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Programming languages support numbers with fraction
Called floating-point numbers
Examples:
3.14159265… (π)
2.71828… (e)
0.000000001 or 1.0 × 10–9 (seconds in a nanosecond)
86,400,000,000,000 or 8.64 × 1013 (nanoseconds in a day)
last number is a large integer that cannot fit in a 32-bit integer

We use a scientific notation to represent
Very small numbers (e.g. 1.0 × 10–9)
Very large numbers (e.g. 8.64 × 1013)
Scientific notation: ± d . f1f2f3f4 … × 10 ± e1e2e3

The World is Not Just Integers
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Examples of floating-point numbers in base 10 …
5.341×103 ,  0.05341×105 ,  –2.013×10–1 ,  –201.3×10–3

Examples of floating-point numbers in base 2 …
1.00101×223 ,  0.0100101×225 ,  –1.101101×2–3 ,  –1101.101×2–6

Exponents are kept in decimal for clarity
The binary number (1101.101)2 = 23+22+20+2–1+2–3 = 13.625

Floating-point numbers should be normalized
Exactly one non-zero digit should appear before the point

In a decimal number, this digit can be from 1 to 9
In a binary number, this digit should be 1

Normalized FP Numbers: 5.341×103   and –1.101101×2–3

NOT Normalized: 0.05341×105 and –1101.101×2–6

Floating-Point Numbers

decimal point

binary point
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A floating-point number is represented by the triple
S is the Sign bit (0 is positive and 1 is negative)

Representation is called sign and magnitude

E is the Exponent field (signed)
Very large numbers have large positive exponents

Very small close-to-zero numbers have negative exponents

More bits in exponent field increases range of values

F is the Fraction field (fraction after binary point)
More bits in fraction field improves the precision of FP numbers

Value of a floating-point number = (-1)S × val(F) × 2val(E)

Floating-Point Representation

S Exponent Fraction
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IEEE 754 Floating-Point Standard
Found in virtually every computer invented since 1980

Simplified porting of floating-point numbers

Unified the development of floating-point algorithms

Increased the accuracy of floating-point numbers

Single Precision Floating Point Numbers (32 bits)
1-bit sign + 8-bit exponent + 23-bit fraction

Double Precision Floating Point Numbers (64 bits)
1-bit sign + 11-bit exponent + 52-bit fraction

S Exponent8 Fraction23

S Exponent11 Fraction52

(continued)
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For a normalized floating point number (S, E, F)

Significand is equal to (1.F)2 = (1.f1f2f3f4…)2

IEEE 754 assumes hidden 1. (not stored) for normalized numbers

Significand is 1 bit longer than fraction

Value of a Normalized Floating Point Number is 

(–1)S × (1.F)2 × 2val(E)

(–1)S × (1.f1f2f3f4 …)2 × 2val(E)

(–1)S × (1 + f1×2-1 + f2×2-2 + f3×2-3 + f4×2-4 …)2 × 2val(E)

(–1)S is 1 when S is 0 (positive), and –1 when S is 1 (negative)

Normalized Floating Point Numbers

S E F = f1 f2 f3 f4 …



5

Floating Point COE 308 – Computer Architecture © Muhamed Mudawar – slide 9

Biased Exponent Representation
How to represent a signed exponent? Choices are …

Sign + magnitude representation for the exponent
Two’s complement representation
Biased representation

IEEE 754 uses biased representation for the exponent
Value of exponent = val(E) = E – Bias (Bias is a constant)

Recall that exponent field is 8 bits for single precision
E can be in the range 0 to 255
E = 0 and E = 255 are reserved for special use (discussed later)
E = 1 to 254 are used for normalized floating point numbers
Bias = 127 (half of 254), val(E) = E – 127
val(E=1) = –126,  val(E=127) = 0,  val(E=254) = 127
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Biased Exponent – Cont’d
For double precision, exponent field is 11 bits

E can be in the range 0 to 2047

E = 0 and E = 2047 are reserved for special use

E = 1 to 2046 are used for normalized floating point numbers

Bias = 1023 (half of 2046), val(E) = E – 1023

val(E=1) = –1022,  val(E=1023) = 0,  val(E=2046) = 1023

Value of a Normalized Floating Point Number is

(–1)S × (1.F)2 × 2E – Bias

(–1)S × (1.f1f2f3f4 …)2 × 2E – Bias

(–1)S × (1 + f1×2-1 + f2×2-2 + f3×2-3 + f4×2-4 …)2 × 2E – Bias
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Examples of Single Precision Float
What is the decimal value of this Single Precision float?

