
1

MIPS Assembly Language

Programming

COE 308
Computer Architecturep

Prof. Muhamed Mudawar

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

Presentation Outline
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 2

 Procedures

 Parameter Passing and the Runtime Stack

2

Assembly Language Statements
 Three types of statements in assembly language

 Typically, one statement should appear on a line

1 Executable Instructions1. Executable Instructions
 Generate machine code for the processor to execute at runtime

 Instructions tell the processor what to do

2. Pseudo-Instructions and Macros
 Translated by the assembler into real instructions

 Simplify the programmer task

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 3

3. Assembler Directives
 Provide information to the assembler while translating a program

 Used to define segments, allocate memory variables, etc.

 Non-executable: directives are not part of the instruction set

Instructions
 Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

 Label: (optional) Label: (optional)
 Marks the address of a memory location, must have a colon

 Typically appear in data and text segments

Mnemonic
 Identifies the operation (e.g. add, sub, etc.)

 Operands

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 4

 Specify the data required by the operation

 Operands can be registers, memory variables, or constants

 Most instructions have three operands

L1: addiu $t0, $t0, 1 #increment $t0

3

Comments
 Comments are very important!

 Explain the program's purpose

 When it was written, revised, and by whom

 Explain data used in the program, input, and output

 Explain instruction sequences and algorithms used

 Comments are also required at the beginning of every procedure

 Indicate input parameters and results of a procedure

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 5

p p p

 Describe what the procedure does

 Single-line comment

 Begins with a hash symbol # and terminates at end of line

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 6

 Procedures

 Parameter Passing and the Runtime Stack

4

Program Template
Title: Filename:
Author: Date:
Description:
Inp t# Input:
Output:
################# Data segment #####################
.data
. . .
################# Code segment #####################
.text

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 7

.globl main
main: # main program entry
. . .
li $v0, 10 # Exit program
syscall

.DATA, .TEXT, & .GLOBL Directives
 .DATA directive

 Defines the data segment of a program containing data

 The program's variables should be defined under this directive

 Assembler will allocate and initialize the storage of variables

 .TEXT directive

 Defines the code segment of a program containing instructions

 .GLOBL directive

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 8

 .GLOBL directive

 Declares a symbol as global

 Global symbols can be referenced from other files

 We use this directive to declare main procedure of a program

5

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Stack Grows

Downwards

Dynamic Area

Static Area
0x10000000

Data Segment

Memory

Addresses

in Hex

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 9

Text Segment

Reserved

0x04000000

0

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 10

 Procedures

 Parameter Passing and the Runtime Stack

6

Data Definition Statement
 Sets aside storage in memory for a variable

May optionally assign a name (label) to the data

 Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 11

 All initializers become binary data in memory

Data Directives
 .BYTE Directive

 Stores the list of values as 8-bit bytes

 HALF Di ti .HALF Directive

 Stores the list as 16-bit values aligned on half-word boundary

 .WORD Directive

 Stores the list as 32-bit values aligned on a word boundary

 .FLOAT Directive

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 12

 Stores the listed values as single-precision floating point

 .DOUBLE Directive

 Stores the listed values as double-precision floating point

7

String Directives

 .ASCII Directive

 Allocates a sequence of bytes for an ASCII string

 .ASCIIZ Directive

 Same as .ASCII directive, but adds a NULL char at end of string

 Strings are null-terminated, as in the C programming language

 .SPACE Directive

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 13

 .SPACE Directive

 Allocates space of n uninitialized bytes in the data segment

Examples of Data Definitions
.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678:100

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

Array of 100 words

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 14

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100 100 bytes (not initialized)

8

MARS Assembler and Simulator Tool

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 15

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 16

 Procedures

 Parameter Passing and the Runtime Stack

9

Memory is viewed as an array of bytes with addresses

 Byte Addressing: address points to a byte in memory

Memory Alignment

Words occupy 4 consecutive bytes in memory

 MIPS instructions and integers occupy 4 bytes

 Alignment: address is a multiple of size

 Word address should be a multiple of 4

 Least significant 2 bits of address should be 00 4

8

12

ad
d

re
ss

not aligned

. . .

aligned word

Memory

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 17

g

 Halfword address should be a multiple of 2

 .ALIGN n directive

 Aligns the next data definition on a 2n byte boundary

0

4

not aligned

 Assembler builds a symbol table for labels (variables)

