
1

Single Cycle Processor Design

COE 308
Computer Architecture

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 2

Presentation Outline

� Designing a Processor: Step-by-Step

� Datapath Components and Clocking

� Assembling an Adequate Datapath

� Controlling the Execution of Instructions

� The Main Controller and ALU Controller

� Drawback of the single-cycle processor design

2

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 3

� Recall, performance is determined by:

� Instruction count

� Clock cycles per instruction (CPI)

� Clock cycle time

� Processor design will affect

� Clock cycles per instruction

� Clock cycle time

� Single cycle datapath and control design:

� Advantage: One clock cycle per instruction

� Disadvantage: long cycle time

The Performance Perspective

I-Count

CPI Cycle

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 4

Designing a Processor: Step-by-Step

� Analyze instruction set => datapath requirements

� The meaning of each instruction is given by the register transfers

� Datapath must include storage elements for ISA registers

� Datapath must support each register transfer

� Select datapath components and clocking methodology

� Assemble datapath meeting the requirements

� Analyze implementation of each instruction

� Determine the setting of control signals for register transfer

� Assemble the control logic

3

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 5

Review of MIPS Instruction Formats

� All instructions are 32-bit wide

� Three instruction formats: R-type, I-type, and J-type

� Op6: 6-bit opcode of the instruction

� Rs5, Rt5, Rd5: 5-bit source and destination register numbers

� sa5: 5-bit shift amount used by shift instructions

� funct6: 6-bit function field for R-type instructions

� immediate16: 16-bit immediate value or address offset

� immediate26: 26-bit target address of the jump instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 6

MIPS Subset of Instructions

� Only a subset of the MIPS instructions are considered

� ALU instructions (R-type): add, sub, and, or, xor, slt

� Immediate instructions (I-type): addi, slti, andi, ori, xori

� Load and Store (I-type): lw, sw

� Branch (I-type): beq, bne

� Jump (J-type): j

� This subset does not include all the integer instructions

� But sufficient to illustrate design of datapath and control

� Concepts used to implement the MIPS subset are used
to construct a broad spectrum of computers

4

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 7

Details of the MIPS Subset
Instruction Meaning Format
add rd, rs, rt addition op6 = 0 rs5 rt5 rd5 0 0x20
sub rd, rs, rt subtraction op6 = 0 rs5 rt5 rd5 0 0x22
and rd, rs, rt bitwise and op6 = 0 rs5 rt5 rd5 0 0x24
or rd, rs, rt bitwise or op6 = 0 rs5 rt5 rd5 0 0x25
xor rd, rs, rt exclusive or op6 = 0 rs5 rt5 rd5 0 0x26
slt rd, rs, rt set on less than op6 = 0 rs5 rt5 rd5 0 0x2a
addi rt, rs, im16 add immediate 0x08 rs5 rt5 im16

slti rt, rs, im16 slt immediate 0x0a rs5 rt5 im16

andi rt, rs, im16 and immediate 0x0c rs5 rt5 im16

ori rt, rs, im16 or immediate 0x0d rs5 rt5 im16

xori rt, im16 xor immediate 0x0e rs5 rt5 im16

lw rt, im16(rs) load word 0x23 rs5 rt5 im16

sw rt, im16(rs) store word 0x2b rs5 rt5 im16

beq rs, rt, im16 branch if equal 0x04 rs5 rt5 im16

bne rs, rt, im16 branch not equal 0x05 rs5 rt5 im16

j im26 jump 0x02 im26

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 8

Register Transfer Level (RTL)

� RTL is a description of data flow between registers

� RTL gives a meaning to the instructions

� All instructions are fetched from memory at address PC

Instruction RTL Description
ADD Reg(Rd) ← Reg(Rs) + Reg(Rt); PC ← PC + 4

SUB Reg(Rd) ← Reg(Rs) – Reg(Rt); PC ← PC + 4

ORI Reg(Rt) ← Reg(Rs) | zero_ext(Im16); PC ← PC + 4

LW Reg(Rt) ← MEM[Reg(Rs) + sign_ext(Im16)]; PC ← PC + 4

SW MEM[Reg(Rs) + sign_ext(Im16)] ← Reg(Rt); PC ← PC + 4

BEQ if (Reg(Rs) == Reg(Rt))
PC ← PC + 4 + 4 × sign_extend(Im16)

else PC ← PC + 4

5

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 9

Instructions are Executed in Steps
� R-type Fetch instruction: Instruction ← MEM[PC]

Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)
Execute operation: ALU_result ← func(data1, data2)
Write ALU result: Reg(Rd) ← ALU_result
Next PC address: PC ← PC + 4

� I-type Fetch instruction: Instruction ← MEM[PC]
Fetch operands: data1 ← Reg(Rs), data2 ← Extend(imm16)
Execute operation: ALU_result ← op(data1, data2)
Write ALU result: Reg(Rt) ← ALU_result
Next PC address: PC ← PC + 4

� BEQ Fetch instruction: Instruction ← MEM[PC]
Fetch operands: data1 ← Reg(Rs), data2 ← Reg(Rt)
Equality: zero ← subtract(data1, data2)
Branch: if (zero) PC ← PC + 4 + 4×sign_ext(imm16)

else PC ← PC + 4

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 10

Instruction Execution – cont’d
� LW Fetch instruction: Instruction ← MEM[PC]

Fetch base register: base ← Reg(Rs)
Calculate address: address ← base + sign_extend(imm16)
Read memory: data ← MEM[address]
Write register Rt: Reg(Rt) ← data
Next PC address: PC ← PC + 4

� SW Fetch instruction: Instruction ← MEM[PC]
Fetch registers: base ← Reg(Rs), data ← Reg(Rt)
Calculate address: address ← base + sign_extend(imm16)
Write memory: MEM[address] ← data
Next PC address: PC ← PC + 4

� Jump Fetch instruction: Instruction ← MEM[PC]
Target PC address: target ← PC[31:28] || Imm26 || ‘00’
Jump: PC ← target

concatenation

6

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 11

Requirements of the Instruction Set

� Memory
� Instruction memory where instructions are stored

� Data memory where data is stored

� Registers
� 31 × 32-bit general purpose registers, R0 is always zero

� Read source register Rs

� Read source register Rt

� Write destination register Rt or Rd

� Program counter PC register and Adder to increment PC

� Sign and Zero extender for immediate constant

� ALU for executing instructions

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 12

Next . . .

� Designing a Processor: Step-by-Step

� Datapath Components and Clocking

� Assembling an Adequate Datapath

� Controlling the Execution of Instructions

� The Main Controller and ALU Controller

� Drawback of the single-cycle processor design

7

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 13

� Combinational Elements

� ALU, Adder

� Immediate extender

� Multiplexers

� Storage Elements

� Instruction memory

� Data memory

� PC register

� Register file

� Clocking methodology

� Timing of writes

Components of the Datapath

32

Address

Instruction

Instruction
Memory

32

m
u
x

0

1

select

Extend
3216

ExtOp

A
L
U

ALU control

ALU result

zero

32

32

32

overflow

P
C

32 32

clk

Registers

RA

RB

BusA

RegWrite

BusB

RW

5

5

5

32

32

32

BusW

clk

Data
Memory

Address

Data_in
Data_out

Mem
Read

Mem
Write

32

32

32

clk

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 14

� Register

� Similar to the D-type Flip-Flop

� n-bit input and output

� Write Enable (WE):

� Enable / disable writing of register

� Negated (0): Data_Out will not change

� Asserted (1): Data_Out will become Data_In after clock edge

� Edge triggered Clocking

� Register output is modified at clock edge

Register Element

Register

Data_In

ClockWrite
Enable

n bits

Data_Out

n bits

WE

8

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 15

� Register File consists of 32 × 32-bit registers
� BusA and BusB: 32-bit output busses for reading 2 registers

� BusW: 32-bit input bus for writing a register when RegWrite is 1

� Two registers read and one written in a cycle

� Registers are selected by:
� RA selects register to be read on BusA

� RB selects register to be read on BusB

� RW selects the register to be written

� Clock input
� The clock input is used ONLY during write operation

� During read, register file behaves as a combinational logic block

� RA or RB valid => BusA or BusB valid after access time

RW RA RB
MIPS Register File

Register
FileRA

RB

BusA

RegWrite

BusB
RW

5

5

5

32

32

32

BusW
Clock

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 16

Details of the Register File

BusA

BusB

"0" "0"
RA
Decoder

5 RB
Decoder

5

R1

R2

R31

.

