

^	NIPS Re	egister Co	onventions
✤ Assem	bler can refe	er to registers	by name or by number
♦ It is	easier for you	to remember regi	isters by name
\diamond Ass	embler convert	s register name t	o its corresponding number
Name	Register	Usage	
\$zero	\$0	Always 0	(forced by hardware)
\$at	\$1	Reserved for asser	mbler use
\$v0 - \$v1	\$2 - \$3	Result values of a	function
\$a0 - \$a3	\$4 - \$7	Arguments of a fur	iction
\$t0 - \$t7	\$8 - \$15	Temporary Values	
\$s0 - \$s7	\$16 - \$23	Saved registers	(preserved across call)
\$t8 - \$t9	\$24 - \$25	More temporaries	
\$k0 - \$k1	\$26 - \$27	Reserved for OS k	ernel
\$gp	\$28	Global pointer	(points to global data)
\$sp	\$29	Stack pointer	(points to top of stack)
\$fp	\$30	Frame pointer	(points to stack frame)
		a	(

Instruction	Meaning	R-Type Format
and \$s1, \$s2, \$s	3 \$s1 = \$s2 & \$s3	op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x24
or \$s1, \$s2, \$s	3 \$s1 = \$s2 \$s3	op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x25
xor \$s1, \$s2, \$s	3 \$s1 = \$s2 ^ \$s3	op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x26
nor \$\$1, \$\$2, \$\$	3 \$s1 = ~(\$s2 \$s3)	op = 0 rs = \$s2 rt = \$s3 rd = \$s1 sa = 0 f = 0x27
Assume	s: \$s1 = 0xabc	cd1234 and \$s2 = 0xffff0000
Example Assume and \$s	S: \$s1 = 0xabc 0,\$s1,\$s2	cd1234 and \$s2 = 0xffff0000 # \$s0 = 0xabcd0000
Example Assume and \$s or \$s	S: \$s1 = 0xabc 0,\$s1,\$s2 0,\$s1,\$s2	cd1234 and \$s2 = 0xffff0000 # \$s0 = 0xabcd0000 # \$s0 = 0xffff1234
Example Assume and \$s or \$s xor \$s	S: \$s1 = 0xabc 0,\$s1,\$s2 0,\$s1,\$s2 0,\$s1,\$s2	cd1234 and \$s2 = 0xffff0000 # \$s0 = 0xabcd0000 # \$s0 = 0xffff1234 # \$s0 = 0x54321234

11151	ructic	bn	Ν	leanin	g			ł	R-Ty	/pe	Fo	rma	t		
sll	\$s1,\$	s2,10	\$s1 =	= \$s2 <<	< 10	op =	0 rs	= 0	rt = :	\$s2	rd =	\$s1	sa =	10	f = 0
srl	\$s1,\$	s2,10	\$s1 =	= \$s2>>	>10	op =	0 rs	= 0	rt = :	\$s2	rd =	\$s1	sa =	10	f = 2
sra	\$s1, \$	\$s2, 10	\$s1 =	= \$s2 >>	> 10	op =	0 rs	= 0	rt =	\$s2	rd =	\$s1	sa =	10	f = 3
sllv	\$s1,\$	s2,\$s3	\$s1 =	= \$s2 <<	< \$s3	op =	0 rs	= \$s3	rt = :	\$s2	rd =	\$s1	sa =	0	f = 4
srlv	\$s1,\$	s2,\$s3	\$s1 =	= \$s2>>	>\$s3	op =	0 rs	= \$s3	rt =	\$s2	rd =	\$s1	sa =	0	f = 6
srav	\$s1,\$	is2,\$s3	\$s1 =	= \$s2 >>	> \$s3	op =	0 rs	= \$s3	rt = :	\$s2	rd =	\$s1	sa =	0	f = 7
* C	mite	s by a	var	able	amo	ount	:sl	.lv,	sr	lv	S	rat	7		
• E	A Sa xam	ime as ples:	var sll ass	iable , srl, ume	amo sra that	ount , but \$s2	: s1 a re <u>?</u> = (.1v, giste Dxab	sr ris ocd	lv use 123	s : d fo 34,	rav orsl \$s:	r nift a 3 =	mo 16	unt
v C ♦ E	> Sa Sa xan	s by a ame as aples: \$s1,	var sll ass \$s2,	iable , srl, ume 8	amo sra that \$s1	ount , but \$s2	: s1 a re ? = (\$s2	.1v, giste Dxab <<8	sr ris ocd	1v use 123 \$, s : d fo 34, s1	rat orsi \$s: =	r nift a 3 = 0xco	mo 16 412	unt :3400
¢E s	 A Sa A Sa<!--</td--><td>s by a ame as ples: \$s1, \$s1,</td><td>var sll ass \$s2, \$s2,</td><td>iable , srl, ume 8 4</td><td>amo sra that \$s1 \$s1</td><td>ount , but \$s2 . =</td><td>: s1 a re ? = (\$s2 \$s2</td><td>.1v, giste Dxab <<8 >>4</td><td>sr ris ocd</td><td>1v use 123 \$ \$</td><td>, s: d fo 84, s1 s1</td><td>rav orst \$s: = =</td><td>7 hift a 3 = 0xco 0xfa</td><td>mo 16 d12 abc</td><td>unt :3400 :d123</td>	s by a ame as ples: \$s1, \$s1,	var sll ass \$s2, \$s2,	iable , srl, ume 8 4	amo sra that \$s1 \$s1	ount , but \$s2 . =	: s1 a re ? = (\$s2 \$s2	.1v, giste Dxab <<8 >>4	sr ris ocd	1v use 123 \$ \$, s : d fo 84, s1 s1	rav orst \$s: = =	7 hift a 3 = 0xco 0xfa	mo 16 d12 abc	unt :3400 :d123

