Floating Point

COE 308

Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

% Floating-Point Numbers

% |IEEE 754 Floating-Point Standard

% Floating-Point Addition and Subtraction
% Floating-Point Multiplication

¢ Extra Bits and Rounding

% MIPS Floating-Point Instructions

Floating Point COE 308 — Computer Architecture © Muhamed Mudawar — slide 2




The World is Not Just Integers

% Programming languages support numbers with fraction
< Called floating-point numbers
<~ Examples:
3.14159265... (n)
2.71828... (e)
0.000000001 or 1.0 x 10-° (seconds in a nanosecond)
86,400,000,000,000 or 8.64 x 10"3 (nanoseconds in a day)
last number is a large integer that cannot fit in a 32-bit integer
+» We use a scientific notation to represent
<> Very small numbers (e.g. 1.0 x 10-9)
< Very large numbers (e.g. 8.64 x 10"3)
<~ Scientific notation: + d. f,f,f,f, ... x 10 * &2
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Floating-Point Numbers

s Examples of floating-point numbers in base 10 ...

< 5.341x103%, 0.05341%105, —2.013%x10-", —201.3%10-3
i . i t__ decimal point
« Examples of floating-point numbers in base 2 ...
< 1.00101x223 | 0.0100101%22%, —1.101101x2-3, —1101,101%x2-5
<~ Exponents are kept in decimal for clarity binary point

< The binary number (1101.101), = 23+22+20+2-142-3 = 13,625
+ Floating-point numbers should be normalized

< Exactly one non-zero digit should appear before the point
= In a decimal number, this digit can be from 1 to 9
= |n a binary number, this digit should be 1
< Normalized FP Numbers: 5.341x10% and —1.101101x2-3
< NOT Normalized: 0.05341%10% and —1101.101x2-5

Floating Point COE 308 — Computer Architecture © Muhamed Mudawar — slide 4




Floating-Point Representation

+ A floating-point number is represented by the triple
< Sis the Sign bit (0 is positive and 1 is negative)
= Representation is called sign and magnitude
< E is the Exponent field (signed)
= Very large numbers have large positive exponents
= Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values
< F is the Fraction field (fraction after binary point)

= More bits in fraction field improves the precision of FP numbers

‘S| Exponent ‘ Fraction ‘

Value of a floating-point number = (-1)° x val(F) x 2val(F)
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TEEE 754 Floating-Point Standard

+« Found in virtually every computer invented since 1980
< Simplified porting of floating-point numbers
< Unified the development of floating-point algorithms
< Increased the accuracy of floating-point numbers
+ Single Precision Floating Point Numbers (32 bits)
< 1-bit sign + 8-bit exponent + 23-bit fraction

‘S| Exponent8 ‘ Fraction2? ‘

+« Double Precision Floating Point Numbers (64 bits)
< 1-bit sign + 11-bit exponent + 52-bit fraction

S| Exponent!! | Fraction>2

(continued)
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Normalized Floating Point Numbers

¢ For a normalized floating point number (S, E, F)

s E | F=ff,f,1,... |

% Significand is equal to (1.F), = (1.f,f,f5f,...),
< |IEEE 754 assumes hidden 1. (not stored) for normalized numbers
< Significand is 1 bit longer than fraction

+ Value of a Normalized Floating Point Number is
(=1)S x (1.F), x 2val(®)
(=1)S x (1.f,f,f5f, ...), x 2val(E)

(=1)S % (1 +£,x271 + £,x22 + £;x23 + f,x24 ), x 2val()

(-=1)Sis 1 when S is 0 (positive), and —1 when S is 1 (negative)
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Biased Exponent Representation

“ How to represent a signed exponent? Choices are ...
< Sign + magnitude representation for the exponent
<~ Two’s complement representation
< Biased representation

« |IEEE 754 uses biased representation for the exponent
< Value of exponent = val(E) = E — Bias (Bias is a constant)

+ Recall that exponent field is 8 bits for single precision
< E can be in the range 0 to 255
< E=0and E = 255 are reserved for special use (discussed later)
< E =1 to 254 are used for normalized floating point numbers
< Bias = 127 (half of 254), val(E) = E — 127
< val(E=1) =-126, val(E=127) =0, val(E=254) = 127
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Biased Exponent - Cont'd