Solution:
Sign = 1 is negative
Exponent = (01111100)2 = 124, E – bias = 124 – 127 = –3
Significand = (1.0100 … 0)2 = 1 + 2-2 = 1.25 (1. is implicit)
Value in decimal = –1.25 × 2–3 = –0.15625

What is the decimal value of?

Solution:
Value in decimal = +(1.01001100 … 0)2 × 2130–127 =
(1.01001100 … 0)2 × 23 = (1010.01100 … 0)2 =  10.375

1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

implicit
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Examples of Double Precision Float
What is the decimal value of this Double Precision float ?

Solution:
Value of exponent = (10000000101)2 – Bias = 1029 – 1023 = 6
Value of double float = (1.00101010 … 0)2 × 26 (1. is implicit) =
(1001010.10 … 0)2 = 74.5

What is the decimal value of ?

Do it yourself! (answer should be –1.5 × 2–7 = –0.01171875)

0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Converting FP Decimal to Binary
Convert –0.8125 to binary in single and double precision
Solution:

Fraction bits can be obtained using multiplication by 2
0.8125 × 2 = 1.625
0.625 × 2 = 1.25
0.25 × 2 = 0.5
0.5 × 2 = 1.0
Stop when fractional part is 0

Fraction = (0.1101)2 = (1.101)2 × 2 –1 (Normalized)
Exponent = –1 + Bias = 126 (single precision) and 1022 (double)

0.8125 = (0.1101)2 = ½ + ¼ + 1/16 = 13/16

1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Single 
Precision

Double 
Precision
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Largest Normalized Float
What is the Largest normalized float?
Solution for Single Precision:

Exponent – bias = 254 – 127 = 127 (largest exponent for SP)
Significand = (1.111 … 1)2 = almost 2
Value in decimal ≈ 2 × 2127 ≈ 2128 ≈ 3.4028 … × 1038

Solution for Double Precision:

Value in decimal ≈ 2 × 21023 ≈ 21024 ≈ 1.79769 … × 10308

Overflow: exponent is too large to fit in the exponent field

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Smallest Normalized Float
What is the smallest (in absolute value) normalized float?
Solution for Single Precision:

Exponent – bias = 1 – 127 = –126 (smallest exponent for SP)
Significand = (1.000 … 0)2 = 1
Value in decimal = 1 × 2–126 = 1.17549 … × 10–38

Solution for Double Precision:

Value in decimal = 1 × 2–1022 = 2.22507 … × 10–308

Underflow: exponent is too small to fit in exponent field

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Zero, Infinity, and NaN
Zero

Exponent field E = 0 and fraction F = 0
+0 and –0 are possible according to sign bit S

Infinity
Infinity is a special value represented with maximum E and F = 0

For single precision with 8-bit exponent: maximum E = 255
For double precision with 11-bit exponent: maximum E = 2047

Infinity can result from overflow or division by zero
+∞ and –∞ are possible according to sign bit S

NaN (Not a Number)
NaN is a special value represented with maximum E and F ≠ 0
Result from exceptional situations, such as 0/0 or sqrt(negative)
Operation on a NaN results is NaN: Op(X, NaN) = NaN
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Denormalized Numbers
IEEE standard uses denormalized numbers to …

Fill the gap between 0 and the smallest normalized float

Provide gradual underflow to zero

Denormalized: exponent field E is 0 and fraction F ≠ 0
Implicit 1. before the fraction now becomes 0. (not normalized)

Value of denormalized number ( S, 0, F )

Single precision: (–1) S × (0.F)2 × 2–126

Double precision: (–1) S × (0.F)2 × 2–1022

Denorm Denorm +∞

Positive
Overflow

-∞

Negative
Overflow

Negative
Underflow

Positive
Underflow

Normalized (–ve) Normalized (+ve)
2–126 2128 0-2128 -2–126 
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IEEE 754 floating point numbers are ordered
Because exponent uses a biased representation …

