
1

Instruction Set ArchitectureInstruction Set Architecture

COE 308
Computer Architecturep

Prof. Muhamed Mudawar

Computer Engineering Department

King Fahd University of Petroleum and Minerals

Presentation Outline
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 2

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

2

 Critical Interface between hardware and software

 An ISA includes the following …

 I t ti d I t ti F t

Instruction Set Architecture (ISA)

 Instructions and Instruction Formats

 Data Types, Encodings, and Representations

 Programmable Storage: Registers and Memory

 Addressing Modes: to address Instructions and Data

 Handling Exceptional Conditions (like division by zero)

 E l (V i) Fi t I t d d i

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 3

 Examples (Versions) First Introduced in

 Intel (8086, 80386, Pentium, ...) 1978

 MIPS (MIPS I, II, III, IV, V) 1986

 PowerPC (601, 604, …) 1993

Instructions
 Instructions are the language of the machine

We will study the MIPS instruction set architecture

 S C (SC) Known as Reduced Instruction Set Computer (RISC)

 Elegant and relatively simple design

 Similar to RISC architectures developed in mid-1980’s and 90’s

 Very popular, used in many products

 Silicon Graphics, ATI, Cisco, Sony, etc.

 Comes next in sales after Intel IA-32 processors

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 4

 Comes next in sales after Intel IA-32 processors

 Almost 100 million MIPS processors sold in 2002 (and increasing)

 Alternative design: Intel IA-32

 Known as Complex Instruction Set Computer (CISC)

3

Basics of RISC Design
 All instructions are typically of one size

 Few instruction formats

 Arithmetic instructions are register to register

 Operands are read from registers

 Result is stored in a register

 General purpose integer and floating point registers

 Typically, 32 integer and 32 floating-point registers

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 5

Memory access only via load and store instructions

 Load and store: bytes, half words, words, and double words

 Few simple addressing modes

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 6

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

4

Logical View of the MIPS Processor

Memory

Up to 232 bytes = 230 words

4 bytes per word

. . .

$0

$1

$2

$31

ALU

$F0

$F1

$F2

$F31
FP

Arith

EIU FPUExecution &
Integer Unit
(Main proc)

Floating
Point Unit
(Coproc 1)

. . .

Integer
mul/div

Arithmetic &
Logic Unit

32 General
Purpose
Registers

32 Floating-Point
Registers

Floating-Point

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 7

Hi Lo

EPC

Cause

BadVaddr

Status

TMU Trap &
Memory Unit
(Coproc 0)

Integer
Multiplier/Divider

Arithmetic Unit

 32 General Purpose Registers (GPRs)

 32-bit registers are used in MIPS32

 R i t 0 i l

Overview of the MIPS Registers

GPRs

$0 – $31

 Register 0 is always zero

 Any value written to R0 is discarded

 Special-purpose registers LO and HI

 Hold results of integer multiply and divide

 Special-purpose program counter PC

LO

HI

PC

FPRs

$F0 – $F31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 8

 32 Floating Point Registers (FPRs)

 Floating Point registers can be either 32-bit or 64-bit

 A pair of registers is used for double-precision floating-point

5

MIPS General-Purpose Registers
 32 General Purpose Registers (GPRs)

 Assembler uses the dollar notation to name registers

 $0 is register 0, $1 is register 1, …, and $31 is register 31$0 is register 0, $1 is register 1, …, and $31 is register 31

 All registers are 32-bit wide in MIPS32

 Register $0 is always zero

 Any value written to $0 is discarded

 Software conventions

 Software defines names to all registers

$0 = $zero

$1 = $at

$2 = $v0

$3 = $v1

$4 = $a0

$5 = $a1

$6 = $a2

$7 = $a3

$8 = $t0

$16 = $s0

$17 = $s1

$18 = $s2

$19 = $s3

$20 = $s4

$21 = $s5

$22 = $s6

$23 = $s7

$24 = $t8

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 9

 To standardize their use in programs

 $8 - $15 are called $t0 - $t7

 Used for temporary values

 $16 - $23 are called $s0 - $s7

$9 = $t1

$10 = $t2

$11 = $t3

$12 = $t4

$13 = $t5

$14 = $t6

$15 = $t7

$25 = $t9

$26 = $k0

$27 = $k1

$28 = $gp

$29 = $sp

$30 = $fp

$31 = $ra

MIPS Register Conventions
 Assembler can refer to registers by name or by number

 It is easier for you to remember registers by name

 Assembler converts register name to its corresponding number

Name Register Usage
$zero $0 Always 0 (forced by hardware)
$at $1 Reserved for assembler use
$v0 – $v1 $2 – $3 Result values of a function
$a0 – $a3 $4 – $7 Arguments of a function
$t0 – $t7 $8 – $15 Temporary Values
$s0 – $s7 $16 – $23 Saved registers (preserved across call)