¢ For double precision, exponent field is 11 bits
< E can be in the range 0 to 2047
<-E =0 and E = 2047 are reserved for special use
<~ E =1 to 2046 are used for normalized floating point numbers
<> Bias = 1023 (half of 2046), val(E) = E — 1023
< val(E=1) = -1022, val(E=1023) =0, val(E=2046) = 1023
+ Value of a Normalized Floating Point Number is

(_1 )S X (1.F)2 x QE-Bias
(=1)8 x (1.f,f,ff, ...), x 2B -Bias

(=1)S x (1 +fx271 + f,x22 + f;x23 + f,x24 ), x 2E-Bias
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Examples of Single Precision Float

s What is the decimal value of this Single Precision float?
[oflftlf1loolo1 oloololololololooloodololloblold

+¢ Solution:
< Sign = 1 is negative
< Exponent = (01111100), = 124, E — bias = 124 — 127 = -3
< Significand = (1.0100 ... 0),= 1 + 2-2=1.25 (1. is implicit)
< Value in decimal = -1.25 x 2-3 = -0.15625

s What is the decimal value of?

ltloollolllel|olol1}olooloofolollelolofloolo

% Solution: implicit ~
< Value in decimal = +(1.01001100 ... 0), x 2130-127 =
(1.01001100 ... 0), x 23=(1010.01100 ... 0), = 10.375
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Examples of Double Precision Float

«» What is the decimal value of this Double Precision float ?

0]1/0{0|0]0]0(0[0[1]0{1/0|0|1/0{1]0|1/0|0|0]0|0|0|0|0|0|0|0[0|0
0]0]0(0|0]0]0(0[0]0]0(0[0]0|0]0[0]0]0]0(0[0]0|0|0(0|0|0|0|0[0|0

+¢ Solution:
< Value of exponent = (10000000101), — Bias = 1029 — 1023 = 6
< Value of double float = (1.00101010 ... 0), x 28 (1. is implicit) =
(1001010.10 ... 0), = 74.5

+* What is the decimal value of ?

1(0|1]1|1{1|1|1]1|0[0]0] 1|0(0|0|0|0(0[0|0|0|0[0|0|0]0|0{0|0|0|0
0]0(0]0]0]0(0(0]0]0]0(0[0]0]0(0[0]0]0|0|0[0|0|0|0[0|0|0|0[0[0|0

¢ Do it yourself! (answer should be —1.5 x 2-7 = -0.01171875)
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Converting FP Decimal to Binary

s Convert —0.8125 to binary in single and double precision
++ Solution:

< Fraction bits can be obtained using multiplication by 2
= 0.8125x2 =1.625

= 0625%x2 =125

. 025x2 =05 0.8125=(0.1101), =2+ Ya+ 1/16 = 13/16

= 05x2 =1.0
= Stop when fractional part is 0

[aJofa[alfafat[ol[o[1}ololololololo[ofolololololololofolofofo] . Sind'e

Precision

1(0{1|1|1{1{1|1|1|1{1{0|1|0|1|0|0]0]|0(0[0]0|0[0|0[0|0|0|0[0|0|0 Double
0(0(0|0]0]0(0{0]0]0|0(0[0]0|0(0[0|0]0|0(0|0|0|0|0[0|0|0|0[0[0|0 Precision
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Largest Normalized Float

s What is the Largest normalized float?

