
1

Instruction Set ArchitectureInstruction Set Architecture

COE 308
Computer Architecturep

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Presentation Outline
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 2

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

2

 Critical Interface between hardware and software

 An ISA includes the following …

 I t ti d I t ti F t

Instruction Set Architecture (ISA)

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

 E l (V i) Fi t I t d d i

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 3

 Examples (Versions) First Introduced in

 Intel (8086, 80386, Pentium, ...) 1978

 MIPS (MIPS I, II, III, IV, V) 1986

 PowerPC (601, 604, …) 1993

Instructions
 Instructions are the language of the machine

We will study the MIPS instruction set architecture

 S C (SC) Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Very popular, used in many products

 Silicon Graphics, ATI, Cisco, Sony, etc.

 Comes next in sales after Intel IA-32 processors

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 4

 Comes next in sales after Intel IA-32 processors

 Almost 100 million MIPS processors sold in 2002 (and increasing)

 Alternative design: Intel IA-32

 Known as Complex Instruction Set Computer (CISC)

3

Basics of RISC Design
 All instructions are typically of one size

 Few instruction formats

 Arithmetic instructions are register to register

 Operands are read from registers

 Result is stored in a register

 General purpose integer and floating point registers

 Typically, 32 integer and 32 floating-point registers

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 5

Memory access only via load and store instructions

 Load and store: bytes, half words, words, and double words

 Few simple addressing modes

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 6

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

4

Logical View of the MIPS Processor

Memory

Up to 232 bytes = 230 words

4 bytes per word

. . .

$0

$1

$2

$31

ALU

$F0

$F1

$F2

$F31
FP

Arith

EIU FPUExecution &
Integer Unit
(Main proc)

Floating
Point Unit
(Coproc 1)

. . .

Integer
mul/div

Arithmetic &
Logic Unit

32 General
Purpose
Registers

32 Floating-Point
Registers

Floating-Point

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 7

Hi Lo

EPC

Cause

BadVaddr

Status

TMU Trap &
Memory Unit
(Coproc 0)

Integer
Multiplier/Divider

Arithmetic Unit

 32 General Purpose Registers (GPRs)

 32-bit registers are used in MIPS32

 R i t 0 i l

Overview of the MIPS Registers

GPRs

$0 – $31

 Register 0 is always zero

 Any value written to R0 is discarded

 Special-purpose registers LO and HI

 Hold results of integer multiply and divide

 Special-purpose program counter PC

LO

HI

PC

FPRs

$F0 – $F31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 8

 32 Floating Point Registers (FPRs)

 Floating Point registers can be either 32-bit or 64-bit

 A pair of registers is used for double-precision floating-point

5

MIPS General-Purpose Registers
 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

 $0 is register 0, $1 is register 1, …, and $31 is register 31$0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

 Any value written to $0 is discarded

 Software conventions

 Software defines names to all registers

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 9

 To standardize their use in programs

 $8 - $15 are called $t0 - $t7

 Used for temporary values

 $16 - $23 are called $s0 - $s7

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

MIPS Register Conventions
 Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

Name Register Usage
$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use
$v0 – $v1 $2 – $3 Result values of a function
$a0 – $a3 $4 – $7 Arguments of a function
$t0 – $t7 $8 – $15 Temporary Values
$s0 – $s7 $16 – $23 Saved registers (preserved across call)

 Assembler converts register name to its corresponding number

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 10

$t8 – $t9 $24 – $25 More temporaries
$k0 – $k1 $26 – $27 Reserved for OS kernel
$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

6

Instruction Formats
 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register to register instructions Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

O 6 R 5 Rt5 i di t 16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 11

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Instruction Categories
 Integer Arithmetic

 Arithmetic, logical, and shift instructions

 Data Transfer Data Transfer
 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch
 Flow-control instructions that alter the sequential sequence

 Floating Point Arithmetic

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 12

 Instructions that operate on floating-point registers

Miscellaneous
 Instructions that transfer control to/from exception handlers

 Memory management instructions

7

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 13

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

R-Type Format

 Op: operation code (opcode)

Op6 Rs5 Rt5 Rd5 funct6sa5

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode
 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define R-type instructions

 Th R i t O d (t i t ti)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 14

 Three Register Operands (common to many instructions)
 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