 Assembler converts register name to its corresponding number

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 10

$t8 – $t9 $24 – $25 More temporaries
$k0 – $k1 $26 – $27 Reserved for OS kernel
$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)
$fp $30 Frame pointer (points to stack frame)
$ra $31 Return address (used by jal for function call)

6

Instruction Formats
 All instructions are 32-bit wide, Three instruction formats:

 Register (R-Type)

 Register to register instructions Register-to-register instructions

 Op: operation code specifies the format of the instruction

 Immediate (I-Type)

 16-bit immediate constant is part in the instruction

Op6 Rs5 Rt5 Rd5 funct6sa5

O 6 R 5 Rt5 i di t 16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 11

 Jump (J-Type)

 Used by jump instructions

Op6 Rs5 Rt5 immediate16

Op6 immediate26

Instruction Categories
 Integer Arithmetic

 Arithmetic, logical, and shift instructions

 Data Transfer Data Transfer
 Load and store instructions that access memory

 Data movement and conversions

 Jump and Branch
 Flow-control instructions that alter the sequential sequence

 Floating Point Arithmetic

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 12

 Instructions that operate on floating-point registers

Miscellaneous
 Instructions that transfer control to/from exception handlers

 Memory management instructions

7

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 13

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

R-Type Format

 Op: operation code (opcode)

Op6 Rs5 Rt5 Rd5 funct6sa5

 Specifies the operation of the instruction

 Also specifies the format of the instruction

 funct: function code – extends the opcode
 Up to 26 = 64 functions can be defined for the same opcode

 MIPS uses opcode 0 to define R-type instructions

 Th R i t O d (t i t ti)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 14

 Three Register Operands (common to many instructions)
 Rs, Rt: first and second source operands

 Rd: destination operand

 sa: the shift amount used by shift instructions

8

Integer Add /Subtract Instructions
Instruction Meaning R-Type Format
add $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x20
addu $s1, $s2, $s3 $s1 = $s2 + $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x21
sub $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x22
subu $s1, $s2, $s3 $s1 = $s2 – $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x23

 add & sub: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addu & subu: same operation as add & sub

 However, no arithmetic exception can occur

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 15

 Overflow is ignored

Many programming languages ignore overflow

 The + operator is translated into addu

 The – operator is translated into subu

Addition/Subtraction Example
 Consider the translation of: f = (g+h) – (i+j)

 Compiler allocates registers to variables

Assume that f g h i and j are allocated registers $s0 thru $s4Assume that f, g, h, i, and j are allocated registers $s0 thru $s4

Called the saved registers: $s0 = $16, $s1 = $17, …, $s7 = $23

 Translation of: f = (g+h) – (i+j)
addu $t0, $s1, $s2 # $t0 = g + h
addu $t1, $s3, $s4 # $t1 = i + j
subu $s0, $t0, $t1 # f = (g+h)–(i+j)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 16

 Temporary results are stored in $t0 = $8 and $t1 = $9

 Translate: addu $t0,$s1,$s2 to binary code

 Solution: 000000

op

10001

rs = $s1

10010

rt = $s2

01000

rd = $t0

00000

sa

100001

func

9

Logical Bitwise Operations
 Logical bitwise operations: and, or, xor, nor

x

0

y

0

x and y

0

x

0

y

0

x or y

0

x

0

y

0

x xor y

0

x

0

y

0

x nor y

1

 AND instruction is used to clear bits: x and 0 = 0

 OR instruction is used to set bits: x or 1 = 1

0
0
1
1

0
1
0
1

0
0
0
1

0
0
1
1

0
1
0
1

0
1
1
1

0
0
1
1

0
1
0
1

0
1
1
0

0
0
1
1

0
1
0
1

1
0
0
0

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 17

 OR instruction is used to set bits: x or 1 1

 XOR instruction is used to toggle bits: x xor 1 = not x

 NOR instruction can be used as a NOT, how?