++ Solution for Single Precision:
AR
< Exponent — bias = 254 — 127 = 127 (largest exponent for SP)

< Significand = (1.111 ... 1), = almost 2
< Value in decimal = 2 x 2127 = 2128 = 3. 4028 ... x 1038

«» Solution for Double Precision:

O[1|1{1{1]| 1|1 {1{1{1|1|O[ 11| 1| 1{1{1{1|1[1{1{1|11|1{1{1|1|1{1]1
ddddddgdddddddddddddddddaduddegl

< Value in decimal = 2 x 21023 = 21024 =~ 1, 79769 ... x 10308
+ Overflow: exponent is too large to fit in the exponent field
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Smallest Normalized Float

% What is the smallest (in absolute value) normalized float?
+ Solution for Single Precision:
ollolloloololtollololooloollololololooblelolollol

< Exponent — bias = 1 — 127 = -126 (smallest exponent for SP)
< Significand = (1.000 ... 0),=1
<> Value in decimal = 1 x 2-126 = 1.17549 ... x 1038

+»» Solution for Double Precision:

0(0(0{0]0]0|0(0]0]0|0{1/0|0|0(0[0|0]0|0(0[0|0|0|0[0|0|0|0[0[0|0
0(0(0|0]0]0(0[0]0]0|0|0[0]0]0(0[0|0]0|0[0[0|0|0|0[0|0|0|0[0[0|0

< Value in decimal = 1 x 2-1022 = 2 22507 ... x 10308
“ Underflow: exponent is too small to fit in exponent field
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Zero, Infinity, and NaN

» Zero
< Exponent field E = 0 and fraction F = 0
<~ +0 and -0 are possible according to sign bit S
% Infinity
< Infinity is a special value represented with maximum E and F = 0
= For single precision with 8-bit exponent: maximum E = 255
= For double precision with 11-bit exponent: maximum E = 2047
< Infinity can result from overflow or division by zero
< +00 and —wo are possible according to sign bit S

% NaN (Not a Number)
< NaN is a special value represented with maximum E and F # 0
< Result from exceptional situations, such as 0/0 or sqrt(negative)
< Operation on a NaN results is NaN: Op(X, NaN) = NaN
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Denormalized Numbers

+» |IEEE standard uses denormalized numbers to ...
<~ Fill the gap between 0 and the smallest normalized float
< Provide gradual underflow to zero
« Denormalized: exponent field E is 0 and fraction F # 0

< Implicit 1. before the fraction now becomes 0. (not normalized)

+ Value of denormalized number ( S, 0, F)

Single precision:  (-1)S x (0.F), x 2-126
Double precision:  (=1)S x (0.F), x 2-1022

Negative Negative Positive Positive
Overflow Underflow ; Underflow Overflow
1
- Normalized (—ve) Denorm | Denorm Normalized (+ve) +eo
2128 _2-126 0 2-126 2128
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Floating-Point Comparison

< |IEEE 754 floating point numbers are ordered

< Because exponent uses a biased representation ...
= Exponent value and its binary representation have same ordering
< Placing exponent before the fraction field orders the magnitude
= Larger exponent = larger magnitude
= For equal exponents, Larger fraction = larger magnitude
= 0<(0.F), x 2Emn< (1.F), x 2E-Bias < o0 (E — Bias)

min — 1
< Because sign bit is most significant = quick test of signed <

+«* Integer comparator can compare magnitudes

X =(E.,F,) —{ Integer — X<Y
Magnitude — X =Y
Y =(E,, F,) —| Comparator | , x 5y
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Summary of IEEE 754 Encoding

Single-Precision | Exponent = 8 | Fraction = 23 | Value
Normalized Number 1to 254 Anything £ (1.F), x 28127
Denormalized Number 0 nonzero £ (0.F), x 2126
Zero 0 0 0
Infinity 255 0 t

NaN 255 nonzero NaN
Double-Precision | Exponent = 11 | Fraction = 52 | Value
Normalized Number 1 to 2046 Anything * (1.F), x 28-1023
Denormalized Number 0 nonzero + (0.F), x 2-1022
Zero 0 0 +0

Infinity 2047 0 t

NaN 2047 nonzero NaN
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Floating Point Addition Example
% Consider adding: (1.111), x 2=" + (1.011), x 23

< For simplicity, we assume 4 bits of precision (or 3 bits of fraction)
¢+ Cannot add significands ... Why?

< Because exponents are not equal
+» How to make exponents equal?

