COE 308: Computer Architecture — Fall 2011

Project: Pipelined Processor Implementation

Objectives:

* Using the Logisim simulator
» Designing and testing a Pipelined 32-bit processor
* Teamwork

Instruction Set Architecture

In this project, you will design a simple 32-bit3& processor with sixteen 32-bit general-
purpose registers: RO through R15. RO is hardwimezkro and cannot be written, so we are left
with fifteen registers. There is also one speciappse 24-bit register, which is the program
counter (PC), which can address at mdstirstructions. All instructions are 32 bits. Theme
three instruction formats, R-type, I-type, and getps shown below:

R-type format
8-bit opcode (Op), and 4-bit register numbers @sand Rd)

op° RS | Rt | Rd Unused?

I-type format
8-bit opcode (Op), 4-bit register number (Rs angd &td 16-bit immediate constant

op° Rs' | Rt Immediaté®

J-type format
8-bit opcode (Op) and 24-bit immediate constant

op° Immediaté*

For R-type instructions, Rs and Rt specify the s@arce register numbers, and Rd specifies the
destination register number.

For I-type instructions, Rs specifies a sourcesteginumber, and Rt can be a second source or a
destination register number. The immediate conssah6é bits as in the MIPS architecture. The
16-bit immediate constant can be signed or unsigiepending on the opcode.

For J-type, the 24-bit immediate constant is used ¥ (jump) and JAL (jump-and-link)
instructions.

Instruction Encoding

Thirteen R-type instructions, nine I|-type instroos, and two J-type instructions are defined.
These instructions, their meaning, and their emmpdre shown below:

Instr | Meaning Encoding

AND | Reg(Rd) = Reg(Rs) & Reg(Rt) Op=0xQ0 Rs Rt RdUnused
OR Reg(Rd) = Reg(Rs) | Reg(Rt) Op=0xpP1 Rs Rt Rd nuddd
XOR | Reg(Rd) = Reg(Rs) ™ Reg(Rt) Op=0x02 Rs Rt RdJnused
NOR | Reg(Rd) = ~(Reg(Rs) | Reg(Rt)) Op=0x03 Rs RtRd | Unused
ADD |Reg(Rd) = Reg(Rs) + Reg(Rt) Op=0x04 Rs Rt RdUnused
SUB | Reg(Rd) = Reg(Rs) — Reg(Rt) Op=0xD5 Rs Rt Rtnused
SLT | Reg(Rd) = Reg(Rs) < Reg(Rt) Op=0xp6 Rs Rt RdUnused
SLTU | Reg(Rd) = Reg(RSs)ussignedReg(Rt) Op=0x07, Rs Rt Ra Unused
SLL | Reg(Rd) = Reg(Rs) << Reg(Rt) Op=0x08 Rs Rt RdUnused
SRL | Reg(Rd) = Reg(Rs) zero>> Reg(Rt) Op=0x09 Rst |[RRd | Unused
SRA | Reg(Rd) = Reg(Rs) sign>> Reg(Rt) Op=0xDA Rs t RRd | Unused
ROR | Reg(Rd) = Reg(Rs) rot>> Reg(Rt) Op=0xPB Rs RtRd | Unused
JR PC = Reg(Rs) Op=0x10 Rs (0 Unused

ANDI |Reg(Rt) = Reg(Rs) & Immediate Op=0x20| Rs| Rt Immedidfe

ORI | Reg(Rt) = Reg(Rs) | Immedi&te Op=0x21| Rs| Rt Immedidfe
XORI | Reg(Rt) = Reg(Rs) ~ Immediate Op=0x22| Rs| Rt Immedidte
ADDI |Reg(Rt) = Reg(Rs) + Immedidfe Op=0x24| Rs| Rt Immedidte
LUI Reg(Rt) = Immediat® << 16 Op = 0x28 0 Rt Immedidfe
LW | Reg(Rt) = Mem(Reg(Rs) + Imf%) Op=0x30| Rs| Rt Immedidte
SW | Mem(Reg(Rs) + ImM) = Reg(Rt) Op=0x38 Rs Rt Immedite
BEQ | Branch if (Reg(Rs) == Reg(Rt)) Op=0x40 Rs Rt Immediaté®
BNE | Branch if (Reg(Rs) != Reg(Rt)) Op=0x41 Rs Rt Immediaté®
J PC = Immediafé Op = 0x50 Immediafé

