
 1

COE 308: Computer Architecture – Fall 2011

Project: Pipelined Processor Implementation

Objectives:

• Using the Logisim simulator
• Designing and testing a Pipelined 32-bit processor
• Teamwork

Instruction Set Architecture
In this project, you will design a simple 32-bit RISC processor with sixteen 32-bit general-
purpose registers: R0 through R15. R0 is hardwired to zero and cannot be written, so we are left
with fifteen registers. There is also one special-purpose 24-bit register, which is the program
counter (PC), which can address at most 224 instructions. All instructions are 32 bits. There are
three instruction formats, R-type, I-type, and J-type as shown below:

R-type format
8-bit opcode (Op), and 4-bit register numbers (Rs, Rt, and Rd)

I-type format
8-bit opcode (Op), 4-bit register number (Rs and Rt), and 16-bit immediate constant

J-type format
8-bit opcode (Op) and 24-bit immediate constant

For R-type instructions, Rs and Rt specify the two source register numbers, and Rd specifies the
destination register number.

For I-type instructions, Rs specifies a source register number, and Rt can be a second source or a
destination register number. The immediate constant is 16 bits as in the MIPS architecture. The
16-bit immediate constant can be signed or unsigned depending on the opcode.

For J-type, the 24-bit immediate constant is used for J (jump) and JAL (jump-and-link)
instructions.

Immediate24

Op8 Unused12 Rd4

Immediate16

Rs4 Rt4

Op8

Rs4 Rt4 Op8

 2

Instruction Encoding
Thirteen R-type instructions, nine I-type instructions, and two J-type instructions are defined.
These instructions, their meaning, and their encoding are shown below:

Instr Meaning Encoding
AND Reg(Rd) = Reg(Rs) & Reg(Rt) Op = 0x00 Rs Rt Rd Unused
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op = 0x01 Rs Rt Rd Unused
XOR Reg(Rd) = Reg(Rs) ^ Reg(Rt) Op = 0x02 Rs Rt Rd Unused
NOR Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op = 0x03 Rs Rt Rd Unused
ADD Reg(Rd) = Reg(Rs) + Reg(Rt) Op = 0x04 Rs Rt Rd Unused
SUB Reg(Rd) = Reg(Rs) – Reg(Rt) Op = 0x05 Rs Rt Rd Unused
SLT Reg(Rd) = Reg(Rs) < Reg(Rt) Op = 0x06 Rs Rt Rd Unused
SLTU Reg(Rd) = Reg(Rs) <unsigned Reg(Rt) Op = 0x07 Rs Rt Rd Unused
SLL Reg(Rd) = Reg(Rs) << Reg(Rt) Op = 0x08 Rs Rt Rd Unused
SRL Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op = 0x09 Rs Rt Rd Unused
SRA Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op = 0x0A Rs Rt Rd Unused
ROR Reg(Rd) = Reg(Rs) rot>> Reg(Rt) Op = 0x0B Rs Rt Rd Unused

JR PC = Reg(Rs) Op = 0x10 Rs 0 0 Unused

ANDI Reg(Rt) = Reg(Rs) & Immediate16 Op = 0x20 Rs Rt Immediate16
ORI Reg(Rt) = Reg(Rs) | Immediate16 Op = 0x21 Rs Rt Immediate16
XORI Reg(Rt) = Reg(Rs) ^ Immediate16 Op = 0x22 Rs Rt Immediate16
ADDI Reg(Rt) = Reg(Rs) + Immediate16 Op = 0x24 Rs Rt Immediate16
LUI Reg(Rt) = Immediate16 << 16 Op = 0x28 0 Rt Immediate16
LW Reg(Rt) = Mem(Reg(Rs) + Imm16) Op = 0x30 Rs Rt Immediate16
SW Mem(Reg(Rs) + Imm16) = Reg(Rt) Op = 0x38 Rs Rt Immediate16
BEQ Branch if (Reg(Rs) == Reg(Rt)) Op = 0x40 Rs Rt Immediate16
BNE Branch if (Reg(Rs) != Reg(Rt)) Op = 0x41 Rs Rt Immediate16

J PC = Immediate24 Op = 0x50 Immediate24
JAL R15 = PC + 1, PC = Immediate24 Op = 0x51 Immediate24

Opcodes 0x00 thru 0x0B are used for R-type arithmetic and bitwise instructions. There are three
shift and one rotate instruction. To shift or rotate, use the lower 5 bits of register Rt as the
shift/rotate amount. Opcode 0x10 is used for the JR (jump register) instruction. Opcodes 0x20
thru 0x41 are used for I-type instructions. The 16-bit immediate constant is zero-extended for
ANDI, ORI, and XORI. It is sign-extended for all remaining instructions. The Load Upper
Immediate (LUI) shifts the immediate constant left by 16 bits to load it into the upper 16 bits of
register Rt. LUI can be combined with ORI to load any 32-bit constant into a register. The J-type
instructions have a 24-bit immediate constant. Although the instruction set is reduced, it is still
rich enough to write useful programs. We can have procedure calls and returns using the JAL
and JR instructions.

 3

Memory

Your processor will have separate instruction and data memories with 224 words each. Each
word is 32 bits or 4 bytes. Memory is word addressable. Only words (not bytes) can be read and
written to memory, and each address is a word address. This will simplify the implementation.
The PC contains a word address (not a byte address). Therefore, it is sufficient to increment the
PC by 1 (rather than 4) to point to the next instruction in memory. Also, the Load and Store
instructions can only load and store words. There is no instruction to load or store a byte in
memory.

Register File

Implement a Register file containing fifteen 32-bit registers R1 to R15 with two read ports and
one write port. R0 is hardwired to zero.