Exponent value and its binary representation have same ordering

Placing exponent before the fraction field orders the magnitude
Larger exponent ⇒ larger magnitude

For equal exponents, Larger fraction ⇒ larger magnitude

0 < (0.F)2 × 2Emin < (1.F)2 × 2E–Bias < ∞ (Emin = 1 – Bias)

Because sign bit is most significant ⇒ quick test of signed <

Integer comparator can compare magnitudes
Integer

Magnitude
Comparator

X < Y
X = Y
X > Y

X = (EX , FX)

Y = (EY , FY)

Floating-Point Comparison
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Summary of IEEE 754 Encoding

NaNnonzero255NaN

± (0.F)2 × 2–126nonzero0Denormalized Number
± (1.F)2 × 2E – 127Anything1 to 254Normalized Number

± ∞0255Infinity
± 000Zero

ValueFraction = 23Exponent = 8Single-Precision

NaNnonzero2047NaN

± (0.F)2 × 2–1022nonzero0Denormalized Number
± (1.F)2 × 2E – 1023Anything1 to 2046Normalized Number

± ∞02047Infinity
± 000Zero

ValueFraction = 52Exponent = 11Double-Precision
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Floating Point Addition Example
Consider adding: (1.111)2 × 2–1 + (1.011)2 × 2–3

For simplicity, we assume 4 bits of precision (or 3 bits of fraction)

Cannot add significands … Why?
Because exponents are not equal

How to make exponents equal?
Shift the significand of the lesser exponent right
until its exponent matches the larger number

(1.011)2 × 2–3 = (0.1011)2 × 2–2 = (0.01011)2 × 2–1

Difference between the two exponents = –1 – (–3) = 2
So, shift right by 2 bits

Now, add the significands:
Carry

1.111
0.01011

10.00111

+
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Addition Example – cont’d
So, (1.111)2 × 2–1 + (1.011)2 × 2–3 = (10.00111)2 × 2–1

However, result (10.00111)2 × 2–1 is NOT normalized
Normalize result: (10.00111)2 × 2–1 = (1.000111)2 × 20

In this example, we have a carry
So, shift right by 1 bit and increment the exponent

Round the significand to fit in appropriate number of bits
We assumed 4 bits of precision or 3 bits of fraction

Round to nearest: (1.000111)2 ≈ (1.001)2

Renormalize if rounding generates a carry

Detect overflow / underflow
If exponent becomes too large (overflow) or too small (underflow)

1.000 111
1

1.001

+
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Floating Point Subtraction Example
Consider: (1.000)2 × 2–3 – (1.000)2 × 22

We assume again: 4 bits of precision (or 3 bits of fraction)

Shift significand of the lesser exponent right
Difference between the two exponents = 2 – (–3) = 5
Shift right by 5 bits: (1.000)2 × 2–3 = (0.00001000)2 × 22

Convert subtraction into addition to 2's complement

+ 0.00001 × 22

– 1.00000 × 22

0 0.00001 × 22

1 1.00000 × 22

1 1.00001 × 22

Sign

Since result is negative, 
convert result from 2's 
complement to sign-magnitude

2’
s 

C
om

pl
em

en
t

– 0.11111 × 22
2’s Complement
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Subtraction Example – cont’d
So, (1.000)2 × 2–3 – (1.000)2 × 22 = – 0.111112 × 22

Normalize result: – 0.111112 × 22 = – 1.11112 × 21

For subtraction, we can have leading zeros
Count number z of leading zeros (in this case z = 1)
Shift left and decrement exponent by z

Round the significand to fit in appropriate number of bits
We assumed 4 bits of precision or 3 bits of fraction

Round to nearest: (1.1111)2 ≈ (10.000)2

Renormalize: rounding generated a carry
–1.11112 × 21 ≈ –10.0002 × 21 = –1.0002 × 22

Result would have been accurate if more fraction bits are used

1.111 1
1

10.000

+
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Floating Point Addition / Subtraction

1. Compare the exponents of the two numbers. Shift the 
smaller number to the right until its exponent would match 
the larger exponent.