			Your	' (urn		••			
/lultip	ly \$s1	by 26	, using	shift	and	ad	ld ins	str	ucti	ons
lint: 2	6 = 2	+ 8 +	16							
sll	\$t0,	\$s1,	1	;	\$t0	=	\$s1	*	2	
sll	\$t1,	\$s1,	3	;	\$t1	=	\$s1	*	8	
addu	\$s2,	\$t0,	\$t1	;	\$s2	=	\$s1	*	10	
sll	\$t0,	\$s1,	4	;	\$t0	=	\$s1	*	16	
addu	\$s2,	\$s2,	\$t0	;	\$s2	=	\$s1	*	26	
/lultipl	ly \$s1	by 31	, Hint: 3	31 = 3	32 –	1				
sll	\$s2,	\$s1,	5	;	\$s2	=	\$s1	*	32	
subu	\$s2,	\$s2,	\$s1	;	\$s2	=	\$s1	*	31	

Instruction	Meaning			For	mat		
mult rs, rt	hi, lo = rs × rt	op ⁶ = 0	rs ⁵	rt⁵	0	0	0x18
multu rs, rt	hi, lo = rs × rt	op ⁶ = 0	rs ⁵	rt⁵	0	0	0x19
div rs, rt	hi, lo = rs / rt	op ⁶ = 0	rs⁵	rt⁵	0	0	0x1a
divu rs, rt	hi, lo = rs / rt	op ⁶ = 0	rs ⁵	rt⁵	0	0	0x1b
mfhi rd	rd = hi	op ⁶ = 0	0	0	rd⁵	0	0x10
mflo rd	rd = lo	op ⁶ = 0	0	0	rd ⁵	0	0x12
mthi rs	hi = rs	op ⁶ = 0	rs⁵	0	0	0	0x11
mtlo rs	lo = rs	op ⁶ = 0	rs⁵	0	0	0	0x13
Signed arit	hmetic: mult, bit low-order an bit quotient and	, div (rs nd HI = 32 I HI = 32-	and 2-bit h bit rei	rt are iigh-oi maind	e sigr rder o ler of (ned) f mult divisio	iplication
Unsigned a	arithmetic: m	ultu div	u (rs	and	rt ar	e uns	signed

Instr	uction	Meaning			Forr	nat		
j	label	jump to label	op ⁶ = 2			imm ²	6	
beq	rs, rt, label	branch if (rs == rt)	op ⁶ = 4	rs⁵	rt⁵		imm	16
bne	rs, rt, label	branch if (rs != rt)	op ⁶ = 5	rs ⁵	rt⁵		imm	16
blez	rs, label	branch if (rs<=0)	op ⁶ = 6	rs ⁵	0		imm	16
bgtz	rs, label	branch if (rs > 0)	op ⁶ = 7	rs⁵	0	imm ¹⁶		16
bltz	rs, label	branch if (rs < 0)	op ⁶ = 1	rs⁵	0		imm	16
bgez	rs, label	branch if (rs>=0)	op ⁶ = 1	rs⁵	1		imm	16
Instr	uction	Meaning			⊦orr	nat		
slt	rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>op⁶ = 0</td><td>rs⁵</td><td>rt⁵</td><td>rd⁵</td><td>0</td><td>0x2a</td></rt?1:0)<>	op ⁶ = 0	rs ⁵	rt⁵	rd ⁵	0	0x2a
sltu	rd, rs, rt	rd=(rs <rt?1:0)< td=""><td>op⁶ = 0</td><td>rs⁵</td><td>rt⁵</td><td>rd⁵</td><td>0</td><td>0x2b</td></rt?1:0)<>	op ⁶ = 0	rs ⁵	rt⁵	rd ⁵	0	0x2b
slti	rt, rs, imm ¹⁶	rt=(rs <imm?1:0)< td=""><td>0xa</td><td>rs⁵</td><td>rt⁵</td><td></td><td>imm</td><td>16</td></imm?1:0)<>	0xa	rs⁵	rt⁵		imm	16
sltiu	rt, rs, imm ¹⁶	rt=(rs <imm?1:0)< td=""><td>0xb</td><td>rs⁵</td><td>rt⁵</td><td></td><td>imm</td><td>16</td></imm?1:0)<>	0xb	rs ⁵	rt⁵		imm	16