Arithmetic and Logical Unit (ALU)

Implement a 32-bit ALU to perform all the required operations:
ADD, SUB, SLT, SLTU, OR, AND, XOR, NOR, SLL, SRL, SRA, ROR

Addressing Modes
PC-relative addressing mode is used for branch instructions.
For branching (BEQ, BNE), the branch target address is computed as follows:
PC = PC + sign-extend(Imm16). Add the contents of PC to the sign-extended 16-bit Immediate.
Direct addressing mode is used for jumps (J and JAL): PC = immediate24.
For LW and SW base-displacement addressing mode is used. The base address is obtained from
register(Rs) and added to the sign-extended 16-bit immediate to compute the effective memory
address. Only the lower 24 bits of the address are used to address the data memory.

Program Execution

The program will be loaded and will start at address 0 in the instruction memory. The data
segment will be loaded and will start also at address 0 in the data memory. You may also have a
stack segment if you want to support procedures. The stack segment can occupy the upper part
of the data memory and can grow backwards towards lower addresses. The stack segment can be
implemented completely in software. To terminate the execution of a program, the last
instruction in the program can jump or branch to itself indefinitely.

Building a Pipelined Processor
It is recommended that you start by building the datapath and control of a single-cycle processor
and ensure its correctness. Once you have succeeded in doing it, test it to verify its correctness.
Then, convert your design and implement a pipelined-datapath and its control logic. A five-stage
pipeline should be constructed similar to the pipeline presented in the class lectures. Add
pipeline registers between stages. Design the control logic to detect data dependencies among
instructions and implement the forwarding logic. For jump instructions, reduce the jump delay to
just one cycle. Stall the pipeline for one clock cycle after a jump instruction. For branch, assume
the branch is never taken. There is no need to stall the pipeline if a branch instruction is not
taken. However, if a branch is taken then convert the wrongly fetched instructions into bubbles.
Also, stall the pipeline after a LW instruction, if it is followed by a dependent instruction.

 4

Testing

• Test all components and sub-circuits independently to ensure their correctness. For
example, test the correctness of the ALU, the register file, the control logic separately,
before putting your components together.

• Test each instruction independently to ensure its correct execution.

• Test sequences of dependent instructions to ensure the correctness of the forwarding
logic. Also, test a LW (load word) followed by a dependent instruction to ensure stalling
the pipeline correctly by one clock cycle.

• Test the behavior of taken and untaken branch instructions and their effect on stalling the
pipeline.

• Write different test programs to verify the correctness of the pipeline implementation.
Write a test program involving procedures and arrays. For example, the main procedure
initializes array elements with some constant values. It then calls a second procedure
after passing the array address and the number of elements as parameters in two registers.
The second procedure uses the parameters to compute the sum of the array elements and
returns the result in a register. Translate the program into machine instructions by hand
and load it into the instruction memory starting at address 0. You can also save the image
of the instruction and data memories into files and reload them later for testing purposes.

• Document all your test programs and files and include them in the report document.

• Make several copies and versions of your design before making changes, in case you
need to go back to an older version.

Project Poster and Presentation

Prepare a poster for your project that includes the group members, a brief description of the
project, diagrams of the datapath and control, test cases used to verify the correctness of the
pipelined implementation, and snapshots of the simulator. You will use this poster to present
your project. You will also prepare a live demo for your pipelined processor. Submit an
electronic copy of the poster. Some of the best project posters will be preserved as demos for
future students, and will be posted on the COE 308 website.

Project Report

The report document must contain sections highlighting the following:

1 – Design and Implementation

• Specify clearly the design giving detailed description of the datapath, its components,
control, and the implementation details.

• Provide drawings of the component circuits and the overall datapath.
• Provide a complete description of the control logic and the control signals. Provide a

table giving the control signal values for each instruction. Provide the logic equations for
each control signal.

• Provide a complete description of the forwarding logic, the cases that were handled, and
the cases that stall the pipeline, and the logic that you have implemented to stall the
pipeline.

 5

2 – Simulation and Testing

• Carry out the simulation of the processor developed using Logisim.
• Describe the test programs that you used to test your design with enough comments

describing the program, its inputs, and its expected output. List all the instructions that
were tested and work correctly. List all the instructions that do not run properly.

• Describe all the cases that you handled involving dependences between instructions,
forwarding cases, and cases that stall the pipeline.

• Also provide snapshots of the Simulator window with your test program loaded and
showing the simulation output results.

3 – Teamwork

• Two or at most three students can form a group. Make sure to write the names of all the
group members on the project report title page.

• Group members are required to coordinate the work equally among themselves so that
everyone is involved in all the following activities:
- Design and Implementation
- Simulation and Testing

• Clearly show the work done by each group member using a chart and prepare an
execution plan showing the time frame for completing the subtasks of the project. You
can also mention how many meetings were conducted between the group members to
discuss the design, implementation, and testing.

Submission Guidelines
All submissions will be done through Blackboard.

Attach one zip file containing all the design circuits and sub-circuits, the test programs, their
source code and binary instruction files that you have used to test your design, their test data, as
well as the report document. Submit also a hard copy of the report during the class lecture.

Grading policy
The grade will be divided according to the following components:

■ Correctness: whether your implementation is working
■ Completeness and testing: whether all instructions and cases have been implemented,

handled, and tested properly
■ Participation and contribution to the project
■ Poster Presentation
■ Report document

Late policy
The project should be submitted on the due date by midnight. Late projects are accepted for a
maximum of 2 late days. Projects submitted after 2 late days will not be accepted. The maximum
late penalty is 10%.