2. Add / Subtract the significands according to the sign bits.

3. Normalize the sum, either shifting right and incrementing 
the exponent or shifting left and decrementing the exponent

4. Round the significand to the appropriate number of bits, 
and renormalize if rounding generates a carry

Start

Done

Overflow or
underflow? Exception

yes

no

Shift significand right by
d = | EX – EY |

Add significands when signs
of X and Y are identical,
Subtract when different

X – Y becomes  X + (–Y)

Normalization shifts right by 1 if 
there is a carry, or shifts left by 
the number of leading zeros in 

the case of subtraction

Rounding either truncates 
fraction, or adds a 1 to least 

significant fraction bit
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Floating Point Adder Block Diagram

c

z

EZ

EX

FX

Shift Right / Left

Inc / Dec

EY

Swap

FY

Shift Right

Exponent
Subtractor

Significand
Adder/Subtractor

1 1sign

Sign
Computation

d = | EX – EY |

max ( EX , EY )

add / subtract

Rounding Logic

sign
SY

add/sub

FZSZ

c

SX

z
Detect carry, or

Count leading 0’s

c

0      1
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Floating Point Multiplication Example
Consider multiplying: 1.0102 × 2–1 by –1.1102 × 2–2

As before, we assume 4 bits of precision (or 3 bits of fraction)

Unlike addition, we add the exponents of the operands
Result exponent value = (–1) + (–2) = –3

Using the biased representation: EZ = EX + EY – Bias
EX = (–1) + 127 = 126 (Bias = 127 for SP)

EY = (–2) + 127 = 125

EZ = 126 + 125 – 127 = 124 (value = –3) 

Now, multiply the significands:

(1.010)2 × (1.110)2 = (10.001100)2

1.010
1.110

0000
1010
1010
1010

10001100

×

3-bit fraction 3-bit fraction 6-bit fraction
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Multiplication Example – cont’d
Since sign SX ≠ SY, sign of product SZ = 1 (negative)
So, 1.0102 × 2–1 × –1.1102 × 2–2 = –10. 0011002 × 2–3

However, result: –10. 0011002 × 2–3 is NOT normalized
Normalize: 10. 0011002 × 2–3 = 1.00011002 × 2–2

Shift right by 1 bit and increment the exponent
At most 1 bit can be shifted right … Why?

Round the significand to nearest:
1.00011002 ≈ 1.0012 (3-bit fraction)
Result ≈ –1. 0012 × 2–2 (normalized)
Detect overflow / underflow

No overflow / underflow because exponent is within range

1.000 1100
1

1.001

+
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Floating Point Multiplication

1. Add the biased exponents of the two numbers, subtracting 
the bias from the sum to get the new biased exponent

2. Multiply the significands. Set the result sign to positive if 
operands have same sign, and negative otherwise

3. Normalize the product if necessary, shifting its significand 
right and incrementing the exponent

4. Round the significand to the appropriate number of bits, 
and renormalize if rounding generates a carry

Start

Done

Overflow or
underflow? Exception

yes

no

Biased Exponent Addition
EZ = EX + EY – Bias

Result sign SZ = SX xor SY can 
be computed independently

Since the operand significands 
1.FX and 1.FY are ≥ 1 and < 2, 

their product is ≥ 1 and < 4.
To normalize product, we need 
to shift right by 1 bit only and 

increment exponent

Rounding either truncates 
fraction, or adds a 1 to least 

significant fraction bit
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Extra Bits to Maintain Precision
Floating-point numbers are approximations for …

Real numbers that they cannot represent

Infinite variety of real numbers exist between 1.0 and 2.0
However, exactly 223 fractions can be represented in SP, and

Exactly 252 fractions can be represented in DP (double precision)

Extra bits are generated in intermediate results when …
Shifting and adding/subtracting a p-bit significand

Multiplying two p-bit significands (product can be 2p bits)

But when packing result fraction, extra bits are discarded

We only need few extra bits in an intermediate result
Minimizing hardware but without compromising precision
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Guard Bit
Guard bit: guards against loss of a significant bit