.

.
BusW

D
ec

od
erRW

5

Clock
RegWrite

.

.

.

R0 is
not used

32

32

32

32

32

32

32

32

32

Tri-state
buffers

WE

WE

WE

9

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 17

� Allow multiple sources to drive a single bus

� Two Inputs:
� Data_in

� Enable (to enable output)

� One Output: Data_out
� If (Enable) Data_out = Data_in

else Data_out = High Impedance state (output is disconnected)

� Tri-state buffers can be

used to build multiplexors

Tri-State Buffers

Data_in Data_out

Enable

Data_0

Data_1

Output

Select

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 18

Building a Multifunction ALU

0

1

2

3

0

1

2

3

Logic Unit

2

AND = 00
OR = 01

NOR = 10
XOR = 11

Lo
gi

ca
l

O
pe

ra
tio

n

Shifter

2
SLL = 00
SRL = 00
SRA = 01
ROR = 11S

hi
ft/

R
ot

at
e

O
pe

ra
tio

n

A 32

32B

A
d
d
e
r

c0

32

32

ADD = 0
SUB = 1

A
rit

hm
et

ic
O

pe
ra

tio
n

Shift = 00
SLT = 01

Arith = 10
Logic = 11

ALU
Selection

32

2

Shift Amount

ALU Result

5

sign
≠

zerooverflow

SLT: ALU does a
SUB and check the
sign and overflow

10

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 19

Details of the Shifter
� Implemented with multiplexers and wiring

� Shift Operation can be: SLL, SRL, SRA, or ROR

� Input Data is extended to 63 bits according to Shift Op

� The 63 bits are shifted right according to S4S3S2S1S0

S0

32

31

311
31
1

split
33

1

1

S1

312
31
2

split
35

2

31

2

S2

4

314
31
4

split
39

4

31

S3

8

318
31
8

split
47

8

31

S4

16

3116
31
16

0

1

m
ux

split
63

16

31

Shift Right
0 or 16 bits

Shift Right
0 or 8 bits

Shift Right
0 or 4 bits

Shift Right
0 or 2 bits

Shift Right
0 or 1 bit

0

1

m
ux

0

1
m

ux

0

1

m
ux

0

1

m
ux

E
xt

en
de

r

32

Shift
op

2

D
at

a

D
at

a_
ou

t

5
sa

SLL

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 20

Details of the Shifter – cont’d

� Input data is extended from 32 to 63 bits as follows:
� If shift op = SRL then ext_data[62:0] = 031 || data[31:0]

� If shift op = SRA then ext_data[62:0] = data[31]31 || data[31:0]

� If shift op = ROR then ext_data[62:0] = data[30:0] || data[31:0]

� If shift op = SLL then ext_data[62:0] = data[31:0] || 031

� For SRL, the 32-bit input data is zero-extended to 63 bits

� For SRA, the 32-bit input data is sign-extended to 63 bits

� For ROR, 31-bit extension = lower 31 bits of data

� Then, shift right according to the shift amount

� As the extended data is shifted right, the upper bits will
be: 0 (SRL), sign-bit (SRA), or lower bits of data (ROR)

11

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 21

Implementing Shift Left Logical

� The wiring of the above shifter dictates a right shift

� However, we can convert a left shift into a right shift

� For SLL, 31 zeros are appended to the right of data
� To shift left by 0 is equivalent to shifting right by 31

� To shift left by 1 is equivalent to shifting right by 30

� To shift left by 31 is equivalent to shifting right by 0

� Therefore, for SLL use the 1’s complement of the shift amount

� ROL is equivalent to ROR if we use (32 – rotate amount)

� ROL by 10 bits is equivalent to ROR by (32–10) = 22 bits

� Therefore, software can convert ROL to ROR

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 22

Instruction and Data Memories

� Instruction memory needs only provide read access
� Because datapath does not write instructions