 Assembler computes the address of each label in data segment

 Example Symbol Table

Symbol Table

 Example Symbol Table

.DATA
var1: .BYTE 1, 2,'Z'

str1: .ASCIIZ "My String\n"

var2: .WORD 0x12345678

.ALIGN 3

3 1000

Label

var1

str1

var2

var3

Address

0x10010000

0x10010003

0x10010010

0x10010018

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 18

var3: .HALF 1000

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0
0x123456780x10010010

var2 (aligned)

1000
var3 (address is multiple of 8)

0 0 Unused

0 00 0
Unused

10

 Processors can order bytes within a word in two ways

 Little Endian Byte Ordering
 Memory address = Address of least significant byte

Byte Ordering and Endianness

 Memory address Address of least significant byte

 Example: Intel IA-32, Alpha

 Big Endian Byte Ordering
 Memory address = Address of most significant byte

Byte 3Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB
.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 19

 Example: SPARC, PA-RISC

MIPS can operate with both byte orderings

Byte 0Byte 1Byte 2Byte 3

32-bit Register

MSB LSB
.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 20

 Procedures

 Parameter Passing and the Runtime Stack

11

System Calls
 Programs do input/output through system calls

MIPS provides a special syscall instruction

 To obtain services from the operating system

 Many services are provided in the SPIM and MARS simulators

 Using the syscall system services

 Load the service number in register $v0

 Load argument values if any in registers $a0 $a1 etc

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 21

 Load argument values, if any, in registers $a0, $a1, etc.

 Issue the syscall instruction

 Retrieve return values, if any, from result registers

Syscall Services
Service $v0 Arguments / Result

Print Integer 1 $a0 = integer value to print

Print Float 2 $f12 = float value to printp

Print Double 3 $f12 = double value to print

Print String 4 $a0 = address of null-terminated string

Read Integer 5 $v0 = integer read

Read Float 6 $f0 = float read

Read Double 7 $f0 = double read

Read String 8 $a0 = address of input buffer

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 22

Read String 8 $a0 = address of input buffer
$a1 = maximum number of characters to read

Exit Program 10

Print Char 11 $a0 = character to print

Read Char 12 $a0 = character read
Supported by MARS

12

Reading and Printing an Integer
################# Code segment #####################

.text

.globl main

main: # main program entry

li $v0, 5 # Read integer

syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print

li $v0, 1 # Print integer

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 23

syscall

li $v0, 10 # Exit program

syscall

Reading and Printing a String
################# Data segment #####################
.data

str: .space 10 # array of 10 bytes
################# C d t ###################################### Code segment #####################
.text
.globl main
main: # main program entry

la $a0, str # $a0 = address of str
li $a1, 10 # $a1 = max string length
li $v0, 8 # read string

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 24

syscall
li $v0, 4 # Print string str
syscall
li $v0, 10 # Exit program
syscall

13

Program 1: Sum of Three Integers
Sum of three integers
#
Objective: Computes the sum of three integers.
Input: Requests three numbers.
Output: Outputs the sum.
################### Data segment ###################
.data
prompt: .asciiz "Please enter three numbers: \n"
sum_msg: .asciiz "The sum is: "
################### Code segment ###################
.text
.globl main
main:

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 25

main:
la $a0,prompt # display prompt string
li $v0,4
syscall
li $v0,5 # read 1st integer into $t0
syscall
move $t0,$v0

Sum of Three Integers – Slide 2 of 2
li $v0,5 # read 2nd integer into $t1
syscall
move $t1,$v0

li $v0,5 # read 3rd integer into $t2li $v0,5 # read 3rd integer into $t2
syscall
move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum
addu $t0,$t0,$t2

la $a0,sum_msg # write sum message
li $v0,4
syscall

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 26

move $a0,$t0 # output sum
li $v0,1
syscall

li $v0,10 # exit
syscall

14

Program 2: Case Conversion
Objective: Convert lowercase letters to uppercase
Input: Requests a character string from the user.
Output: Prints the input string in uppercase.
################### Data segment #####################
.data
name_prompt: .asciiz "Please type your name: "
out_msg: .asciiz "Your name in capitals is: "
in_name: .space 31 # space for input string
################### Code segment #####################
.text
.globl main
main:

la $a0,name prompt # print prompt string

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 27

la $a0,name_prompt # print prompt string
li $v0,4
syscall
la $a0,in_name # read the input string
li $a1,31 # at most 30 chars + 1 null char
li $v0,8
syscall