Only one guard bit is needed to maintain accuracy of result

Shifted left (if needed) during normalization as last fraction bit

Example on the need of a guard bit:
1.00000000101100010001101 × 25

– 1.00000000000000010011010 × 2-2 (subtraction)

1.00000000101100010001101 × 25

– 0.00000010000000000000001 0011010  × 25 (shift right 7 bits)

1.00000000101100010001101 × 25

1 1.11111101111111111111110 1 100110 × 25 (2's complement)

0 0.11111110101100010001011 1 100110 × 25 (add significands)

+ 1.11111101011000100010111   100010 × 24 (normalized)

Guard bit – do not discard
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Round and Sticky Bits
Two extra bits are needed for rounding

Just after normalizing a result significand
Round bit: appears just after the normalized significand
Sticky bit: appears after the round bit (OR of all additional bits)
Reduce the hardware and still achieve accurate arithmetic
As if result significand was computed exactly and rounded

Consider the same example of previous slide:
1.00000000101100010001101           × 25

1 1.11111101111111111111110 1 1 00110 × 25 (2's complement)

0 0.11111110101100010001011 1 1   1  × 25 (sum)

+ 1.11111101011000100010111   1   1  × 24 (normalized)
Round bit Sticky bit

OR-reduce
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Four Rounding Modes
Normalized result has the form: 1. f1 f2 … fl r s

The round bit r and sticky bit s appear after the last fraction bit fl
IEEE 754 standard specifies four modes of rounding
Round to Nearest Even: default rounding mode 

Increment result if: r s = “11” or (r s = “10” and fl = ‘1’)
Otherwise, truncate result significand to 1. f1 f2 … fl

Round toward +∞: result is rounded up
Increment result if sign is positive and r or s = ‘1’

Round toward –∞: result is rounded down
Increment result if sign is negative and r or s = ‘1’

Round toward 0: always truncate result
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Round following result using IEEE 754 rounding modes:
–1.11111111111111111111111 0 1 × 2-7

Round to Nearest Even:
Truncate result since r = ‘0’
Truncated Result: –1.11111111111111111111111 × 2-7

Round towards +∞:
Round towards –∞:

Incremented result: –10.00000000000000000000000 × 2-7

Renormalize and increment exponent (because of carry)
Final rounded result: –1.00000000000000000000000 × 2-6

Round towards 0:

Example on Rounding

Round Bit Sticky 
Bit

Truncate result since negative
Increment since negative and s = ‘1’

Truncate always
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Advantages of IEEE 754 Standard
Used predominantly by the industry

Encoding of exponent and fraction simplifies comparison
Integer comparator used to compare magnitude of FP numbers

Includes special exceptional values: NaN and ±∞
Special rules are used such as:

0/0 is NaN, sqrt(–1) is NaN, 1/0 is ∞, and 1/∞ is 0

Computation may continue in the face of exceptional conditions

Denormalized numbers to fill the gap
Between smallest normalized number 1.0 × 2Emin and zero

Denormalized numbers , values  0.F × 2Emin , are closer to zero

Gradual underflow to zero
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Operations are somewhat more complicated

In addition to overflow we can have underflow

Accuracy can be a big problem
Extra bits to maintain precision: guard, round, and sticky

Four rounding modes

Division by zero yields Infinity

Zero divide by zero yields Not-a-Number

Other complexities

Implementing the standard can be tricky
See text for description of 80x86 and Pentium bug!

Not using the standard can be even worse

Floating Point Complexities
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Called Coprocessor 1 or the Floating Point Unit (FPU)
32 separate floating point registers: $f0, $f1, …, $f31
FP registers are 32 bits for single precision numbers
Even-odd register pair form a double precision register
Use the even number for double precision registers

$f0, $f2, $f4, …, $f30 are used for double precision

Separate FP instructions for single/double precision
Single precision: add.s, sub.s, mul.s, div.s (.s extension)
Double precision:  add.d, sub.d, mul.d, div.d (.d extension)

FP instructions are more complex than the integer ones
Take more cycles to execute

MIPS Floating Point Coprocessor
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FP Arithmetic Instructions