� Behaves as combinational logic for read

� Address selects Instruction after access time

� Data Memory is used for load and store
� MemRead: enables output on Data_out

� Address selects the word to put on Data_out

� MemWrite: enables writing of Data_in

� Address selects the memory word to be written

� The Clock synchronizes the write operation

� Separate instruction and data memories
� Later, we will replace them with caches

MemWriteMemRead

Data
Memory

Address

Data_in

Data_out
32

32

32

Clock

32
Address Instruction

Instruction
Memory

32

12

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 23

Clocking Methodology

� Clocks are needed in a sequential
logic to decide when a state element
(register) should be updated

� To ensure correctness, a clocking
methodology defines when data can
be written and read

Combinational logic

R
eg

is
te

r
1

R
eg

is
te

r
2

clock

rising edge falling edge

� We assume edge-
triggered clocking

� All state changes
occur on the same
clock edge

� Data must be valid
and stable before
arrival of clock
edge

� Edge-triggered
clocking allows a
register to be read
and written during
same clock cycle

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 24

Determining the Clock Cycle

� With edge-triggered clocking, the clock cycle must be
long enough to accommodate the path from one register
through the combinational logic to another register

Tcycle ≥ Tclk-q + Tmax_comb + Ts

Combinational logic

R
eg

is
te

r
1

R
eg

is
te

r
2

clock

writing edge

Tclk-q Tmax_comb Ts Th

� Tclk-q : clock to output delay
through register

� Tmax_comb : longest delay
through combinational logic

� Ts : setup time that input to a
register must be stable
before arrival of clock edge

� Th: hold time that input to a
register must hold after
arrival of clock edge

� Hold time (Th) is normally
satisfied since Tclk-q > Th

13

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 25

Clock Skew

� Clock skew arises because the clock signal uses different
paths with slightly different delays to reach state elements

� Clock skew is the difference in absolute time between
when two storage elements see a clock edge

� With a clock skew, the clock cycle time is increased

� Clock skew is reduced by balancing the clock delays

Tcycle ≥ Tclk-q + Tmax_combinational + Tsetup+ Tskew

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 26

Next . . .

� Designing a Processor: Step-by-Step

� Datapath Components and Clocking

� Assembling an Adequate Datapath

� Controlling the Execution of Instructions

� The Main Controller and ALU Controller

� Drawback of the single-cycle processor design

14

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 27

� We can now assemble the datapath from its components

� For instruction fetching, we need …
� Program Counter (PC) register

� Instruction Memory

� Adder for incrementing PC

Instruction Fetching Datapath

The least significant 2 bits
of the PC are ‘00’ since

PC is a multiple of 4

Datapath does not
handle branch or
jump instructions

P
C

32

Address

Instruction

Instruction
Memory

32

32
32

4
A
d
d

next PC

clk

Improved datapath
increments upper
30 bits of PC by 1

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Improved
Datapath

next PC

clk

00

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 28

Datapath for R-type Instructions

� Control signals

� ALUCtrl is derived from the funct field because Op = 0 for R-type

� RegWrite is used to enable the writing of the ALU result

Op6 Rs5 Rt5 Rd5 funct6sa5

ALUCtrl
RegWrite

A
L
U32

32

ALU result

32

Rs and Rt fields select two
registers to read. Rd field
selects register to write

BusA & BusB provide data input to ALU.
ALU result is connected to BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