Case Conversion – Slide 2 of 2
la $a0,out_msg # write output message
li $v0,4
syscall
la $t0,in_name

loop:p
lb $t1,($t0)
beqz $t1,exit_loop # if NULL, we are done
blt $t1,'a',no_change
bgt $t1,'z',no_change
addiu $t1,$t1,-32 # convert to uppercase: 'A'-'a'=-32
sb $t1,($t0)

no_change:
addiu $t0,$t0,1 # increment pointer
j loop

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 28

j loop
exit_loop:

la $a0,in_name # output converted string
li $v0,4
syscall
li $v0,10 # exit
syscall

15

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 29

 Procedures

 Parameter Passing and the Runtime Stack

 Consider the following swap procedure (written in C)

 Translate this procedure to MIPS assembly language

Procedures

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 30

Parameters:

$a0 = Address of v[]
$a1 = k, and
Return address is in $ra

lw $t1,0($t0) # $t1 v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

16

Call / Return Sequence
 Suppose we call procedure swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the procedure swap saving return address in $31 = $ra Call the procedure swap saving return address in $31 = $ra

 Execute procedure swap

 Return control to the point of origin (return address)

swap:
sll $t0,$a1,2
add $t0,$t0,$a0
l $t1 0($t0)la $a0 a

Caller

addr a$ 0 $4

. . .

Registers

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 31

lw $t1,0($t0)
lw $t2,4($t0)
sw $t2,0($t0)
sw $t1,4($t0)
jr $ra

la $a0, a
li $a1, 10
jal swap

return here
. . .

addr a$a0=$4
10$a1=$5

ret addr$ra=$31

. . .

Details of JAL and JR
Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a
00400024 ori $4, $1, 0

Pseudo-Direct
Addressing

Register $31

00 000 o $, $, 0
00400028 ori $5, $0, 10 ori $a1,$0,10
0040002C jal 0x10000f jal swap
00400030 . . . # return here

swap:
0040003C sll $8, $5, 2 sll $t0,$a1,2
00400040 add $8, $8, $4 add $t0,$t0,$a0

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 32

Register $31
is the return

address register

00400044 lw $9, 0($8) lw $t1,0($t0)
00400048 lw $10,4($8) lw $t2,4($t0)
0040004C sw $10,0($8) sw $t2,0($t0)
00400050 sw $9, 4($8) sw $t1,4($t0)
00400054 jr $31 jr $ra

17

Instructions for Procedures
 JAL (Jump-and-Link) used as the call instruction

 Save return address in $ra = PC+4 and jump to procedure

 Register $ra = $31 is used by JAL as the return addressg $ $ y

 JR (Jump Register) used to return from a procedure
 Jump to instruction whose address is in register Rs (PC = Rs)

 JALR (Jump-and-Link Register)
 Save return address in Rd = PC+4, and

 Jump to procedure whose address is in register Rs (PC = Rs)

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 33

Instruction Meaning Format
jal label $31=PC+4, jump op6 = 3 imm26

jr Rs PC = Rs op6 = 0 rs5 0 0 0 8
jalr Rd, Rs Rd=PC+4, PC=Rs op6 = 0 rs5 0 rd5 0 9

 Can be used to call methods (addresses known only at runtime)

Next . . .
 Assembly Language Statements

 Assembly Language Program Template

 Defining Data

Memory Alignment and Byte Ordering

 System Calls

 Procedures

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 34

 Procedures

 Parameter Passing and the Runtime Stack

18

Parameter Passing
 Parameter passing in assembly language is different

 More complicated than that used in a high-level language

 In assembly language In assembly language

 Place all required parameters in an accessible storage area

 Then call the procedure

 Two types of storage areas used

 Registers: general-purpose registers are used (register method)

 Memory: stack is used (stack method)

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 35

 Memory: stack is used (stack method)

 Two common mechanisms of parameter passing

 Pass-by-value: parameter value is passed

 Pass-by-reference: address of parameter is passed

Parameter Passing – cont'd
 By convention, register are used for parameter passing

 $a0 = $4 .. $a3 = $7 are used for passing arguments

 $v0 = $2 $v1 = $3 are used for result values $v0 = $2 .. $v1 = $3 are used for result values

 Additional arguments/results can be placed on the stack

 Runtime stack is also needed to …

 Store variables / data structures when they cannot fit in registers

 Save and restore registers across procedure calls

 Implement recursion

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 36

 Implement recursion

 Runtime stack is implemented via software convention
 The stack pointer $sp = $29 (points to top of stack)