<~ Shift the significand of the lesser exponent right
until its exponent matches the larger number

2 (1.011), x 23 = (0.1011), x 22 = (0.01011), x 21

<~ Difference between the two exponents = -1 — (-3) = 2

< So, shift right by 2 bits 1.111
% Now, add the significands: 0.01011
Carry — 10.00111
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Addition Example - cont'd

% So, (1.111), x 2-1 + (1.011), x 2-3=(10.00111), x 2"
% However, result (10.00111), x 2-1is NOT normalized
% Normalize result: (10.00111), x 2-" = (1.000111), x 2°

< In this example, we have a carry
< So, shift right by 1 bit and increment the exponent

+ Round the significand to fit in appropriate number of bits
<~ We assumed 4 bits of precision or 3 bits of fraction

* Round to nearest: (1.000111), = (1.001), 1.000}111
<~ Renormalize if rounding generates a carry + 1
% Detect overflow / underflow 1.001

< If exponent becomes too large (overflow) or too small (underflow)
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Floating Point Subtraction Example
% Consider: (1.000), x 23 — (1.000), x 22

< We assume again: 4 bits of precision (or 3 bits of fraction)
¢ Shift significand of the lesser exponent right

<~ Difference between the two exponents =2 — (-3) =5
< Shift right by 5 bits: (1.000), x 2-2 = (0.00001000), x 22

¢+ Convert subtraction into addition to 2's complement

Sign—;

S |+ 0.00001 x 22 Since result is negative,

iEJ — 1.00000 x 22 convert result from 2's

g( 0 0.00001 x 22 complement to sign-magnitude
S ™|1 1.00000 x 22

» 2's Complement

N 11.00001 x 22| —— | — 0.11111 x 22
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Subtraction Example - cont'd

% So, (1.000), x 23— (1.000), x 22 =-0.11111, x 22
% Normalize result: = 0.11111, x 22 = - 1.1111, x 21
< For subtraction, we can have leading zeros
< Count number z of leading zeros (in this case z = 1)
<~ Shift left and decrement exponent by z

“ Round the significand to fit in appropriate number of bits
< We assumed 4 bits of precision or 3 bits of fraction

* Round to nearest: (1.1111), = (10.000), . 1-111}
1

% Renormalize: rounding generated a carry 10.000

—1.1111, x 21 = =10.000, x 2' = —1.000, x 22
<~ Result would have been accurate if more fraction bits are used
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Floating Point Addition / Subtraction

1. Compare the exponents of the two numbers. Shift the
smaller number to the right until its exponent would match
the larger exponent.

Shift significand right by
d=|E-Ey|

i

2. Add / Subtract the significands according to the sign bits.

!

3. Normalize the sum, either shifting right and incrementing
the exponent or shifting left and decrementing the exponent

Add significands when signs
of Xand Y are identical,
Subtract when different

X —Y becomes X+ (-Y)

i

4. Round the significand to the appropriate number of bits,
and renormalize if rounding generates a carry

Overflow or
underflow?

Floating Point COE 308 — Computer Architecture

Normalization shifts right by 1 if

there is a carry, or shifts left by

the number of leading zeros in
the case of subtraction

Rounding either truncates
fraction, or adds a 1 to least
significant fraction bit
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Floating Point Adder Block Diagram

. 1 Fy 1 Fy
Exponent 5'9”4’&) | | | | |
Subtractor N
ul Swap |
d=|Ex—Ey|
A Shift Right
add / subtract ¢ Y
X .
add/sub—» Sign ) \ Significand
Computation sign Adder/Subtractor
\ Adder’S
max (Ey, Ey) ‘ 1

Detect carry, or
Z_{ Count leading 0’s

Shift Right / Left

Inc / Dec
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Floating Point Multiplication Example
% Consider multiplying: 1.010, x 2-' by —=1.110, x 22

< As before, we assume 4 bits of precision (or 3 bits of fraction)
¢ Unlike addition, we add the exponents of the operands
< Result exponent value = (-1) + (-2) = -3
% Using the biased representation: E, = E, + E, — Bias
> E, = (-1) + 127 = 126 (Bias = 127 for SP)