5Rd

clk

Same clock updates PC and Rd register

15

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 29

Datapath for I-type ALU Instructions

� Control signals

� ALUCtrl is derived from the Op field

� RegWrite is used to enable the writing of the ALU result

� ExtOp is used to control the extension of the 16-bit immediate

Op6 Rs5 Rt5 immediate16

ALUCtrl
RegWrite

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

5

Registers

RA

RB

BusA

BusB

RW
BusW

5Rs

5Rt

ExtOp

32

32

ALU result

32

32

A
L
U

Extender
Imm16

Second ALU input comes from the extended
immediate. RB and BusB are not used

Same clock
edge updates

PC and RtRt selects register
to write, not Rd

clk

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 30

Combining R-type & I-type Datapaths

� Control signals

� ALUCtrl is derived from either the Op or the funct field

� RegWrite enables the writing of the ALU result

� ExtOp controls the extension of the 16-bit immediate

� RegDst selects the register destination as either Rt or Rd

� ALUSrc selects the 2nd ALU source as BusB or extended immediate

A mux selects RW
as either Rt or Rd

Another mux
selects 2nd ALU
input as either

data on BusB or
the extended
immediate

ALUCtrl
RegWrite

ExtOp

A
L
U

ALU result

32

32

Registers

RA

RB

BusA

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
Rs

5

Rd

Extender
Imm16

Rt

32

RegDst ALUSrc

0

1

clk

0

1

16

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 31

Controlling ALU Instructions

For R-type ALU
instructions, RegDst is
‘1’ to select Rd on RW

and ALUSrc is ‘0’ to
select BusB as second
ALU input. The active

part of datapath is
shown in green

For I-type ALU
instructions, RegDst is
‘0’ to select Rt on RW
and ALUSrc is ‘1’ to

select Extended
immediate as second
ALU input. The active

part of datapath is
shown in green

A
L
U

ALUCtrl

ALU result

32

32

Registers

RA

RB

BusA

RegWrite = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

0

1

0

1

RegDst = 1 ALUSrc = 0clk

clk

A
L
U

ALUCtrl

ALU result

32

32

Registers

RA

RB

BusA

RegWrite = 1

BusB

RW

5

32

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30
Rs

5

Rd

Extender

ExtOp

Imm16

Rt

32

0

1

0

1

RegDst = 0 ALUSrc = 1

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 32

Details of the Extender

� Two types of extensions
� Zero-extension for unsigned constants

� Sign-extension for signed constants

� Control signal ExtOp indicates type of extension

� Extender Implementation: wiring and one AND gate

ExtOp = 0 ⇒ Upper16 = 0

ExtOp = 1 ⇒

Upper16 = sign bit

..

.

ExtOp

Upper
16 bits

Lower
16 bits

..

.

Imm16

17

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 33

� Additional Control signals

� MemRead for load instructions

� MemWrite for store instructions

� MemtoReg selects data on BusW as ALU result or Memory Data_out

BusB is connected to Data_in of Data
Memory for store instructions

Adding Data Memory to Datapath
� A data memory is added for load and store instructions

A 3rd mux selects data on BusW as
either ALU result or memory data_out

Data
Memory

Address

Data_in
Data_out

32

32A
L
U

ALUCtrl

32

Registers

RA

RB

BusA

Reg
Write

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

E

ExtOp

Imm16

Rt

0

1

RegDst

ALUSrc

0

1

32

MemRead MemWrite

32

ALU result

32

0

1

MemtoReg

ALU calculates data memory address

clk

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 34

Controlling the Execution of Load
ALUCtrl
= ADD

RegWr
= 1

ExtOp = 1

32

Data
Memory

Address

Data_in
Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUCtrl = ‘ADD’ to calculate data memory
address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended
immediate as second ALU input

MemRead = ‘1’ to
read data memory

RegDst = ‘0’ selects Rt
as destination register

RegWrite = ‘1’ to enable
writing of register file

MemtoReg = ‘1’ places the data
read from memory on BusW

ExtOp = 1 to sign-extend
Immmediate16 to 32 bits

Clock edge updates PC
and Register Rt

RegDst
= 0

ALUSrc
= 1 MemtoReg

= 1

MemRead
= 1

MemWrite
= 0

clk

18

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 35

Controlling the Execution of Store
ALUCtrl
= ADD

RegWr
= 0

ExtOp = 1

32

Data
Memory

Address

Data_in
Data_out

32A
L
U

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

32

30

P
C

00

+1

30

Rs

5

Rd

E
Imm16

Rt

0

1

0

1

32

ALU result

32

0

1

32

32

ALUCtrl = ‘ADD’ to calculate data memory
address as Reg(Rs) + sign-extend(Imm16)

