
Prepared by Dr. Muhamed Mudawar Page 1 of 9

COE 308 – Computer Architecture

Exam I – Spring 2008

Tuesday, April 1st, 2008

7:00 pm – 9:00 pm

Computer Engineering Department

College of Computer Sciences & Engineering

King Fahd University of Petroleum & Minerals

Student Name:

Student ID:

Q1 / 15 Q2 / 15

Q3 / 15 Q4 / 10

Q5 / 10 Q6 / 20

Q7 / 20

Total / 105

Important Reminder on Academic Honesty

Using unauthorized information on an exam, peeking at others work, or altering
graded exams to claim more credit are severe violations of academic honesty.
Detected cases will receive a failing grade in the course.

 Page 2 of 9

Q1. (15 pts) Given the bit pattern:

 1100 0110 1101 0100 0000 0000 0000 0000 (binary)

What is the decimal value of the above number, assuming it is

a) (2 pts) Unsigned integer?

b) (2 pts) Signed integer?

c) (5 pts) Single-precision floating-point number?

d) (6 pts) Show the Single precision IEEE 754 representation for -0.05, rounded to the
nearest even.

 Page 3 of 9

Q2. (15 pts) Consider the following data definitions:

 .data
 var1: .byte 3, -2, 'A'
 var2: .half 1, 256, 0xffff
 var3: .word 0x3de1c74, 0xff
 .align 3
 str1: .asciiz "COE308"

a) Show the content of each byte of the allocated memory, in hexadecimal for the above
data definitions. The Little Endian byte ordering is used to order the bytes within words
and halfwords. Fill the symbol table showing all labels and their starting address. The
ASCII code of character 'A' is 0x41, and '0' is 0x30. Indicate which bytes are skipped or
unused in the data segment.

Address Byte 0 Byte 1 Byte 2 Byte 3

0x10010000 0x03

0x10010004

0x10010008

0x1001000C

0x10010010

0x10010014

0x10010018

0x1001001C

0x10010020

0x10010024

0x10010028

0x1001002C

b) How many bytes are allocated in the data segment including the skipped bytes?

Label

var1

Address

0x10010000

Symbol Table

Data Segment

 Page 4 of 9

Q3. (15 pts) For each of the following pseudo-instructions, produce a minimal sequence of
real MIPS instructions to accomplish the same thing. You may use the $at register only
as a temporary register.

a) abs $s1, $s2

b) addiu $s1, $s2, imm32 # imm32 is a 32-bit immediate

c) bleu $s1, $s2, Label # branch less than or equal unsigned

d) bge $s1, imm32, Label # imm32 is a 32-bit immediate

e) rol $s1, $s2, 5 # rol = rotate left $s2 by 5 bits

32-bit register

 Page 5 of 9

Q4. (10 pts) Translate the following loop into assembly language where a and b are integer
arrays whose base addresses are in $a0 and $a1 respectively. The value of n is in $a2.

for (i=0; i<n; i++) {
 if (i > 2) {
 a[i] = a[i-2] + a[i-1] + b[i];
 }
 else {
 a[i] = b[i]
 }
}

 Page 6 of 9

Q5. (10 pts) Translate the following if-else statement into assembly language:

if (($t0 >= '0') && ($t0 <= '9')) {$t1 = $t0 – '0';}
else if (($t0 >= 'A') && ($t0 <= 'F')) {$t1 = $t0+10-'A';}
else if (($t0 >= 'a') && ($t0 <= 'f')) {$t1 = $t0+10-'a';}

 Page 7 of 9

Q6. (20 pts) Given that x = 1 10000101 101100000000000000000012 and
y = 1 01111111 010000000000000110000002 are single precision IEEE 754
floating-point numbers. Perform the following operations showing all the intermediate
steps and final result in binary. Round to the nearest even.

a) (10 pts) x + y
b) (10 pts) x * y

 Page 8 of 9

Q7. (20 Pts) Write MIPS assembly code for the procedure BinarySearch to search an array
which has been previously sorted. Each element in the array is a 32-bit signed integer.
The procedure receives three parameters: register $a0 = address of array to be
searched, $a1 = size (number of elements) in the array, and $a2 = item to be searched. If
found then BinarySearch returns in register $v0 = address of the array element where
item is found. Otherwise, $v0 = 0.

 BinarySearch ($a0=array, $a1=size, $a2=item) {
 lower = 0;
 upper = size-1;
 while (lower <= upper) {
 middle = (lower + upper)/2;
 if (item == array[middle])
 return $v0 = ADDRESS OF array[middle];
 else if (item < array[middle])
 upper = middle–1;
 else
 lower = middle+1;
 }
 return $v0=0;

 }

 Page 9 of 9

Additional Page if Needed