 nor $s1,$s2,$s2 is equivalent to not $s1,$s2

Logical Bitwise Instructions
Instruction Meaning R-Type Format
and $s1, $s2, $s3 $s1 = $s2 & $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x24
or $s1, $s2, $s3 $s1 = $s2 | $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x25
xor $s1, $s2, $s3 $s1 = $s2 ^ $s3 op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x26$, $, $ $ $ $ p $ $ $
nor $s1, $s2, $s3 $s1 = ~($s2|$s3) op = 0 rs = $s2 rt = $s3 rd = $s1 sa = 0 f = 0x27

 Examples:

Assume $s1 = 0xabcd1234 and $s2 = 0xffff0000

and $s0,$s1,$s2 # $s0 = 0xabcd0000

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 18

or $s0,$s1,$s2 # $s0 = 0xffff1234

xor $s0,$s1,$s2 # $s0 = 0x54321234

nor $s0,$s1,$s2 # $s0 = 0x0000edcb

10

Shift Operations
 Shifting is to move all the bits in a register left or right

 Shifts by a constant amount: sll, srl, sra

 sll/srl mean shift left/right logical by a constant amount sll/srl mean shift left/right logical by a constant amount

 The 5-bit shift amount field is used by these instructions

 sra means shift right arithmetic by a constant amount

 The sign-bit (rather than 0) is shifted from the left

shift-in 0. . .shift-out MSB

sll 32-bit register

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 19

. . .shift-in 0 shift-out LSB
srl

. . .shift-in sign-bit shift-out LSB
sra

Shift Instructions
Instruction Meaning R-Type Format
sll $s1,$s2,10 $s1 = $s2 << 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 0
srl $s1,$s2,10 $s1 = $s2>>>10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 2
sra $s1, $s2, 10 $s1 = $s2 >> 10 op = 0 rs = 0 rt = $s2 rd = $s1 sa = 10 f = 3
sllv $s1,$s2,$s3 $s1 = $s2 << $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 4
srlv $s1,$s2,$s3 $s1 = $s2>>>$s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 6
srav $s1,$s2,$s3 $s1 = $s2 >> $s3 op = 0 rs = $s3 rt = $s2 rd = $s1 sa = 0 f = 7

 Shifts by a variable amount: sllv, srlv, srav
 Same as sll, srl, sra, but a register is used for shift amount

 Examples: assume that $s2 = 0xabcd1234, $s3 = 16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 20

$s1 = 0x0000abcd

$s1 = 0xcd123400sll $s1,$s2,8

sra $s1,$s2,4 $s1 = 0xfabcd123

srlv $s1,$s2,$s3

rt=$s2=10010op=000000 rs=$s3=10011 rd=$s1=10001 sa=00000 f=000110

$s1 = $s2<<8

$s1 = $s2>>4

$s1 = $s2>>>$s3

11

Binary Multiplication
 Shift-left (sll) instruction can perform multiplication

 When the multiplier is a power of 2

 You can factor any binary number into powers of 2

 Example: multiply $s1 by 36

 Factor 36 into (4 + 32) and use distributive property of multiplication

 $s2 = $s1*36 = $s1*(4 + 32) = $s1*4 + $s1*32

$ $ $ $

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 21

sll $t0, $s1, 2 ; $t0 = $s1 * 4

sll $t1, $s1, 5 ; $t1 = $s1 * 32

addu $s2, $t0, $t1 ; $s2 = $s1 * 36

Your Turn . . .
Multiply $s1 by 26, using shift and add instructions

Hint: 26 = 2 + 8 + 16

sll $t0, $s1, 1 ; $t0 = $s1 * 2
sll $t1, $s1, 3 ; $t1 = $s1 * 8
addu $s2, $t0, $t1 ; $s2 = $s1 * 10
sll $t0, $s1, 4 ; $t0 = $s1 * 16
addu $s2, $s2, $t0 ; $s2 = $s1 * 26

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 22

Multiply $s1 by 31, Hint: 31 = 32 – 1

sll $s2, $s1, 5 ; $s2 = $s1 * 32
subu $s2, $s2, $s1 ; $s2 = $s1 * 31

12

Integer Multiplication & Division
 Consider a×b and a/b where a and b are in $s1 and $s2

Signed multiplication: mult $s1,$s2

Unsigned multiplication: multu $s1,$s2 $0

Signed division: div $s1,$s2

Unsigned division: divu $s1,$s2

 For multiplication, result is 64 bits
 LO = low-order 32-bit and HI = high-order 32-bit

 For division
 LO = 32-bit quotient and HI = 32-bit remainder

Multiply

Divide

HI LO

$1

..