 The frame pointer $fp = $30 (points to a procedure frame)

19

Stack Frame
 Stack frame is the segment of the stack containing …

 Saved arguments, registers, and local data structures (if any)

 Called also the activation frame or activation record Called also the activation frame or activation record

 Frames are pushed and popped by adjusting …
 Stack pointer $sp = $29 and Frame pointer $fp = R30

 Decrement $sp to allocate stack frame, and increment to free

F f()

Stack
$fp

F f()

Stack

ls
 g

F f()

Stack
$fp

$fp
arguments

saved $ra

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 37

Frame f()

↓

stack grows
downwards

$sp

Frame f()

allocate
stack frame

Frame g()
$fp

$sp

f
ca

l

g
re

tu
rn

s
Frame f()

↑

free stack
frame

$sp

saved $ra

saved
registers

local data
structures

or variables
$sp

Preserving Registers
 Need to preserve registers across a procedure call

 Stack can be used to preserve register values

Which registers should be saved?

 Registers modified by the called procedure, and

 Still used by the calling procedure

Who should preserve the registers?

 Called Procedure: preferred method for modular code

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 38

 Called Procedure: preferred method for modular code

 Register preservation is done inside the called procedure

 By convention, registers $s0, $s1, …, $s7 should be preserved

 Also, registers $sp, $fp, and $ra should also be preserved

20

Selection Sort
first

Array

first

Array

max valuemax

first

Array

last valuemax

first

Array

 Example

last

Unsorted

last

max value

last value

max

Locate
Max

last max value

last valuemax

Swap Max
with Last

last
max value

Decrement
Last

3fi 3fi3 3 3fi 2 2fi 1

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 39

3
1
5
2
4last

max

first 3
1
4
2
5

last

max

first3
1
4
2
5

3
1
2
4
5

3
1
2
4
5

last

firstmax 2
1
3
4
5

2
1
3
4
5

last

firstmax 1
2
3
4
5

Selection Sort Procedure
Objective: Sort array using selection sort algorithm

Input: $a0 = pointer to first, $a1 = pointer to last

Output: array is sorted in place

##

sort: addiu $sp, $sp, -4 # allocate one word on stack

sw $ra, 0($sp) # save return address on stack

top: jal max # call max procedure

lw $t0, 0($a1) # $t0 = last value

sw $t0, 0($v0) # swap last and max values

sw $v1, 0($a1)

ddi $ 1 $ 1 4 # d t i t t l t

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 40

addiu $a1, $a1, -4 # decrement pointer to last

bne $a0, $a1, top # more elements to sort

lw $ra, 0($sp) # pop return address

addiu $sp, $sp, 4

jr $ra # return to caller

21

Max Procedure
Objective: Find the address and value of maximum element

Input: $a0 = pointer to first, $a1 = pointer to last

Output: $v0 = pointer to max, $v1 = value of max

##

max: move $v0, $a0 # max pointer = first pointer

lw $v1, 0($v0) # $v1 = first value

beq $a0, $a1, ret # if (first == last) return

move $t0, $a0 # $t0 = array pointer

loop: addi $t0, $t0, 4 # point to next array element

lw $t1, 0($t0) # $t1 = value of A[i]

bl $t1 $ 1 ki # if (A[i]) th ki

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 41

ble $t1, $v1, skip # if (A[i] <= max) then skip

move $v0, $t0 # found new maximum

move $v1, $t1

skip: bne $t0, $a1, loop # loop back if more elements

ret: jr $ra

Example of a Recursive Procedure
int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

fact: slti $t0,$a0,2 # (n<2)?
beq $t0,$0,else # if false branch to else
li $v0,1 # $v0 = 1
jr $ra # return to caller

else: addiu $sp,$sp,-8 # allocate 2 words on stack
sw $a0,4($sp) # save argument n
sw $ra,0($sp) # save return address
addiu $a0,$a0,-1 # argument = n-1
jal fact # call fact(n-1)

MIPS Assembly Language Programming COE 308 Computer Architecture – KFUPM © Muhamed Mudawar – slide 42

lw $a0,4($sp) # restore argument
lw $ra,0($sp) # restore return address
mul $v0,$a0,$v0 # $v0 = n*fact(n-1)
addi $sp,$sp,8 # free stack frame
jr $ra # return to caller

