Integer Multiplication

and Division

COE 308
Computer Architecture
Prof. Muhamed Mudawar

Computer Engineering Department
King Fahd University of Petroleum and Minerals

Presentation Outline

% Unsigned Multiplication
+ Signed Multiplication
+» Faster Multiplication

+«+ Unsigned Division

++ Signed Division

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 2




Unsigned Multiplication

« Paper and Pencil Example:

Multiplicand 1100, =12
Multiplier x 1101, =13
1100 , ——
0000 Binary IjnL.J|tIp|IC_atI0n is easy
1100 0 x muIt!pI!cand : 0 .
1100 1 x multiplicand = multiplicand
Product 10011100 , =156

“* m-bit multiplicand x n-bit multiplier = (m+n)-bit product
s Accomplished via shifting and addition

% Consumes more time and more chip area than addition

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 3

Sequential Unsigned Multiplication
+ Initialize Product =0
%+ Check each bit of the Multiplier
« If Multiplier bit = 1 then Product = Product + Multiplicand
+ Rather than shifting the multiplicand to the left
Instead, Shift the Product to the Right
Has the same net effect and produces the same result
Minimizes the hardware resources

+“+ One cycle per iteration (for each bit of the Multiplier)

<~ Addition and shifting can be done simultaneously

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 4




Sequential Multiplication Hardware

| HI = 0, LO=Multiplier |

% Initialize HI=0

+ Initialize LO = Multiplier

“ Final Product = HI and LO registers

“+ Repeat for each bit of Multiplier =1

|Mu|tip|icand|

Lo[0]?

32 bits 32 bits | HI = HI + Multiplicand |
L 2 4 |
. ; add
32-bit ALU/ [ shitt (carry, HI, LO) Right 1 bit |
32 bits T
carry v — shift right 3ond Repetition?
L—| H | Lo
I 64 bits

LO[0]

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 5

Sequential Multiplier Example

% Consider: 1100, x 1101, , Product = 10011100,
¢+ 4-bit multiplicand and multiplier are used in this example

¢ 4-bit adder produces a 5-bit sum (with carry)

Iteration Multiplicand | Carry | Product = HI, LO
0 | Initialize (HI = 0, LO = Multiplier) 1100 , 0000 1101
, [Loo1=1=>A0D L.il -0 [ 1100j1101

Shift Right (Carry, Hl, LO) by 1 bit 1100 0110 0110
) LO[0] = 0 => Do Nothing

Shift Right (Carry, Hl, LO) by 1 bit 1100 0011 0011
4 [LOO] = 1=>ADD L Yl.0 | 1111]0011

Shift Right (Carry, Hl, LO) by 1 bit 1100 0111 1001
, [Lo01=1=>A0D L.i1-1 [ oo11)1001

Shift Right (Carry, Hl, LO) by 1 bit 1100 1001 1100

Integer Multiplication and Division

COE 308 — Computer Architecture

Mghamed Mudawar — slide 6




Next . ..

+« Unsigned Multiplication
% Signed Multiplication
+» Faster Multiplication

+« Unsigned Division

++ Signed Division

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 7

Signed Multiplication
+ So far, we have dealt with unsigned integer multiplication

« First Attempt:
<~ Convert multiplier and multiplicand into positive numbers
= |If negative then obtain the 2's complement and remember the sign
< Perform unsigned multiplication
<> Compute the sign of the product

< If product sign < 0 then obtain the 2's complement of the product

+ Better Version:
< Use the unsigned multiplication hardware
<> When shifting right, extend the sign of the product

< If multiplier is negative, the last step should be a subtract

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 8




Signed Multiplication (Pencil & Paper)

% Case 1: Positive Multiplier

Multiplicand 1100, =-4

Multiplier X 0101, =+5

Sign-extension { 111171100
1101100

Product 11101100, =-20

+ Case 2: Negative Multiplier

Multiplicand 1100,
Multiplier x 1101,

Sign-extension { Z;.-(]).(]).OO

00100 (2's complement of 1100)
Product 00001100 , =+12

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 9

-4
-3

Sequential Signed Multiplier
< ALU produces 32-bit result + Sign bit

+» Check for overflow | HI = 0, LO = Multiplier |

<~ No overflow = Extend sign-bit of result

1

<> Overflow = Invert extended sign bit Lo[0]?
|Mu|tip|icand| First 31 iterations: HI = HI + Multiplicand
32 bits 32 bits Last iteration: HI = HI — Multiplicand
v v I