$31

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 23

q

 If divisor is 0 then result is unpredictable

 Moving data
 mflo rd (move from LO to rd), mfhi rd (move from HI to rd)

 mtlo rs (move to LO from rs), mthi rs (move to HI from rs)

HI LO

Integer Multiply/Divide Instructions
Instruction Meaning Format
mult rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x18
multu rs, rt hi, lo = rs × rt op6 = 0 rs5 rt5 0 0 0x19
div rs rt hi lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1adiv rs, rt hi, lo rs / rt op 0 rs rt 0 0 0x1a
divu rs, rt hi, lo = rs / rt op6 = 0 rs5 rt5 0 0 0x1b
mfhi rd rd = hi op6 = 0 0 0 rd5 0 0x10
mflo rd rd = lo op6 = 0 0 0 rd5 0 0x12
mthi rs hi = rs op6 = 0 rs5 0 0 0 0x11
mtlo rs lo = rs op6 = 0 rs5 0 0 0 0x13

 Signed arithmetic: mult, div (rs and rt are signed)

 LO 32 bit l d d HI 32 bit hi h d f lti li ti

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 24

 LO = 32-bit low-order and HI = 32-bit high-order of multiplication

 LO = 32-bit quotient and HI = 32-bit remainder of division

 Unsigned arithmetic: multu, divu (rs and rt are unsigned)

 NO arithmetic exception can occur

13

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 25

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

I-Type Format
 Constants are used quite frequently in programs

 The R-type shift instructions have a 5-bit shift amount constant

What about other instructions that need a constant?

 I-Type: Instructions with Immediate Operands

 16-bit immediate constant is stored inside the instruction

Rs is the source register number

Op6 Rs5 Rt5 immediate16

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 26

Rt is now the destination register number (for R-type it was Rd)

 Examples of I-Type ALU Instructions:
Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5

OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

14

I-Type ALU Instructions
Instruction Meaning I-Type Format
addi $s1, $s2, 10 $s1 = $s2 + 10 op = 0x8 rs = $s2 rt = $s1 imm16 = 10
addiu $s1, $s2, 10 $s1 = $s2 + 10 op = 0x9 rs = $s2 rt = $s1 imm16 = 10
andi $s1, $s2, 10 $s1 = $s2 & 10 op = 0xc rs = $s2 rt = $s1 imm16 = 10
ori $s1, $s2, 10 $s1 = $s2 | 10 op = 0xd rs = $s2 rt = $s1 imm16 = 10
xori $s1, $s2, 10 $s1 = $s2 ^ 10 op = 0xe rs = $s2 rt = $s1 imm16 = 10
lui $s1, 10 $s1 = 10 << 16 op = 0xf 0 rt = $s1 imm16 = 10

 addi: overflow causes an arithmetic exception

 In case of overflow, result is not written to destination register

 addiu: same operation as addi but overflow is ignored

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 27

p g

 Immediate constant for addi and addiu is signed

 No need for subi or subiu instructions

 Immediate constant for andi, ori, xori is unsigned

 Examples: assume A, B, C are allocated $s0, $s1, $s2

Examples: I-Type ALU Instructions

A = B+5; translated as

C B 1 translated as

addiu $s0,$s1,5

addiu $s2 $s1 1C = B–1; translated as addiu $s2,$s1,-1

A = B&0xf; translated as

C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as ori $s2,$zero,5

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 28

 No need for subi, because addi has signed immediate

 Register 0 ($zero) has always the value 0

A = B; translated as ori $s0,$s1,0

15

 I-Type instructions can have only 16-bit constants

32-bit Constants

Op6 Rs5 Rt5 immediate16

What if we want to load a 32-bit constant into a register?