8

Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20
addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21
sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22
subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

 add & sub: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addu & subu: same operation as add & sub

 However, no arithmetic exception can occur

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 15

 Overflow is ignored

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Addition/Subtraction Example
 Consider the translation of: f = (g+h) – (i+j)

 Compiler allocates registers to variables

Assume that f g h i and j are allocated registers $s0 thru $s4Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

 Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h
addu $t1, $s3, $s4 # $t1 = i + j
subu $s0, $t0, $t1 # f = (g+h)–(i+j)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 16

 Temporary results are stored in $t0 = $8 and $t1 = $9

 Translate: addu $t0,$s1,$s2 to binary code

 Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func

9

Logical Bitwise Operations
 Logical bitwise operations: and, or, xor, nor

x

0

y

0

x and y

0

x

0

y

0

x or y

0

x

0

y

0

x xor y

0

x

0

y

0

x nor y

1

 AND instruction is used to clear bits: x and 0 = 0

 OR instruction is used to set bits: x or 1 = 1

0
0
1
1

0
1
0
1

0
0
0
1

0
0
1
1

0
1
0
1

0
1
1
1

0
0
1
1

0
1
0
1

0
1
1
0

0
0
1
1

0
1
0
1

1
0
0
0

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 17

 OR instruction is used to set bits: x or 1 1

 XOR instruction is used to toggle bits: x xor 1 = not x

 NOR instruction can be used as a NOT, how?

 nor $s1,$s2,$s2 is equivalent to not $s1,$s2

Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24
or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25
xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26$, $, $ $ $ $ p $ $ $
nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

 Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 18

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

10

Shift Operations
 Shifting is to move all the bits in a register left or right

 Shifts by a constant amount: sll, srl, sra

 sll/srl mean shift left/right logical by a constant amount sll/srl mean shift left/right logical by a constant amount

 The 5-bit shift amount field is used by these instructions

 sra means shift right arithmetic by a constant amount

 The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB

sll 32-bit register

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 19

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0
srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2
sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3
sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4
srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6
srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

 Shifts by a variable amount: sllv, srlv, srav
 Same as sll, srl, sra, but a register is used for shift amount

 Examples: assume that $s2 = 0xabcd1234, $s3 = 16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 20

$s1 = 0x0000abcd

$s1 = 0xcd123400sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

11

Binary Multiplication
 Shift-left (sll) instruction can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $s1 by 36

 Factor 36 into (4 + 32) and use distributive property of multiplication

 $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

$ $ $ $

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 21

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

Your Turn . . .
Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

sll $t0, $s1, 1 ; $t0 = $s1 * 2
sll $t1, $s1, 3 ; $t1 = $s1 * 8
addu $s2, $t0, $t1 ; $s2 = $s1 * 10
sll $t0, $s1, 4 ; $t0 = $s1 * 16
addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 22

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32
subu $s2, $s2, $s1 ; $s2 = $s1 * 31

12

Integer Multiplication & Division
 Consider a×b and a/b where a and b are in $s1 and $s2

Signed multiplication: mult $s1,$s2

Unsigned multiplication: multu $s1,$s2 $0

Signed division: div $s1,$s2

Unsigned division: divu $s1,$s2

 For multiplication, result is 64 bits
 LO = low-order 32-bit and HI = high-order 32-bit

 For division
 LO = 32-bit quotient and HI = 32-bit remainder

Multiply

Divide

HI LO

$1

..

$31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 23

q

 If divisor is 0 then result is unpredictable

 Moving data
 mflo rd (move from LO to rd), mfhi rd (move from HI to rd)

 mtlo rs (move to LO from rs), mthi rs (move to HI from rs)

HI LO

Integer Multiply/Divide Instructions
Instruction Meaning Format
mult rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x18
multu rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x19
div rs rt hi lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1adiv rs, rt hi, lo rs / rt op 0 rs rt 0 0 0x1a
divu rs, rt hi, lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1b
mfhi rd rd = hi op6 = 0 0 0 rd5 0 0x10
mflo rd rd = lo op6 = 0 0 0 rd5 0 0x12
mthi rs hi = rs op6 = 0 rs5 0 0 0 0x11
mtlo rs lo = rs op6 = 0 rs5 0 0 0 0x13

 Signed arithmetic: mult, div (rs and rt are signed)

