COE 308 — Computer Architecture

Assignment 3 SOLUTION: Procedures in MIPS Assembly Language

For the following problems, the table holds C code functions. Assume that the first function
listed in the table is called first. You will be asked to translate these C code routines into MIPS

assembly.

int compare(int a, int b) {
if (sub(a, b) >= 0) return 1;
else return O;

b

int sub(int a, int b) {
return a — b;

b

int fib_iter(int a, int b, int n) {
if (n == 0) return b;
else return fib_iter(atb, a, n-1);

}

1. Implement the C code in the table in MIPS assembly. What is the total number of MIPS
instructions needed to execute the function?

compare:

addi $sp, $sp, -4 # allocate frame = 4 bytes
sw $ra, 0($sp) # save return address
jal sub # call sub
li $to, O # result = 0
bltz $v0, exit # if sub(a,b)<0 goto exit
li $t0, 1 # result = 1
exit:
move $v0, $t0 # $v0 = result
Iw $ra, 0($sp) # restore return address
addi $sp, $sp, 4 # free stack frame
jr %$ra # return to caller
sub:
sub $v0, $a0, $al # result = a - b
jr $ra # return to caller

11 or 12 instructions (depending whether bltz is taken or
not). Includes the call and return from sub

Page10of7

int fib_iter(int a, int b, int n) {
if (n == 0) return b;
else return fib_iter(at+b, a, n-1);

3

fib_iter:
bne $a2, $0, else # if (n 1= 0) goto else
move $vO0, $al # result = b
jr $ra # return to caller

else:
addiu $sp, $sp, 4 # allocate frame = 4 bytes
sw $ra, 0($sp) # save return address

move $t0, $al

addu $a0, $a0, $al
move $al, $tO $al a
addiu $a2, $a2, -1 $a2 n-1

$a0
#
#
jal fib_iter # recursive call
#
#
#

a+b

Iw $ra, 0($sp) restore return address
addiu $sp, $sp, 4 free stack frame
jr $ra return to caller

Total number of instructions = n * 11 + 3
11 instructions for each recursive call/return (if n>0)
+3 iInstructions if (n == 0)

Functions can often be implemented by compilers “in-line”. An in-line function is when the
body of the function is copied into the program space, allowing the overhead of the function
call to be eliminated. Implement an “in-line” version of the above C code in MIPS assembly.
What is the reduction in the total number of MIPS assembly instructions needed to
complete the function?

compare:
sub $t0, $a0, %al
li $v0, O
bltz $t0, exit
li $vo, 1

exit:
jr %$ra

4 or 5 instructions (whether bltz is taken or not)

Due to recursive nature of the code, not possible for the
compiler to in-line the function call.

Page 2 of 7

3. For each function call, show the contents of the stack after the function call is made.
Assume that the stack pointer is originally at address Ox7ffffffc.

after calling function compare:
a. $sp = $sp — 4 = OX7FFFFFf8

OX7FFFFFF8: return address of compare

suppose that Ffib_iter was called with n = 4

OX7FFFFFF8: return address of caller (n=4)

OX7FFFFFF4: return address of 1lst recursive call (n=3)
OX7FFFFFFO: return address of 2nd recursive call (n=2)
b. Ox7fffffec: return address of 3rd recursive call (n=1)
Ox7FfFfFffe8: return address of 4th recursive call (n=0)

The return address of the 4 recursive calls is the same.
It Is the address of the “Iw’ instruction that comes
immediately after the recursive “jal fib_iter” iInstruction

The following problems refer to a function f that calls another function func. The function
declaration for func is “int func(int a, int b);”. The code for function f is as follows:

int f(int a, int b, int ¢) {
return func(func(a, b), c);

(o)

int f(int a, int b, int ¢) {
return func(a, b) + func(b, c);
by

4. Translate function finto MIPS assembly code, using the MIPS calling convention. If you need
to use register $t0 through $t7, use the lower-numbered registers first.

int f(int a, int b, int ¢) {
return func(func(a, b), c);
+

f: addiu $sp, $sp, -8
sw $ra, 0($sp)

a. sw $a2, 4($sp)

jal func

move $al0, $vO

Iw $al, 4($sp)

jal func

Iw $ra, 0($sp)

addiu $sp, $sp, 8

jr $ra

allocate frame = 8 bytes
save return address

save C

call func(a,b)

$a0 = result of func(a,b)
$al = c

call func(func(a,b),c)
restore return address
free stack frame

return to caller

HHIFHEHFHFEHHHR

Page 3 of 7

int f(int a, int b, int ¢) {
return func(a, b) + func(b, c);
>
f: addiu $sp, $sp, -12
Sw $ra, 0(%$sp)

allocate frame = 12 bytes
save return address

sw $al, 4($sp) save b

sw $a2, 8($sp) save c

jal func call func(a,b)
b. Iw $a0, 4($sp) $a0 = b

Iw $al, 8(%$sp) $al = c

sw $v0, 4($sp)
jal func

Iw $t0, 4(%$sp)
addu $vO0, $t0, $vO
Iw $ra, 0($sp)
addiu $sp, $sp, 12
jr $ra

save result of func(a,b)
call func(b,c)

$t0 = result of func(a,b)
$v0 = func(a,b)+Ffunc(b,c)
restore return address
free stack frame

return to caller

HFHIFHHFHFFEHFEHFEH R

5. Right before your function f of Problem 4 returns, what do you know about contents of
registers $t5, $s3, Sra, and Ssp? Keep in mind that we know what the entire function f looks
like, but for function func we only know its declaration.