 Can’t have a 32-bit constant in I-Type instructions 

We have already fixed the sizes of all instructions to 32 bits

 Solution: use two instructions instead of one 

Suppose we want: $s1=0xAC5165D9 (32-bit constant)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 29

S pp $s 0 C5 65 9 (3)

 lui: load upper immediate

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1=$17

0xAC51 0x0000$s1=$17

clear lower
16 bits

load upper
16 bits

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 30

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

16

J-Type Format

 J-type format is used for unconditional jump instruction:

Op6 immediate26

 J type format is used for unconditional jump instruction:

j label # jump to label
. . .

label:

 26-bit immediate value is stored in the instruction

 Immediate constant specifies address of target instruction

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 31

 Immediate constant specifies address of target instruction

 Program Counter (PC) is modified as follows:

Next PC =

Upper 4 most significant bits of PC are unchanged

immediate26PC4 00
least-significant

2 bits are 00

 MIPS compare and branch instructions:

beq Rs,Rt,label branch to label if (Rs == Rt)

b t l b l b h t l b l if (! t)

Conditional Branch Instructions

bne Rs,Rt,label branch to label if (Rs != Rt)

 MIPS compare to zero & branch instructions

Compare to zero is used frequently and implemented efficiently

bltz Rs,label branch to label if (Rs < 0)

bgtz Rs,label branch to label if (Rs > 0)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 32

g ()

blez Rs,label branch to label if (Rs <= 0)

bgez Rs,label branch to label if (Rs >= 0)

 No need for beqz and bnez instructions. Why?

17

Set on Less Than Instructions
MIPS also provides set on less than instructions

slt rd,rs,rt if (rs < rt) rd = 1 else rd = 0

i dsltu rd,rs,rt unsigned <

slti rt,rs,im16 if (rs < im16) rt = 1 else rt = 0

sltiu rt,rs,im16 unsigned <

 Signed / Unsigned Comparisons

Can produce different results

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 33

Can produce different results

Assume $s0 = 1 and $s1 = -1 = 0xffffffff

slt $t0,$s0,$s1 results in $t0 = 0

stlu $t0,$s0,$s1 results in $t0 = 1

More on Branch Instructions
 MIPS hardware does NOT provide instructions for …

blt, bltu branch if less than (signed/unsigned)

ble, bleu branch if less or equal (signed/unsigned)ble, bleu branch if less or equal (signed/unsigned)

bgt, bgtu branch if greater than (signed/unsigned)

bge, bgeu branch if greater or equal (signed/unsigned)

Can be achieved with a sequence of 2 instructions

 How to implement: blt $s0,$s1,label
 Solution: slt $at,$s0,$s1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 34

bne $at,$zero,label

 How to implement: ble $s2,$s3,label
 Solution: slt $at,$s3,$s2

beq $at,$zero,label

18

Pseudo-Instructions
 Introduced by assembler as if they were real instructions

 To facilitate assembly language programming

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $s2not $s1, $s2

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 35

 Assembler reserves $at = $1 for its own use

 $at is called the assembler temporary register

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

Jump, Branch, and SLT Instructions
Instruction Meaning Format
j label jump to label op6 = 2 imm26

beq rs, rt, label branch if (rs == rt) op6 = 4 rs5 rt5 imm16

bne rs, rt, label branch if (rs != rt) op6 = 5 rs5 rt5 imm16

blez rs, label branch if (rs<=0) op6 = 6 rs5 0 imm16

bgtz rs, label branch if (rs > 0) op6 = 7 rs5 0 imm16

bltz rs, label branch if (rs < 0) op6 = 1 rs5 0 imm16

bgez rs, label branch if (rs>=0) op6 = 1 rs5 1 imm16

Instruction Meaning Format

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 36

slt rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2a

sltu rd, rs, rt rd=(rs<rt?1:0) op6 = 0 rs5 rt5 rd5 0 0x2b

slti rt, rs, imm16 rt=(rs<imm?1:0) 0xa rs5 rt5 imm16

sltiu rt, rs, imm16 rt=(rs<imm?1:0) 0xb rs5 rt5 imm16

19

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 37

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Translating an IF Statement
 Consider the following IF statement:

if (a == b) c = d + e; else c = d – e;

$ $Assume that a, b, c, d, e are in $s0, …, $s4 respectively

 How to translate the above IF statement?

bne $s0, $s1, else

addu $s2, $s3, $s4

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 38

j exit

else: subu $s2, $s3, $s4

exit: . . .