4fd5fs5000x11(fd) = sqrt (fs)sqrt.s fd, fs
4fd5fs5010x11(fd) = sqrt (fs)sqrt.d fd, fs

7fd5fs5000x11(fd) = – (fs)neg.s fd, fs
7fd5fs5010x11(fd) = – (fs)neg.d fd, fs

5fd5fs5000x11(fd) = abs (fs)abs.s fd, fs
5fd5fs5010x11(fd) = abs (fs)abs.d fd, fs

3fd5fs5ft500x11(fd) = (fs) / (ft)div.s fd, fs, ft
3fd5fs5ft510x11(fd) = (fs) / (ft)div.d fd, fs, ft

2fd5fs5ft500x11(fd) = (fs) × (ft)mul.s fd, fs, ft
2fd5fs5ft510x11(fd) = (fs) × (ft)mul.d fd, fs, ft

1fd5fs5ft500x11(fd) = (fs) – (ft)sub.s fd, fs, ft
1fd5fs5ft510x11(fd) = (fs) – (ft)sub.d fd, fs, ft

0fd5fs5ft510x11(fd) = (fs) + (ft)add.d fd, fs, ft
0fd5fs5ft500x11(fd) = (fs) + (ft)add.s fd, fs, ft

FormatMeaningInstruction
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Separate floating point load/store instructions
lwc1: load word coprocessor 1
ldc1: load double coprocessor 1
swc1: store word coprocessor 1
sdc1: store double coprocessor 1

Better names can be used for the above instructions
l.s = lwc1 (load FP single), l.d = ldc1 (load FP double)
s.s = swc1 (store FP single), s.d = sdc1 (store FP double)

FP Load/Store Instructions

im16 = 40$f2$t00x3dMem[($t0)+40] = ($f2)sdc1 $f2, 40($t0)

im16 = 40$f2$t00x35($f2) = Mem[($t0)+40]ldc1 $f2, 40($t0)
im16 = 40$f2$t00x31($f2) = Mem[($t0)+40]lwc1 $f2, 40($t0)

im16 = 40$f2$t00x39Mem[($t0)+40] = ($f2)swc1 $f2, 40($t0)

FormatMeaningInstruction

General purpose 
register is used as 
the base register
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Moving data between general purpose and FP registers
mfc1: move from coprocessor 1 (to general purpose register)

mtc1: move to coprocessor 1 (from general purpose register)

Moving data between FP registers
mov.s: move single precision float

mov.d: move double precision float = even/odd pair of registers

FP Data Movement Instructions

00$f2$t000x11($t0) = ($f2)mfc1 $t0, $f2
00$f2$t040x11($f2) = ($t0)mtc1 $t0, $f2
6$f4$f2000x11($f4) = ($f2)mov.s $f4, $f2
6$f4$f2010x11($f4) = ($f2)mov.d $f4, $f2

FormatMeaningInstruction
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FP Convert Instructions

0x24fd5fs5000x11to integer from singlecvt.w.s fd, fs
0x24fd5fs5010x11to integer from doublecvt.w.d fd, fs

0x20fd5fs5000x11to single from integercvt.s.w fd, fs
0x20fd5fs5010x11to single from doublecvt.s.d fd, fs
0x21fd5fs5000x11to double from integercvt.d.w fd, fs
0x21fd5fs5010x11to double from singlecvt.d.s fd, fs

FormatMeaningInstruction

Convert instruction: cvt.x.y
Convert to destination format x from source format y

Supported formats
Single precision float = .s (single precision float in FP register)

Double precision float = .d (double float in even-odd FP register)

Signed integer word = .w (signed integer in FP register)
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FP Compare and Branch Instructions

0x3c0fs5ft500x11cflag = ((fs) <= (ft))c.lt.s fs, ft
0x3c0fs5ft510x11cflag = ((fs) <= (ft))c.lt.d fs, ft

im16180x11branch if (cflag == 1)bc1t Label
im16080x11branch if (cflag == 0)bc1f Label

0x3e0fs5ft500x11cflag = ((fs) <= (ft))c.le.s fs, ft
0x3e0fs5ft510x11cflag = ((fs) <= (ft))c.le.d fs, ft