ALUSrc = ‘1’ selects extended
immediate as second ALU input

MemWrite = ‘1’ to
write data memory

RegDst = ‘X’ because
no register is written

RegWrite = ‘0’ to disable
writing of register file

MemtoReg = ‘X’ because don’t
care what data is put on BusW

ExtOp = 1 to sign-extend
Immmediate16 to 32 bits

Clock edge updates PC
and Data Memory

RegDst
= X

ALUSrc
= 1 MemtoReg

= X

MemRead
= 0

MemWrite
= 1

clk

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 36

Adding Jump and Branch to Datapath

� Additional Control Signals
� J, Beq, Bne for jump and branch instructions

� Zero flag of the ALU is examined

� PCSrc = 1 for jump & taken branch

Next
PC

Next PC logic
computes jump or

branch target
instruction address

zeroPCSrc

Bne

Beq

J

ALUCtrl

Reg
Write

ExtOp

RegDst

ALUSrc

Data
Memory

Address

Data_in
Data_out

32

32A
L
U

32

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

P
C

00

30

Rs

5

Rd
E

Imm16

Rt

0

1

0

1

32

Imm26

32

ALU result

32

0

1

clk

+1

0

1

30

Jump or Branch Target Address30

Mem
Read

Mem
Write

Mem
toReg

19

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 37

Details of Next PC

A
D
D

30

30
0

m
u
x

1

Inc PC

30

Imm16

Imm26

30

SE

4msb

26

Beq

Bne

J

Zero

PCSrcBranch or Jump Target Address

Imm16 is sign-extended to 30 bits

Jump target address: upper 4 bits of PC are concatenated with Imm26

PCSrc = J + (Beq . Zero) + (Bne . Zero)

Sign-Extension:

Most-significant
bit is replicated

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 38

ALU result

32

0

1

32

Controlling the Execution of Jump

Next
PC

zero

Bne = 0

Beq = 0

J = 1

ALUCtrl
= x

RegWr
= 0

RegDst
= x

ALUSrc
= x

Data
Memory

Address

Data_in
Data_out

32A
L
U

32

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

P
C

00

30

Rs

5

Rd
E

Imm16

Rt

0

1

0

1

32

Imm26

clk

+1

0

1

30

Jump Target Address30

Mem
Read
= 0

Mem
Write
= 0

Mem
toReg

= x

PCSrc
= 1

ExtOp
= x

32

MemRead, MemWrite,
and RegWrite are 0

J = 1 to control jump.
Next PC outputs Jump

Target Address We don’t care about RegDst, ExtOp,
ALUSrc, ALUCtrl, and MemtoReg

Clock edge updates PC register only

20

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 39

ALU result

32

0

1

32

Controlling the Execution of Branch

Next
PC

Zero
= 1

Bne = 0

Beq = 1

J = 0

ALUCtrl
= SUB

RegWr
= 0

RegDst
= x

Data
Memory

Address

Data_in
Data_out

32A
L
U

32

Registers

RA

RB

BusA

BusB

RW

5

BusW

32

Address

Instruction

Instruction
Memory

P
C

00

30

Rs

5

Rd
E

Imm16

Rt

0

1

0

1

32

Imm26

clk

+1

0

1

30

Branch Target Address30

Mem
Read
= 0

Mem
Write
= 0

Mem
toReg

= x

PCSrc
= 1

ExtOp
= x

32

RegWrite, MemRead, and MemWrite are 0

Either Beq = 1 or Bne
depending on opcode

Clock edge updates PC register only

ALUSrc = 0 to select
value on BusB

ALUCtrl = SUB to
generate Zero Flag

Next PC outputs branch target address
PCSrc = 1 if branch is taken

ALUSrc
= 0

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 40

Next . . .

� Designing a Processor: Step-by-Step

� Datapath Components and Clocking

� Assembling an Adequate Datapath

� Controlling the Execution of Instructions

� The Main Controller and ALU Controller

� Drawback of the single-cycle processor design

21

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 41

Main Control and ALU Control

Main Control Input:

�6-bit opcode field from instruction

Main Control Output:

�10 control signals for the Datapath

Datapath32

Address

Instruction

Instruction
Memory

A
L
U

ALU Control Input:

� 6-bit opcode field from instruction

� 6-bit function field from instruction

ALU Control Output:

� ALUCtrl signal for ALU

ALU
Control

Op6

R
eg

D
st

R
eg

W
rit

e

E
xt

O
p

A
LU

S
rc

M
em

R
ea

d

M
em

W
rit

e

M
em

to
R

eg

B
eq

B
ne

J

Op6

ALUCtrl
funct6

Main
Control

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 42

zero

Single-Cycle Datapath + Control

PCSrc

E

Data
Memory

Address

Data_in
Data_out

32

A
L
U

ALU result

32

5

Registers

RA

RB

BusA

BusB

RW BusW

32

Address

Instruction

Instruction
Memory

P
C

00

+1

30

Rs

5

Rd

Imm26

Rt

m
u
x

0

1
5

m
u
x

0

1

m
u
x

0

1
m
u
x

0

1

30

30 Jump or Branch Target Address

30

Imm16

Next

PC

RegDst

ALUSrc

RegWrite

J, Beq, Bne

MemtoReg

MemRead

MemWrite

ExtOp

Main
Control

Op ALU
Ctrl

ALUop
func

clk

22

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 43

Signal Effect when ‘0’ Effect when ‘1’

RegDst Destination register = Rt Destination register = Rd

RegWrite None
Destination register is written with
the data value on BusW

ExtOp 16-bit immediate is zero-extended 16-bit immediate is sign-extended

ALUSrc
Second ALU operand comes from the
second register file output (BusB)

Second ALU operand comes from
the extended 16-bit immediate

MemRead None
Data memory is read
Data_out ← Memory[address]

MemWrite None
Data memory is written
Memory[address] ← Data_in

MemtoReg BusW = ALU result BusW = Data_out from Memory

Beq, Bne PC ← PC + 4
PC ← Branch target address
If branch is taken

J PC ← PC + 4 PC ← Jump target address

Main Control Signals

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 44

Op
Reg
Dst

Reg
Write

Ext
Op

ALU
Src

Beq Bne J
Mem
Read

Mem
Write

Mem
toReg

R-type 1 = Rd 1 x 0=BusB 0 0 0 0 0 0

addi 0 = Rt 1 1=sign 1=Imm 0 0 0 0 0 0

slti 0 = Rt 1 1=sign 1=Imm 0 0 0 0 0 0

andi 0 = Rt 1 0=zero 1=Imm 0 0 0 0 0 0

ori 0 = Rt 1 0=zero 1=Imm 0 0 0 0 0 0

xori 0 = Rt 1 0=zero 1=Imm 0 0 0 0 0 0

lw 0 = Rt 1 1=sign 1=Imm 0 0 0 1 0 1

sw x 0 1=sign 1=Imm 0 0 0 0 1 x

beq x 0 x 0=BusB 1 0 0 0 0 x

bne x 0 x 0=BusB 0 1 0 0 0 x

j x 0 x x 0 0 1 0 0 x

Main Control Signal Values

� X is a don’t care (can be 0 or 1), used to minimize logic

23

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 45

RegDst = R-type

RegWrite = (sw + beq + bne + j)

ExtOp = (andi + ori + xori)

ALUSrc = (R-type + beq + bne)

MemRead = lw

MemtoReg = lw

MemWrite = sw

Logic Equations for Control Signals

Op6

R
-t

yp
e

ad
di

sl
ti

an
di

or
i

xo
ri

lw sw

B
eq

B
ne

R
eg

D
st

R
eg

W
rit

e

E
xt

O
p

A
LU

S
rc

M
em

R
ea

d

M
em

to
R

eg

M
em

W
ri

te

Logic Equations

J

Decoder

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 46

Input Output 4-bit

EncodingOp6 funct6 ALUCtrl
R-type add ADD 0000
R-type sub SUB 0010
R-type and AND 0100
R-type or OR 0101
R-type xor XOR 0110
R-type slt SLT 1010
addi x ADD 0000
slti x SLT 1010

andi x AND 0100
ori x OR 0101
xori x XOR 0110
lw x ADD 0000
sw x ADD 0000
beq x SUB 0010
bne x SUB 0010

j x x x

ALU Control Truth Table

Other ALU control
encodings are also

possible. The idea is to
choose a binary encoding
that will simplify the logic

The 4-bit ALUCtrl is
encoded according to the

ALU implementation

24

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 47

Next . . .