1.010
¢ E,=(-2)+127 =125 *1.110
> E, =126 + 125 — 127 = 124 (value = -3) 0000
. . 1010
% Now, multiply the significands: ) 1010
(1.010), x (1.110), = (10.001100), 1010
— — — 10001100
3-bit fraction 3-bit fraction 6-bit fraction
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Multiplication Example - cont'd

% Since sign Sy # Sy, sign of product S, = 1 (negative)
% So, 1.010, x 2" x -1.110, x 2-2 =-10. 001100, x 2-3
% However, result: —10. 001100, x 2-3 is NOT normalized

% Normalize: 10. 001100, x 2-3 = 1.0001100, x 2-2
<~ Shift right by 1 bit and increment the exponent
< At most 1 bit can be shifted right ... Why?

% Round the significand to nearest:

, ) 1.000:1100
1.0001100, = 1.001, (3-bit fraction) + 1ed
Result = —1. 001, x 2-? (normalized) 1.001

+» Detect overflow / underflow

< No overflow / underflow because exponent is within range
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Floating Point Multiplication

Biased Exponent Addition

1. Add the biased exponents of the two numbers, subtracting E, =E, + E,—Bias
the bias from the sum to get the new biased exponent
! Result sign S, = S, xor S, can
2. Multiply the significands. Set the result sign to positive if be computed independently
operands have same sign, and negative otherwise
]

Since the operand significands
3. Normalize the product if necessary, shifting its significand 1.F, and 1.F, are>1and <2,

right and incrementing the exponent their product is = 1 and < 4.

] To normalize product, we need
4. Round the significand to the appropriate number of bits, to shift right by 1 bit only and
and renormalize if rounding generates a carry increment exponent
Overflow oF Rounding either truncates
underflow? fractl.on,. or adds a .1 to Ileast
significant fraction bit
no
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Extra Bits to Maintain Precision

¢ Floating-point numbers are approximations for ...
< Real numbers that they cannot represent
+ Infinite variety of real numbers exist between 1.0 and 2.0
< However, exactly 223 fractions can be represented in SP, and
< Exactly 252 fractions can be represented in DP (double precision)
¢ Extra bits are generated in intermediate results when ...
< Shifting and adding/subtracting a p-bit significand
< Multiplying two p-bit significands (product can be 2p bits)
+«+ But when packing result fraction, extra bits are discarded
% We only need few extra bits in an intermediate result

< Minimizing hardware but without compromising precision
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Guard Bit

+« Guard bit: guards against loss of a significant bit
<~ Only one guard bit is needed to maintain accuracy of result
< Shifted left (if needed) during normalization as last fraction bit

<+ Example on the need of a guard bit:

1.00000000101100010001101 x 25
— 1.00000000000000010011010 x 2-2 (subtraction)

1.00000000101100010001101 x 25
— 0.00000010000000000000001 0011010 x 25 (shiftright 7 bits)

1.00000000101100010001101 x 25__. Guardbit—do notdiscard
1 1.11111101111111111111110 {17 100110 x 25 (2's complement)

0 0.11111110101100010001011 @) 100110 x 25 (add significands)
+1.11111101011000100010111% 100010 x 24 (normalized)
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Round and Sticky Bits

% Two extra bits are needed for rounding
< Just after normalizing a result significand
<~ Round bit: appears just after the normalized significand
<- Sticky bit: appears after the round bit (OR of all additional bits)
< Reduce the hardware and still achieve accurate arithmetic
<~ As if result significand was computed exactly and rounded

+ Consider the same example of previous slide:
1.00000000101100010001101 OR-reduce x 25

0 0.11111110101100010001011 (T, 1 (1}  x 25 (sum)

+ 1.11111101011000100010111° I} (1} x 24 (normalized)
Round bit - - L _ Sticky bit
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Four Rounding Modes

% Normalized result has the form: 1. f, f, ... firs
< The round bit r and sticky bit s appear after the last fraction bit f|

« |IEEE 754 standard specifies four modes of rounding
“ Round to Nearest Even: default rounding mode