 LO 32 bit l d d HI 32 bit hi h d f lti li ti

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 24

 LO = 32-bit low-order and HI = 32-bit high-order of multiplication

 LO = 32-bit quotient and HI = 32-bit remainder of division

 Unsigned arithmetic: multu, divu (rs and rt are unsigned)

 NO arithmetic exception can occur

13

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 25

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

I-Type Format
 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Op6 Rs5 Rt5 immediate16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 26

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:
Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

14

I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10
addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10
andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10
ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10
xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10
lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 27

p g

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

 Examples: assume A, B, C are allocated $s0, $s1, $s2

Examples: I-Type ALU Instructions

A = B+5; translated as

C B 1 translated as

addiu $s0,$s1,5

addiu $s2 $s1 1C = B–1; translated as addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as ori $s2,$zero,5

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 28

 No need for subi, because addi has signed immediate

 Register 0 ($zero) has always the value 0

A = B; translated as ori $s0,$s1,0

15

 I-Type instructions can have only 16-bit constants

32-bit Constants

Op6 Rs5 Rt5 immediate16

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions

We have already fixed the sizes of all instructions to 32 bits

 Solution: use two instructions instead of one

Suppose we want: $s1=0xAC5165D9 (32-bit constant)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 29

S pp $s 0 C5 65 9 (3)

 lui: load upper immediate

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 30

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

16

J-Type Format

 J-type format is used for unconditional jump instruction:

Op6 immediate26

 J type format is used for unconditional jump instruction:

j label # jump to label
. . .

label:

 26-bit immediate value is stored in the instruction

 Immediate constant specifies address of target instruction

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 31

 Immediate constant specifies address of target instruction

 Program Counter (PC) is modified as follows:

Next PC =

Upper 4 most significant bits of PC are unchanged

immediate26PC4 00
least-significant

2 bits are 00

 MIPS compare and branch instructions:

beq Rs,Rt,label branch to label if (Rs == Rt)

b t l b l b h t l b l if (! t)

Conditional Branch Instructions

bne Rs,Rt,label branch to label if (Rs != Rt)

 MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 32

g ()

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

 No need for beqz and bnez instructions. Why?

17

Set on Less Than Instructions
MIPS also provides set on less than instructions

slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

i dsltu rd,rs,rt unsigned <

slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im16 unsigned <

 Signed / Unsigned Comparisons

Can produce different results

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 33

Can produce different results

Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1

More on Branch Instructions
 MIPS hardware does NOT provide instructions for …

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

 How to implement: blt $s0,$s1,label
 Solution: slt $at,$s0,$s1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 34

bne $at,$zero,label

 How to implement: ble $s2,$s3,label
 Solution: slt $at,$s3,$s2

beq $at,$zero,label

18

Pseudo-Instructions
 Introduced by assembler as if they were real instructions

 To facilitate assembly language programming

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $s2not $s1, $s2

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 35

 Assembler reserves $at = $1 for its own use

 $at is called the assembler temporary register

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

Jump, Branch, and SLT Instructions
Instruction Meaning Format
j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 36

slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a

sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b

slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16

19

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 37

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Translating an IF Statement
 Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

$ $Assume that a, b, c, d, e are in $s0, …, $s4 respectively

 How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 38

j exit

else: subu $s2, $s3, $s4

exit: . . .

20

Compound Expression with AND
 Programming languages use short-circuit evaluation

 If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

bgtz $s1, L1 # first expression

j next # skip if false

L1: bltz $s2, L2 # second expression

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 39

L1: bltz $s2, L2 # second expression

j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

Better Implementation for AND

The following implementation uses less code

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

g p

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

Better Implementation ...

