
Prepared by Dr. Muhamed Mudawar Page 1 of 4

COE 308 – Computer Architecture

Term 091 – Fall 2009

Project 1: Writing, Simulating, and Testing MIPS Assembly Code

Objectives:

 Using the MARS MIPS simulator tool
 Writing, simulating, and testing MIPS assembly language code
 Solving linear matrices and estimating performance by counting instruction frequencies
 Doing floating-point arithmetic in software to understand it thoroughly
 Teamwork

Problem 1: Solving Linear Equations

Gaussian elimination is a well-known technique for solving simultaneous linear systems of
equations. Variables are eliminated one by one until there is only one left, and the discovered values
of variables are back-substituted to obtain the values of other variables. In practice, the linear
equations are represented as an augmented matrix A[N][N+1] with N rows and N+1 columns. The
matrix is converted to an upper triangular matrix. Then back substitutions are used to produce the
solution vector. Pseudo-code for Gaussian elimination is shown below.

procedure Gaussian (int N, float A[N][N+1]) {
 for k = 0 to n-2 do {
 for i = k+1 to N-1 do {
 factor = A[i][k]/A[k][k];
 for j = k+1 to N do {
 A[i][j] = A[i][j] – factor * A[k][j];
 }
 A[i][k] = 0
 }
 }
}

Pseudo-code for the solve procedure is shown below. This procedure is called after Gaussian
elimination. It receives as input the upper triangular converted matrix A, and produces as output the
solution vector Sol.
procedure Solve(int N, float A[N][N+1], float Sol[N]) {
 for (i=N-1; i>=0; i--) {
 Sol[i] = A[i][N];
 for (j=i+1; j<N; j++) {
 Sol[i] = Sol[i] - A[i][j] * Sol[j];
 }
 Sol[i] = Sol[i]/A[i][i];
 }
}

Write a MIPS assembly language program to perform Gaussian Elimination of floating-point
matrices of size N by N+1, and to produce a solution vector of N floating-point elements. The matrix
data should be read from a text file. N × (N+1) floats should be read from a text file. The numbers are
separated by spaces or newline characters. Prompt the user to enter the name of the text file, then
open and read the text file. Each number should be converted from a string format (the way it is read

Prepared by Dr. Muhamed Mudawar Page 2 of 4

from a text file) to the single-precision binary format (the way it is stored in a floating-point register).
Define a matrix A inside the program of size 100 × 101 floats and put a maximum limit on N to be
100. Read the numbers from the text file, convert them to single-precision float, and store them in
matrix A in row-major order. Then, perform Gaussian elimination on matrix A and produce a
solution vector. All arithmetic operations should be done using the floating-point instructions. Write
the solution vector to an output text file, where each number is written on a separate line. A floating-
point number should be converted to string format before writing it to a text file. MARS provides
system calls for opening a file, reading from an input text file, and writing to an output text file. Test
and verify your results.

A sample run is show below:

Enter Matrix Size (N): 10
Enter Matrix Input Filename: input.txt
Enter Solution Vector Output Filename: output.txt

The produced solution vector should be written to the output file: output.txt.

Problem 2: Program Analysis and Counting Instruction Frequencies
After succeeding in Gaussian elimination and producing a solution vector, you will analyze the
MIPS code of the Gaussian and Solve procedures of Problem 1, to have a better understanding of
instruction frequencies. You will count the dynamic number of instructions that are executed at
runtime to determine their frequencies. You need a total of four counters to count instructions for the
following classes of instructions:

■ Class 1 is for ALU instructions.

■ Class 2 is for Floating-point instructions.

■ Class 3 is for load and store instructions.

■ Class 4 is for branch and jump instructions.

You will augment the code of the Gaussian procedure and the Solve procedure with additional
instructions to count the original number of instructions. At the beginning of the procedure, initialize
all counters to zeros. Before each instruction, insert additional instructions to count that instruction.
For example, if the original instruction is addiu then increment the counter of Class1 by inserting
additional instructions to do the increment before the instruction itself. If the same instruction is
executed 100 times (in different loop iterations), it will be counted as 100. Count only the real
instructions. For pseudo-instructions, count the equivalent real instructions. Make sure that your
additional code does not interfere with the original program code. Count only the original
instructions, not the new ones that you have added.