JAL |R15=PC + 1, PC = Immediéfe Op = 0x51 Immediafé

Opcodes 0x00 thru 0xOB are used for R-type aritfmaatd bitwise instructions. There are three
shift and one rotate instruction. To shift or retatise the lower 5 bits of register Rt as the
shift/rotate amount. Opcode 0x10 is used for thgjuRp register) instruction. Opcodes 0x20
thru Ox41 are used for I-type instructions. Thebitéimmediate constant is zero-extended for
ANDI, ORI, and XORI. It is sign-extended for allmaining instructions. The Load Upper

Immediate (LUI) shifts the immediate constant ®ft16 bits to load it into the upper 16 bits of

register Rt. LUI can be combined with ORI to loaxy 82-bit constant into a register. The J-type
instructions have a 24-bit immediate constant. dtyh the instruction set is reduced, it is still
rich enough to write useful programs. We can haweegrure calls and returns using the JAL
and JR instructions.

Memory

Your processor will have separate instruction aathdnemories with 2 words each. Each
word is 32 bits or 4 bytes. Memorywserd addressable. Only words (not bytes) can be read and
written to memory, and each address is a word addikhis will simplify the implementation.
The PC contains a word address (not a byte addiEss)efore, it is sufficient to increment the
PC by 1 (rather than 4) to point to the next ington in memory. Also, the Load and Store
instructions can only load and store words. Therad instruction to load or store a byte in
memory.

Register File

Implement a Register file containing fifteen 324&gisters R1 to R15 with two read ports and
one write port. RO is hardwired to zero.

Arithmetic and Logical Unit (ALU)

Implement a 32-bit ALU to perform all the requiregerations:
ADD, SUB, SLT, SLTU, OR, AND, XOR, NOR, SLL, SRLR#, ROR

Addressing Modes

PC-relative addressing mode is used for branchucisbns.

For branching (BEQ, BNE), the branch target addisesemputed as follows:

PC = PC + sign-extend(Imm16). Add the contents@tdéthe sign-extended 16-bit Immediate.
Direct addressing mode is used for jumps (J and:JAC = immediate24.

For LW and SW base-displacement addressing modeed. The base address is obtained from
register(Rs) and added to the sign-extended lBvbitediateto compute the effective memory
address. Only the lower 24 bits of the addressised to address the data memory.

Program Execution

The program will be loaded and will start at addr8sin the instruction memory. The data
segment will be loaded and will start also at assl@in the data memory. You may also have a
stack segment if you want to support procedures. Sthck segment can occupy the upper part
of the data memory and can grow backwards towandsrl addresses. The stack segment can be
implemented completely in software. To terminate txecution of a program, the last
instruction in the program can jump or branch selitindefinitely.

Building a Pipelined Processor

It is recommended that you start by building theagath and control of a single-cycle processor
and ensure its correctness. Once you have succe@ededhg it, test it to verify its correctness.
Then, convert your design and implement a pipehaadpath and its control logic. A five-stage
pipeline should be constructed similar to the pigelpresented in the class lectures. Add
pipeline registers between stages. Design the aolotgic to detect data dependencies among
instructions and implement the forwarding logicr fonp instructions, reduce the jump delay to
just one cycle. Stall the pipeline for one clockleyafter a jump instruction. For branch, assume
the branch is never taken. There is no need to th@lpipeline if a branch instruction is not
taken. However, if a branch is taken then convestwrongly fetched instructions into bubbles.
Also, stall the pipeline after a LW instructionjtiis followed by a dependent instruction.

