

“ Pipeline Hazards

+ Data Hazards and Forwarding

+ Load Delay, Hazard Detection, and Stall
% Control Hazards

+ Delayed Branch and Dynamic Branch Prediction

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 54

Branch Hazard Alternatives

< Predict Branch Not Taken (previously discussed)
< Successor instruction is already fetched
< Do NOT Flush instruction after branch if branch is NOT taken

< Flush only instructions appearing after Jump or taken branch

+ Delayed Branch
<~ Define branch to take place AFTER the next instruction

< Compiler/assembler fills the branch delay slot (for 1 delay cycle)

+« Dynamic Branch Prediction
<~ Loop branches are taken most of time
<> Must reduce branch delay to 0, but how?
<~ How to predict branch behavior at runtime?

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 55

Delayed Branch

+«+ Define branch to take place after the next instruction

« For a 1-cycle branch delay, we have one delay slot

branch instruction label:

branch delay slot (next instruction)

branch target (if branch taken) add $12,$t3,$t4
. . beq $s1,$s0,label
+«»» Compiler fills the branch delay slot Delay Slot
<~ By selecting an independent instruction 1
label:

<> From before the branch

+ If no independent instruction is found
beq $s1,$s0,label

< Compiler fills delay slot with a NO-OP | add $12,513,314

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 56

28

Drawback of Delayed Branching

% New meaning for branch instruction

<~ Branching takes place after next instruction (Not immediately!)
+“ Impacts software and compiler

<~ Compiler is responsible to fill the branch delay slot

<~ For a 1-cycle branch delay = One branch delay slot
“+ However, modern processors and deeply pipelined

<~ Branch penalty is multiple cycles in deeper pipelines

<~ Multiple delay slots are difficult to fill with useful instructions
“ MIPS used delayed branching in earlier pipelines

<~ However, delayed branching is not useful in recent processors

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 57

Zero-Delayed Branching

% How to achieve zero delay for a jump or a taken branch?
<~ Jump or branch target address is computed in the ID stage
<~ Next instruction has already been fetched in the IF stage
Solution
+ Introduce a Branch Target Buffer (BTB) in the IF stage
<~ Store the target address of recent branch and jump instructions
% Use the lower bits of the PC to index the BTB
<~ Each BTB entry stores Branch/Jump address & Target Address

<~ Check the PC to see if the instruction being fetched is a branch

<~ Update the PC using the target address stored in the BTB

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 58

29

Branch Target Buffer

« The branch target buffer is implemented as a small cache
<~ Stores the target address of recent branches and jumps
% We must also have prediction bits

< To predict whether branches are taken or not taken
<~ The prediction bits are dynamically determined by the hardware

Branch Target & Prediction Buffer
Addresses of Target Predict
Recent Branches Addresses Bits
\4
mux low-order bits
used as index
[Pc }F——
\4
(= e J
_i predict_taken
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 59

Dynamic Branch Prediction

+ Prediction of branches at runtime using prediction bits

¢ Prediction bits are associated with each entry in the BTB
< Prediction bits reflect the recent history of a branch instruction
+« Typically few prediction bits (1 or 2) are used per entry
s We don’'t know if the prediction is correct or not
« If correct prediction ...
<~ Continue normal execution — no wasted cycles
+¢ If incorrect prediction (misprediction) ...
< Flush the instructions that were incorrectly fetched — wasted cycles
<~ Update prediction bits and target address for future use

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 60

30

Dynamic Branch Prediction - Cont'd

Use PC to address Instruction |,
| Memory and Branch Target Buffer |
L Increment PC | PC = target address |
Found
BTB entry with predict
taken?
No Jump Yes
o) or taken
- branch?
Normal Correct Prediction
Execution No stall cycles
Mispredicted Jump/branch Mispredicted branch
< Enter jump/branch address, target Branch not taken
w address, and set prediction in BTB entry. Update prediction bits
Flush fetched instructions Flush fetched instructions
Restart PC at target address Restart PC after branch
Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 61

1-bit Prediction Scheme

+ Prediction is just a hint that is assumed to be correct
++ If incorrect then fetched instructions are flushed

++ 1-bit prediction scheme is simplest to implement
< 1 bit per branch instruction (associated with BTB entry)
<~ Record last outcome of a branch instruction (Taken/Not taken)

< Use last outcome to predict future behavior of a branch

Taken

Not
Taken

Predict
Not Taken

Predict
Taken

Not Taken

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 62

31

1-Bit Predictor: Shortcoming

“*Inner loop branch mispredicted twice!
< Mispredict as taken on last iteration of inner loop

<> Then mispredict as not taken on first iteration of inner
loop next time around

outer: .. ‘
inner: .. «————::
bne .., .., 1nner|
bne .., .., outer
Pipelined Processor Design COE 308 — Computer Architecture © Muhardewéar — slide 63

2-bit Prediction Scheme

+¢+ 1-bit prediction scheme has a performance shortcoming
¢+ 2-bit prediction scheme works better and is often used
< 4 states: strong and weak predict taken / predict not taken

« Implemented as a saturating counter
<> Counter is incremented to max=3 when branch outcome is taken

<> Counter is decremented to min=0 when branch is not taken

Not Taken Taken

Taken Weak Taken Weak

. &2 ¢

Not Taken Taken
Not Taken Not Taken

Strong
Predict
Not Taken

Siigelg[o]
Predict
Taken

Not Taken

Pipelined Processor Design COE 308 — Computer Architecture © Muhardewéar — slide 64

32

Fallacies and Pitfalls

“* Pipelining is easy!
< The basic idea is easy
<> The devil is in the details
= Detecting data hazards and stalling pipeline
“*Poor ISA design can make pipelining harder

<- Complex instruction sets (Intel IA-32)
= Significant overhead to make pipelining work
= |A-32 micro-op approach

<- Complex addressing modes

= Register update side effects, memory indirection

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewar — slide 65

Pipeline Hazards Summary

« Three types of pipeline hazards
< Structural hazards: conflicts using a resource during same cycle
<- Data hazards: due to data dependencies between instructions

< Control hazards: due to branch and jump instructions

%+ Hazards limit the performance and complicate the design
< Structural hazards: eliminated by careful design or more hardware
<- Data hazards are eliminated by forwarding
<~ However, load delay cannot be eliminated and stalls the pipeline
<~ Delayed branching can be a solution when branch delay = 1 cycle
<~ BTB with branch prediction can reduce branch delay to zero

<~ Branch misprediction should flush the wrongly fetched instructions

Pipelined Processor Design COE 308 — Computer Architecture © Muhameewéar — slide 66

33