At the end of the Gaussian procedure, display the statistics for this procedure. Do the same for the
Solve procedure A sample run is show below:

Enter Matrix Size (N): 10
Enter Matrix Input Filename: input.txt
Enter Solution Vector Output Filename: output.txt

Statistics for the Gaussian Procedure:
Total instructions = ???
ALU instructions = ??, Percentage = ?%
FPU instructions = ??, Percentage = ?%
Load & Store instructions = ??, Percentage = ?%
Branch & Jump instructions = ??, Percentage = ?%

Prepared by Dr. Muhamed Mudawar Page 3 of 4

Statistics for the Solve Procedure:
Total instructions = ???
ALU instructions = ??, Percentage = ?%
FPU instructions = ??, Percentage = ?%
Load & Store instructions = ??, Percentage = ?%
Branch & Jump instructions = ??, Percentage = ?%

Problem 3: Single-Precision Floating-Point Division in Software
Write and test a MIPS assembly language program to do single-precision floating-point division in
software rather than in hardware. The procedure floatdiv should receive its input parameters in $a0
and $a1 (as single-precision floating-point numbers) and produce its result in $v0=$a0/$a1 (as
single-precision float). You cannot use the floating-point divide instruction div.s to do the
division. Only integer instructions are allowed. Write additional procedures, if needed, to extract the
fields, normalize, and round the result.

You should also make sure to handle special cases:

■ Zero, infinity, and NaN

■ Overflow and underflow

■ Denormalized numbers

Round the result to the nearest even, which is the default rounding mode in IEEE 754 standard. This
is the only rounding mode that should be supported.

Use the div.s instruction to check the result of the floating-point division against the result produced
by the floatdiv procedure to ensure correctness.

Write a main procedure to call and test the floatdiv procedure. Specifically, you should ask the user
to input two floating-point numbers and to print the result.

A sample run should look as follows:
Enter 1st float: 1.5e-4
Enter 2nd float: 0.75e-3
Result of floatdiv: 0.2
Result of div.s: 0.2

Tool
Use the MARS tool to write, execute, and test your code. To get started, familiarize yourself with the
MARS MIPS simulator. You should familiarize yourself with the assembly language syntax and
system calls. The MARS Help provides a description of all the system calls that are needed to
complete this project. It also provides a list of all the basic and pseudo instructions.

Groups
Two or at most three students can form a group. Make sure to write the names of all the students
involved in your group on the project report.

Coding and Documentation
Develop the code for the given problems with the following aspects in mind:

 Correctness: the code works properly
 Completeness: all cases have been covered
 Efficiency: the use of relevant instructions and algorithms
 Documentation: the code is well documented through the appropriate use of comments.

Prepared by Dr. Muhamed Mudawar Page 4 of 4

Report Document

The project report must contain sections highlighting the following:

■ Program Design

 Specify clearly the design of each procedure giving detailed description of the algorithm
used/developed and the implementation details.

■ Program Simulation

Describe all the simulator features that you have used for simulating your code with a clear
emphasis on its advantages and limitations (if any), debugging for errors, the use of system calls
and displaying the results of the program.

■ Program Output and Discussion

Provide snapshots of the Simulator window and show all the results.

 Discuss all the cases that were handled. For program 1, provide more than one input matrix text
file and show the final solution vector for each run.

For program 2, show only the statistics that you have produced for different runs for N = 10, 25,
50, and 100. Comment on these statistics, the complexity of the Gaussian and Solve procedures,
and the additional code that you inserted.

For program 3, provide sample inputs and outputs and discuss all the cases that were handled by
the floatdiv procedure, such as normalized and denormalized numbers, zero, overflow, and
underflow. Also test and demonstrate rounding.

■ Teamwork

Group members are required to divide the work equally among themselves, so that everyone is
involved in algorithm design, program development, and debugging.

Show clearly the division of work among the group members using a Chart and also prepare a
Project execution plan showing the time frame for completing the subtasks of the project.

Students who helped other team members should mention that to earn credit for that.

Submission Guidelines
All submissions will be done through WebCT. Submit one zip file containing the source code of
programs 1, 2, and 3, the report document, and test files. Also, submit a hard copy of the report in
class.

Grading Policy
The grade will be divided according to the following components:

■ Correctness of code: program produces correct results
■ Completeness of code: all cases were handled properly
■ Documentation of code: program is well documented
■ Team Work : Participation and contribution to the project
■ Report document

Late Policy
The project should be submitted on the due date by midnight. Late projects are accepted for a
maximum of 3 late days, but will be penalized. Projects submitted after 3 late days will not be
accepted.