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 40

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true

next:

21

Compound Expression with OR
 Short-circuit evaluation for logical OR

 If first expression is true, second expression is skipped

 Use fall-through to keep the code as short as possible

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: li $s4 1 # set $s4 to 1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 41

 bgt, ble, and li are pseudo-instructions

 Translated by the assembler to real instructions

L1: li $s4, 1 # set $s4 to 1
next:

Your Turn . . .
 Translate the IF statement to assembly language

 $s1 and $s2 values are unsigned

 $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if($s1 <= $s2) {

$s3 = $s4

}

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 42

if (($s3 <= $s4) &&
($s4 > $s5)) {

$s3 = $s4 + $s5
}

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, $s5

next:

22

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 43

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Load and Store Instructions
 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 Such variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

MemoryRegisters

load

store

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 44

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

23

 Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

Load and Store Word

 Store Word Instruction

sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

 Base or Displacement addressing is used

Memory Address = Rs (base) + Immediate16 (displacement)

 Immediate16 is sign-extended to have a signed displacement

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 45

 Immediate is sign extended to have a signed displacement

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Example on Load & Store
 Translate A[1] = A[2] + 5 (A is an array of words)

 Assume that address of array A is stored in register $s0

lw $s1 8($s0) # $s1 = A[2]lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

 Index of a[2] and a[1] should be multiplied by 4. Why?
Memory

Registers

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 46

sw
A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

address of A$s0 = $16

value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

24

 The MIPS processor supports the following data formats:
Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

 Load & store instructions for bytes and halfwords

Load and Store Byte and Halfword

32-bit Register

 Load & store instructions for bytes and halfwords
 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

 Load expands a memory data to fit into a 32-bit register

 Store reduces a 32-bit register to fit in memory

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 47

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

g

Load and Store Instructions
Instruction Meaning I-Type Format
lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16lw rt, imm (rs) rt MEM[rs imm] 0x23 rs rt imm
lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

 Base or Displacement Addressing is used

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 48

 Memory Address = Rs (base) + Immediate16 (displacement)

 Two variations on base addressing

 If Rs = $zero = 0 then Address = Immediate16 (absolute)

 If Immediate16 = 0 then Address = Rs (register indirect)

25

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 49

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Translating a WHILE Loop
 Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)

Memory

A[i]

. . .

. . .

A+4×i

Where A is an array of integers (4 bytes per element)

Assume address A, i, k in $s0, $s1, $s2, respectively

 How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, next # exit if (A[i]== k)

A[2]

A[1]

A[0] A

A+4

A+8

. . .

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 50

beq $t1, $s2, next # exit if (A[i] k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

next: . . .

26

Using Pointers to Traverse Arrays
 Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A i k are in $s0 $s1 $s2 respectivelyWhere address of A, i, k are in $s0, $s1, $s2, respectively

We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A
j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 51

addiu $t0, $t0, 4 # point to next
cond: lw $t1, 0($t0) # $t1 = A[i]

bne $t1, $s2, loop # loop if A[i]!= k

 Only 4 instructions (rather than 6) in loop body

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size

 Using shift instruction when element size is a power of 2 Using shift instruction when element size is a power of 2

 Adding to array base address

 Array version requires shift to be inside loop

 Part of index calculation for incremented i

 Pointers correspond directly to memory addresses

 Can avoid indexing complexity

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 52

 Can avoid indexing complexity

 Induction variable elimination

 Less instructions and faster code

27

Copying a String
The following code copies source string to target string

Address of source in $s0 and address of target in $s1

move $t0, $s0 # $t0 = pointer to source
move $t1, $s1 # $t1 = pointer to target

Strings are terminated with a null character (C strings)

i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 53

L1: lb $t2, 0($t0) # load byte into $t2
sb $t2, 0($t1) # store byte into target
addiu $t0, $t0, 1 # increment source pointer
addiu $t1, $t1, 1 # increment target pointer
bne $t2, $zero, L1 # loop until NULL char

Summing an Integer Array
sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

Assume $s0 = array address, $s1 = array length = n

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 54

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

bne $t1, $s1, L1 # loop if (i != n)

28

Addressing Modes
Where are the operands?

 How memory addresses are computed?

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 55

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Branch / Jump Addressing Modes
Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

+1 Word = Target Instruction

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16)

PC30 + immediate16 + 1 00

i di t 26O 6

Pseudo-direct Addressing
Used by jump instruction

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 56

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

PC26

:

00PC4

29

Jump and Branch Limits
 Jump Address Boundary = 226 instructions = 256 MB

 Text segment cannot exceed 226 instructions or 256 MB

 Upper 4 bits of PC are unchanged Upper 4 bits of PC are unchanged

 Branch Address Boundary

 Branch instructions use I-Type format (16-bit immediate constant)

 PC-relative addressing:

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 57

 Target instruction address = PC + 4×(1 + immediate16)