20

Compound Expression with AND
 Programming languages use short-circuit evaluation

 If first expression is false, second expression is skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...

bgtz $s1, L1 # first expression

j next # skip if false

L1: bltz $s2, L2 # second expression

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 39

L1: bltz $s2, L2 # second expression

j next # skip if false

L2: addiu $s3,$s3,1 # both are true

next:

Better Implementation for AND

The following implementation uses less code

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

g p

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

Better Implementation ...

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 40

blez $s1, next # skip if false

bgez $s2, next # skip if false

addiu $s3,$s3,1 # both are true

next:

21

Compound Expression with OR
 Short-circuit evaluation for logical OR

 If first expression is true, second expression is skipped

 Use fall-through to keep the code as short as possible

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: li $s4 1 # set $s4 to 1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 41

 bgt, ble, and li are pseudo-instructions

 Translated by the assembler to real instructions

L1: li $s4, 1 # set $s4 to 1
next:

Your Turn . . .
 Translate the IF statement to assembly language

 $s1 and $s2 values are unsigned

 $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next

move $s3, $s4

next:

if($s1 <= $s2) {

$s3 = $s4

}

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 42

if (($s3 <= $s4) &&
($s4 > $s5)) {

$s3 = $s4 + $s5
}

bgt $s3, $s4, next

ble $s4, $s5, next

addu $s3, $s4, $s5

next:

22

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 43

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Load and Store Instructions
 Instructions that transfer data between memory & registers

 Programs include variables such as arrays and objects

 Such variables are stored in memory

 Load Instruction:

 Transfers data from memory to a register

 Store Instruction:

MemoryRegisters

load

store

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 44

 Store Instruction:

 Transfers data from a register to memory

Memory address must be specified by load and store

23

 Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

Load and Store Word

 Store Word Instruction

sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

 Base or Displacement addressing is used

Memory Address = Rs (base) + Immediate16 (displacement)

 Immediate16 is sign-extended to have a signed displacement

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 45

 Immediate is sign extended to have a signed displacement

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

Example on Load & Store
 Translate A[1] = A[2] + 5 (A is an array of words)

 Assume that address of array A is stored in register $s0

lw $s1 8($s0) # $s1 = A[2]lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

 Index of a[2] and a[1] should be multiplied by 4. Why?
Memory

Registers

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 46

sw
A[1]

A[0]

A[2]

A[3]

. . .

. . .

A+12

A+8

A+4

A

address of A$s0 = $16

value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

24

 The MIPS processor supports the following data formats:
Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

 Load & store instructions for bytes and halfwords

Load and Store Byte and Halfword

32-bit Register

 Load & store instructions for bytes and halfwords
 lb = load byte, lbu = load byte unsigned, sb = store byte

 lh = load half, lhu = load half unsigned, sh = store halfword

 Load expands a memory data to fit into a 32-bit register

 Store reduces a 32-bit register to fit in memory

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 47

0 0

s s s

s s

0 0

s

bu

b

h

hu

sign – extend

zero – extend

sign – extend

zero – extend

g

Load and Store Instructions
Instruction Meaning I-Type Format
lb rt, imm16(rs) rt = MEM[rs+imm16] 0x20 rs5 rt5 imm16

lh rt, imm16(rs) rt = MEM[rs+imm16] 0x21 rs5 rt5 imm16

lw rt, imm16(rs) rt = MEM[rs+imm16] 0x23 rs5 rt5 imm16lw rt, imm (rs) rt MEM[rs imm] 0x23 rs rt imm
lbu rt, imm16(rs) rt = MEM[rs+imm16] 0x24 rs5 rt5 imm16

lhu rt, imm16(rs) rt = MEM[rs+imm16] 0x25 rs5 rt5 imm16

sb rt, imm16(rs) MEM[rs+imm16] = rt 0x28 rs5 rt5 imm16

sh rt, imm16(rs) MEM[rs+imm16] = rt 0x29 rs5 rt5 imm16

sw rt, imm16(rs) MEM[rs+imm16] = rt 0x2b rs5 rt5 imm16

 Base or Displacement Addressing is used

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 48

 Memory Address = Rs (base) + Immediate16 (displacement)

 Two variations on base addressing

 If Rs = $zero = 0 then Address = Immediate16 (absolute)

 If Immediate16 = 0 then Address = Rs (register indirect)

25

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 49

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

Translating a WHILE Loop
 Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)

Memory

A[i]

. . .