U73dd, sub ‘

| shit Right (Sign, HI, LO) 1 bit |

sign 32 bits
— 327 Repetition?
H | Lo ol
| eanis

LO[0]
Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 10




Signed Multiplication Example

% Consider: 1100, (-4) x 1101, (-3), Product = 00001100,
¢+ Check for overflow: No overflow =» Extend sign bit

+ Last iteration: add 2's complement of Multiplicand

Iteration Multiplicand | Sign | Product =HI, LO
0 | Initialize (HI = 0, LO = Multiplier) 1100 , 0000 1101
, [Loo1=1=>A0D L.i1 -1 [ 1100j1101
Shift (Sign, HI, LO) right 1 bit 1100 1110 0110

) LO[0] = 0 => Do Nothing
Shift (Sign, HI, LO) right 1 bit 1100 1111 0011

4 [LOO] = 1=>ADD L.¥l.a | 1011]0011
Shift (Sign, HI, LO) right 1 bit 1100 1101 1001

, [ LOI0) = 1=> SUB (ADD 2's compl) “o0100 ¥+-(0 [ 0o001)1001
Shift (Sign, HI, LO) right 1 bit 0000 1100

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 11

Next . ..

+« Unsigned Multiplication
+ Signed Multiplication
% Faster Multiplication

+«+ Unsigned Division

++ Signed Division

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 12




Using Multiple Adders

% 32-bit adder for each bit of the multiplier B Y

<~ 31 adders are needed for a 32-bit multiplier e .

< AND multiplicand with each bit of multiplier B2 s 33 bits

< Product = accumulated shifted sum 3225 32_&73%“5 '
% Each adder produces a 33-bit output Zsbns —

< Most significant bit is a carry bit 32-&7

< Least significant bit is a product bit g A ZZ:: 1

< Upper 32 bits go to next adder 3 bits% f s
% Array multiplier can be optimized 32_2&{

s2bits | 1bit

<> Carry save adders reduce delays
y y P63..32 P31 .t P3 I:,2 Pl PO

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 13

Carry Save Adders

% Used when adding multiple numbers (as in multipliers)

+ All the bits of a carry-save adder work in parallel

<~ The carry does not propagate as in a carry-propagate adder

<~ This is why a carry-save is faster than a carry-propagate adder
A carry-save adder has 3 inputs and produces two outputs

< It adds 3 numbers and produces partial sum and carry bits

a1 bgy a; by a5 by 83105, €5 a; by ¢y a5 by ¢
l ' ] { ] { ]
Sa1 S1 So C31Sa C1 Sy Co So
Carry-Propagate Adder Carry-Save Adder

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 14




Wallace Tree Multiplier - 1 of 2

% Suppose we want to multiply two numbers A and B
< Example on 4-bit numbers: A = a; a, a; a; and B = b; b, b; b,
s Step 1: AND (multiply) each bit of A with each bit of B
< Requires n2 AND gates and produces n2 product bits
< Position of ajb; = (i+]). For example, Position of a,b; =2+3 =5

AxB

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 15

Wallace Tree Multiplier - 2 of 2

Step 2: Use carry save adders to add the partial products
<~ Reduce the partial products to just two numbers

Step 3: Add last two numbers using a carry-propagate adder

agh; ab, aghy ab; ahy a;b; a;by agh;  agh,

T R PR B |
aibz Jé_ ;é— ‘4 ‘/_ |
a3.b3 /%{ + |._|/.| + |.-|/-| + |.-|/-| + | ] CarrT Save Adder

/ / /
v 3 i i i
+ + + + Carry Propagate Adder
1 1 1 1
! ! ! !
P, Ps Py P, P, P, P, Po

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 16




Next . ..