< Increment resultif: rs=“11"or (rs=“10"and f, = ‘1)
< Otherwise, truncate result significand to 1. f, f, ... f|
*» Round toward +co: result is rounded up
< Increment result if sign is positive andrors = 1’
% Round toward —o: result is rounded down
< Increment result if sign is negative andrors =1’

+» Round toward 0: always truncate result
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Example on Rounding

¢ Round following result using IEEE 754 rounding modes:

-1.11111112111111211111112111 011 x 2-7

Round Bit— £ Stick
+ Round to Nearest Even: Bit ’

<> Truncate result sincer = ‘0’
< Truncated Result: —1.11111111111111111111111 x 27

+ Round towards +: Truncate result since negative

% Round towards —«: Increment since negative and s = ‘1’
< Incremented result: —10.00000000000000000000000 x 2-7

<~ Renormalize and increment exponent (because of carry)
< Final rounded result: —1 .00000000000000000000000 x 2-6

% Round towards 0: Truncate always

Floating Point COE 308 — Computer Architecture © Muhamed Mudawar - slide 36

18



Advantages of IEEE 754 Standard

% Used predominantly by the industry
+ Encoding of exponent and fraction simplifies comparison
< Integer comparator used to compare magnitude of FP numbers

+ Includes special exceptional values: NaN and o
<> Special rules are used such as:
= 0/0 is NaN, sqgrt(—1) is NaN, 1/0 is o, and 1/ is 0
<~ Computation may continue in the face of exceptional conditions
+ Denormalized numbers to fill the gap
< Between smallest normalized number 1.0 x 257" and zero
< Denormalized numbers , values 0.F x 2" are closer to zero

<~ Gradual underflow to zero
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Floating Point Complexities

% Operations are somewhat more complicated

*

+ In addition to overflow we can have underflow
% Accuracy can be a big problem
< Extra bits to maintain precision: guard, round, and sticky
< Four rounding modes
< Division by zero yields Infinity
< Zero divide by zero yields Not-a-Number
< Other complexities
% Implementing the standard can be tricky
< See text for description of 80x86 and Pentium bug!
% Not using the standard can be even worse
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MIPS Floating Point Coprocessor

+ Called Coprocessor 1 or the Floating Point Unit (FPU)
% 32 separate floating point registers: $f0, $f1, ..., $f31
“ FP registers are 32 bits for single precision numbers
« Even-odd register pair form a double precision register

+ Use the even number for double precision registers
< $f0, $f2, $f4, ..., $f30 are used for double precision
+ Separate FP instructions for single/double precision
< Single precision: add.s, sub.s, mul.s, div.s (.s extension)
<> Double precision: add.d, sub.d, mul.d, div.d (.d extension)
¢ FP instructions are more complex than the integer ones

<- Take more cycles to execute
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FP Arithmetic Instructions

Instruction Meaning ‘ Format
add.s fd,fs, ft ) = (fs) + (ft) 0x11 0 ft5 fs5 | fd5 0
add.d fd, fs, ft ) = (fs) + (ft) 0x11 1 ftd fsd | fd° 0
sub.s fd, fs, ft ) = (fs) — (ft) 0x11 0 fts fsd | fd° 1
sub.d fd,fs, ft ) = (fs) — (ft) 0x11 1 ftd fsd | fd° 1
mul.s fd, fs, ft ) = (fs) x (ft) 0x11 0 fts fsd | fd° 2
mul.d fd, fs, ft ) = (fs) x (ft) 0x11 1 ftd fsd | fd° 2
div.s  fd, fs, ft ) = (fs) 7 (ft) 0x11 0 ftd fs5 | fd° 3
divd fd,fs, ft ) = (fs) /7 (ft) 0x11 1 ft5 fs5 | fd° 3
sqrt.s fd, fs ) = sqrt (fs) 0x11 0 0 fsd | fd° 4
sqrt.d fd, fs ) = sqrt (fs) 0x11 1 0 fs5 | fd° 4
abs.s fd, fs ) = abs (fs) 0x11 0 0 fsd | fd° 5
abs.d fd, fs ) = abs (fs) 0x11 1 0 fsd | fd° 5
neg.s fd,fs fd) = — (fs) 0x11 0 0 fs® | fd° 7
neg.d fd,fs ) =—(fs) 0x11 1 0 fsd | fd° 7
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FP Load/Store Instructions
% Separate floating point load/store instructions
< lwc1: load word coprocessor 1
<-1dc1: load double coprocessor 1 ngera! purpose
register is used as
<~ swc1: store word coprocessor 1 the base register
<-sdc1: store double coprocessor 1
Instruction Meaning \ Format
lwcl  $f2, 40 ($f2) = Mem([($t0)+40] | 0x31 | $t0 | $f2 | im'6 = 40
Idc1  $f2, 40 ($2) = Mem[($t0)+40] | 0x35 | $t0 | $f2 | im16 = 40
swcl $f2, 40 Mem[($t0)+40] = ($f2) | 0x39 | $t0 | $f2 | im'6 =40
sdc1  $f2, 40($t0) | Mem[($t0)+40] = ($f2) | 0x3d | $t0 | $f2 | im'®=40