 Count number of instructions to branch from next instruction

 Positive constant => Forward Branch, Negative => Backward branch

 At most ±215 instructions to branch (most branches are near)

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 58

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

30

Design alternative:

 Provide more complex instructions

Alternative Architecture

 Goal is to reduce number of instructions executed

 Danger is a slower cycle time and/or a higher CPI

 Let’s look briefly at IA-32 (Intel Architecture - 32 bits)

 An architecture that is “difficult to explain and impossible to love”

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 59

 Developed by several independent groups

 Evolved over more than 20 years

 History illustrates impact of compatibility on the ISA

The Intel x86 ISA
Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor
 Accumulator plus 3 index register pairs Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 60

()
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

31

The Intel x86 ISA
Further evolution…
 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …p p , y ,

 Pentium (1993): superscalar, 64-bit datapath
 Added MMX (Multi-Media eXtension) instructions

 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 61

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and registers

 Pentium 4 (2001)
 New microarchitecture

 Added SSE2 instructions

The Intel x86 ISA
And further…
 AMD64 (2003): extended architecture to 64 bits

 EM64T – Extended Memory 64 Technology (2004) EM64T Extended Memory 64 Technology (2004)
 AMD64 adopted by Intel (with refinements)

 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow instead

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 62

 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

Technical elegance ≠ market success

32

Basic x86 Registers (IA-32)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 63

Typical IA-32 Instructions
 Data movement instructions

 MOV, PUSH, POP, LEA, …

 Arithmetic and logical instructions Arithmetic and logical instructions
 ADD, SUB, SHL, SHR, ROL, OR, XOR, INC, DEC, CMP, …

 Control flow instructions
 JMP, JZ, JNZ, CALL, RET, LOOP, …

 String instructions
 MOVS, LODS, …

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 64

 First operand is a source and destination
 Can be register or memory operand

 Second operand is a source
 Can be register, memory, or an immediate constant

33

IA-32 Instruction Formats
 Complexity:

 Instruction formats from 1 to 17 bytes long

 One operand must act as both a source and destination One operand must act as both a source and destination

 One operand can come from memory

 Complex addressing modes

 Base or scaled index with 8 or 32 bit displacement

 Typical IA-32 Instruction Formats:
CALL

8 32

PUSH ESI

5 3

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 65

JE EIP + displacement

JE DisplacementCondi-
tion

4 4 8

CALL Offset

MOV EBX, [EDI + 45]

MOV wd Displacement
r/m

Postbyte

6 81 1 8

PUSH Reg

ADD EAX, #6765

ADD w ImmediateReg

4 323 1

TEST EDX, #42

ImmediatePostbyteTEST w

7 321 8

ARM & MIPS Similarities
ARM: the most popular embedded core

Similar basic set of instructions to MIPS

ARM MIPSARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

D t dd i d 9 3

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 66

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

34

Compare and Branch in ARM
 Uses condition codes for the result of an arithmetic/logic

instruction

 Negative, zero, carry, overflow Negative, zero, carry, overflow

 Compare instructions to set condition codes without keeping the
result

 Each instruction can be conditional

 Top 4 bits of instruction word: condition value

 Can avoid branches over single instructions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 67

Instruction Encoding

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 68

35

Fallacies
Powerful instruction higher performance

 Fewer instructions required

 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

Compilers are good at making fast code from simple
instructions

Use assembly code for high performance

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 69

 But modern compilers are better at dealing with
modern processors

More lines of code more errors and less productivity

Fallacies

 Backward compatibility instruction set doesn’t change

 But they do introduce more instructions

x86 instruction set

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 70

36

Summary of Design Principles
1. Simplicity favors regularity

 Simple instructions dominate the instruction frequency
 So design them to be simple and regular, and make them fast

 Use general-purpose registers uniformly across instructionsUse general purpose registers uniformly across instructions

 Fix the size of instructions (simplifies fetching & decoding)

 Fix the number of operands per instruction

 Three operands is the natural number for a typical instruction

2. Smaller is faster

 Limit the number of registers for faster access (typically 32)

3 Make the common case fast

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 71

3. Make the common case fast

 Include constants inside instructions (faster than loading them)

 Design most instructions to be register-to-register

4. Good design demands good compromises

 Smaller immediate constants in I-type instructions