� Designing a Processor: Step-by-Step

� Datapath Components and Clocking

� Assembling an Adequate Datapath

� Controlling the Execution of Instructions

� The Main Controller and ALU Controller

� Drawback of the single-cycle processor design

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 48

Drawbacks of Single Cycle Processor

� Long cycle time
� All instructions take as much time as the slowest instruction

longest delay

Instruction
FetchALU

Decode
Reg Read

ALU
Reg
Write

Load Instruction
Fetch

Decode
Reg Read

Compute
Address

Reg
Write

Memory Read

Store
Instruction

Fetch
Decode

Reg Read
Compute
Address

Memory Write

Jump Instruction
Fetch

Decode
PC Write

Branch Instruction
Fetch

Reg Read
Br Target

Compare
& PC Write

25

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 49

Timing of a Load Instruction

New PCOld PC

Clk-to-q

Instruction Memory Access Time

Old Instruction Load Instruction = (Op, Rs, Rt, Imm16)

Delay Through Control Logic

Old Control Signal Values New Control Signal Values

Register File Access Time

Old BusA Value New BusA Value = Register(Rs)

Delay Through Extender and ALU Mux

Old Second ALU Input New Second ALU Input = sign-extend(Imm16)

ALU Delay

Old ALU Result New ALU Result = Address

Data Memory Access Time

Old Data Memory Output Value Data from DM

Mux delay + Setup time + Clock skew
Write

Occurs

Clk

Clock Cycle

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 50

Worst Case Timing – Cont'd

� Long cycle time: long enough for Slowest instruction
PC Clk-to-Q delay

+ Instruction Memory Access Time

+ Maximum of (

Register File Access Time,

Delay through control logic + extender + ALU mux)

+ ALU to Perform a 32-bit Add

+ Data Memory Access Time

+ Delay through MemtoReg Mux

+ Setup Time for Register File Write + Clock Skew

� Cycle time is longer than needed for other instructions
� Therefore, single cycle processor design is not used in practice

26

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 51

Alternative: Multicycle Implementation

� Break instruction execution into five steps

� Instruction fetch

� Instruction decode, register read, target address for jump/branch

� Execution, memory address calculation, or branch outcome

� Memory access or ALU instruction completion

� Load instruction completion

� One clock cycle per step (clock cycle is reduced)

� First 2 steps are the same for all instructions

Instruction # cycles Instruction # cycles

ALU & Store 4 Branch 3

Load 5 Jump 2

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 52

Performance Example

� Assume the following operation times for components:

� Instruction and data memories: 200 ps

� ALU and adders: 180 ps

� Decode and Register file access (read or write): 150 ps

� Ignore the delays in PC, mux, extender, and wires

� Which of the following would be faster and by how much?

� Single-cycle implementation for all instructions

� Multicycle implementation optimized for every class of instructions

� Assume the following instruction mix:

� 40% ALU, 20% Loads, 10% stores, 20% branches, & 10% jumps

27

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 53

Solution
Instruction

Class
Instruction
Memory

Register
Read

ALU
Operation

Data
Memory

Register
Write

Total

ALU 200 150 180 150 680 ps

Load 200 150 180 200 150 880 ps

Store 200 150 180 200 730 ps

Branch 200 150 180 530 ps

Jump 200 150 350 ps

� For fixed single-cycle implementation:

� Clock cycle =

� For multi-cycle implementation:

� Clock cycle =

� Average CPI =

� Speedup =

Decode and write PC

0.4×4 + 0.2×5 + 0.1×4+ 0.2×3 + 0.1×2 = 3.8

max (200, 150, 180) = 200 ps (maximum delay at any step)

880 ps determined by longest delay (load instruction)

880 ps / (3.8 × 200 ps) = 880 / 760 = 1.16

Compare and write PC

Single Cycle Processor Design COE 308 – Computer Architecture © Muhamed Mudawar – slide 54

Summary
� 5 steps to design a processor

� Analyze instruction set => datapath requirements

� Select datapath components & establish clocking methodology

� Assemble datapath meeting the requirements

� Analyze implementation of each instruction to determine control signals

� Assemble the control logic

� MIPS makes Control easier
� Instructions are of same size

� Source registers always in same place

� Immediates are of same size and same location

� Operations are always on registers/immediates

� Single cycle datapath => CPI=1, but Long Clock Cycle