+« Unsigned Multiplication

+ Signed Multiplication

+» Faster Multiplication

% Unsigned Division

++ Signed Division

Integer Multiplication and Division

COE 308 — Computer Architecture

Mghamed Mudawar — slide 17

Unsigned Division (Paper & Pencil)

10011, =19

Quotient

Divisor 1011, ) 11011001, =217 Dividend

1011 §ii
10,1
101} ! |
1010 ; |
10100 '

Dividend =
Quotient x Divisor
+ Remainder
217=19x11+8

-1011 |
1001 |
10011
-1011

Integer Multiplication and Division

1000, =8

COE 308 — Computer Architecture

Try to see how big a
number can be
subtracted, creating a
digit of the quotient on
each attempt

Binary division is
accomplished via
shifting and subtraction

Remainder

Mghamed Mudawar — slide 18




Sequential Division

% Uses two registers: Hl and LO
+¢ Initialize: HI = Remainder = 0 and LO = Dividend
¢ Shift (HI, LO) LEFT by 1 bit (also Shift Quotient LEFT)
< Shift the remainder and dividend registers together LEFT
< Has the same net effect of shifting the divisor RIGHT
« Compute: Difference = Remainder — Divisor
+ If (Difference = 0) then
< Remainder = Difference
< Set Least significant Bit of Quotient
+ Observation to Reduce Hardware:

< LO register can be also used to store the computed Quotient

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 19

Sequential Division Hardware
 Initialize: Cstart )

< HI =0, LO = Dividend

% Results: 1. Shift (HI, LO) Left

. Difference = HI — Divisor
< HI = Remainder
<~ LO = Quotient

| Rl | 2. HI = Remainder = Difference

32 bits Set least significant bit of LO

sub |

32-bit ALU

sign

Difference 32"d Repetition?
«—
[ m | 1o
- - shift left
32bits | 32 bits
set Isb
Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 20

10



Division Example
* Example: 1110, / 0011, (4-bit dividend & divisor)
* Result Quotient = 0100, and Remainder = 0010,
+ 4-bit registers for Remainder and Divisor (4-bit ALU)

Iteration HI LO Divisor |Difference
0 | Initialize 0000 1110 0011

1: Shift Left, Diff = HI - Divisor 0001 «— 1100 0011 1110
! 2: Diff < 0 => Do Nothing

1: Shift Left, Diff = HI - Divisor 0011 <« 1000 0011 0000
2 2: Rem = Diff, setIsb of LO 0000 1001

1: Shift Left, Diff = HI - Divisor 0001 <« 0010 0011 1110
3 2: Diff < 0 => Do Nothing

1: Shift Left, Diff = HI - Divisor 0010 <« 0100 0011 1111
4 2: Diff < 0 => Do Nothing

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 21

Next . ..

+« Unsigned Multiplication
+ Signed Multiplication
+» Faster Multiplication

+«+ Unsigned Division

+ Signed Division

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 22

11



Signed Division
% Simplest way is to remember the signs

% Convert the dividend and divisor to positive
<~ Obtain the 2's complement if they are negative
++ Do the unsigned division
% Compute the signs of the quotient and remainder

<~ Quotient sign = Dividend sign XOR Divisor sign

<~ Remainder sign = Dividend sign

+ Negate the quotient and remainder if their sign is negative

<~ Obtain the 2's complement to convert them to negative

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 23

Signed Division Examples

1. Positive Dividend and Positive Divisor

< Example: +17 / +3 Quotient =+5 Remainder = +2

2. Positive Dividend and Negative Divisor
< Example: +17 /-3 Quotient =-5 Remainder = +2

3. Negative Dividend and Positive Divisor
< Example: =17 / +3 Quotient =-5 Remainder = -2

4. Negative Dividend and Negative Divisor
< Example: =17 /-3 Quotient =+5 Remainder = -2

The following equation must always hold:

Dividend = Quotient x Divisor + Remainder

Integer Multiplication and Division COE 308 — Computer Architecture M@hamed Mudawar — slide 24

12