. . .

A+4×i

Where A is an array of integers (4 bytes per element)

Assume address A, i, k in $s0, $s1, $s2, respectively

 How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
move $t0, $s0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, next # exit if (A[i]== k)

A[2]

A[1]

A[0] A

A+4

A+8

. . .

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 50

beq $t1, $s2, next # exit if (A[i] k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

next: . . .

26

Using Pointers to Traverse Arrays
 Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A i k are in $s0 $s1 $s2 respectivelyWhere address of A, i, k are in $s0, $s1, $s2, respectively

We can use a pointer to traverse array A

Pointer is incremented by 4 (faster than indexing)

move $t0, $s0 # $t0 = $s0 = addr A
j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 51

addiu $t0, $t0, 4 # point to next
cond: lw $t1, 0($t0) # $t1 = A[i]

bne $t1, $s2, loop # loop if A[i]!= k

 Only 4 instructions (rather than 6) in loop body

Arrays vs. Pointers
 Array indexing involves

 Multiplying index by element size

 Using shift instruction when element size is a power of 2 Using shift instruction when element size is a power of 2

 Adding to array base address

 Array version requires shift to be inside loop

 Part of index calculation for incremented i

 Pointers correspond directly to memory addresses

 Can avoid indexing complexity

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 52

 Can avoid indexing complexity

 Induction variable elimination

 Less instructions and faster code

27

Copying a String
The following code copies source string to target string

Address of source in $s0 and address of target in $s1

move $t0, $s0 # $t0 = pointer to source
move $t1, $s1 # $t1 = pointer to target

Strings are terminated with a null character (C strings)

i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 53

L1: lb $t2, 0($t0) # load byte into $t2
sb $t2, 0($t1) # store byte into target
addiu $t0, $t0, 1 # increment source pointer
addiu $t1, $t1, 1 # increment target pointer
bne $t2, $zero, L1 # loop until NULL char

Summing an Integer Array
sum = 0;

for (i=0; i<n; i++) sum = sum + A[i];

move $t0, $s0 # $t0 = address A[i]

xor $t1, $t1, $t1 # $t1 = i = 0

xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]

Assume $s0 = array address, $s1 = array length = n

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 54

addu $s2, $s2, $t2 # sum = sum + A[i]

addiu $t0, $t0, 4 # point to next A[i]

addiu $t1, $t1, 1 # i++

bne $t1, $s1, L1 # loop if (i != n)

28

Addressing Modes
Where are the operands?

 How memory addresses are computed?

Op6 Rs5 Rt5 immediate16

Immediate Addressing

Operand is a constant

Op6 Rs5 Rt5 Rd5 funct6sa5

Register Addressing

Register

Operand is in a register

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 55

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Word

Operand is in memory (load/store)

Register = Base address

+ HalfwordByte

Branch / Jump Addressing Modes
Used for branching (beq, bne, …)

Word = Target Instruction

Op6 Rs5 Rt5 immediate16

PC-Relative Addressing

+1 Word = Target Instruction

PC30 00

+1

Target Instruction Address
PC = PC + 4 × (1 + immediate16)

PC30 + immediate16 + 1 00

i di t 26O 6

Pseudo-direct Addressing
Used by jump instruction

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 56

immediate26PC4 00Target Instruction Address

Word = Target Instruction

immediate26Op6

PC26

:

00PC4

29

Jump and Branch Limits
 Jump Address Boundary = 226 instructions = 256 MB

 Text segment cannot exceed 226 instructions or 256 MB

 Upper 4 bits of PC are unchanged Upper 4 bits of PC are unchanged

 Branch Address Boundary

 Branch instructions use I-Type format (16-bit immediate constant)

 PC-relative addressing:

immediate26PC4 00Target Instruction Address

PC30 + immediate16 + 1 00

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 57

 Target instruction address = PC + 4×(1 + immediate16)

 Count number of instructions to branch from next instruction

 Positive constant => Forward Branch, Negative => Backward branch

 At most ±215 instructions to branch (most branches are near)

Next . . .
 Instruction Set Architecture

 Overview of the MIPS Processor

 R-Type Arithmetic, Logical, and Shift Instructions

 I-Type Format and Immediate Constants

 Jump and Branch Instructions

 Translating If Statements and Boolean Expressions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 58

