
Prepared by Dr. Muhamed Mudawar

COE 308 – Computer Architecture
Assignment 6: Pipelined Processor

1. Identify all the RAW data dependencies in the following code. Which dependencies are
data hazards that will be resolved by forwarding? Which dependencies are data hazards
that will cause a stall? Using a graphical representation of the pipeline, show the
forwarding paths and stalled cycles if any.

 add $3, $4, $2
 sub $5, $3, $1
 lw $6, 200($3)
 add $7, $3, $6

2. We have a program of 106 instructions in the format of “lw,add,lw,add,…”. The
add instruction depends only on the lw instruction right before it. The lw instruction
also depends only on the add instruction right before it. If this program is executed on
the 5-stage MIPS pipeline:

 a) Without forwarding, what would be the actual CPI?
 b) With forwarding, what would be the actual CPI?

3. A 10-stage instruction pipeline runs at a clock rate of 1 GHz. The instruction mix is such
that 15% of instructions cause one bubble to be inserted into the pipeline, and 10% of
instructions cause two bubbles to be inserted. The equivalent single-cycle implementation
would lead to a clock rate of 150 MHz.

 a) What is the increase in the pipeline CPI over the ideal CPI as a result of bubbles?
 b) What is the speedup of pipelined implementation over single-cycle?

4. Store-after-load data dependence. Consider copying an array of n words from one
address in memory to another. This can be accomplished by placing a sequence of lw and
sw instructions in a loop, with each loop iteration copying one word. In the current
pipelined implementation shown in the lecture slides, this leads to one bubble (stall cycle)
between lw and sw. Is it possible to avoid this stalling via additional data forwarding
hardware? Discuss how this can be done or explain how the bubble is unavoidable.

5. We have a program core consisting of five conditional branches. The program core will
be executed millions of times. Below are the outcomes of each branch for one execution
of the program core (T for taken and N for not taken).

 Branch 1: T-T-T
 Branch 2: N-N-N-N
 Branch 3: T-N-T-N-T-N
 Branch 4: T-T-T-N-T
 Branch 5: T-T-N-T-T-N-T

 Assume that the behavior of each branch remains the same for each program core
execution. For dynamic branch prediction schemes, assume that each branch has its own
prediction buffer and each buffer is initialized to the same state before each execution.
List the predictions and the accuracies for each of the following branch prediction
schemes:

 a) Always taken
 b) Always not taken
 c) 1-bit predictor, initialized to predict taken
 d) 2-bit predictor, initialized to weakly predict taken