Instruction	Meaning		-"	Туре F	ormat
lb rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶]	0x20	rs ⁵	rt⁵	imm ¹⁶
Ih rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶]	0x21	rs⁵	rt ⁵	imm ¹⁶
lw rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶]	0x23	rs ⁵	rt⁵	imm ¹⁶
lbu rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶]	0x24	rs⁵	rt⁵	imm ¹⁶
lhu rt, imm ¹⁶ (rs)	rt = MEM[rs+imm ¹⁶]	0x25	rs ⁵	rt⁵	imm ¹⁶
sb rt, imm ¹⁶ (rs)	MEM[rs+imm ¹⁶] = rt	0x28	rs ⁵	rt⁵	imm ¹⁶
sh rt, imm ¹⁶ (rs)	MEM[rs+imm ¹⁶] = rt	0x29	rs⁵	rt⁵	imm ¹⁶
sw rt, imm ¹⁶ (rs)	MEM[rs+imm ¹⁶] = rt	0x2b	rs⁵	rt⁵	imm ¹⁶
 ◆ Base or Di ◆ Memory ◆ Two variation 	<mark>splacement Addr</mark> Address = Rs (base) ons on base add	essinç + Imm ressin	g is u: lediate lg	sed e ¹⁶ (dis	placement)

Copying a String The following code copies source string to target string Address of source in \$s0 and address of target in \$s1 Strings are terminated with a null character (C strings) i = 0;do {target[i]=source[i]; i++;} while (source[i]!=0); \$t0, \$s0 # \$t0 = pointer to source move \$t1, \$s1 # \$t1 = pointer to target move \$t2, 0(\$t0) # load byte into \$t2 L1: lb \$t2, 0(\$t1) \mathbf{sb} # store byte into target

addiu \$t1, \$t1, 1 # increment target pointer

COE 308 - Computer Architecture - KFUPM

\$t2, \$zero, L1 # loop until NULL char

increment source pointer

© Muhamed Mudawar – slide 53

addiu \$t0, \$t0, 1

bne

Instruction Set Architecture

	Summing	an Inte	eger Array
sum = 0;			
for (i=0;	; i <n; i++)="" s<="" td=""><td>um = sum +</td><td>+ A[i];</td></n;>	um = sum +	+ A[i];
move xor	\$t0, \$s0 \$t1, \$t1,	# \$t1 #	\$t0 = address A[i] \$t1 = i = 0
nove	\$τυ, \$80 \$+1 \$+1	# \$+1 #	t = address A[1]
xor	\$s2, \$s2,	\$s2 #	\$s2 = sum = 0
L1: lw	\$t2, 0(\$t0) #	\$t2 = A[i]
addu	\$s2, \$s2,	\$t2 #	<pre>sum = sum + A[i]</pre>
addiu	\$t0, \$t0,	4 #	point to next A[i]
addiu	\$t1, \$t1,	1 #	i++
bne	Št1, Šs1,	L1 #	loop if (i != n)

rom 1 to 17 bytes lon	g
act as both a source a	and destination
ome from memory	
u modes	
ex with 8 or 32 bit displa	acement
ction Formats:	
CALL	32
CALL	Offset
ADD EAX, #6765 4 3 1	32
ADD Reg w	Immediate
TEST EDX, #42	20
	rom 1 to 17 bytes lon act as both a source a prome from memory g modes ex with 8 or 32 bit displa ction Formats: CALL 8 CALL 8 CAL 8 C

ARM & MIF	°S Similar	rities
ARM: the most popu	ular embedde	ed core
Similar basic set of i	instructions to	o MIPS
	ARM	MIPS
Date announced	1985	1985
Instruction size	32 bits	32 bits
Address space	32-bit flat	32-bit flat
Data alignment	Aligned	Aligned
Data addressing modes	9	3
Registers	15 × 32-bit	31 × 32-bit
Input/output	Memory mapped	Memory mapped