0x320fs5ft500x11cflag = ((fs) == (ft))c.eq.s fs, ft
0x320fs5ft510x11cflag = ((fs) == (ft))c.eq.d fs, ft

FormatMeaningInstruction

FP unit (co-processor 1) has a condition flag
Set to 0 (false) or 1 (true) by any comparison instruction

Three comparisons: equal, less than, less than or equal

Two branch instructions based on the condition flag
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Example 1: Area of a Circle
.data

pi: .double 3.1415926535897924
msg: .asciiz "Circle Area = "

.text
main:

ldc1 $f2, pi # $f2,3 = pi
li $v0, 7 # read double (radius)
syscall # $f0,1 = radius
mul.d $f12, $f0, $f0 # $f12,13 = radius*radius
mul.d $f12, $f2, $f12 # $f12,13 = area
la $a0, msg
li $v0, 4 # print string (msg)
syscall
li $v0, 3 # print double (area) 
syscall # print $f12,13
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Example 2: Matrix Multiplication
void mm (int n, double x[n][n], y[n][n], z[n][n]) {

for (int i=0; i!=n; i=i+1)
for (int j=0; j!=n; j=j+1) {
double sum = 0.0;
for (int k=0; k!=n; k=k+1)
sum = sum + y[i][k] * z[k][j];

x[i][j] = sum;
}

}

Matrices x, y, and z are n×n double precision float

Matrix size is passed in $a0 = n

Array addresses are passed in $a1, $a2, and $a3

What is the MIPS assembly code for the procedure?
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Matrix Multiplication Procedure – 1/3
Initialize Loop Variables

mm: addu $t1, $0, $0 # $t1 = i = 0; for 1st loop
L1: addu $t2, $0, $0 # $t2 = j = 0; for 2nd loop
L2: addu $t3, $0, $0 # $t3 = k = 0; for 3rd loop

sub.d $f0, $f0, $f0 # $f0 = sum = 0.0

Calculate address of y[i][k] and load it into $f2,$f3

Skip i rows (i×n) and add k elements
L3: multu $t1, $a0 # i*size(row) = i*n

mflo $t4 # $t4 = i*n
addu $t4, $t4, $t3 # $t4 = i*n + k
sll $t4, $t4, 3 # $t4 =(i*n + k)*8
addu $t4, $a2, $t4 # $t4 = address of y[i][k]
ldc1  $f2, 0($t4) # $f2 = y[i][k]
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Matrix Multiplication Procedure – 2/3
Similarly, calculate address and load value of z[k][j]

Skip k rows (k×n) and add j elements
multu $t3, $a0 # k*size(row) = k*n
mflo $t5 # $t5 = k*n
addu $t5, $t5, $t2 # $t5 = k*n + j
sll $t5, $t5, 3 # $t5 =(k*n + j)*8
addu $t5, $a3, $t5 # $t5 = address of z[k][j]
ldc1  $f4, 0($t5) # $f4 = z[k][j]

Now, multiply y[i][k] by z[k][j] and add it to $f0
mul.d $f6, $f2, $f4 # $f6 = y[i][k]*z[k][j]
add.d $f0, $f0, $f6 # $f0 = sum
addiu $t3, $t3, 1 # k = k + 1
bne $t3, $a0, L3 # loop back if (k != n)
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Matrix Multiplication Procedure – 3/3
Calculate address of x[i][j] and store sum

multu $t1, $a0 # i*size(row) = i*n
mflo $t6 # $t6 = i*n
addu $t6, $t6, $t2 # $t6 = i*n + j
sll $t6, $t6, 3 # $t6 =(i*n + j)*8
addu $t6, $a1, $t6 # $t6 = address of x[i][j]
sdc1  $f0, 0($t6) # x[i][j] = sum

Repeat outer loops: L2 (for j = …) and L1 (for i = …)
addiu $t2, $t2, 1 # j = j + 1
bne $t2, $a0, L2 # loop L2 if (j != n)
addiu $t1, $t1, 1 # i = i + 1
bne $t1, $a0, L1 # loop L1 if (i != n)

Return:
jr $ra # return