Register Sra is equal to the return address in the caller function, registers Ssp and $s3 have
the same values they had when function f was called, and register $t5 can have an arbitrary
value. For S$t5, note that although our function f does not modify it, function func is allowed
to modify it so we cannot assume anything about $t5 after function func has been called.

For the following problems, the table has an assembly code fragment that computes a
Fibonacci number. However, the entries in the table have errors, and you will be asked to fix
these errors.

fib: addi $sp, $sp, -12
sw $ra, 8($sp)
sw $s1, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 3
beq $t0, $0, L1
addi $vO, $0, 1

] exit
L1: addi $a0, $a0, -1
jal fib

addi $sl1, $v0, $0
addi $a0, $a0, -1
jal fib
add $v0, $v0, 3$s1
exit: lIw $a0, 8($sp)
Iw $s1, 0($sp)
Iw $ra, 4($sp)
addi $sp, $sp, 12
jr $ra

Page 4 of 7

6. The MIPS assembly program above computes the Fibonacci of a given input. The integer
input is passed through register $a0, and the result is returned in register $v0. In the
assembly code, there are few errors. Correct the MIPS errors.

a. |FIB: addi $sp, $s5p, -12
W $ra, SlEsp)
skl $21, 40%sp)
skl Fan, Ol%sp)
st $to, fan, 3
bag t0, $0, L1
addi fwo, $0, 1
J EAIT

L1: addi $ad, $at, -1
Jal FIB
addi $s51, $v0, 0
addi $ad, $at, -1
Jal FIB
add Fu0, $v0, $s51
EAIT: Tw $a0, OC$spld
Tw $21, 40%sp)
Tw $ra, 8(%sp)
addi $sp. #sp. 12
Jr Fra

7. For the recursive Fibonacci MIPS program above, assume that the input is 4. Rewrite the
Fibonacci program to operate in a non-recursive manner. Restrict your register use to
registers $sO - Ss7. What is the total number of instructions used to execute your non-
recursive solution versus the recursive version of the factorial program?

According to MIPS convention, we should preserve $s0 and $1. We could have
used $t0 and $t1 without preserving their values. For input 4, we have 23
instructions in non-recursive Fib versus 73 instructions to execute recursive Fib.
fib:

addiu $sp, $sp, -8 # allocate stack frame

sw $s0, 0($sp) # save $s0O

sw $s1l, 4($sp) # save $sl

li $s0, 1 # prev value in Fib sequence

li $v0, 1 # curr value in Fib sequence

blt $a0, 3, EXIT # if (n < 3) goto exit
LOOP:

addu $s1, $v0, $sO # next = curr + prev

move $s0, $vO # prev = curr

move $vO, $sl # curr = next

addiu $a0, $a0, -1 #n=n-1

bge $a0, 3, LOOP # Loop if (n >= 3)
EXIT:

Iw $s0, 0($sp) # restore $s0

Iw $sl, 4($sp) # restore $sl

addiu $sp, $sp, 8 # free stack frame

jr $ra # return to caller

Page 5 of 7

In this exercise, you will be asked to write a MIPS assembly program that converts strings into
the number format as specified in the table.

a. Positive integer decimal string

b. String of hexadecimal digits

8. Write a program in MIPS assembly language to convert an ASCIl number string with the
conditions listed in the table above, to an integer. Your program should expect register $a0
to hold the address of a null-terminated string containing some combination of the digits 0
though 9. Your program should compute the integer value equivalent to this string of digits,
then place the number in register $v0. If a nondigit character appears anywhere in the
string, your program should stop with the value -1 in register SvO0.

str2int: # convert string to integer
i $t6, 0x30 # $t6 = "0"
I $t7, 0x39 # $t7 = "9
li $v0, O # initialize $v0 = 0
move $tO, $al # $t0 = pointer to string
Ib $tl, ($t0) # load $tl = digit character
LOOP:
blt $tl, $t6, NoDigit # char < “0’
bgt $tl1, $t7, NoDigit # char > “9’
a. subu $t1, $tl, $t6 # convert char to integer
mull $v0, $vO0, 10 # multiply by 10
add $vO0, $v0, $tl # $v0 = $v0 * 10 + digit
addiu $t0, $t0, 1 # point to next char
Ib $tl, ($t0) # load $tl = next digit
bne $t1l, $0, LOOP # branch if not end of string
jr $ra # return integer value
NoDigit:
li $v0, -1 # return -1 in $vO
jr $ra

Page 6 of 7

hexstr2int:

]
1
]
1
]
move
Ib
LOOP:

blt
bgt
subu

HEX:

$t4,
$t5,
$t6,
$t7,
$vO,
$t0,
$t1,

$tl,
$t1,
$tl,

0x41
0x46
0x30
0x39
0
$a0
(3t0)

$t6, NoDigit
$t7, HEX
$tl, $t6

Compute

$tl,
$t1,
$t1,
$vO,
$vo,
$t0,
$t1,
$t1,
$ra

$vO,
$ra

$t4, NoDigit
$t5, NoDigit
$t1, -55

$v0, 4

$v0, $tl

$t0, 1
($10)

$0, LOOP

HHIFBHEFEEREHR

HHHFHFHEFEEHE OHHHHR

convert hex string to int

$t4 = A"
$t7 = °F*
$t6 = 0"
$t7 = "9O°

initialize $v0 = 0
$t0 = pointer to string
load $t1 = digit character

char < “0’
check if hex digit
convert to integer

Jump to Compute integer

char < “A”

char > “F”

convert: “A’=10,°“B’=11,etc
multiply by 16

$v0 = $v0 * 16 + digit
point to next char

load $tl = next digit
branch if not end of string
return integer value

return -1 in $vO

Page 7 of 7