 Load and Store Instructions

 Translating Loops and Traversing Arrays

 Alternative Architecture

30

Design alternative:

 Provide more complex instructions

Alternative Architecture

 Goal is to reduce number of instructions executed

 Danger is a slower cycle time and/or a higher CPI

 Let’s look briefly at IA-32 (Intel Architecture - 32 bits)

 An architecture that is “difficult to explain and impossible to love”

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 59

 Developed by several independent groups

 Evolved over more than 20 years

 History illustrates impact of compatibility on the ISA

The Intel x86 ISA
Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor
 Accumulator plus 3 index register pairs Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 60

()
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

31

The Intel x86 ISA
Further evolution…
 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …p p , y ,

 Pentium (1993): superscalar, 64-bit datapath
 Added MMX (Multi-Media eXtension) instructions

 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 61

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and registers

 Pentium 4 (2001)
 New microarchitecture

 Added SSE2 instructions

The Intel x86 ISA
And further…
 AMD64 (2003): extended architecture to 64 bits

 EM64T – Extended Memory 64 Technology (2004) EM64T Extended Memory 64 Technology (2004)
 AMD64 adopted by Intel (with refinements)

 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow instead

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 62

 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

Technical elegance ≠ market success

32

Basic x86 Registers (IA-32)

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 63

Typical IA-32 Instructions
 Data movement instructions

 MOV, PUSH, POP, LEA, …

 Arithmetic and logical instructions Arithmetic and logical instructions
 ADD, SUB, SHL, SHR, ROL, OR, XOR, INC, DEC, CMP, …

 Control flow instructions
 JMP, JZ, JNZ, CALL, RET, LOOP, …

 String instructions
 MOVS, LODS, …

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 64

 First operand is a source and destination
 Can be register or memory operand

 Second operand is a source
 Can be register, memory, or an immediate constant

33

IA-32 Instruction Formats
 Complexity:

 Instruction formats from 1 to 17 bytes long

 One operand must act as both a source and destination One operand must act as both a source and destination

 One operand can come from memory

 Complex addressing modes

 Base or scaled index with 8 or 32 bit displacement

 Typical IA-32 Instruction Formats:
CALL

8 32

PUSH ESI

5 3

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 65

JE EIP + displacement

JE DisplacementCondi-
tion

4 4 8

CALL Offset

MOV EBX, [EDI + 45]

MOV wd Displacement
r/m

Postbyte

6 81 1 8

PUSH Reg

ADD EAX, #6765

ADD w ImmediateReg

4 323 1

TEST EDX, #42

ImmediatePostbyteTEST w

7 321 8

ARM & MIPS Similarities
ARM: the most popular embedded core

Similar basic set of instructions to MIPS

ARM MIPSARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

D t dd i d 9 3

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 66

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

34

Compare and Branch in ARM
 Uses condition codes for the result of an arithmetic/logic

instruction

 Negative, zero, carry, overflow Negative, zero, carry, overflow

 Compare instructions to set condition codes without keeping the
result

 Each instruction can be conditional

 Top 4 bits of instruction word: condition value

 Can avoid branches over single instructions

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 67

Instruction Encoding

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 68

35

Fallacies
Powerful instruction  higher performance

 Fewer instructions required

 But complex instructions are hard to implement

 May slow down all instructions, including simple ones

Compilers are good at making fast code from simple
instructions

Use assembly code for high performance

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 69

 But modern compilers are better at dealing with
modern processors

More lines of code  more errors and less productivity

Fallacies

 Backward compatibility  instruction set doesn’t change

 But they do introduce more instructions

x86 instruction set

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 70

36

Summary of Design Principles
1. Simplicity favors regularity

 Simple instructions dominate the instruction frequency
 So design them to be simple and regular, and make them fast

 Use general-purpose registers uniformly across instructionsUse general purpose registers uniformly across instructions

 Fix the size of instructions (simplifies fetching & decoding)

 Fix the number of operands per instruction

 Three operands is the natural number for a typical instruction

2. Smaller is faster

 Limit the number of registers for faster access (typically 32)

3 Make the common case fast

Instruction Set Architecture COE 308 – Computer Architecture – KFUPM © Muhamed Mudawar – slide 71

3. Make the common case fast

 Include constants inside instructions (faster than loading them)

 Design most instructions to be register-to-register

4. Good design demands good compromises

 Smaller immediate constants in I-type instructions