Testing

Test all components and sub-circuits independetatlyensure their correctness. For
example, test the correctness of the ALU, the tegifile, the control logic separately,
before putting your components together.

Test each instruction independently to ensureaitsect execution.

Test sequences of dependent instructions to ertkereorrectness of the forwarding
logic. Also, test a LW (load word) followed by apgmdent instruction to ensure stalling
the pipeline correctly by one clock cycle.

Test the behavior of taken and untaken branchuctns and their effect on stalling the
pipeline.

Write different test programs to verify the correeds of the pipeline implementation.
Write a test program involving procedures and ar&pr example, the main procedure
initializes array elements with some constant \&ldethen calls a second procedure
after passing the array address and the numbéerokats as parameters in two registers.
The second procedure uses the parameters to cothpusem of the array elements and
returns the result in a register. Translate thgq@mm into machine instructions by hand
and load it into the instruction memory startingdtiress 0. You can also save the image
of the instruction and data memories into files egldad them later for testing purposes.

Document all your test programs and files and idelthem in the report document.

Make several copies and versions of your desigonrbemaking changes, in case you
need to go back to an older version.

Project Poster and Presentation

Prepare a poster for your project that includesdimip members, a brief description of the

project, diagrams of the datapath and control, ¢ases used to verify the correctness of the
pipelined implementation, and snapshots of the ksitou You will use this poster to present

your project. You will also prepare a live demo fgour pipelined processor. Submit an

electronic copy of the poster. Some of the besfeptgosters will be preserved as demos for
future students, and will be posted on the COE86Bsite.

Project Report

The report document must contain sections highhghthe following:

1 — Design and Implementation

Specify clearly the design giving detailed desaviptof the datapath, its components,
control, and the implementation details.

Provide drawings of the component circuits andaverall datapath.

Provide a complete description of the control logi the control signals. Provide a

table giving the control signal values for eachringtion. Provide the logic equations for

each control signal.

Provide a complete description of the forwardingidpthe cases that were handled, and
the cases that stall the pipeline, and the logat flou have implemented to stall the

pipeline.

2 — Simulation and Testing

Carry out the simulation of the processor develapsgdg Logisim.

Describe the test programs that you used to tegt glesign with enough comments
describing the program, its inputs, and its expmectetput. List all the instructions that

were tested and work correctly. List all the instions that do not run properly.

Describe all the cases that you handled involviegethdences between instructions,
forwarding cases, and cases that stall the pipeline

Also provide snhapshots of the Simulator window wyibur test program loaded and

showing the simulation output results.

3 — Teamwork

Two or at most three students can form a group.eMake to write the names of all the
group members on the project report title page.

Group members are required to coordinate the wqualdy among themselves so that
everyone is involved in all the following activisie

- Design and Implementation

- Simulation and Testing

Clearly show the work done by each group membengusi chart and prepare an
execution plan showing the time frame for complgtihe subtasks of the project. You
can also mention how many meetings were conductddelen the group members to
discuss the design, implementation, and testing.

Submission Guidelines
All submissions will be done through Blackboard.

Attach one zip file containing all the design citsuand sub-circuits, the test programs, their
source code and binary instruction files that yauehused to test your design, their test data, as
well as the report document. Submit also a har¢ obphe report during the class lecture.

Grading policy
The grade will be divided according to the folloggicomponents:
Correctness: whether your implementation is wagkin

Completeness and testing: whether all instructeors cases have been implemented,
handled, and tested properly

Participation and contribution to the project
Poster Presentation
Report document

Late policy

The project should be submitted on the due datmiolypight. Late projects are accepted for a
maximum of 2 late days. Projects submitted aftet@ days will not be accepted. The maximum
late penalty is 10%.