+» Better names can be used for the above instructions

< I.s = lwc1 (load FP single),
< s.s = swc1 (store FP single),
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I.d = Idc1 (load FP double)
s.d = sdc1 (store FP double)




FP Data Movement Instructions

+ Moving data between general purpose and FP registers
<-mfc1: move from coprocessor 1 (to general purpose register)

<-mtc1: move to coprocessor 1 (from general purpose register)

% Moving data between FP registers
<- mov.s: move single precision float

<> mov.d: move double precision float = even/odd pair of registers

Instruction | Meaning | Format

mfc1  $t0, $f2 | ($t0)=($f2) | Ox11 | O | $t0O | $f2 | O 0
mtc1  $t0, $f2 | ($f2)=($t0) | Ox11 | 4 | $t0 | $f2 | O 0
mov.s $f4, $f2 | ($f4)=($f2) | Ox11 | O 0 | $f2 | $f4 6
mov.d $f4, $f2 | ($f4)=($f2) | Ox11 | 1 0 | $f2 | $f4 | 6
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FP Convert Instructions

% Convert instruction: cvt.x.y

< Convert to destination format x from source format y

¢ Supported formats

< Single precision float

(single precision float in FP register)

.S
<~ Double precision float =.d (double float in even-odd FP register)
W

<- Signed integer word = (signed integer in FP register)

Instruction | Meaning | Format

cvt.s.w fd, fs |to single from integer | 0x11 fs5 | fd> | 0x20
cvt.s.d fd, fs | to single from double | 0x11 fsd fd® | 0x20
cvt.d.w fd, fs | to double from integer | 0x11 fsd fd5 | 0x21
cvt.d.s fd, fs | to double from single | 0x11 fsd fd> | 0x21
cvt.w.s fd, fs |to integer from single | Ox11 fs5 fd5 | 0x24
cvt.w.d fd, fs |to integer from double | 0x11 fsd fd® | O0x24

= OO0
oO|Oo|0O|0O |0 |O

Floating Point COE 308 — Computer Architecture © Muhamed Mudawar - slide 44

22



FP Compare and Branch Instructions

+« FP unit (co-processor 1) has a condition flag

< Set to 0 (false) or 1 (true) by any comparison instruction

+» Three comparisons: equal, less than, less than or equal

% Two branch instructions based on the condition flag

Instruction Meaning Format

c.eq.s fs,ft cflag = ((fs) == (ft)) 0x11 0 ftb | fs5 | 0 | Ox32
c.eqd fs, ft cflag = ((fs) == (ft)) 0x11 1 fto | fs5 | 0 | Ox32
clts fs, ft cflag = ((fs) < (ft)) 0x11 0 ftt | fs5 | 0 | Ox3c
cltd fs, ft cflag = ((fs) < (ft)) 0x11 1 ftt | fs5 | 0 | Ox3c
cless fs,ft cflag = ((fs) <= (ft)) 0x11 0 ftt | fs5 | 0 | Ox3e
cled fs,ft cflag = ((fs) <= (ft)) 0x11 1 ftt | fs5 | 0 | Ox3e
bc1f  Label branch if (cflag == 0) | 0x11 8 0 im16

bcit  Label branch if (cflag == 1) | 0x11 8 1 im16

Floating Point

COE 308 — Computer Architecture

© Muhamed Mudawar - slide 45

Example 1: Area of a Circle

.data
pi:
msg:
-text
main:
ldcl
li
syscall
mul .d
mul .d
la
li
syscall
li
syscall

Floating Point

.double
.asciiz

$f2, pi
$vO0, 7

$v0, 3

$f12, $f0, $f0
$f12, $f2, $f12
$a0, msg
$v0, 4

3.1415926535897924

"Circle Area

$f2,3 =

$f0,1 =

H O OHHH*

pi

read double (radius)

radius

$f12,13 =
$f12,13 =

radius*radius

area

# print string (msg)

# print double (area)
# print $f12,13
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Example 2: Matrix Multiplication

void mm (int n, double x[n][n], yInlInl., z[nl[nD {
for (int i=0; i!=n; i=i+l)
for (int j=0; j'=n; j=j+1) {
double sum = 0.0;
for (int k=0; k!=n; k=k+1)
sum = sum + y[i][k] * z[K]1[i];
x[1101 = sum;
}
}
+ Matrices X, y, and z are nxn double precision float

¢ Matrix size is passed in $a0 = n
% Array addresses are passed in $al, $a2, and $a3

s What is the MIPS assembly code for the procedure?
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Matrix Multiplication Procedure - 1/3

+ Initialize Loop Variables

mm: addu $tl1, $0, $0 # $tl i 0; for 1st loop

L1: addu $t2, $0, $0 # $t2 = j = 0; for 2" loop
L2: addu $t3, $0, $0 # $t3 = k = 0; for 3 loop
sub.d $f0, $f0, $f0 # $FfO = sum = 0.0

+¢ Calculate address of y[i1][k] and load it into $f2,$f3
++ Skip 1 rows (ixn) and add k elements

L3: multu $tl, $al # i*size(row) = i*n
mflo $t4 # $t4 = i*n
addu $t4, $t4, $t3 # $t4 = i*n + k
sl $t4, $t4, 3 # $t4 =(i*n + k)*8
addu $t4, $a2, $t4 # $t4 = address of y[i][k]
ldcl $f2, 0($t4) # $f2 = y[i1[K]
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Matrix Multiplication Procedure - 2/3

% Similarly, calculate address and load value of z[ k] 1]

¢ Skip k rows (kxn) and add j elements

multu $t3, $ao # k*size(row) = k*n

mflo $t5 # $t5 = k*n

addu $t5, $t5, $t2 # $t5 = k*n + j

sl $t5, $t5, 3 # $t5 =(k*n + j)*8

addu $t5, $a3, $t5 # $t5 = address of z[K1L[j]
Idcl $f4, 0($t5) # $f4 = z[Kk]1[i]

< Now, multiply y[1][k] by z[k][j] and add it to $F0

mul.d $f6
add.d $f0
addiu $t3
bne $t3

Floating Point

, $f2, $f4 # $f6 = y[i1[k]1*z[KI1Li]
, $F0, $f6 # $FO0 = sum
, $t3, 1 #k=k+1
, $al0, L3 # loop back if (k '= n)
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Matrix Multiplication Procedure - 3/3

¢ Calculate address of x[ 1][J] and store sum

multu $t1, $ao # i*size(row) = I*n
mflo $t6 # $t6 = 1*n
addu $t6, $t6, $t2 # $t6 = I*n + j
sl $t6, $t6, 3 # $t6 =(i*n + j)*8
addu $t6, $al, $t6 # $t6 = address of x[ilLi]
sdcl $f0, 0($t6) # x[i1[J]1 = sum
++ Repeat outer loops: L2 (forj=...)and L1 (fori=...)
addiu $t2, $t2, 1 #j=j+1
bne $t2, $a0, L2 # loop L2 if (J '= n)
addiu $t1, $t1, 1 #1 =0+ 1
bne $tl1, $a0, L1 # loop L1 if (i = n)
¢ Return:
jr $ra # return
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